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Minimal mass blow up solutions for a double

power nonlinear Schrödinger equation

Stefan Le Coz, Yvan Martel, and Pierre Raphaël

Abstract. We consider a nonlinear Schrödinger equation with double
power nonlinearity

i∂tu+Δu+ |u|4/du+ ε|u|p−1u = 0, ε ∈ {−1, 0, 1}, 1 < p < 1 +
4

d

in R
d (d = 1, 2, 3). Classical variational arguments ensure that H1(Rd)

data with ‖u0‖2 < ‖Q‖2 lead to global in time solutions, where Q is the
ground state of the mass critical problem (ε = 0). We are interested by
the threshold dynamic ‖u0‖2 = ‖Q‖2 and in particular by the existence
of finite time blow up minimal solutions. For ε = 0, such an object exists
thanks to the explicit conformal symmetry, and is in fact unique from the
seminal work [22]. For ε = −1, simple variational arguments ensure that
minimal mass data lead to global in time solutions. We investigate in this
paper the case ε = 1, exhibiting a new class of minimal blow up solutions
with blow up rates deeply affected by the double power nonlinearity. The
analysis adapts the recent approach [31] for the construction of minimal
blow up elements.

1. Introduction

We consider the following double power nonlinear Schrödinger equation in Rd:

(NLS)

{
i∂tu+Δu+ |u|4/du+ ε|u|p−1u = 0,

u|t=0 = u0,
1 < p < 1+

4

d
, ε ∈ {−1, 0, 1}.

This model corresponds to a subcritical perturbation of the classical mass critical
problem ε = 0 which rules out the scaling symmetry of the problem. It is well
known (see e.g [6] and the references therein) that for any u0 ∈ H1(Rd), there exists
a unique maximal solution u ∈ C((−T�, T �), H1(Rd)) ∩ C1((−T�, T �), H−1(Rd))

Mathematics Subject Classification (2010): Primary 35Q55; Secondary 35B44.
Keywords: Blow-up, nonlinear Schrödinger equation, double power nonlinearity, minimal mass,
critical exponent.



796 S. Le Coz, Y. Martel, and P. Raphaël

of (NLS). Moreover, the mass (i.e. L2 norm) and energy E of the solution are
conserved by the flow, where:

E(u) =
1

2
‖∇u‖22 −

1

2 + 4/d
‖u‖2+4/d

2+4/d − ε
1

p+ 1
‖u‖p+1

p+1.

Moreover, there holds the blow up criterion:

(1.1) T � < +∞ implies lim
t↑T�

‖∇u(t)‖2 = +∞.

In this paper, we are interested in the derivation of a sharp global existence criterion
for (NLS) in connection with the existence of minimal mass blow up solutions
of (NLS).

1.1. The mass critical problem

Let us briefly recall the structure of the mass critical problem ε = 0. In this case,
the scaling symmetry

uλ(t, x) = λd/2u(λ2t, λx)

acts on the set of solutions and leaves the mass invariant

‖uλ(t, ·)‖2 = ‖u(λ2t, ·)‖2.
From variational arguments [32], the unique ([3, 14]) ground state solution to

−ΔQ+Q− |Q|4/dQ = 0, Q ∈ H1(Rd), Q > 0, Q radial

attains the best constant in the Gagliardo–Nirenberg inequality

‖u‖2+4/d
2+4/d ≤ C ‖u‖4/d2 ‖∇u‖22,

so that for all u ∈ H1(Rd) we have

(1.2) Ecrit(u) =
1

2
‖∇u‖22 −

1

2 + 4/d
‖u‖2+4/d

2+4/d ≥ 1

2
‖∇u‖22

[
1−
( ‖u‖2
‖Q‖2

)4/d]
.

Together with the conservation of mass and energy and the blow up criterion (1.1),
this implies the global existence of all solutions with data ‖u0‖2 < ‖Q‖2. In fact,
there holds scattering, see [10] and references therein.

At the threshold ‖u0‖2 = ‖Q‖2, the pseudo-conformal symmetry

(1.3)
1

|t|d/2 u
(1
t
,
x

t

)
ei

|x|2
4t

applied to the solitary wave solution u(t, x) = Q(x)eit yields the existence of the
following explicit minimal blow up solution:

(1.4) S(t, x) =
1

|t|d/2 Q
( x
|t|
)
e−i |x|2

4|t| e
i
|t| , ‖S(t)‖2 = ‖Q‖2, ‖∇S(t)‖2 ∼

t∼0−

1

|t| .
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From [22], minimal blow up elements are classified in H1(Rd) in the following sense

‖u(t)‖2 = ‖Q‖2 and T ∗ < +∞ imply u ≡ S

up to the symmetries of the flow. Note that the minimal blow up dynamic (1.4)
can be extended to the super critical mass case ‖u0‖2 > ‖Q‖2 (see [5]) and that it
corresponds to an unstable threshold dynamics between global in time scattering
solutions and finite time blow up solutions in the stable blow up regime

(1.5) ‖∇u(t)‖2 ∼
t∼T∗

√
log | log |T ∗ − t||

T ∗ − t
.

We refer to [26] and references therein for an overview of the existing literature for
the L2 critical blow up problem.

1.2. The case ε = −1

Let us now consider the case of a defocusing perturbation. First, there are no
solitary waves with subcritical mass ‖u0‖2 < ‖Q‖2 from a standard Pohozaev
integration by parts argument. At the threshold, we claim:

Lemma 1.1 (Global existence at threshold for ε = −1). Let ε = −1. Let u0 ∈
H1(Rd) with ‖u0‖2 = ‖Q‖2, then the solution of (NLS) is global and bounded
in H1(Rd).

The proof follows from standard concentration compactness argument, see Ap-
pendix A. The global existence criterion of Lemma 1.1 is sharp in the sense that
for all α∗ > 0, we can build an H1(Rd) finite time blow up solution to (1.6) with
‖u0‖2 = ‖Q‖2 + α∗ and blow up speed given by the log-log law (1.5). This is a
consequence of the strong structural stability of the log log regime and the proof
would follow the lines of [28], [29], and [30].

Note that, as stated in the next Lemma (see Appendix A for the proof), the
usual virial argument also provides us with blowing up solutions with mass ar-
bitrary close to (but larger than) the critical mass. We have however no further
information on the blow-up behavior of these solutions.

Lemma 1.2. Let ε = −1. For any δ > 0, there exists u0 ∈ H1(Rd) such that
‖u0‖2 = ‖Q‖2 + δ and the solution u of (NLS) blows up in finite time.

1.3. The case ε = 1

We now turn to the case ε = 1 for the rest of the paper, i.e., we consider the model

(1.6) i∂tu+Δu+ |u|4/du+ |u|p−1u = 0, where 1 < p < 1 +
4

d
.

First, from mass and energy conservation, using (1.2) and (B.2), H1(Rd) solutions
with ‖u0‖2 < ‖Q‖2 are global and bounded in H1(Rd). However, large time
scattering is not true in general, even for small L2 solutions, since there exist
arbitrarily small solitary waves.
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Lemma 1.3 (Small solitary waves). For all M ∈ (0, ‖Q‖2), there exists ω(M) > 0
and a Schwartz radially symmetric solution of

ΔQM − ω(M)QM +Q
1+4/d
M +Qp

M = 0, ‖QM‖2 =M.

The proof follows from classical variational methods, see Appendix B.
The main result of this paper is the existence of a minimal mass blow up

solution for (1.6), in contrast with the defocusing case ε = −1.

Theorem 1.4 (Existence of a minimal blow up element). Let d = 1, 2, 3 and
1 < p < 1+4/d. Then for all energy level E0 ∈ R, there exist t0 < 0 and a radially
symmetric Cauchy data u(t0) ∈ H1(Rd) with

‖u(t0)‖2 = ‖Q‖2, E(u(t0)) = E0,

such that the corresponding solution u(t) of (1.6) blows up at time T ∗ = 0 with
speed:

(1.7) ‖∇u(t)‖2 =
C(p) + ot↑0(1)

|t|σ
for some universal constants

σ =
4

4 + d(p− 1)
∈ ( 12 , 1) , C(p) > 0.

Comments on the result

1.On the existence of minimal elements. Since the pioneering work [22], it has
long been believed that the existence of a minimal blow up bubble was related to
the exceptional pseudo conformal symmetry (1.3), or at least to the existence of a
sufficiently sharp approximation of it, see [2] and [16]. However, a new methodology
to construct minimal mass elements for a inhomogeneous (NLS) problem, non
perturbative of critical (NLS), was developed in [31], and later successfully applied
to problems without any sort of pseudo conformal symmetry, [4], [12], [20]. More
generally, the heart of the matter is to be able to compute the trajectory of the
solution on the soliton manifold, see [13], [18] for related problems for two solitary
waves motion. The present paper adapts this approach which relies on the direct
computation of the blow up speed and the control of non dispersive bubbles as
in [15].

Observe that the blow up speed (1.7) is quite surprising since it approaches the
self similar blow up speed |t|−1/2 as p→ (1 + 4/d)−.

2.Uniqueness. A delicate question investigated in [4], [20], [31] is the uniqueness
of the minimal blow up element. Such a uniqueness statement should involve
Galilean drifts since the Galilean symmetry applied to (1.6) is an L2 isometry and
automatically induces minimal elements with non trivial momentum. Uniqueness
issues lie within the general question of classifying the compact elements of the
flow in the Kenig–Merle road map [11]. A more limited question is to determine
the global behavior of the minimal element for negative time, which is poorly
understood in general.
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3.Detailed structure of the singular bubble. The analysis provides the following
detailed structure of the blow up bubble:

(1.8) u(t, x) =
1

λd/2(t)
Q
( x

λ(t)

)
e−iσ |x|2

4t eiγ(t) + v (t, x) ,

where Q is the mass critical ground state, and

lim
t→0

‖v(t)‖2 = 0, λ(t) ∼ Cp|t|σ as t→ 0−,

for some constant Cp > 0. Note also that the dimension restriction d ∈ {1, 2, 3} is
for the sake of simplicity but not essential.

The construction of the minimal blow up element for (1.4) can be viewed as part
of a larger program of understanding what kind of blow up speeds are possible for
(NLS) type models. Let us repeat that log-log type solutions with super critical
mass can be constructed for (NLS), but then the question becomes: do these
examples illustrate all possible blow up types, at least near the ground state profile?
The recent series of works [20], [21], and [19] for the mass critical gKdV equation
indicate that this is a delicate problem, and that the role played by the topology
used to measure the perturbation is essential. More generally, symmetry breaking
perturbations are very common in nonlinear analysis, and while they are expected
to be lower order for generic stable blow up dynamics, our analysis shows that
they can dramatically influence the structure of unstable threshold dynamics such
as in our case minimal blow up bubbles.

Aknowldedgments. The authors would like to thank the anonymous referee for
useful comments.

1.4. Notation

Let us collect the main notation used throughout the paper. For the sake of
simplicity, we work in the radial setting only. The L2 scalar product and Lq norm
(q ≥ 1) are denoted by

(u, v)2 = Re
(∫

Rd

u(x)v̄(x) dx
)
, ‖u‖q =

(∫
Rd

|u|q dx
)1/q

.

We fix the notation:

f(z) = |z|4/d z; g(z) = |z|p−1z; F (z) =
1

4/d+ 2
|z|4/d+2; G(z) =

1

p+ 1
|z|p+1.

Identifying C with R2, we denote the differential of these functions by df , dg, dF
and dG. Let Λ be the generator of L2-scaling, i.e.,

Λ =
d

2
+ y · ∇.

The linearized operator close to Q comes as a matrix

L+ := −Δ+ 1−
(
1 + 4/d

)
Q4/d, L− := −Δ+ 1−Q4/d,
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and the generalized kernel of (
0 L−

−L+ 0

)
is non-degenerate and spanned by the symmetries of the problem (see [14], [33] for
the original results and [8] for a short proof). It is completely described inH1

rad(R
d)

by the relations (we define ρ as the unique radial solution to L+ρ = |y|2Q)

(1.9) L−Q = 0, L+ΛQ = −2Q, L−|y|2Q = −4ΛQ, L+ρ = |y|2Q.
Denote by Y the set of radially symmetric functions f ∈ C∞(Rd) such that

∀α ∈ N
d, ∃Cα, κα > 0, ∀x ∈ R

d, |∂αf(x)| ≤ Cα(1 + |x|)καQ(x).

Recall that Q and its derivatives are exponentially decaying:

∀x ∈ R
d, |∇Q(x)|+Q(x) � e−|x|.

It follows from the kernel properties of L+ and L−, and from well-known properties
of the Helmholtz kernel (see [1] for the properties of Helmholtz kernel (i.e., Bessel
and Hankel functions) and Appendix A in [9], or proof of Lemma 3.2 in [27] for
related arguments) that

∀g ∈ Y, ∃f+ ∈ Y, L+f+ = g,(1.10)

∀g ∈ Y, (g,Q)2 = 0, ∃f− ∈ Y, L−f− = g.(1.11)

It is also well known (see e.g. [23], [24], [31], [34]) that L+ and L− verify the
following coercivity property: there exists μ > 0 such that for all ε = ε1 + iε2 ∈
H1

rad(R
d),

(1.12)
〈
L+ε1, ε1

〉
+
〈
L−ε2, ε2

〉 ≥ μ‖ε‖2H1 − 1

μ

((
ε1, Q

)2
2
+
(
ε1, |y|2Q

)2
2
+
(
ε2, ρ

)2
2

)
.

Throughout the paper, C denotes various positive constants whose exact values
may vary from line to line but are of no importance in the analysis. When an
inequality is true up to such a constant, we also use the notation �, � or ≈.

2. Construction of the blow-up profile

In this section, we define the blow-up profile which is relevant to construct the
minimal mass solution – see Proposition 2.1 below.

2.1. Blow up profile

Let us start with some heuristic arguments justifying the construction. As usual
in blow up contexts, we look for a solution of the following form, with rescaled
variables (s, y):

u(t, x) =
1

λd/2(s)
w(s, y) eiγ(s)−i b(s)|y|2/4,

ds

dt
=

1

λ2
, y =

x

λ(s)
,
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where the function w, and the time dependent parameters λ > 0, b and γ are to
be determined satisfying the following equation

(2.1) iws +Δw − w + f(w) + λαg(w)

− i
(
b+

λs
λ

)
Λw + (1 − γs)w + (bs + b2)

|y|2
4
w − b

(
b+

λs
λ

) |y|2
2
w = 0,

where

α = 2− d(p− 1)

2
∈ (0, 2).

Since we look for blow up solutions, the parameter λ(s) should converge to zero as
s→ ∞. Therefore,

(2.2) w(s, y) = Q(y), b+
λs
λ

= bs + b2 = 1− γs = 0

is a solution of (2.1) at the first order, i.e. when neglecting λα|w|p−1w. However,
the first order error term λαQp cannot be neglected in the minimal mass blow up

analysis (while it could be neglected easily in the log-log regime where λ ∼ e−ec/b).
Therefore, starting from Q, we need to look for a refined blow up ansatz. Actually,
to close the analysis for any α ∈ (0, 2), we need to remove error terms at any order
of λα and b in the equation of w. It is important to note that in the process of
constructing the approximate solution, we cannot exactly solve (2.1) since we need
to introduce new terms in the equation (due to degrees of freedom necessary to
construct the ansatz) that will modify the modulation equations in (2.2). These
terms (gathered in the time dependent function θ(s) below) are responsible for the
specific blow up law obtained in Theorem 1.4.

Fix K ∈ N, K � 1 (K > 20/α is sufficient in the proof of Theorem 1.4), and

ΣK = {(j, k) ∈ N
2 | j + k ≤ K}.

Proposition 2.1. Let λ(s) > 0 and b(s) ∈ R be C1 functions of s such that
λ(s) + |b(s)| � 1.

(i) Existence of a blow up profile. For any (j, k) ∈ ΣK , there exist real-valued
functions P+

j,k ∈ Y, P−
j,k ∈ Y and βj,k ∈ R such that P (s, y) = P̃K(y; b(s), λ(s)),

where P̃K is defined by

(2.3) P̃K(y; b, λ) := Q(y) +
∑

(j,k)∈ΣK

(
b2jλ(k+1)αP+

j,k(y) + ib2j+1λ(k+1)αP−
j,k(y)

)
,

satisfies

i∂sP +ΔP − P + f(P ) + λαg(P ) + θ
|y|2
4
P = ΨK

where θ(s) = θ̃(b(s), λ(s)),

θ̃(b, λ) =
∑

(j,k)∈ΣK

b2jλ(k+1)αβj,k
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and

(2.4) sup
y∈Rd

(
e|y|/2

(|ΨK(y)|+ |∇ΨK(y)|))

� λα
(∣∣∣b+ λs

λ

∣∣∣+ ∣∣bs + b2 − θ
∣∣)+ (|b|2 + λα)K+2.

(ii) Rescaled blow up profile. Let

(2.5) Pb(s, y) := P (s, y)e−i b(s)|y|2/4.

Then

(2.6) i∂sPb +ΔPb − Pb + f(Pb) + λαg(Pb)− i
λs
λ
ΛPb

= −i
(λs
λ

+ b
)
ΛPb + (bs + b2 − θ)

|y|2
4
Pb +ΨKe

−i b|y|2/4.

(iii) Mass and energy properties of the blow up profile. Let

Pb,λ,γ(s, y) =
1

λd/2
Pb

(
s,
x

λ

)
eiγ .

Then, ∣∣∣ d
ds

∫
Rd

|Pb,λ,γ |2
∣∣∣ � λα

(∣∣∣b+ λs
λ

∣∣∣+ ∣∣bs + b2 − θ
∣∣)+ (|b|2 + λα)K+2,(2.7)

∣∣∣ d
ds
E(Pb,λ,γ)

∣∣∣ � 1

λ2

(∣∣∣b+ λs
λ

∣∣∣ + ∣∣bs + b2 − θ
∣∣ + (|b|2 + λα)K+2

)
.(2.8)

Moreover, for any (j, k) ∈ ΣK , there exist ηj,k ∈ R such that

(2.9)
∣∣∣E(Pb,λ,γ)−

∫
Rd |y|2Q2

8
E(b, λ)

∣∣∣ � (b2 + λα)K+2

λ2
,

where

(2.10) E(b, λ) = b2

λ2
− 2β

2− α
λα−2 + λα−2

∑
(j,k)∈ΣK ,j+k≥1

b2jλkαηj,k.

See a similar construction of a blow up profile at any order of b in [27]. One
sees in (2.6) the impact of the subcritical nonlinearity g(u) on the blow up law
bs+ b2− θ = 0, which differs from the unperturbed equation bs+ b2 = 0, and leads
to leading order to λα ≈ b2, see (2.20).

Proof of Proposition 2.1. Proof of (i). For time dependent functions λ(s) > 0,
b(s), we set

P = Q+ λαZ where Z =
∑

(j,k)∈ΣK

b2jλkαP+
j,k + i

∑
(j,k)∈ΣK

b2j+1λkαP−
j,k,

θ(s) =
∑

(j,k)∈ΣK

b2j(s)λ(k+1)α(s)βj,k,
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where P+
j,k ∈ Y, P−

j,k ∈ Y and βj,k are to be determined. Set

ΨK = iPs +ΔP − P + |P |4/dP + λα|P |p−1P + θ
|y|2
4
P.

The objective is to choose the unknown functions and parameters so that the error
term ΨK is controlled as in (2.4). First,

iPs = i
λs
λ

∑
(j,k)∈ΣK

(k + 1)αb2jλ(k+1)αP+
j,k + ibs

∑
(j,k)∈ΣK

2jb2j−1λ(k+1)αP+
j,k

− λs
λ

∑
(j,k)∈ΣK

(k + 1)αb2j+1λ(k+1)αP−
j,k − bs

∑
(j,k)∈ΣK

(2j + 1)b2jλ(k+1)αP−
j,k

= − i
∑

(j,k)∈ΣK

(k + 1)αb2j+1λ(k+1)αP+
j,k

− i

(
b2 −

∑
(j′,k′)∈ΣK

b2j
′
λ(k

′+1)αβj′,k′

) ∑
(j,k)∈ΣK

2jb2j−1λ(k+1)αP+
j,k

+
∑

(j,k)∈ΣK

(k + 1)αb2(j+1)λ(k+1)αP−
j,k

+

(
b2 −

∑
(j′,k′)∈ΣK

b2j
′
λ(k

′+1)αβj′,k′

) ∑
(j,k)∈ΣK

(2j + 1)b2jλ(k+1)αP−
j,k + ΨPs,

where

ΨPs =
(λs
λ

+ b
) ∑

(j,k)∈ΣK

(k + 1)αb2jλ(k+1)α
(
iP+

j,k − bP−
j,k

)

+
(
bs + b2 − θ

) ∑
(j,k)∈ΣK

b2j−1λ(k+1)α
(
2jiP+

j,k − (2j + 1)bP−
j,k

)
.(2.11)

The purpose of such a decomposition is to express iPs in terms of powers of b
and λα (as P itself) plus an error term ΨPs depending on the modulation laws
λs/λ+ b and bs + b2 − θ (rather than on λs/λ and bs) which will be controlled by
modulation theory.

We rewrite

iPs =− i
∑

(j,k)∈ΣK

((k + 1)α+ 2j) b2j+1λ(k+1)αP+
j,k

+ i
∑
j,k≥0

b2j+1λ(k+1)αFPs,−
j,k +

∑
j,k≥0

b2jλ(k+1)αFPs,+
j,k +ΨPs ,

where for j, k ≥ 0, FPs,±
j,k is a polynomial with real coefficients in the P±

j′,k′ and
βj′,k′ for (j′, k′) ∈ ΣK such that either k′ ≤ k − 1 and j′ ≤ j + 1 or k′ ≤ k and
j′ ≤ j − 1. Only a finite number of these functions are nonzero.



804 S. Le Coz, Y. Martel, and P. Raphaël

Next, using ΔQ−Q+Q4/d+1 = 0, we get

ΔP − P + |P |4/dP = −
∑

(j,k)∈ΣK

b2jλ(k+1)αL+P
+
j,k − i

∑
(j,k)∈ΣK

b2j+1λ(k+1)αL−P−
j,k

+ f(Q+ λαZ)− f(Q)− λαdf(Q)Z.

Let

Ψf = f(Q+ λαZ)−
K∑

k=0

1

k!
dkf(Q)(λαZ, . . . , λαZ),

so that, for some real coefficients ck,l,

(2.12) f(Q+ λαZ)− f(Q)− λαdf(Q)Z =

K∑
k=2

λkαQ1+4/d−k
k∑

l=0

ck,lZ
lZ̄k−l +Ψf .

Thus,

ΔP − P + |P |4/dP = −
∑

(j,k)∈ΣK

b2jλ(k+1)αL+P
+
j,k − i

∑
(j,k)∈ΣK

b2j+1λ(k+1)αL−P−
j,k

+ i
∑

j≥0,k≥1

b2j+1λ(k+1)αF f,−
j,k +

∑
j,k≥0

b2jλ(k+1)αF f,+
j,k +Ψf .

where for j, k ≥ 0, F f,±
j,k is a polynomial with real coefficients in Q and the P±

j′,k′

for (j′, k′) ∈ ΣK such that k′ ≤ k − 1 and j′ ≤ j.
Similarly,

λα|P |p−1P = i
∑

j≥0,k≥1

b2j+1λ(k+1)αF g,−
j,k +

∑
j≥0,k≥1

b2jλ(k+1)αF g,+
j,k +Ψg,

where

Ψg = λα
(
|Q + λαZ|p−1(Q + λαZ)−

K−1∑
k=0

1

k!
dkg(Q)(λαZ, . . . , λαZ)

)
,

and where for j, k ≥ 0, F g,±
j,k is a polynomial with real coefficients in Q and the P±

j′,k′

for (j′, k′) ∈ ΣK such that k′ ≤ k − 1 and j′ ≤ j.
Finally, we have

θ
|y|2
4
P =

( ∑
(j,k)∈ΣK

b2jλ(k+1)αβj,k

) |y|2
4
Q

+ i
∑
j,k≥0

b2j+1λ(k+1)αF θ,−
j,k +

∑
j,k≥0

b2jλ(k+1)αF θ,+
j,k ,

where F θ,±
j,k is a polynomial with real coefficients in Q, the P±

j′,k′ and the βj′,k′

for (j′, k′) ∈ ΣK such that k′ ≤ k − 1 and j′ ≤ j.
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Combining these computations, we obtain

ΨK = −
∑

(j,k)∈ΣK

b2jλ(k+1)α
(
L+P

+
j,k − F+

j,k − βj,k|y|2Q
)

− i
∑

(j,k)∈ΣK

b2j+1λ(k+1)α
(
L−P−

j,k − F−
j,k + ((k + 1)α+ 2j)P+

j,k

)
+Ψ>K +ΨPs +Ψf + Ψg,

where
F±
j,k = FPs,±

j,k + F f,±
j,k + F g,±

j,k + F θ,±
j,k ,

and

Ψ>K =
∑

j,k>0, (j,k) 
∈ΣK

b2jλ(k+1)αF+
j,k + i

∑
j,k>0, (j,k) 
∈ΣK

b2j+1λ(k+1)αF−
j,k.

Note that the series in the expression of Ψ>K contains only a finite number of
terms. Now, for any (j, k) ∈ ΣK , we want to choose recursively P±

j,k ∈ Y and βj,k
to solve the system

(Sj,k)

{
L+P

+
j,k − F+

j,k − βj,k|y|2Q = 0,

L−P−
j,k − F−

j,k + ((k + 1)α+ 2j)P+
j,k = 0,

where F±
j,k are source terms, polynomial with real coefficients in previously deter-

mined P±
j′,k′ and βj′,k′ . We argue by a suitable induction argument on the two

parameters j and k. For (j, k) = (0, 0), we see that the system writes

L+P
+
0,0 −Qp − β0,0|y|2Q = 0,

L−P−
0,0 + αP+

0,0 = 0,

(the term Qp in the first line is coming from Ψg). By (1.11), for any β0,0 ∈ R,
there exists a unique P+

0,0 ∈ Y so that L+P
+
0,0 − Qp − β0,0|y|2Q = 0. We choose

β0,0 ∈ R so that

(P+
0,0, Q)2 = −1

2
(L+P

+
0,0,ΛQ)2 = −1

2

(
Qp + β0,0

|y|2
4
Q,ΛQ

)
2
= 0

(recall from (1.9) that L+ΛQ = −2Q), which gives

(2.13) β := β0,0 = − 4(Qp,ΛQ)2
(|y|2Q,ΛQ)2

=
2d(p− 1)

p+ 1

‖Q‖p+1
p+1

‖yQ‖22
> 0.

By (1.11), there exists P−
0,0 ∈ Y (unique up to the addition of cQ) such that

L−P−
0,0 + αP+

0,0 = 0. Now, we assume that for some (j0, k0) ∈ ΣK , the following
assertion is true:

H(j0, k0) : for all (j, k) ∈ ΣK such that either k < k0, or k = k0 and
j < j0, the system (Sj,k) has a solution (P+

j,k, P
−
j,k, βj,k), P

±
j,k ∈ Y.
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In view of the definition of F±
j0,k0

, H(j0, k0) implies in particular that F±
j0,k0

∈ Y.
We now solve the system (Sj0,k0) as before. By (1.11), for any βj0,k0 ∈ R, there
exists a unique P+

j0,k0
∈ Y so that L+P

+
j0,k0

−F+
j0,k0

−βj0,k0 |y|2Q = 0. We uniquely
choose βj0,k0 ∈ R so that(−F−

j0,k0
+ ((k0 + 1)α+ 2j0)P

+
j0,k0

, Q
)
2
= 0.

By (1.11), there exists P−
j0,k0

∈ Y (unique up to the addition of cQ) such that

L−P−
j0,k0

−F−
j0,k0

+((k0 +1)α+2j0)P
+
j0,k0

= 0. In particular, we have proved that
if j0 < K, then H(j0, k0) implies H(j0 +1, k0), and H(K, k0) implies H(1, k0 +1).
This is enough to complete an induction argument on the two parameters (j, k).
Therefore, system (Sj,k) is solved for all (j, k) ∈ ΣK .

It remains to estimate ΨK and ∇ΨK . It is straightforward to check that

sup
y∈Rd

(
e|y|/2

(|ΨPs(y)|+ |∇ΨPs(y)|)) � λα
(∣∣∣λs
λ

+ b
∣∣∣+ |bs + b2 − θ|

)
.

Next, we claim

(2.14) |Ψf | � (λ(K+2)α + λαb2K+2
)
Q.

Indeed, first, if y is such that
∣∣λα Z(y)

Q(y)

∣∣ < 1/2 then the result follows from (2.1)

and Taylor expansion of order K + 1. Second, if on the contrary,
∣∣λα Z(y)

Q(y)

∣∣ ≥ 1/2,

then, since Z ∈ Y, we have, for such y,

Q(y) ≤ 2λα|Z(y)| � λα(1 + |y|κ)Q(y)

and so |y| ≥ cλα/κ (for some c > 0) and

Q(y) + |Z(y)| � e−
c
2λ

α/κ

.

This finishes the proof of (2.14).
The proofs of estimates for∇Ψf , Ψg and∇Ψg are similar. Finally the following

estimates for Ψ>K and ∇Ψ>K are clear:

|Ψ>K |+ |∇Ψ>K | � (λ(K+2)α + λα|b|2K+2
)
Q1/2.

The result follows from K ≥ 20/α.

Proof of (ii). This is a straightforward computation which is left to the reader.

Proof of (iii). To prove (2.7), we hit (2.6) with iPb and compute using the
critical relation (P,ΛP )2 = 0:

1

2

d

ds
‖Pb‖22 = (i∂sPb, iPb)2 = (ΨKe

−i b|y|2/4, iPb)

and (2.7) follows from (2.4). For (2.8), we have from scaling:

E(Pb,λ,γ) =
1

λ2

(1
2

∫
Rd

|∇Pb|2 −
∫
Rd

F (Pb)− λα
∫
Rd

G(Pb)
)
=:

1

λ2
Ẽ(λ, Pb).
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Therefore,

(2.15)
d

ds
E(Pb,λ,γ) =

1

λ2

(
−2

λs
λ
Ẽ(λ, Pb)+

〈
Ẽ′(λ, Pb), ∂sPb

〉−αλα λs
λ

∫
Rd

G(Pb)
)
.

Using the equation (2.6) of Pb, we compute:

(2.16)
〈
Ẽ′(λ, Pb), ∂sPb

〉
=
λs
λ

〈
Ẽ′(λ, Pb),ΛPb

〉− (λs
λ

+ b
)〈
Ẽ′(λ, Pb),ΛPb

〉
+ (bs + b2 − θ)

〈
iẼ′(λ, Pb),

|y|2
4
Pb

〉
+
〈
iẼ′(λ, Pb),ΨKe

−i b|y|
2

4

〉
.

We now integrate by parts to estimate

〈
Ẽ′(λ, Pb),ΛPb

〉
=

∫
Rd

|∇Pb|2 − 2

∫
Rd

F (Pb)− d(p− 1)

2

∫
Rd

G(Pb)(2.17)

= 2Ẽ(λ, Pb) + αλα
∫
Rd

G(Pb),(2.18)

where we have used α = 2− d(p− 1)/2, from which

d

ds
E(Pb,λ,γ) =

1

λ2

[
− 2

λs
λ
Ẽ(λ, Pb)− αλα

λs
λ

∫
Rd

G(Pb)

+
λs
λ

[
2Ẽ(λ, Pb) + αλα

∫
Rd

G(Pb)
]]

+
1

λ2
O
(∣∣∣λs
λ

+ b
∣∣∣+ |bs + b2 − θ|+ (b2 + λα)K+2

)
.

The estimate (2.8) on the time-derivative of the energy then follows from (2.15),
(2.16), (2.17), and (2.4).

Next,

λ2E(Pb,λ,γ) =
1

2

∫
Rd

|∇Pb|2 −
∫
Rd

F (Pb)− λα
∫
Rd

G(Pb)

=
1

2

∫
Rd

|∇P |2 + b2

8

∫
Rd

|y|2|P |2 −
∫
Rd

F (P )− λα
∫
Rd

G(P ).

Thus, replacing P = Q+ λαZ,

λ2E(Pb,λ,γ) =
1

2

∫
Rd

|∇Q|2 −
∫
Rd

F (Q) +
b2

8

∫
Rd

|y|2Q2 − λα
∫
Rd

G(Q)

+ λα
∫
Rd

(−ΔQ− f(Q))Re(Z)− λ2α
∫
Rd

g(Q)Re(Z)

+
b2

4
λα
∫
Rd

|y|2QRe(Z) +
λ2α

2

∫
Rd

|∇Z|2 + b2λ2α

8

∫
Rd

|y|2|Z|2

−
∫
Rd

{F (Q+ λαZ)− F (Q)− λαf(Q)Re(Z)}

− λα
∫
Rd

{G(Q + λαZ)−G(Q)− λαg(Q)Re(Z)} .
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On the one hand, we recall that from Pohozaev identity,

1

2

∫
Rd

|∇Q|2 −
∫
Rd

F (Q) = 0,

and from the definition (2.13) of β0,0,

∫
Rd

G(Q) =
β

2d(p− 1)

∫
Rd

|y|2Q2 =
β

4(2− α)

∫
Rd

|y|2Q2

and moreover

ΔQ + f(Q) = Q.

On the other hand, we observe, since
∫
Rd P

+
0,0Q = 0,

λα
∫
Rd

ZQ = λα
∑

(j,k)∈ΣK ,j+k≥1

b2jλkα ηIj,k,

for some ηIj,k ∈ R;

λ2α
∫
Rd

Zg(Q) = λα
∑

(j,k)∈ΣK ,k≥1

b2jλkα ηIIj,k,

for some ηIIj,k ∈ R;

λαb2
∫
Rd

|y|2QRe(Z) = λα
∑

(j,k)∈ΣK ,j≥1

b2jλkα ηIIIj,k,

for some ηIIIj,k ∈ R;

λ2α
∫
Rd

|∇Z|2 + b2λ2α

8

∫
Rd

|y|2Z2 = λα
∑

(j,k)∈ΣK ,j≥1,k≥0

b2jλkα ηIVj,k,

for some ηIVj,k ∈ R. Moreover, by Taylor expansion as before, for some ηVj,k, η
IV
j,k ∈ R,

∣∣∣∣
∫
Rd

(
F (Q+λαZ)−F (Q)−λαf(Q)Re(Z)−λα

∑
(j,k)∈ΣK ,k≥1

b2jλkαηVj,k

)∣∣∣∣� λ(K+2)α,

∣∣∣∣λα
∫
Rd

(
G(Q+λαZ)−G(Q)−λαg(Q)Re(Z)−λα

∑
(j,k)∈ΣK ,k≥2

b2jλkαηVI
j,k

)∣∣∣∣� λ(K+2)α.

Gathering these computations, we obtain (2.9). �
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2.2. Approximate blow up law

For simplicity of notation, we set

β = β0,0 =
2d(p− 1)

p+ 1

‖Q‖p+1
p+1

‖yQ‖22
.

First, we find a relevant solution to the following approximate system

(2.19) bs + b2 − βλα = 0, b+
λs
λ

= 0.

Indeed, for |b| + λ � 1, βλα is the main term in θ, and the only term in θ that
will modify at the main order the blow up rate.

Lemma 2.2. Let

(2.20) λapp(s) =
(α
2

√
2β

2− α

)−2/α

s−2/α, bapp(s) =
2

αs
.

Then (λapp(s), bapp(s)) solves (2.19) for s > 0.

Proof. We compute

( b2
λ2

)
s
= 2

b

λ

bs + b2

λ
= −2 β

λs
λ
λα−2,

and so

(2.21)
b2

λ2
− 2β

2− α
λα−2 = c0.

Taking the constant c0 = 0, and using b = −λs/λ > 0, we find

λs
λ1+α/2

=

√
2β

2− α
.

Therefore,

λ(s) =
(α
2

√
2β

2− α

)−2/α

s−2/α, b(s) = −λs
λ
(s) =

2

α

1

s

is solution of (2.19). �

Remark 2.3. We now express this solution in the time variable tapp related
to λapp. Let

dtapp = λ2appds =
(α
2

√
2β

2− α

)−4/α

s−4/α ds.

Therefore (with the convention that tapp → 0− as s→ +∞),

(2.22) tapp = −Cs s
−(4−α)/α, where Cs =

α

4− α

(α
2

√
2β

2− α

)−4/α

.
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As a consequence, we obtain for tapp < 0,

λapp(tapp) = Cλ |tapp|2/(4−α), where Cλ =
(4− α

α
C−α/(4−α)

s

)1/2
,(2.23)

bapp(tapp) = Cb |tapp|α/(4−α), where Cb =
2

α
C−α/(4−α)

s .(2.24)

Now, we choose suitable initial conditions b1 and λ1 for b(s) and λ(s) at some
large time s1, first to adjust the value of the energy of Pb,λ,γ (up to the small error
term in (2.9)) and second to be able to close the perturbed dynamical system of
(λ, b) at the end of the proof (see proof of Lemma 6.1 below). Let E0 ∈ R and

C0 =
8E0∫

Rd |y|2Q2
.

Fix 0 < λ0 � 1 such that 2β
2−α + C0λ

2−α
0 > 0. For λ ∈ (0, λ0], let

(2.25) F(λ) =

∫ λ0

λ

dμ

μα/2+1
√

2β
2−α + C0 μ2−α

.

Note that the function F is related to the resolution of the system (2.21) for
c0 = C0, see proof of Lemma 6.1.

Lemma 2.4. Let s1 � 1. There exist b1 and λ1 such that

∣∣∣ λ
α/2
1

λ
α/2
app(s1)

− 1
∣∣∣+ ∣∣∣ b1

bapp(s1)
− 1
∣∣∣ � s

−1/2
1 + s

2−4/α
1 ,(2.26)

F(λ1) = s1, E(b1, λ1) = C0.(2.27)

Proof. First, we choose λ1. Note that F is a decreasing function of λ satisfying
F(λ0) = 0 and limλ↓0 F(λ) = +∞. Thus, there exists a unique λ1 ∈ (0, λ0) such
that F(λ1) = s1.

For λ ∈ (0, λ0],∣∣∣∣F(λ) − 2

α
√

2β
2−αλ

α/2

∣∣∣∣ � 1 +

∣∣∣∣
∫ λ0

λ

dμ

μα/2+1

[
1√

2β
2−α + C0μ2−α

− 1√
2β
2−α

]∣∣∣∣
� 1 +

∫ λ0

λ

dμ

μ1+α/2−(2−α)
.

Thus, ∣∣∣∣F(λ) − 2

α
√

2β
2−αλ

α/2

∣∣∣∣ �
⎧⎪⎨
⎪⎩

1 for α ∈ (0, 4/3),

| logλ| for α = 4/3,

λ2−3α/2 for α ∈ (4/3, 2).

To simplify, we will use the non sharp but sufficient estimate

(2.28)

∣∣∣∣F(λ)− 2

α
√

2β
2−αλ

α/2

∣∣∣∣ � λ−α/4 + λ2−3α/2.
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Applied to λ1, it gives∣∣∣∣s1− 2

α
√

2β
2−αλ

α/2
1

∣∣∣∣ � λ
−α/4
1 +λ

2−3α/2
1 and thus

∣∣∣∣ λ
α/2
1

λ
α/2
app(s1)

−1

∣∣∣∣ � s
−1/2
1 +s

2−4/α
1 .

Second, we choose b1. From the definition of E , we have

h(b) := λ21E(b, λ1)
= b2 −

( 2

αs1

)2
− 2β

2− α

(
λα1 − λαapp(s1)

)
+ λα1

∑
(j,k)∈ΣK , j+k≥1

b2jλ−kα
1 ηj,k

= b2 −
( 2

αs1

)2
+O(s

−5/2
1 ) +O(s

−4/α
1 ).

Observe that

|h(bapp(s1))| � s
−4/α
1 , |h′(bapp(s1))| ≥ 2bapp(s1) +O(s−3

1 ) ≥ s−1
1 .

Since λ21 ≈ s
−4/α
1 , it follows that there exists a unique b1 such that

|b1 − bapp(s1)| � s
−3/2
1 + s

1−4/α
1 , h(b1) = C0 λ

2
1,

and so E(b1, λ1) = C0. �

3. Existence proof assuming uniform estimates

This section is devoted to the proof of Theorem 1.4 by a compactness argument,
assuming uniform estimates on specific solutions of (1.6). These estimates are
given in Proposition 3.2.

3.1. Uniform estimates in rescaled time variable

The rescaled time depending on a suitable modulation of the solution u(t), we first
recall without proof the following standard result (see e.g. [24]).

Lemma 3.1 (Modulation). Let u(t) ∈ C(I,H1(Rd)) for some interval I, be such
that

(3.1) sup
t∈I

inf
λ0>0,γ0

∥∥λd/20 u(t, λ0y) e
iγ0 −Q(y)

∥∥
H1 ≤ δ,

for δ > 0 small enough. Then, there exist C1 functions λ ∈ (0,+∞), b ∈ R, γ ∈ R

on I such that u admits a unique decomposition of the form

(3.2) u(t, x) =
1

λd/2(t)

(
Pb(t) + ε(t, y)

)
eiγ(t), y =

x

λ(t)
.

On I, ε satisfies the following orthogonality conditions:

(3.3) (ε, iΛPb)2 = (ε, |y|2Pb)2 = (ε, iρb)2 = 0,

where ρb(t, y) = ρ(y)e−i b(t)|y|2/4.
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Recall that Pb was defined in (2.5).
Let E0 ∈ R. Given t1 < 0 close to 0, following Remark 2.3, we define the initial

rescaled time s1 as

s1 :=
∣∣C−1

s t1
∣∣−α/(4−α)

.

Let λ1 and b1 be given by Lemma 2.4 for this value of s1. Let u(t) be the solution
of (1.6) for t ≤ t1, with data

(3.4) u(t1, x) =
1

λ
d/2
1

Pb1

( x
λ1

)
.

As long as the solution u(t) satisfies (3.1), we consider its decomposition (λ, b, γ, ε)
from Lemma 3.1 and we define the rescaled time s by

(3.5) s = s1 −
∫ t1

t

1

λ2(τ)
dτ.

The heart of the proof of Theorem 1.4 is the following result, giving uniform back-
wards estimates on the decomposition of u(s) on [s0, s1] for some s0 independent
of s1.

Proposition 3.2 (Uniform estimates in rescaled time). There exists s0 > 0 in-
dependent of s1 such that the solution u of (1.6) defined by (3.4) exists and satis-
fies (3.1) on [s0, s1]. Moreover, its decomposition

u(s, x) =
1

λd/2(s)
(Pb + ε) (s, y) eiγ(s), y =

x

λ(s)
,

satisfies the following uniform estimates on [s0, s1] :

(3.6) ‖ε(s)‖H1 � s−(K+1),
∣∣∣λα/2(s)
λ
α/2
app(s)

− 1
∣∣∣+ ∣∣∣ b(s)

bapp(s)
− 1
∣∣∣ � s−1/2 + s2−4/α.

In addition,
|E(Pb,λ,γ(s))− E0| = O(s−6).

Let us insist again that the key point in Proposition 3.2 is that s0 and the
constants in the estimates are independent of s1 → +∞.

3.2. Proof of Theorem 1.4 assuming Proposition 3.2

First, we convert the estimates of Proposition 3.2 in the original time variable t.
We claim:

Lemma 3.3 (Estimates in the t variable). There exists t0 < 0 such that under the
assumptions of Proposition 3.2, for all t ∈ [t0, t1],

b(t) = Cb |t| α
4−α (1 + ot↑0(1)), λ(t) = Cλ |t| 2

4−α (1 + ot↑0(1))(3.7)

‖ε(t)‖H1 � |t| (K+1)α
4−α(3.8)

|E(Pb,λ,γ(t))− E0| = ot↑0(1)(3.9)
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Proof of Lemma 3.3. Using (3.6), (3.5), for all large s < s1,

t1 − t(s) =

∫ s1

s

λ2(σ) dσ =

∫ s1

s

λ2app(σ)
[
1 +O(σ−1/2) +O(σ2−4/α)

]
dσ.

Recall that tapp given by (2.22) corresponds to the normalization

tapp(s) = −
∫ +∞

s

λ2app(σ), tapp(s1) = t1,

from which we obtain

t(s) = tapp(s)(1 + o(1)) = −Cs s
−(4−α)/α [1 + o(1)] .

The estimates of Lemma 3.3 now follow directly follow from (2.20) and Proposi-
tion 3.2 (see the definition of Cλ and Cb in (2.23) and (2.24)). �

Now, we finish the proof of Theorem 1.4 assuming Proposition 3.2.

Proof of Theorem 1.4. Let (tn) ⊂ (t0, 0) be an increasing sequence of time such
that tn → 0 as n→ +∞. For each n, let un be the solution of (1.6) on [t0, tn] with
final data at tn

(3.10) un(tn, x) =
1

λd/2(tn)
Pb(tn)

( x

λ(tn)

)
,

where λ(tn) = λ1 and b(tn) = b1 are given by Lemma 2.4 for s1 = |C−1
s tn|− α

4−α ,
so that un(t) satisfies the conclusions of Proposition 3.2 and of Lemma 3.3 on the
interval [t0, tn]. The minimal mass blow up solution for (1.6) is now obtained as
the limit of a subsequence of (un). In a first step, we prove that a subsequence
of (un(t0)) converges to a suitable initial data. Indeed, from Lemma 3.3, we infer
that (un(t0)) is bounded in H1(Rd). Hence there exists a subsequence of (un(t0))
(still denoted by (un(t0)) and u∞(t0) ∈ H1(Rd) such that

un(t0)⇀ u∞(t0) weakly in H1(Rd) as n→ +∞.

Now, we obtain strong convergence inHs (for some 0 < s < 1) by direct arguments.
Let χ : [0,+∞) → [0, 1] be a smooth cut-off function such that χ ≡ 0 on [0, 1] and
χ ≡ 1 on [2,+∞). For R > 0, define χR : Rd → [0, 1] by χR(x) = χ(|x|/R). Take
any δ > 0. By the expression of un(tn) in (3.10), we can choose R large enough
(independent of n) so that

(3.11)

∫
Rd

|un(tn)|2 χR dx ≤ δ.

It follows from elementary computations that

d

dt

∫
Rd

|un|2 χR dx = 2 Im

∫
Rd

∇χR · ∇un ūn dx.
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Hence from the geometrical decomposition

un(t, x) =
1

λ
d/2
n (t)

(
Pbn(t) + εn)(t, y)

)
eiγn(t), y =

x

λn(t)
,

and the smallness (3.7)-(3.8) of εn and λn we infer

∣∣∣ d
dt

∫
Rd

|un(t)|2 χR dx
∣∣∣ ≤ C

λn(t)R

(
e−

R
2λn(t) + ‖εn(t)‖2H1

)
≤ C

R
|t|(− 2

α+K+1) α
4−α .

Integrating between t0 and tn, we obtain∫
Rd

|un(t0)|2 χR dx ≤ C

R
|t0|(− 2

α+K+1) α
4−α+1 +

∫
Rd

|un(tn)|2 χR dx.

Combined with (3.11), for a possibly larger R, this implies∫
Rd

|un(t0)|2 χR dx ≤ 2δ.

We conclude from the local compactness of Sobolev embeddings that for 0 ≤ s < 1:

un(t0) → u∞(t0) strongly in Hs(Rd), as n→ +∞.

Let u∞(t) be the solution of (1.6) with u∞(t0) as initial data at t = t0. From [6], [7]
there exists 0 < s0 < 1 such that the Cauchy problem for (1.6) is locally well-posed
in Hs0(Rd). This implies that u∞ exists on [t0, 0) and for any t ∈ [t0, 0),

un(t) → u∞(t) strongly in Hs0(Rd), weakly in H1(Rd), as n→ +∞.

Moreover, since limn→∞
∫
Rd u

2
n(tn) =

∫
Rd Q

2, we have
∫
Rd u

2∞ =
∫
Rd Q

2. By weak

convergence in H1(Rd) and the estimates from Lemma 3.3 applied to un, u∞(t)
satisfies (3.1), and denoting (ε∞, λ∞, b∞, γ∞) its decomposition, we have by stan-
dard arguments (see e.g. [24]), for any t ∈ [t0, 0), and as n→ ∞,

λn(t) → λ∞(t), bn(t) → b∞(t), γn(t) → γ∞(t), εn(t)⇀ ε∞(t) H1-weak.

The uniform estimates on un from Lemma 3.3 give, on [t0, 0),

b∞(t) = Cb|t| α
4−α (1 + ot↑0(1)) , λ∞(t) = Cλ|t| 2

4−α (1 + ot↑0(1)) ,(3.12)

‖ε∞(t)‖H1 � |t| (K+1)α
4−α ,(3.13)

and therefore we have

b∞(t)

λ2∞(t)
=
Cb

C2
λ

|t| α
4−α− 4

4−α (1 + ot↑0(1))(3.14)

=
2

4− α

1

|t| (1 + ot↑0(1)) =
σ

|t| (1 + ot↑0(1)) ,
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This justifies the form (1.8) and the blow up rate (1.7). Finally, we prove that
E(u∞) = E0. Let t0 < t < 0. We have by (3.9) and (2.9),

E(bn(t), λn(t))− 8E0∫
Rd |y|2Q2

= ot↑0(1)

where the ot↑0(1) is independent of n, and thus

E(b∞(t), λ∞(t))− 8E0∫
Rd |y|2Q2

= ot↑0(1)

Using (2.9), we deduce

E(Pb∞,λ∞,γ∞(t)) − E0 = ot↑0(1)

and thus, by (3.12) and (3.13),

E(u∞(t))− E0 = ot↑0(1).

Thus, by conservation of energy and passing to the limit t ↑ 0, we obtain

E(u∞(t)) = E0.

This concludes the proof. �

3.3. Bootstrap estimates

The rest of the paper is devoted to the proof of Proposition 3.2. We use a bootstrap
argument involving the following estimates:

(3.15) ‖ε(s)‖H1 < s−K ,
∣∣∣λα/2(s)
λ
α/2
app(s)

− 1
∣∣∣+ ∣∣∣ b(s)

bapp(s)
− 1
∣∣∣ < s−δ(α)

for some small enough universal constant δ(α) > 0. The following value is suitable
in this paper:

(3.16) δ(α) = min
(1
4
,
2

α
− 1
)
> 0.

For s0 > 0 to be chosen large enough (independently of s1), we define

(3.17) s∗ = inf
{
τ ∈ [s0, s1]; (3.15) holds on [τ, s1]

}
.

Observe from (2.26) that

∣∣∣ λ
α/2
1

λ
α/2
app(s1)

− 1
∣∣∣+ ∣∣∣ b1

bapp(s1)
− 1
∣∣∣ � s

−1/2
1 + s

2−4/α
1 � s

−δ(α)
1 ,

for s1 large, and hence by the definition (3.4) of u(s1), s∗ is well-defined and
s∗ < s1. In §5, §6 and §7, we prove that (3.6) holds on [s∗, s1]. By a standard
continuity argument, provided that s0 is large enough, we obtain s∗ = s0 which
implies Proposition 3.2. The main lines of the proof are as follows: first, we derive
modulation equations from the construction of Pb, second we control the remaining
error using a mixed energy/Morawetz functional first derived in [31].
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4. Modulation equations

In this section, we work with the solution u(t) of Proposition 3.2 on the time
interval [s∗, s1] (see (3.15)-(3.17)). We justify that the dynamical system satisfied
by the modulation parameters λ, b is at the main order given by (2.19). Define

Mod(s) =

⎛
⎜⎝ b+ λs/λ

bs + b2 − θ
1− γs

⎞
⎟⎠ .

Lemma 4.1 (Modulation, additional orthogonality, error estimate). For all s ∈
[s∗, s1],

|Mod(s)| � s−(K+2),(4.1)

|(ε(s), Q)2| � s−(K+1),(4.2)

sup
y∈Rd

(
e|y|/2(|ψK |+ |∇ψK |)) � s−(K+4).(4.3)

Proof of Lemma 4.1. The proofs of the two estimates are combined. Since ε(s1) ≡ 0,
we may define

s∗∗ = inf
{
s ∈ [s∗, s1]; |(ε(τ), Pb)2| < τ−(K+2) holds on [s, s1]

}
.

We work on the interval [s∗∗, s1].
Since Pb verifies equation (2.6), we obtain the following equation for ε:

(4.4) iεs +Δε− ε+ ibΛε+ (f(Pb + ε)− f(Pb)) + λα(g(Pb + ε)− g(Pb))

− i
(
b+

λs
λ

)
Λ(Pb + ε) + (1− γs)(Pb + ε) + (bs + b2 − θ)

|y|2
4
Pb

= −Ψe−i b|y|2/4,

where Ψ := ΨK . Recall that equation (4.4) combined with the orthogonality condi-
tions chosen on ε – see (3.3) – contains the equations of the modulation parameters.
Technically, one differentiates in time the orthogonality conditions for ε, then uses
the equation (4.4) on ε and the estimate (2.4) on the error term Ψ. Here, as
in [31], the orthogonality conditions are chosen to obtain quadratic control in ε.
Since it is a standard argument (see e.g. [25], [28], [31]), we only sketch relevant
computations.

Consider for example the orthogonality condition (ε, iΛPb)2 = 0. Differentiat-
ing in s, we obtain

〈
εs, iΛPb

〉
+
〈
ε, i∂s(ΛPb)

〉
= 0. Since

d

ds
(ΛPb) =

(
(ΛP )s − i

bs
4
|y|2ΛP

)
e−i b|y|2/4,
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and

(ΛP )s = λα
(
α
λs
λ

(
Z +

∑
(j,k)∈ΣK

kb2jλkα−1(P+
j,k + bP−

j,k)
)

+ bs

( ∑
(j,k)∈ΣK

2jb2j−1λkαP+
j,k +

∑
(j,k)∈ΣK

(2j + 1)b2jλkαP−
j,k

))
,

proceeding as in the proof of Proposition 2.1, and using the properties of the
functions P±

j,k, we note that

sup
y∈R

(
e|y|/2

∣∣∣ d
ds

(ΛPb)(y)
∣∣∣ ) � |Mod(s)|+ b2(s) + λα(s).

Thus, by (3.15),

|(ε, i∂s(ΛPb))2| � ‖ε(s)‖2
(|Mod(s)|+ b2(s) + λα(s)

)
� s−2|Mod(s)|+ s−(K+2).

Next, we write
〈
εs, iΛPb

〉
= −〈iεs,ΛPb

〉
and we use the equation of ε. We start

by the contribution of the first line of (4.4). Remark that by (3.15),

f(Pb + ε)− f(Pb) = e−i b|y|2/4(f(P + ei b|y|
2/4ε
)− f(P )

)
(4.5)

= e−i b|y|2/4df(P )
(
ei b|y|

2/4ε
)
+O(|ε|2)

= e−i b|y|2/4df(P )
(
ei b|y|

2/4ε
)
+O(s−2|ε|),

(4.6) λα
(
g(Pb + ε)− g(Pb)

)
= O(λα|ε|) = O(s−2|ε|),

(4.7) Δε+ ibΛε = e−i b|y|2/4Δ
(
ei b|y|

2/4ε
)
+ b2

|y|2
4
ε,

and

ΛPb = e−i b|y|2/4
(
ΛP − ib

|y|2
2
P
)
.

Therefore, using (3.15) and P = Q + OH1 (s−2) (see the definition of P in (2.3)),
we have〈−Δε+ ε− ibΛε− (f(Pb + ε)− f(Pb)) + λα (g(Pb + ε)− g(Pb)) ,ΛPb

〉
=
〈
−Δ

(
ei b|y|

2/4ε
)
+ ei b|y|

2/4ε− pQp−1
(
ei b|y|

2/4ε
)
,ΛQ− ib

|y|2
2
Q
〉
+O(s−2‖ε‖2)

=
〈
L+

(
ei b|y|

2/4ε
)
,ΛQ

〉
− b

2

〈
L−
(
ei b|y|

2/4ε
)
, i|y|2Q

〉
+O(s−2‖ε‖2)

=
〈
ei b|y|

2/4ε, L+(ΛQ)
〉− b

2

〈
ei b|y|

2/4ε, iL−(|y|2Q)
〉
+O(s−2‖ε‖2)

= −2
(
ε, e−i b|y|2/4Q

)
2
+ 2b

(
ε, ie−i b|y|2/4ΛQ

)
2
+O(s−2‖ε‖2)

= −2(ε, Pb)2 + 2b(ε, iΛPb)2 +O(s−2‖ε‖2) = O(s−(K+2)).
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Note that we have used algebraic relations from (1.9), then (3.15), (ε, iΛPb)2 = 0
and the definition of s∗∗.

The part corresponding to the second line of (4.4) gives

(MOD,ΛPb)2 = −(bs + b2 − θ)‖yPb‖22 +O(|Mod(s)|‖ε‖2)
= −(bs + b2 − θ)(‖yQ‖22 +O

(
s−2)

)
+O(s−2|Mod(s)|),

where

MOD = −i
(
b+

λs
λ

)
Λ(Pb + ε) + (1− γs)(Pb + ε) + (bs + b2 − θ)

|y|2
4
Pb.

Finally, from the estimate (2.4) on Ψ, we have

∣∣∣(Ψ,ΛP − ib
|y|2
2
P
)
2

∣∣∣ � s−2 |Mod(s)|+ s−2(K+2).

Combining the previous estimates, we find

|bs + b2 − θ| � s−2 |Mod(s)|+ s−(K+2).

Using the other orthogonality conditions in (3.3) in a similar way, together
with (1.9), we find

|Mod(s)| � s−2 |Mod(s)|+ s−(K+2).

We deduce that for all s ∈ [s∗∗, s1],

(4.8) |Mod(s)| � s−(K+2).

By conservation of the L2 norm and (3.4), we have

‖u(s)‖22 = ‖u(s1)‖22 = ‖Pb(s1)‖22.
Thus, by (3.2),

(ε(s), Pb)2 =
1

2

(‖u(s)‖22 − ‖Pb(s)‖22 − ‖ε(s)‖22
)

= −1

2
‖ε(s)‖22 +

1

2

(‖Pb(s1)‖22 − ‖Pb(s)‖22
)
.

Moreover, by (2.7), (3.15) and (4.8),

d

ds

∫
Rd

|Pb|2 � s−(K+4).

Integrating and combining the previous estimates with (3.15), we obtain, for all
s ∈ [s∗∗, s1],

(4.9) |(ε(s), Pb)2| � s−(K+3).
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Therefore, s∗∗ = s∗ and the estimates (4.8) and (4.9) are proved on [s∗, s1]. Com-
bining the definitions (2.3) of P and (2.5) of Pb, the expressions (2.20) of λapp and
bapp, and the smallness from (3.15), we get

|Pb −Q| � Q1/2s−1.

Together with (4.9) this gives (4.2).
Finally, note that (4.3) is a direct consequence of (2.4), (3.15) and (4.1). �

5. The mixed energy Morawetz monotonicity formula

In this section, following [31], we introduce a mixed energy/Morawetz functional
to control the remaining part of the solution in H1(Rd). First, define the energy
of ε as

H(s, ε) :=
1

2
‖∇ε‖22 +

1

2
‖ε‖22 −

∫
Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε) dy

− λα
∫
Rd

(G(Pb + ε)−G(Pb)− dG(Pb)ε) dy.

Note that as in [31], the time derivative of the linearized energy H for ε
cannot be controlled alone, and one has to add a virial type functional such
as b

2 Im
∫
Rd ∇(|y|2/2)∇ε ε̄ dy. In practice, due to the lack of control on ‖yε‖2, we

replace 1
2 |y|2 by a function whose gradient is bounded, which we introduce now.

Let φ : R → R be a smooth even and convex function, nondecreasing on R+,
such that

φ(r) =

⎧⎨
⎩

1

2
r2 for r < 1,

3r + e−r for r > 2,

and set φ(x) = φ(|x|). Let A� 1 to be fixed. Define φA by φA(y) = A2φ
(
y
A

)
and

J(ε) =
1

2
Im

∫
Rd

∇φA · ∇εε̄ dy.

Finally, set

S(s, ε) =
1

λ4(s)
(H(s, ε) + b(s)J(ε(s))).

The relevance of the functional S lies on the following two properties.

Proposition 5.1 (Coercivity of S). For any s ∈ [s∗, s1],

S(s, ε(s)) � 1

λ4(s)

(‖ε(s)‖2H1 +O(s−2(K+1))
)
.

Proposition 5.2. For any s ∈ [s∗, s1],

d

ds

[
S(s, ε(s))

]
� b

λ4(s)

(‖ε(s)‖2H1 +O(s−2(K+1))
)
.
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The rest of this section is organized as follows. We first prove Proposition 5.1
in §5.1. In §5.2 we compute the time derivative ofH and in §5.3, the time derivative
of J . We finish the proof of Proposition 5.2 in §5.4.

5.1. Coercivity of S

We prove Proposition 5.1. We first claim a coercivity property for H , consequence
of the properties of L+ and L− (see (1.12)) and of the orthogonality conditions of ε
(see (3.3)).

Lemma 5.3 (Coercivity of H). For all s ∈ [s∗, s1],

H(s, ε) � ‖ε‖2H1 +O(s−2(K+1)).

Proof. From the orthogonality conditions (3.3), (4.2), and estimates (3.15), the
following holds:

(ε, |y|2Q)2 = (ε, |y|2Pb)2 + O(|b|‖ε‖2) +O(λα‖ε‖2) = O(s−1‖ε‖H1 ),

(ε, iρ)2 = (ε, iρb)2 +O(|b|‖ε‖2) = O(s−1‖ε‖H1),

(ε,Q)2 = O(s−(K+1)).

From (3.15), we have

λα
∫
Rd

(G(Pb + ε)−G(Pb)− dG(Pb)ε) dx = O(s−2‖ε‖2H1).

Next, (denoting ε = ε1 + iε2),

∣∣∣F (Pb + ε)− F (Pb)− dF (Pb)ε−
(
1 +

4

d

)
Q4/d ε21 −

1

2
Q4/d ε22

∣∣∣
� e−

1
2 |y||ε|3 + |ε|2+4/d + |ε|2(|b|+ λα).

Thus, from (3.15),

∣∣∣ ∫
Rd

F (Pb + ε)−F (Pb)− dF (Pb)ε−
(
1+

4

d

)
Q4/d ε21 −

1

2
Q4/d ε22

∣∣∣ � O(s−1‖ε‖2H1 ),

and ∣∣∣H(s, ε)− 1

2

〈
L+ε1, ε1

〉− 1

2

〈
L−ε2, ε2

〉∣∣∣ � O(s−1‖ε‖2H1 ).

Combining these estimates with the coercivity properties of L+, L− (see (1.12)),
we obtain the result. �

Since

|bJ(ε)| ≤ |b|‖∇φA‖∞‖ε‖2H1 � O(s−1‖ε‖2H1)

(from (3.15)), Lemma 5.3 implies Proposition 5.1.
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For future reference, we also claim a similar localized coercivity property (see
a similar statement in [17] and equation (3.72) in [31]). Define

HA(s, ε) =
1

2

∫
Rd

∇εT∇2φA∇ε̄ dy + 1

2
‖ε‖22 −

∫
Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε) dy

− λα
∫
Rd

(G(Pb + ε)−G(Pb)− dG(Pb)ε) dy.

Lemma 5.4. There exists A0 > 1 such that for any A > A0, for all s ∈ [s∗, s1],

HA(s, ε) � ‖ε‖22 +O(s−2(K+1)).

For now on, we consider A > A0.

5.2. Time variation of the energy of ε

Lemma 5.5. For all s ∈ [s∗, s1], we have

d

ds
[H(s, ε(s))] =

λs
λ

(
‖∇ε‖22 −

〈
f(Pb + ε)− f(Pb),Λε

〉)
+O(s−(2K+3)) +O(s−2‖ε‖2H1).

Proof of Lemma 5.5. The time derivative for H separates into two parts:

d

ds
[H(s, ε(s))] = DsH(s, ε) +

〈
DεH(s, ε), εs

〉
,

where Ds (respectively, Dε) denotes differentiation of the functional with respect
to s (respectively, ε). In particular,

DsH(s, ε) =−
∫
Rd

(Pb)s (f(Pb + ε)− f(Pb)− df(Pb)ε)

− λα
∫
Rd

(Pb)s (g(Pb + ε)− g(Pb)− dg(Pb)ε)

− α
λs
λ
λα
∫
Rd

(G(Pb + ε)−G(Pb)− dG(Pb)ε) .

Note that

ei
b|y|2

4 (Pb)s = Ps − ibs
|y|2
4
P = Ps − i

(
bs + b2 − βλα

) |y|2
4
P + i

(
b2 − βλα

) |y|2
4
P.

By (2.11), (3.15) and Lemma 4.1, we obtain

|(Pb)s| � s−2e−|y|/2 and

∣∣∣∣λsλ
∣∣∣∣λα � s−3.

Thus,
|DsH(s, ε)| � s−2 ‖ε‖2H1 .
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Now, we compute
〈
DεH(s, ε), εs

〉
. Note that (4.4) rewrites

(5.1) i εs −DεH(s, ε) +Modop(s)Pb − i
λs
λ

Λε+ (1− γs)ε+ e−i b|y|2/4 Ψ = 0,

where

Modop(s)Pb := −i
(
b+

λs
λ

)
ΛPb + (1− γs)Pb + (bs + b2 − θ)

|y|2
4
Pb.

Using (5.1), since
〈
iDεH(s, ε), DεH(s, ε)

〉
= 0, we have〈

DεH(s, ε), εs
〉
=
〈
iDεH(s, ε), iεs

〉
= −〈iDεH(s, ε),Modop(s)Pb

〉
+
λs
λ

〈
iDεH(s, ε), iΛε

〉
− (1− γs)

〈
iDεH(s, ε), ε

〉− 〈iDεH(s, ε), e−i b|y|2/4 Ψ
〉
.(5.2)

From (4.5), (4.6) and (4.7) in the proof of Lemma 4.1

DεH(s, ε) = −Δε+ ε− (f(Pb + ε)− f(Pb))− λα(g(Pb + ε)− g(Pb))

= e−ib
|y|2
4

(
L+Re

(
eib

|y|2
4 ε
)
+ iL−Im

(
eib

|y|2
4 ε
))

+ ibΛε+ b2
|y|2
4
ε+O(s−2|ε|).

Therefore, using the orthogonality conditions (3.3), (4.2), (4.9) and estimates (3.15),
we have (see also proof of Lemma 4.1),〈

DεH(s, ε),ΛPb

〉
= −2(ε, Pb)2 + b(ε, iΛPb)2 +O(s−2‖ε‖2) = O(s−(K+1)).

Thus, from Lemma 4.1,∣∣∣λs
λ

+ b
∣∣∣ ∣∣〈DεH(s, ε),ΛPb

〉∣∣ � O(s−(2K+3)).

Using similar arguments we get〈
DεH(s, ε), iPb

〉
= −4(ε,ΛPb)2 +O(s−1‖ε‖2) = O(s−1‖ε‖2) = O(s−(K+1))

and〈
DεH(s, ε), i

|y|2
4
Pb

〉
= (ε, ρb)2 +O(s−1‖ε‖2) = O(s−1‖ε‖2) = O(s−(K+1)).

Using Lemma 4.1, we obtain in conclusion for this term〈
iDεH(s, ε),Modop(s)Pb

〉
= O(s−(2K+3)).

Next, we have〈
iDεH(s, ε), iΛε

〉
=
〈
DεH(s, ε),Λε

〉
=
〈−Δε+ ε− (f(Pb + ε)− f(Pb))−λα(g(Pb + ε)− g(Pb)),Λε

〉
.
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Note that (by direct computations)

〈−Δε,Λε
〉
= ‖∇ε‖22,

〈
ε,Λε

〉
= 0,

and by (3.15), ∣∣〈λα(g(Pb + ε)− g(Pb)),Λε
〉∣∣ � O(s−2‖ε‖2H1 ).

Thus,

λs
λ

〈
iDεH(s, ε), iΛε

〉
=
λs
λ

(
‖∇ε‖22 −

〈
f(Pb + ε)− f(Pb),Λε

〉)
+O(s−3‖ε‖2H1 ).

For the first term of (5.2), we claim

|(1− γs)
〈
iDεH(s, ε), ε

〉|
=
∣∣(1 − γs)

〈
(f(Pb + ε)− f(Pb)) + λα(g(Pb + ε)− g(Pb)), ε

〉∣∣
� |Mod(s)| (‖ε‖22 + ‖ε‖2+4/d

H1

)
= O(s−4‖ε‖2H1 ).

Finally, the second term of (5.2) is estimated by (4.3) and (3.15)

|〈iDεH(s, ε),Ψ
〉| ≤ O(s−(K+4)‖ε‖H1 ) ≤ O(s−(2K+3)) +O(s−5‖ε‖2H1).

Gathering these estimates, we have proved the lemma. �

5.3. The time derivative of the Morawetz part

Lemma 5.6. For all s ∈ [s∗, s1],

d

ds
[J(ε(s))] =

∫
Rd

∇εT∇2φA∇ε̄ dy − 1

4

∫
Rd

|ε|2Δ2φA dy

−
〈
f(Pb + ε)− f(Pb),

1

2
ΔφAε+∇φA∇ε

〉
+O(s−(2K+2)) +O(s−2‖ε‖2H1).

Proof. From the definition of J(ε), we have

d

ds
[J(ε(s))] = Re

∫
Rd

i εs

(1
2
ΔφAε̄+∇φA∇ε̄

)
dy.

We replace iεs using (4.4). First, from standard computations,

Re

∫
Rd

−Δε
(1
2
ΔφAε̄+∇φA∇ε̄

)
dy =

∫
Rd

∇εT∇2φA∇ε̄dy − 1

4

∫
Rd

|ε|2Δ2φA dy,

Re

∫
Rd

ε
(1
2
ΔφAε̄+∇φA∇ε̄

)
dy = 0,

λs
λ

Re

∫
Rd

iΛε
(1
2
ΔφAε̄+∇φA∇ε̄

)
dy = 0.
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Next,

λαRe

∫
Rd

(g(Pb + ε)− g(Pb))
(1
2
ΔφAε̄+∇φA∇ε̄

)
dy

= O(λα‖ε‖2H1)=O(s
−2‖ε‖2H1 ).

The term corresponding to the second line of (4.4) is estimated as follows:∣∣∣〈−i(b+λs
λ
)Λ(Pb + ε) +(1−γs)(Pb+ε)−(bs+b

2−θ) |y|
2

4
Pb,

1

2
ΔφAε+∇φA∇ε

〉∣∣∣
� |Mod(s)|‖ε‖H1 � O(s−(2K+2)).

Finally, by (4.3),∣∣∣〈Ψe−i b|y|2/4,
1

2
ΔφAε̄+∇φA∇ε̄

〉∣∣∣ ≤ O(s−(K+4)‖ε‖H1 ) ≤ O(s−(2K+4)).

The result follows. �

5.4. The Lyapunov property

Proof of Proposition 5.2. By definition of S, we have

d

ds
[S(s, ε(s))] =

1

λ4

(
− 4

λs
λ
(H(s, ε) + bJ(ε)) +

d

ds
[H(s, ε(s))]

+ b
d

ds
[J(ε(s))] + bsJ(ε)

)
.

First, we claim the following estimate:

d

ds
[H(s, ε(s))] + b

d

ds
[J(ε(s))] = b

∫
Rd

∇εT∇2φA∇ε̄dy − b‖∇ε‖22(5.3)

+
b

A
O(‖ε‖2H1) +O(s−(2K+3)).

Proof of (5.3). It is essential to see from Lemmas 5.5 and 5.6 that the main
nonlinear terms are cancelling. Indeed, by integration by parts, we have

−Re

∫
Rd

(f(Pb+ε)−f(Pb))Λε̄ dy =− d

2
Re

∫
Rd

(f(Pb + ε)− f(Pb))ε̄ dy

− Re

∫
Rd

y∇(F (Pb + ε)− F (Pb)− dF (Pb)ε) dy

+Re

∫
Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)y∇P̄b dy

=− d

2
Re

∫
Rd

(f(Pb + ε)− f(Pb))ε̄ dy

+ dRe

∫
Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε) dy

+Re

∫
Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)y∇P̄b dy,
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For the localized part, this gives

−Re

∫
Rd

(f(Pb + ε)− f(Pb))
(1
2
ΔφAε̄+∇φA∇ε̄

)
dy

=− 1

2
Re

∫
Rd

(f(Pb + ε)− f(Pb))ΔφA ε̄ dy

+Re

∫
Rd

ΔφA(F (Pb + ε)− F (Pb)− dF (Pb)ε) dy

+Re

∫
Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)∇φA∇P̄b dy.

Writing these two terms as above, it becomes clear that when y or ∇φA appear,
they are multiplied by ∇Pb, which is exponentially decaying in space (see Proposi-
tion 2.1). Therefore, such terms are controlled by expressions involving only ‖ε‖H1 .

Therefore, combining Lemma 5.5 and Lemma 5.6, we have

d

ds
[H(s, ε(s))] + b

d

ds
[J(ε(s))] = b

∫
Rd

∇εT∇2φA∇ε̄ dy − b‖∇ε‖22

+
(
b+

λs
λ

)(
‖∇ε‖22 −

d

2
Re

∫
Rd

(f(Pb + ε)− f(Pb))ε̄ dy

+ dRe

∫
Rd

(F (Pb + ε)−F (Pb)−dF (Pb)ε)

+ (f(Pb + ε)− f(Pb)− df(Pb)ε)y∇P̄b dy

)

+ b

(
− 1

2
Re

∫
Rd

(f(Pb + ε)− f(Pb))(ΔφA − d)ε̄ dy

+Re

∫
Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε)(ΔφA − d) dy

+Re

∫
Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)(∇φA − y)∇P̄b dy

)

− b
1

4

∫
Rd

|ε|2Δ2φA dy +O(s−(2K+3)) +O(s−2‖ε‖2H1).

By |b + λs/λ| � O(s−4), we have

∣∣∣(b+ λs
λ

)(
‖∇ε‖22 −

d

2
Re

∫
Rd

(f(Pb + ε)− f(Pb))ε̄ dy

+ dRe

∫
Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε) dy

+Re

∫
Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)y∇P̄b dy
)∣∣∣ � s−4 ‖ε‖2H1 .
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Next,

|b|
∣∣∣− 1

2
Re

∫
Rd

(f(Pb + ε)− f(Pb))Δ(φA − d)ε̄dy
∣∣∣

� 1

s

∫
Rd

∣∣∣|P |4/d|ε|2|ΔφA − d|+ |ε|2+4/d
∣∣∣ dy � e−A/2

s
‖ε‖22 +O

(
s−1‖ε‖2+4/d

H1

)
,

and similarly for the terms

bRe

∫
Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε)(ΔφA − d) dy,

bRe

∫
Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)(∇φA − y)∇P̄b dy.

Next, ∣∣∣− b

∫
Rd

|ε|2Δ2φA dy
∣∣∣ � b

A2
‖ε‖22.

In conclusion for this term, we have obtained (5.3)

Using −λs/λ = b+O(s−2) and the expressions of H and HA, we have

−4
λs
λ
H(s, ε) +

d

ds
[H(s, ε(s))] + b

d

ds
[J(ε(s))]

� 4bH(s, ε) + b

∫
Rd

∇εT∇2φA∇ε̄dy − b‖∇ε‖22

+
b

A
O(‖ε‖2H1) +O(s−2‖ε‖2H1 ) +O(s−(2K+3))

� 2bHA(s, ε) + 2bH(s, ε) +
b

A
O(‖ε‖2H1 ) +O(s−2‖ε‖2H1 ) +O(s−(2K+3)).

Thus, by the coercivity properties Lemma 5.3 and Lemma 5.4, we obtain (for A
large enough and s0 large enough)

−4
λs
λ
H(s, ε) +

d

ds
[H(s, ε(s))] + b

d

ds
[J(ε(s))] � b ‖ε‖2H1 +O(s−(2K+3)).

Since |λs/λ| ∼ |b| = O(s−1), bs = O(s−2) and J(ε) = O(‖ε‖2H1), we have

(∣∣∣λs
λ

∣∣∣b+ |bs|
)
|J(ε)| � s−2O(‖ε‖2H1),

and thus
d

ds
[S(s, ε(s))] � b

λ4
(‖ε‖2H1 +O(s−(2K+2))

)
.

This finishes the proof. �
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6. End of the proof of Proposition 3.2

In this section, we finish the proof of Proposition 3.2. Recall from §3.3 that our
objective is to prove s∗ = s0 by improving estimates (3.15) into (3.6). Therefore, it
is sufficient to prove the following lemma which closes the bounds (3.15) provided
δ(α) > 0 has been chosen small enough (e.g. as in (3.16)).

Lemma 6.1 (Refined estimates). For all s ∈ [s∗, s1],

‖ε(s)‖H1 � s−(K+1),(6.1) ∣∣∣λα/2(s)
λ
α/2
app(s)

− 1
∣∣∣+ ∣∣∣ b(s)

bapp(s)
− 1
∣∣∣ � s−1/2 + s2−4/α.(6.2)

Proof. First, we prove (6.1). From Proposition 5.1, and the expression of S, there
exists a universal constant κ > 1 such that for any s ∈ [s∗, s1],

(6.3)
1

κ

1

λ4
(‖ε‖2H1 − κ2s−2(K+1)

) ≤ S(s, ε) ≤ κ

λ4
‖ε‖2H1 .

From Proposition 5.2, possibly taking a larger κ,

(6.4)
d

ds
[S(s, ε(s))] ≥ 1

κ

b

λ4
(‖ε‖2H1 − κ2s−2(K+1)

)
.

Define

s† := inf
{
s ∈ [s∗, s1], ‖ε(τ)‖H1 ≤ 2κ2τ−(K+1) for all τ ∈ [s, s1]

}
.

Since ε(s1) = 0, by continuity s† is well-defined and s† < s1. For the sake of

contradiction, assume that s† > s∗. In particular, ‖ε(s†)‖H1 = 2κ2s
−(K+1)
† . Define

s‡ := sup
{
s ∈ [s†, s1], ‖ε(τ)‖H1 ≥ κτ−(K+1) for all τ ∈ [s†, s]

}
.

In particular, s† < s‡ < s1 and ‖ε(s‡)‖H1 = κs
−(K+1)
‡ , and from (6.4), S is nonde-

creasing on [s†, s‡]. From equations (6.3)–(6.4) and the estimates on λ (see (3.6)),
we obtain

‖ε(s†)‖2H1 − κ2s
−2(K+1)
† ≤ κλ4(s†)S(s†, ε(s†)) ≤ κλ4(s†)S(s‡, ε(s‡))

≤ κ2
λ4(s†)
λ4(s‡)

‖ε(s‡)‖2H1 ≤ κ4
λ4(s†)
λ4(s‡)

s
−2(K+1)
‡

≤ 2 κ4
(s‡
s†

) 8
α

s
−2(K+1)
‡ ≤ 2 κ4s

−2(K+1)
† ,

since K > 4/α. Therefore ‖ε(s†)‖2H1 ≤ 3κ4s
−2(K+1)
† , which is a contradiction.

Hence s† = s∗ and (6.1) is proved.
Now, we prove (6.2). The main idea is to use a conservation law on (b, λ) which

can be found from the differential system satisfied by (b, λ), but that we rather
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derive from energy properties of the blow up profile. Recall that λ(s1) = λ1 and
b(s1) = b1 are chosen in Lemma 2.4 so that

F(λ(s1)) = s1 and E(b(s1), λ(s1)) = 8E0∫
Rd |y|2Q2

.

In particular, we deduce from (2.9) that |E(Pb1,λ1,γ1) − E0| � s−6
1 . Using (2.8)

and (3.15), (4.1), for all s ∈ [s∗, s1],∣∣∣ d
ds
E(Pb,λ,γ)

∣∣∣ � s−(K+2)+4/α.

In particular, by integration, we find, for all s ∈ [s∗, s1], |E(Pb,λ,γ(s))−E0| � s−6

(recall K > 20/α) and using (2.9) at s,∣∣∣E(b(s), λ(s)) − 8E0∫
Rd |y|2Q2

∣∣∣ � s−6.

We obtain from the expression (2.10) of E with C0 = 8E0∫
Rd

|y|2Q2 :∣∣∣b2 − 2β

2− α
λα − C0λ

2
∣∣∣ � λα

s2

where the error term O(λα/s2) comes from θ and cannot be improved. In this
estimate, since λ2 ≈ s−4/α and λα/s2 ≈ s−4, whether or not C0λ

2 is controled by
the error term depends on the value of α. We address both cases at once in what
follows. Since b ≈ λα/2,

(6.5)

∣∣∣∣b−
√

2β

2− α
λα + C0λ2

∣∣∣∣ � λα/2

s2
,

and with |λs/λ+ b| � s−(K+1), we obtain (see (2.25) for the definition of F)

(6.6)

∣∣∣∣∣ λs

λα/2+1
√

2β
2−α + C0λ2−α

− 1

∣∣∣∣∣ = |F ′(s)− 1| � s−2.

Integrating (6.6) on [s, s1], we obtain∣∣F(λ(s1))−F(λ(s)) − (s1 − s)
∣∣ � s−1

and thus, by F(λ(s1)) = s1 (this choice was done in Lemma 2.4), we obtain

F(λ(s)) = s+O(s−1).

Therefore, using (2.28) and the definition of λapp(s) in (2.20),

∣∣∣λα/2app(s)

λα/2(s)
− 1
∣∣∣ � s−1/2 + s2−4/α.

We reinject this estimate into (6.5) and use the definition of bapp to conclude:

b(s) = bapp(s) +O(s−3/2 + s−(4−α)/α).

This finishes the proof. �
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A. Proof of Lemmas 1.1 and 1.2

Proof of Lemma 1.1. By contradiction, assume that there exists a blow up solution
u(t) of (NLS) with ε = −1 and ‖u(t)‖2 = ‖Q‖2. Let a sequence tn → T ∗ ∈ (0,+∞]
with ‖∇u(tn)‖2 → +∞ and consider the renormalized sequence

vn(x) = λ(tn)
d/2 u(tn, λ(tn)x), λ(tn) =

‖∇Q‖2
‖∇u(tn)‖2

.

Then, by conservation of mass,

‖vn‖2 = ‖Q‖2
and conservation of energy and ε < 0,

E0 = E(un) ≥ Ecrit(un) =
Ecrit(vn)

λ2(tn)
.

Therefore, the sequence vn satisfies:

‖vn‖2 = ‖Q‖2, ‖∇vn‖2 = ‖∇Q‖2, lim sup
n→+∞

Ecrit(vn) ≤ 0.

From standard concentration compactness argument, see [24], [32], there holds, up
to a subsequence, for some xn ∈ Rd, γn ∈ R,

vn(.− xn)e
iγn −→

n→+∞Q in H1(Rd).

In particular,

‖u(tn)‖p+1 =
‖vn‖p+1

λ
d(p−1)
2(p+1) (tn)

→ +∞ as n→ ∞,

which contradicts the a priori bound from the energy conservation law and (1.2):

E0 = E(u) ≥ Ecrit(u) +
1

p+ 1

∫
Rd

|u|p+1 ≥ 1

p+ 1

∫
Rd

|u|p+1.

This concludes the proof. �

Proof of Lemma 1.2. Let δ > 0. We first recall the virial identity

d2

dt2
‖xu(t)‖22 = 8

(
‖∇u‖22 −

2

2 + 4/d
‖u‖2+4/d

2+4/d +
d(p− 1)

2(p+ 1)
‖u‖p+1

p+1

)

= 16E(u)− 4(4− d(p− 1))

p+ 1
‖u‖p+1

p+1.

Define for a, b ∈ R the rescaled function Qa,b by Qa,b(x) = a
d
2Q(abx). We have

‖Qa,b‖2 = b−d/2 ‖Q‖2,
E(Qa,b) = a2b−d

(
b2
1

2
‖∇Q‖22 −

1

2 + 4/d
‖Q‖2+4/d

2+4/d + ad(p−1)/2−2 1

p+ 1
‖Q‖p+1

p+1

)
.



830 S. Le Coz, Y. Martel, and P. Raphaël

Recall that the critical energy vanishes at Q:

1

2
‖∇Q‖22 −

1

2 + 4/d
‖Q‖2+4/d

2+4/d = 0.

Take b ∈ R such that ‖Qa,b‖2 = ‖Q‖2 + δ. Then b < 1 and for a large enough we
have

E(Qa,b) < 0.

Choose now u0 = Qa,b. By conservation of energy and the virial identity, we have

d2

dt2
‖xu(t)‖22 < 16E(Qa,b) < 0,

which implies blow-up in finite time of u for positive and negative times and con-
cludes the proof. �

B. Proof of Lemma 1.3

For the sake of simplicity, we give the proof only for d ≥ 2. The case d = 1 would
require an additional (standard) concentration compactness argument (see [32]).
For M < ‖Q‖2, set

AM =
{
u ∈ H1

rad(R
d) with ‖u‖2 =M

}
and consider the minimization problem

IM = inf
u∈AM

E(u).

First, we claim

(B.1) −∞ < IM < 0.

Indeed, from (1.2) and

(B.2)

∫
Rd

|u|p+1 ≤ CGN(p) ‖∇u‖d(p−1)/2
2 ‖u‖p+1−d(p−1)/2

2 ,

with 1 < p < 1 + 4/d, we note that IM > −∞ and that any minimizing sequence
is bounded in H1(Rd). Let u ∈ AM and vλ(x) = λd/2u(λx), then vλ ∈ AM and

E(vλ) = λ2
[
Ecrit(u)− 1

λ2−d(p−1)/2

1

p+ 1

∫
Rd

|u|p+1

]
.

In particular, for 0 < λ� 1 and u �≡ 0, E(vλ) < 0 and (B.1) follows.

Second, let uλ = λ
2

p−1u(λx), so that

E(uλ) = λ
4

p−1+2−d

[
1

2

∫
Rd

|∇u|2 − 1

p+ 1

∫
Rd

|u|p+1

]
− λ

2
p−1 (2+

4
d )−d

2 + 4/d

∫
Rd

|u|2+4/d.
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We observe that

d

dλ
E(uλ)|λ=1 =

( 4

p− 1
+ 2− d

)[1
2

∫
Rd

|∇u|2 − 1

p+ 1

∫
Rd

|u|p+1
]

−
2

p−1 (2 +
4
d )− d

2 + 4/d

∫
Rd

|u|2+4/d

=
( 4

p− 1
+ 2− d

)
E(u)− 4/d

2 + 4/d

( 2

p− 1
− d

2

)∫
Rd

|u|2+4/d.

Together with ‖uλ‖2 = λ
2

p−1− d
2 ‖u‖2, which implies d

dλ‖uλ‖2|λ=1 > 0, this proves

that

(B.3) I(M) is decreasing in M.

To finish, let (un) be a minimizing sequence. Up to a subsequence and from
the standard radial compactness of Sobolev embeddings (see [3]),

un ⇀ u in H1(Rd), un → u in Lq, 2 < q ≤ 2 +
4

d
.

Hence
E(u) ≤ IM and ‖u‖2 ≤M.

From (B.3) and the definition of IM , we deduce ‖u‖2 =M and E(u) = IM . From
a standard Lagrange multiplier argument, u satisfies

Δu+ |u|1+4/du+ |u|p−1u = ω u

for a constant ω ∈ R. The sign ω > 0 now follows from a standard Pohozaev type
argument.
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[26] Merle, F., Raphaël, P. and Szeftel, J.: The instability of Bourgain–Wang
solutions for the L2 critical NLS. Amer. J. Math. 135 (2013), no. 4, 967–1017.
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et Institut Universitaire de France, Parc Valrose, 06108 Nice Cedex 02, France.

E-mail: praphael@unice.fr

S. Le Coz is partly supported by ANR-14-CE25-0009-01 and by ANR-11-LABX-0040-CIMI
within the program ANR-11-IDEX-0002-0. Y. Martel and P. Raphaël are partly supported by
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