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Abstract
We look for solutions to general nonlinear Schrödinger equations built upon
solitons and kinks. Solitons are localized solitary waves, and kinks are their
non-localized counter-parts. We prove the existence of infinite soliton trains,
i.e. solutions behaving at large time as the sum of infinitely many solitons. We
also show that one can attach a kink at one end of the train. Our proofs proceed
by fixed point arguments around the desired profile. We present two approaches
leading to different results, one based on a combination of Lp − Lp′

dispersive
estimates and Strichartz estimates, the other based only on Strichartz estimates.

Keywords: soliton train, multi-soliton, multi-kink, nonlinear Schrödinger
equations
Mathematics Subject Classification: 35Q55(35C08,35Q51).

1. Introduction

We consider the nonlinear Schrödinger equation:

i∂t u + "u + f (u) = 0, (NLS)

where u = u(t, x) is a complex-valued function on R × Rd , d ! 1.
Our goal in this paper is to advance a study initiated in [11] on the existence of

exotic solutions to (NLS). We look for infinite soliton trains, i.e. solutions which behave
asymptotically as the sum of infinitely many solitons, possibly attached to a kink at one
end. We want to show that such behaviour is possible for general nonlinearities under mild
hypotheses. A typical nonlinearity example is the double-power nonlinearity:

f (u) = |u|αu − |u|βu, 0 < α < β < αmax. (1.1)
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Here and thereafter we denote the critical exponent by αmax = +∞ for d = 1, 2 and αmax = 4
d−2

for d ! 3. Note that we are using the term soliton in its broader meaning of solitary wave.
Let us shortly review some results on multi-solitons, i.e. solutions to (NLS) behaving at

large time as a finite sum of solitons. The inverse-scattering transform makes possible a precise
long time description of the dynamics (see e.g. [8]), and provides a convenient way to build
multi-solitons (see e.g. [18]); however it is limited to integrable equations (for Schrödinger
equations, only the 1D cubic case is integrable). For non-integrable Schrödinger equations, one
of the first results of the existence of multi-solitons was obtained by Merle [16] for L2-critical
equations, triggering a series of work on multi-solitons. For energy-subcritical nonlinearities,
Côte, Martel and Merle [7,14] obtained the existence of multi-solitons built upon ground states,
while the excited states case was treated by Côte and Le Coz [6] under a high speed assumption.
Stability/instability results have been obtained by Côte and Le Coz [6], Martel, Merle, Tsai [12]
and Perelman [17]. However, stability of multi-solitons for power-type nonlinearities is still
an open issue.

The existence of objects like infinite soliton trains is of importance as they usually
provide examples of extreme phenomena in the asymptotic behaviour of solutions of nonlinear
dispersive equations. For example, for the Korteweg–de Vries equation, an infinite train of
solitons was used in [13] as a counter example to show the optimality of an asymptotic stability
statement. For nonlinear Schrödinger equations, the asymptotic stability results usually hold
under assumptions (typically in weighted spaces) excluding the infinite train behaviour. To
our knowledge, our previous work [11] was the first one to establish the existence of infinite
soliton trains for non-integrable Schrödinger equations (for the integrable 1D cubic nonlinear
Schrödinger equation, the existence of infinite soliton trains may be obtained via the inverse-
scattering transform, see [10]).

Before stating our main results, let us give some preliminaries. To work in an energy-
subcritical context, we first assume the following.

Assumption (F0). Let d ! 1. Suppose f (u) = g(|u|2)u where g ∈ C0([0, ∞), R) ∩
C2((0, ∞), R), g(0) = 0 and

|sg′(s)| + |s2g′′(s)| " C0(s
α1/2 + sα2/2), ∀s > 0,

where 0 < α1 " α2 < αmax and C0 > 0.

A bound state is a nontrivial solution φ ∈ H 1(Rd) of the elliptic equation:

"φ + f (φ) = ωφ (1.2)

for some frequency ω > 0. We shall sometimes denote a bound state along with its frequency
(φ, ω) to emphasize the dependency of φ on ω. Any bound state φ with frequency ω and
parameters x0 ∈ Rd (position), v ∈ Rd (velocity) and γ ∈ R (phase) corresponds to a solitary
wave solution (soliton) of (NLS):

Rφ,ω,x0,v,γ (t, x) = ei(ωt+ 1
2 vx− 1

4 |v|2t+γ )φ(x − x0 − vt). (1.3)

The profile of an infinite soliton train is a sum of the form:

R∞ =
∞∑

j=1

Rj , Rj (t, x) = Rφj ,ωj ,x
0
j ,vj ,γj

(t, x), j ∈ N, (1.4)

where (Rj )j are given solitons with bound state profiles (φj , ωj ) and parameters x0
j , vj ∈ Rd

and γj ∈ R. A solution u(t) is called an infinite soliton train if, for some profile R∞:

u(t) − R∞(t) → 0 as t → ∞
in some space-time norm.
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Constructing a solution to (NLS) around an infinite train profile as (1.4) is much trickier
than when the profile is made with a finite number of solitons. First of all, we need to make
sure that the profile is well defined, as the addition of infinitely many solitons may very well
be infinite. We also have to take into account that it is very likely that the profile will not
belong to the same functional spaces as the solitons. In order to deal with these issues we need
a control on the growth of the solitons’ profiles (see (1.5)) and also to guarantee some space
integrability of the train (see (1.6)).

We will assume the following for our infinite train:

Assumption (T1). For 0 < α1 < αmax given, the sequence of bound states {(φj , ωj ) : j ∈ N}
satisfies, for some 0 < a < 1 and Da independent of j ,

|φj (x)| + ω
−1/2
j |∇φj (x)| " Daω

1/α1
j e−aω

1/2
j |x|, ∀x ∈ Rd , ∀j ∈ N, (1.5)

and, for some r0 ! 1, dα1
2 < r0 < 2 + α1,

A1 :=
∑

j∈N
ω

1
α1

− d
2r0

j < ∞. (1.6)

We say a nonlinearity f satisfies (T1) if such an infinite sequence (φj , ωj )j exists for
some r0. Examples of such nonlinearities will be given in section 2.

Note that the set [1, ∞) ∩ ( dα1
2 , 2 + α1) for r0 is nonempty since 0 < α1 < αmax. The

condition r0 > dα1
2 ensures that the exponent 1

α1
− d

2r0
> 0. Thus ωj → 0 as j → ∞,

and (1.6) is a condition on how fast ωj goes to 0. The existence of sequences of bound
states satisfying assumption (T1) is guaranteed by proposition 2.1, where bound states with
small frequencies are constructed as bifurcation from 0 along a fixed radial bound state Q of
the equation "Q + |Q|α1Q = Q together with the estimate (1.5). Note that the φj may be
arbitrary excited states solutions of (1.2); in particular they may be sign-changing, non-radial
or complex-valued. Also note that we do not need the bound for ω−1/2|∇φω(x)| in (1.5) for
theorems 1.2 and 1.14, but we assume it for all theorems for simplicity of presentation. For
the same reason, we shall also set all initial positions x0

j to 0. Our assumption includes the
finite multi-soliton case by setting (φj , ωj ) = (0, 0) for j sufficiently large.

We have followed two independent approaches for the study of this problem, leading to
two different types of results with different assumptions and conclusions. Before stating our
main results, we need a preliminary lemma which will be proved in section 4.

Lemma 1.1. Let d ! 1. For any 0 < α1 < α2 < αmax satisfying α2
2+α2

" α1, one can choose
r0 so that the following conditions hold.

max
(

1,
dα1

2

)
< r0 < 2 + α1, (1.7)

1
2

" α1

r0
+

1
r2

, (1.8)

1 <
α1 + 1

r0
+

1
r2

, (1.9)

where r2 = 2 + α2. Furthermore, if α1 < 4/d, we can choose r0 " 2.

1.1. Infinite soliton trains

We now state our two results on the existence of infinite soliton trains. The first approach of
the first theorem is based on Lp-Lq decay estimates for eit". The Strichartz space S([t, ∞))

will be defined in section 3.
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Theorem 1.2 (Infinite train of solitons (i)). Let d ! 1 and assume assumption (F0) and
α2

2 + α2
" α1. (1.10)

Let r2 = 2 + α2 and take any r0 verifying (1.7), (1.8), and (1.9). Let (φj , ωj )j∈N be a sequence
of bound states satisfying assumption (T1) with the chosen r0. There exist constants c1 > 0 and
v♯ ≫ 1 such that, for any infinite soliton train profile R∞ given, as in (1.4) with parameters
vj ∈ Rd , x0

j = 0, γj ∈ R satisfying

v∗ = inf
j,k∈N,j ̸=k

√
ωj |vk − vj | ! v♯, (1.11)

there exists a solution u to (NLS) on [0, ∞) satisfying

∥(u − R∞)(t)∥Lr2 + ∥u − R∞∥S([t,∞)) " e−c1v∗t , ∀t ! 0. (1.12)

It is unique in the class of solutions satisfying the above estimate.

Remark 1.3 (Nonlinearities verifying assumptions (F0) and (T1)). The double power non-
linearity (1.1) is a good example for which assumptions (F0) and (T1) are satisfied. More
generally, in section 2, we introduce assumption (F2), under which we can perform a bifur-
cation analysis to obtain a sequence verifying assumption (T1). Assumption (F2) implies
assumptions (F0) and (T1), but is much more restrictive: there may be many other examples
of nonlinearities for which assumption (T1) can be verified and which would be excluded by
assumption (F2) (e.g. nonlinearities having some oscillatory behaviour at 0).

Remark 1.4 (L2-solutions). The solution u in theorem 1.2 (and those in the later theorems)
is only in a distributional sense. When the profile has more integrability, a stronger notion of
solution may hold. Indeed, by (1.12) and Hölder inequality,

∥(u − R∞)(t)∥Lr " e−c1v∗t , ∀t ! 0, ∀r ∈ [2, r2].

As we will show that R∞ ∈ L∞(0, ∞; Lr0 ∩ L∞(Rd)) in (4.1), we have u ∈ L∞(0, ∞; Lr1 ∩
L∞(Rd)) where r1 = max(2, r0). In the case α1 < 4/d, we can choose r0 " 2 by lemma 1.1,
and thus u ∈ L∞(0, ∞; L2(Rd)). Hence u is a localized solution in L2(Rd) in the usual sense.

Remark 1.5 (Comparison to previous results). Theorem 1.2 contains the pure power case
f (u) = |u|αu by writing f (u) = |u|αu − 0|u|α+ϵu for some small ϵ > 0. It also includes the
finite soliton train (multi-soliton) case by taking (φj , ωj ) = (0, 0) for j sufficiently large. In
addition the range of exponents is larger than in [11, theorem 6.4]. Hence theorem 1.2 extends
theorems 1.1, 1.7, 6.3 and 6.4 in [11] in a unified approach (except that [11, theorem 6.3] does
not require (1.10)).

Remark 1.6 (L2-subcritical nonlinearities). If we use a pure Strichartz norm approach and
do not use Lr2 norm, we can construct infinite soliton trains for all L2-subcritical or critical
exponents 0 < α1 < α2 " 4/d as in [11, theorem 6.3], without the restriction (1.10).

Remark 1.7 (Uniqueness). The uniqueness of the constructed infinite train holds in a class of
exponentially decaying in time solutions of (NLS) with rate c1v∗ (see (1.12)). Even for finite
trains of solitons, it is an open question whether or not uniqueness holds in a less restrictive
class of functions. For the nonlinear Schrödinger equation with a pure power nonlinearity,
the conjecture is that, similar to what happens for the generalized Korteweg–de Vries multi-
solitons (see [3,15]), uniqueness in H 1(Rd) of the N -soliton holds if the composing solitons are
made of ground states and the nonlinearity is L2-subcritical. If the nonlinearity is supercritical,
however, we have a classification in H 1(Rd) of the N -solitons as a N -parameters family (see
partial steps towards this conjecture in [3, 6]).
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In our second main result, we also control the train at the gradient level. The approach
is based solely on Strichartz estimates. Here and thereafter, we use the Japanese bracket
convention: ⟨x⟩ :=

√
1 + |x|2.

Theorem 1.8 (Infinite train of solitons (ii)). Let d ! 1 and assume assumption (F0) with
0 < α1 < 4

d+2 . Let (φj , ωj )j∈N be a sequence of bound states satisfying assumption (T1) for
some r0. There exist constants C > 0, c1 > 0, c2 > 0, and v♯ ≫ 1 such that, for any infinite
soliton train profile R∞ given as in (1.4) with parameters vj ∈ Rd , x0

j = 0, γj ∈ R satisfying

v∗ := inf
j,k∈N,j ̸=k

√
ωj |vk − vj | ! v♯, (1.13)

and

V∗ :=
∑

j∈N
⟨vj ⟩ω

1
α1

− d
4

j < ∞, (1.14)

there exists a unique solution u to (NLS) satisfying, for some T0 = T0(V∗) ≫ 1,

ec1v∗t∥u − R∞∥S([t,∞)) + ec2v∗t∥∇(u − R∞)∥S([t,∞)) " C, ∀t ! T0. (1.15)

Remark 1.9 (Examples of parameters choices). Condition (1.13) requires sufficiently large
relative speed, while condition (1.14) puts an upper bound on the growth of ⟨vj ⟩. By (1.14)
we may assume r0 " 2. One possible choice of parameters is:

ωj = 4−j , vj = 2j+1v̄, |v̄| ≫ 1. (1.16)

Condition (1.14) can be satisfied (V∗ # ∑
j (4

−j )
− 1

2 + 1
α1

− d
4 < ∞) thanks to the assumption

α1 < 4
d+2 (note this implies α1 < 1 unless d = 1).

In the above choice V∗ and v∗ grow linearly in |v̄|. In the following choice V∗ =
O(h(|v̄|)|v̄|) while v∗ = C|v̄| for any function h > 1:

ωj = 4−j , vj =
{

2j+1h(|v̄|)v̄, if j is odd
−2j+1v̄, if j is even

, |v̄| ≫ 1. (1.17)

Remark 1.10 (Infinite train starting at time 0). We use large T0 to off-set the contribution
of large V∗. Note that the solution may very well exist before T0. If we impose that V∗ grows
sub-exponentially in v∗, e.g. V∗ " C(1 + v∗)

M for some M ! 1 (e.g. h(s) = (1 + s)M−1 in
(1.17)), we may take T0 = 0 as in [11, theorem 6.1].

Remark 1.11 (Existence of infinite trains under (F0) and (T1)). The proof of theorem 1.2
uses a combination of Lr2 norm and Strichartz norm. To estimate |η|α1+1 in Lr2 using Lr ′

-
Lr decay estimates, a restriction like (1.10) is needed to avoid the limiting case α1 = 0+ and
α2 = αmax−. However, we claim that exponents excluded by (1.10) are covered by theorem 1.8
above. Indeed, let ᾱ = sup0<α<αmax

α
2+α

. We have ᾱ = 1 for d = 1, 2 and ᾱ = 2/d for d ! 3.
One then verifies that ᾱ " 4

d+2 for all dimensions.
Hence we can construct infinite soliton trains for all energy-subcritical nonlinearities

satisfying assumptions (F0) and (T1).

Remark 1.12 (Comparison between theorems 1.2 and 1.8). Theorem 1.2 applies for non-
linearities whose general form is not far from a power-type nonlinearity, no matter what this
power is (α1 can be any H 1-subcritical power). Theorem 1.8 applies for nonlinearities that are
sufficiently strong at 0 (α1 has to be small), but with any kind of growth possible away from
0. For the choice of the profile, theorem 1.2 is more flexible as it requires only some weak
integrability condition (1.6), whereas theorem 1.8 requires L2-integrability of the profile (one
take r0 = 2 in (T1)) and its first derivative (1.14).
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1.2. Infinite kink-soliton trains

In our next couple of theorems we let d = 1 and consider in R a train of the form

W = K + R∞

where R∞ is as in (1.4), and K is a kink solution of (NLS) given by the same formula
(1.3) but with the profile φ = φK now being a half-kink satisfying the same equation (1.2)
(φ′′ = ωφ − f (φ)), 0 < φK(s) < b for some b > 0, and

lim
s→−∞

φK(s) = b, φ′
K(s) < 0 ∀s ∈ R, φ′

K(0) = min φ′
K, lim

s→+∞
φK(s) = 0. (1.18)

A solution which converges to a profile W as above at positive time infinity will be called
an infinite kink-soliton train. We are going to give two results of the existence of infinite
kink-soliton trains. Note that such an object was never exhibited before, even in integrable
cases.

In addition to assumption (F0), we make the following assumption, which in particular
ensures the existence of a half-kink satisfying (1.18) (see proposition 1.13).

Assumption (F1). For some ω0 > 0, there is a first b > 0 such that for h(s) = ω0s − f (s),

h(b) = 0,

∫ b

0
h(s) ds = 0. (1.19)

Moreover, h′(b) > 0, and for some α̃ ∈ [0, α2],

|f ′(b + s)| + |s||f ′′(b + s)| " C|s|α̃ + C|s|α2 , ∀s ∈ R. (1.20)

The existence of half-kink profiles is guaranteed by the following result.

Proposition 1.13. Let d = 1 and assume assumptions (F0) and (F1). There is a solution
φK(s) of

φ′′
K = ω0φK − f (φK)

such that 0 < φK(s) < b,

lim
s→−∞

φK(s) = b, φ′
K(s) < 0 ∀s ∈ R, φ′

K(0) = min φ′
K, lim

s→+∞
φK(s) = 0,

and that, for any 0 < a < min(ω0, h
′(b)), there is Da > 0 so that

1s<0(b − φK(s)) + 1s!0 φK(s) + |φ′
K(s)| " Dae−a|s|, ∀s ∈ R.

Proposition 1.13 can be easily proved using classical ordinary differential equations
techniques (see e.g. [11, proposition 1.12]).

Note (see example 5.2) that the double power nonlinearity (1.1) verifies assumption (F1)
and admits a half-kink when d = 1 and, e.g.

f (u) = |u|u − |u|2u.

Another example (see example 5.1) of a nonlinearty verifying assumption (F1) is

f (u) = u − sin |u|
|u|

u.

We now state our second set of results on the existence of infinite kink-soliton trains.
Recall N0 = {0} ∪ N.
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Theorem 1.14 (An infinite kink-soliton train (i)). Let d = 1 and assume assumptions (F0),
(F1) and

α2

2 + α2
" α1. (1.21)

Let r2 = 2 + α2. Then we can find r0 satisfying (1.7)–(1.9). Assume that α̃ is such that

1
2

" α̃

r0
+

1
r2

, 1 <
α̃ + 1
r0

+
1
r2

. (1.22)

assume there is a sequence of bound states (φj , ωj )j∈N satisfying assumption (T1) with the
chosen r0. Let φ0 = φK be the kink profile given in proposition 1.13. There exist constants
c1 > 0, and v♯ ≫ 1 such that, for the infinite kink-soliton profile W = K + R∞, given as in
(1.4), with any parameters vj ∈ R, vj < vj+1, x0

j = 0, γj ∈ R for j ∈ N0 satisfying

v∗ = inf
j,k∈N0,j ̸=k

√
ωj |vk − vj | ! v♯,

there exists a unique solution u to (NLS) for t ! 0 satisfying

∥(u − W)(t)∥Lr2 + ∥u − W∥S([t,∞)) " e−c1v∗t , ∀t ! 0. (1.23)

Theorem 1.15 (An infinite kink-soliton train (ii)). Let d = 1 and assume assumptions (F0)
and (F1) with 0 < α1 < 4/3. Let (φj , ωj ), j ∈ N be given and satisfying assumption (T1) for
some r0 which further satisfies

r0(α1 + 1) < (α̃ + 1)(α1 + 2). (1.24)

Let φ0 = φK be the kink profile given in proposition 1.13. There exist constants C > 0, c1 > 0,
c2 > 0, T0 ≫ 1 and v♯ ≫ 1 such that, for the kink-soliton train profile W = K + R∞ given
as in (1.4) with any parameters vj ∈ R, vj > v0, x0

j = 0, γj ∈ R for j ∈ N0 and sufficiently
large relative speed

v∗ = inf
j∈N,k∈N0,j ̸=k

√
ωj |vk − vj | ! v♯, (1.25)

V∗ :=
∑

j∈N
⟨vj ⟩ω

1
α1

− d
4

j < ∞, (1.26)

there exists a unique solution u to (NLS) for t ! T0 satisfying

ec1v∗t∥u − W∥S([t,∞)) + ec2v∗t∥∇(u − W)∥S([t,∞)) " C, ∀t ! T0. (1.27)

Remark 1.16. In theorems 1.14 and 1.15, the kink K is on the left in the profile and its
velocity is less than the velocity of any soliton. This picture can be reversed by the symmetry
u(x, t) → ũ(x, t) = u(−x, t).

Remark 1.17. In theorem 1.15 we require upper bound α1 < 4/3 and lower bound (1.24) on
α̃. The bound (1.24) is redundant if we choose a smaller r0, e.g. r0 = 1, but is nontrivial if we
take r0 = 2.

We now comment on the technicalities of the current paper compared to [11], in which
infinite trains were constructed only for pure power nonlinearities f (u) = |u|αu and no half-
kink was involved. Both papers rely on the usual Lr ′

-Lr and Strichartz estimates for the free
Schrödinger equation, and use the large minimal relative speed. However, the finiteness of V∗
in (1.14) and (1.26) is a new condition to control the gradient of the profile. In [11], it was
sufficient to construct the error η = u − R∞ in the norm supt>0 eλt∥η(t)∥Lα+2 . The current
paper uses either a combination of the above with the Strichartz norm, or the Strichartz norms
of η and its gradient. These make it more flexible to overcome the difficulties from more
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complicated estimates on the nonlinear and the source terms for general f when infinitely
many solitons are involved. The presence of the half-kinks also requires additional care of
both nonlinear and source terms.

The rest of the paper is organized as follows. In section 2 we give an example of
nonlinearity for which assumption (T1) is satisfied. In section 3 we give the general scheme
of our proofs. In section 4 we prove theorems 1.2 and 1.8. In section 5 we give examples 5.1
and 5.2 for nonlinearities verifying assumption (F1) and we prove theorems 1.14 and 1.15.

2. Existence of a family of bound states satisfying (T1)

Assumption (T1) is satisfied for the nonlinearity f if, for example, f satisfies assumption (F2)
below.

Assumption (F2). Suppose f (u) = f1(u) + f2(u) where f1(u) = |u|αu, f2(u) = g2(|u|2)u,
g2 ∈ C0([0, ∞), R) ∩ C2((0, ∞), R), g2(0) = 0 and

|sg′
2(s)| + |s2g′′

2 (s)| " C0(s
β1/2 + sβ2/2), ∀s > 0,

where 0 < α < β1 " β2 < αmax and C0 > 0.

This assumption is more specific about the small u behaviour of f (u) than those in
assumption (F0) so that we can have more control on the bound states with respect to their
frequencies. In particular, we do not consider f1(u) with an opposite sign.

The following proposition gives an existence result of bound states with small frequencies,
obtained as the bifurcation from the radial ground state Q of the pure power nonlinearity,
together with uniform estimates.

Proposition 2.1 (Bifurcation of solitons). Let d ! 1 and assume assumption (F2). Let
Q(x) be the unique positive radial solution of "Q + |Q|αQ = Q in Rd . There is a small
ω∗ = ω∗(d, α, β1, β2, C0) > 0 so that for all 0 < ω < ω∗ there is a solution φ = φω of (1.2)
of the form

φω(x) = ω1/α[Q(ω1/2x) + ξω(ω1/2x)], (2.1)

where ∥ξω∥H 2 " Cωβ1/α−1. Moreover, for any 0 < a < 1 there is a constant Da > 0 such
that

|φω(x)| + ω−1/2|∇φω(x)| " Daω
1/αe−aω1/2|x|, ∀x ∈ Rd , ∀ω ∈ (0, ω∗). (2.2)

Note that we could allow Q to be any radial excited state, provided we knew its non-
degeneracy, i.e. invertibility of L+ in the proof below (such a result should be a consequence
of the classifications results [4, 5], however we did not pursue that direction).

Before proving proposition 2.1, we recall without proof the following classical lemma.

Lemma 2.2. Suppose f (u) = g(|u|2)u, g ∈ C0([0, ∞), R), f (0) = 0 and

|sg′(s)| " C(sα1/2 + sα2/2), ∀s > 0.

For W, η ∈ C we have

|f (W + η) − f (W)| # |η|(|W |α1 + |W |α2) + |η|1+α1 + |η|1+α2 .

Proof of proposition 2.1. Since Q is real and radial, we will look for real and radial ξω. For the
sake of simplicity in notation, we drop the subscript ω during the proof. Denoting y = ω1/2x

and substituting (2.1) in (1.2), we get

(−"y + 1)ξ = ω− 1
α
−1f (ω1/α(Q + ξ)) − |Q|αQ.
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It can be rewritten as

L+ξ = N(ξ) = N1(ξ) + N2(ξ), (2.3)

where

L+ = −"y + 1 − (1 + α)|Q|α

N1(ξ) = f1(Q + ξ) − f1(Q) − (1 + α)|Q|αξ

N2(ξ) = ω− 1
α
−1f2(ω

1/α(Q + ξ)).

In the special case f2(u) = −|u|βu, we have N2(ξ) = −ω
β
α
−1|Q + ξ |β(Q + ξ).

Let X = H 2
rad(Rd). The properties of L+ are well-known (see e.g. [2]). It has one negative

eigenvalue, its kernel in L2(Rd) is spanned by (∂yj
Q)j and the rest of its spectrum is positive

away from 0. Hence for radial functions L+ : X → L2
rad is invertible and we have

C3 := ∥(L+)
−1∥B(L2

rad;X) < ∞.

We have

|N1(ξ)| # 1α>1|Q|α−1|ξ |2 + |ξ |1+α (2.4)

|N1(ξ1) − N1(ξ2)| # 1α>1|Q|α−1(|ξ1| + |ξ2|)|ξ1 − ξ2| + (|ξ1| + |ξ2|)α|ξ1 − ξ2|. (2.5)

We also have, by assumption (F2) and lemma 2.2,

|N2(ξ)| # ω− 1
α
−1

∑2

j=1
|ω1/α(Q + ξ)|1+βj =

∑2

j=1
ω

βj
α

−1|Q + ξ |1+βj . (2.6)

|N2(ξ1) − N2(ξ2)| #
∑2

j=1
ω

βj
α

−1(|Q| + |ξ1| + |ξ2|)βj |ξ1 − ξ2|. (2.7)

Denote Br = {ξ ∈ X : ∥ξ∥X " r} for 0 < r < 1 and let 0 < ω < 1. Because X is imbedded
in L2+2α ∩ L2+2β2 for any dimension d , we have, for some C4,

∥N(ξ1)∥L2 " C4

(
∥ξ1∥min(1,α)+1

X + ω
β1
α

−1
)
,

∥N(ξ1) − N(ξ2)∥L2 " C4

(
(∥ξ1∥X + ∥ξ2∥X)min(1,α) + ω

β1
α

−1
)
∥ξ1 − ξ2∥X,

(2.8)

for any ξ1, ξ2 ∈ Br . Thus the map ξ 2→ (L+)
−1N(ξ) is a contraction map in Br ⊂ X for any

ω ∈ (0, ω∗) if we choose r = 2C3C4ω
β1/α−1 and ω∗ sufficiently small.

Finally, standard argument for exponential decay (see [1] or [9, Appendix]) shows that
for any a ∈ (0, 1)

|ξ(x)| + |∇ξ(x)| " o(1)e−a|x|, |Q(x)| + |∇Q(x)| " Ce−a|x|,

using the uniform bound ∥ξ∥H 2 ≪ 1. We get (2.2) after rescaling. $

3. The perturbation argument

We recall the definition of the Strichartz spaces S([t, ∞)) and N([t, ∞)) and the well-known
dispersive and Strichartz estimates. A pair of exponents (q, r) is said to be (Schrödinger)-
admissible if

2
q

+
d

r
= d

2
, 2 " q, r " +∞, (d, q, r) ̸= (2, 2, +∞).

Given a time t ∈ R, the Strichartz space S([t, ∞)) is defined via the norm

∥u∥S([t,∞)) = sup
(q, r) admissible

r " rStr

∥u∥L
q
t Lr

x ([t,+∞)×Rd ).
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Above rStr = ∞ for d ̸= 2, but we choose α2 + 2 < rStr < ∞ when d = 2 to stay away from
the forbidden endpoint. We denote the dual space by N([t, ∞)) = S([t, ∞))∗. Hence for any
(q, r) admissible, its norm verifies

∥u∥N([t,∞)) " ∥u∥
L

q′
t Lr′

x ([t,+∞)×Rd )

where q ′, r ′ are the conjugate exponents of q and r .
Let us recall the standard dispersive inequality

∥eit"u∥p # |t |−d
(

1
2 − 1

p

)

∥u∥p′ for t ̸= 0, 2 " p " +∞
from which one can deduce the usual Strichartz estimate:

∥u∥S([t0,+∞)) # ∥u0∥L2 + ∥F∥N([t0,+∞))

where for u0 ∈ L2(R) u solves on [t0, ∞) the following equation

iut + "u = F, u(t0) = u0.

For the proof of the main theorems with a profile W = R∞ or W = K + R∞, we will
consider the error term η = u − W , which satisfies

i∂tη + "η = −[f (W + η) − f (W)] − H, H = f (W) −
∑

j∈N0

f (Rj ). (3.1)

Above R0 = 0 if W = R∞ and R0 = K if W = K + R∞. In Duhamel form,

η(t) = −i
∫ ∞

t

ei(t−s)"[f (W + η) − f (W) + H ](s) ds. (3.2)

The proofs of theorems 1.2 and 1.14 given in sections 4 and 5 are self-contained. For
the proofs of theorems 1.8 and 1.15, we rely on the following generic result proved in
[11, proposition 2.4].

Proposition 3.1. Let d ! 1 and assume assumption (F0). Let H = H(t, x) : [0, ∞)×Rd →
C, W = W(t, x) : [0, ∞) × Rd → C be given functions which satisfy for some C1 > 0,
C2 > 0, λ > 0, T0 ! 0:

∥W(t)∥∞ + eλt∥H(t)∥2 " C1, ∀ t ! T0;
∥∇W(t)∥2 + ∥∇W(t)∥∞ + eλt∥∇H(t)∥2 " C2, ∀ t ! T0. (3.3)

Consider the equation (3.2). There exists a constant λ∗ = λ∗(d, α1, α2, C1) > 0 independent
of C2, and a time T∗ = T∗(d, α1, α2, C1, C2) > 0 sufficiently large such that if λ ! λ∗ and
T0 ! T∗, then there exists a unique solution η to (3.2) on [T0, +∞) × Rd satisfying

eλt∥η∥S([t,∞)) + eλc1t∥∇η∥S([t,∞)) " 1, ∀t ! T0. (3.4)

Here c1 > 0 is a constant depending only on (α1, d).

4. Construction of infinite soliton trains

4.1. Proof of theorem 1.2

In this section we prove theorem 1.2 and construct infinite soliton trains in Rd , d ! 1. Note

that (1.6) in assumption (T1) implies A2 :=
∑

j∈N ω
1

α1
j < ∞, and

∥R∞(t)∥L∞∩Lr0 "
∑

j∈N
∥Rj(t)∥L∞∩Lr0 #

∑

j∈N
(ω

1
α1
j + ω

1
α1

− d
2r0

j ) = A2 + A1. (4.1)
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We first show the existence of the exponent r0 and prove lemma 1.1.

Proof of lemma 1.1. The idea is to choose r0 = max(1, dα1
2 ) + ϵ for some 0 < ϵ ≪ 1. Clearly

r0 < 2 + α1 for sufficiently small ϵ > 0 since α1 < αmax. So (1.7) is satisfied.
In the case dα1

2 ! 1, we claim

α1
dα1

2

+
1
r2

>
1
2
,

α1 + 1
dα1

2

+
1
r2

> 1.

Both are clear if d " 2. For d ! 3, both left sides become strictly smaller if α1 is replaced
by αmax = 4

d−2 and r2 is replaced by 2 + αmax, but are no less than the right sides by direct
computation. Thus (1.8) and (1.9) are satisfied for sufficiently small ϵ > 0.

In the case dα1
2 < 1, we claim

α1

1
+

1
r2

>
1
2
,

α1 + 1
1

+
1
r2

> 1.

The first inequality is a consequence of the assumption α1 ! α2/(α2 + 2), while the second is
trivial. Thus (1.8) and (1.9) are satisfied for sufficiently small ϵ > 0.

Suppose α1 < 4/d . In the case dα1
2 ! 1, since dα1

2 < 2, r0 = dα1
2 + ϵ < 2 for sufficiently

small ϵ > 0. In the case dα1
2 < 1, r0 = 1 + ϵ < 2. The proof of the lemma is complete. $

Remark 4.1. Although we chose r0 = max(1, dα1
2 ) + ϵ in the proof of lemma 1.1, it is not

necessary for theorem 1.2. We only need r0 to satisfy (1.7)–(1.9).

We next estimate the source term in the equation for the error.

Lemma 4.2. Under the assumptions of theorem 1.2, the source term H = f (R∞) −∑
j∈N f (Rj ) satisfies, for some c1 ∈ (0, a/2),

∥H(·, t)∥
L∞∩Lr′2 " Ce−c1v∗t .

Proof. Fix t > 0. For any x ∈ Rd , choose m = m(x) ∈ N so that φm is a nearest soliton, i.e.

|x − vmt | = min
j∈N

|x − vj t |.

For j ̸= m, we have

|x − vj t | ! 1
2
|vj t − vmt | = t

2
|vj − vm|. (4.2)

Thus, by (1.5), we have

|(R∞ − Rm)(x, t)| "
∑

j ̸=m

|Rj(x, t)| " δm(x, t) :=
∑

j ̸=m

Daω
1

α1
j e−aω

1/2
j |x−vj t |. (4.3)

Hence, by (1.6), the definition of v∗ (1.11) and (4.2), we have

δm(x, t) "
∑

j ̸=m

Daω
1

α1
j e− 1

2 av∗t = DaA2e− 1
2 av∗t . (4.4)

Denote A3 = sup0"|z|<∥R∞∥L∞ |df (z)| (identifying C with R2, we denote by df the differential
of f , that is df (z)h = g(|z|2)h + 2zg′(|z|2)Re(zh̄)). By lemma 2.2 and (4.1), we have

|H(t, x)| " |f (R∞) − f (Rm)| +
∑

j ̸=m

|f (Rj )|

" A3|R∞ − Rm| +
∑

j ̸=m
A3|Rj | " 2A3

∑
j ̸=m

|Rj | " 2A3δm(t, x).
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In particular,

∥H(t)∥L∞ " 2DaA2A3e− 1
2 av∗t . (4.5)

Condition (1.9) is equivalent to 1
r ′

2
< 1+α1

r0
. We can choose s so that

1 + α1

r0
>

1
s

>
1
r ′

2
, s > 1. (4.6)

The first inequality of (4.6) ensures that

α1 + 1
α1

− d

2s
>

1
α1

− d

2r0
,

and hence, using (1.6),
∑

j∈N
∥f (Rj )∥Ls #

∑

j∈N
∥|Rj |α1+1 + |Rj |α2+1∥Ls #

∑

j∈N
ω

α1+1
α1

− d
2s

j < C < ∞.

Since r0 < s(1 + α1) < s(1 + α2) < ∞ by (4.6), we have by (4.1)

∥f (R∞)∥Ls # ∥R∞∥1+α1
L∞∩Lr0 + ∥R∞∥1+α2

L∞∩Lr0 < C < ∞.

Thus

∥H(t)∥Ls < ∥f (R∞)∥Ls +
∑

j∈N
∥f (Rj )∥Ls < C < ∞. (4.7)

By Hölder inequality between L∞ and Ls using (4.5) and (4.7), we have

∥H(t)∥Lr " Ce−(1−s/r) a
2 v∗t , ∀r ∈ (s, ∞).

Since s < r ′
2 < ∞ by (4.6), we get the desired conclusion. $

We now prove theorem 1.2.

Proof of theorem 1.2. The existence of r0 has been shown in lemma 1.1. We now fix
such a choice. The difference η = u − R∞ satisfies equation (3.2) with W = R∞ and
H = f (R∞) −

∑
j∈N f (Rj ). Denote the right side of (3.2) as .η. We will show it is a

contraction mapping and has a unique fixed point η = .η in the class

∥η(t)∥Lr2 + ∥η∥S([t,∞)) " e−c1v∗t , ∀t ! 0. (4.8)

We first show boundedness and suppose η satisfies (4.8). By Hölder inequality,

∥η(t)∥Lr " e−c1v∗t , ∀t ! 0, ∀r ∈ [2, r2].

We have

∥.η(t)∥Lr2 " C

∫ ∞

t

|t − τ |−θ
(
∥f (W + η) − f (W)∥

Lr′2 + ∥H(τ )∥
Lr′2

)
dτ,

where θ = d( 1
2 − 1

r2
), and 0 < θ < 1 since 2 < r2 < 2 + αmax.

By lemma 4.2 we have ∥H(τ )∥
Lr′2 " Ce−c1v∗τ . By lemma 2.2,

∥f (W + η) − f (W)∥
Lr′2 # ∥|η|(|W |α1 + |W |α2)∥

Lr′2 + ∥|η|α1+1 + |η|α2+1∥
Lr′2 . (4.9)

The first term on the right side is bounded by Hölder inequality

∥|η|(|W |α1 + |W |α2)∥
Lr′2 " (1 + ∥W∥α2−α1

L∞ )∥W∥α1
Lr0 ∩L∞∥η∥L2∩Lr2 " Ce−c1v∗t

if
α1

∞
+

1
r2

" 1
r ′

2
" α1

r0
+

1
2
.
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The first inequality is always true since r ′
2 " 2 " r2. The second inequality is correct if (1.8)

holds. Thus this term can be estimated.
The last term of (4.9) is bounded by

∥|η|α1+1 + |η|α2+1∥
Lr′2 # ∥η∥α1+1

Lr′2(α1+1)
+ ∥η∥α2+1

Lr′2(α2+1)
,

which is bounded by Ce−c1v∗t since

2 " r ′
2(α1 + 1) < r ′

2(α2 + 1) = r2,

due to (1.10) and r2 = 2 + α2.
Combining the above we have, assuming (4.8),

∥.η(t)∥Lr2 "
∫ ∞

t

|t − τ |−θCe−c1v∗τdτ " Cv−1+θ
∗ e−c1v∗t

for all t ! 0, which is bounded by 1
4 e−c1v∗t if v∗ is sufficiently large.

For the Strichartz estimate, since (2/θ, r2) is admissible, we have with a = (2/θ)′

∥.η∥S([t,∞)) # ∥f (W + η) − f (W) + H∥
La(t,∞;Lr′2 )

# ∥e−c1v∗τ∥La(t,∞) # v−1/a
∗ e−c1v∗t ,

for all t ! 0, which is bounded by 1
4 e−c1v∗t if v∗ is sufficiently large.

Consider now the difference estimate. Suppose both η1 and η2 satisfy (4.8). Denote
η = η1 − η2 and

δ = sup
t>0

ec1v∗t
(
∥η(t)∥Lr2 + ∥η∥S([t,∞))

)
" 2.

We have

∥(.η1 − .η2)(t)∥Lr2 " C

∫ ∞

t

|t − τ |−θ∥f (W + η1) − f (W + η2)∥Lr′2 (τ ) dτ.

By lemma 2.2 again with W replaced by W + η2,

∥f (W + η1) − f (W + η2)∥Lr′2 # ∥|η|(|W + η2|α1 + |W + η2|α2)∥
Lr′2 + ∥|η|α1+1 + |η|α2+1∥

Lr′2

# ∥|η|(|W |α1 + |W |α2)∥
Lr′2 + ∥|η|(Eα1 + Eα2)∥

Lr′2 (4.10)

where E = |η1| + |η2|. The first term is already bounded above

∥|η|(|W |α1 + |W |α2)∥
Lr′2 " C∥η∥L2∩Lr2 " Cδe−c1v∗t .

The last term of (4.10) is bounded similarly as above

∥|η|(Eα1 + Eα2)∥
Lr′2 " ∥η∥L2∩Lr2 (∥E∥α1

L2∩Lr2 + ∥E∥α2
L2∩Lr2 ) " Cδe−c1(1+α1)v∗t .

Thus

∥(.η1 − .η2)(t)∥Lr2 "
∫ ∞

t

|t − τ |−θCδe−c1v∗τ dτ

" Cδv−1+θ
∗ e−c1v∗t

for all t ! 0, which is bounded by 1
4δe−c1v∗t if v∗ is sufficiently large.

We also have (recall a = (2/θ1)
′)

∥.η1 − .η2∥S([t,∞)) # ∥f (W + η1) − f (W + η2)∥La(t,∞;Lr′2 )

# ∥δe−c1v∗τ∥La(t,∞) # δv−1/a
∗ e−c1v∗t ,

for all t ! 0, which is bounded by 1
4δe−c1v∗t if v∗ is sufficiently large.

We have shown that . is a contraction mapping and hence has a unique fixed point in the
set (4.8). The proof of theorem 1.2 is complete. $
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Remark 4.3. The assumption (1.10) is used to estimate Lr ′
2 . To estimate |η|α1+1 in Lr2 using

Lr ′
-Lr decay estimates, a restriction like (1.10) is needed to avoid the limiting case α1 = 0+

and α2 = αmax−.
The condition (1.8) is used to bound the linear term in η, while (1.9) is used to bound the

source term (it ensures the existence of s in the proof of lemma 4.2).
In (1.7), we need r0 ! 1 for (4.1). We need r0 > dα1

2 so that the exponent in (1.6) is
positive. The condition r0 < α1 + 2 in (1.7) is redundant and follows from (1.9).

4.2. Proof of theorem 1.8

In this section we prove theorem 1.8 and construct infinite soliton trains in Rd , d ! 1. All
along this section, we assume that we are under the assumptions of theorem 1.8, in particular
we suppose that we are given a sequence of bound states (φj , ωj ) for j ∈ N satisfying
assumptions (T1), (1.13) (with v♯ to be determined later) and (1.14).

We first prove the following lemma.

Lemma 4.4. Let a ∈ (0, 1) be given by assumption (T1). For λ = a min(1, 2a)v∗/4 > 0, we
have

∥R∞(t)∥∞ + eλt∥H(t)∥2 " C, ∀ t ! 0;
∥∇R∞(t)∥2 + ∥∇R∞(t)∥∞ + eλt∥∇H(t)∥2 " C(1 + V∗), ∀ t ! 0. (4.11)

where H is the source term defined by H = f (R∞) −
∑

j∈N f (Rj ).

Proof. Equation (1.6) in assumption (T1) implies A2 :=
∑

j∈N ω
1

α1
j < ∞, and

∥R∞(t)∥L∞∩Lr0 "
∑

j∈N
∥Rj(t)∥L∞∩Lr0 #

∑

j∈N
(ω

1
α1
j + ω

1
α1

− d
2r0

j ) = A2 + A1.

We also have for 1 " r " ∞

∥∇R∞(t)∥Lr #
∑

j∈N
∥∇Rj(t)∥Lr #

∑

j∈N
ω

1
α1

+ 1
2 − d

2r

j +
∑

j∈N
|vj |ω

1
α1

− d
2r

j . (4.12)

If we take r = 2, we have 1
α1

+ 1
2 − d

2r
! 1

α1
− d

2r0
for all dimensions since r0 < 2 + αmax. Thus

the first sum of the right hand side of (4.12) is finite for r ∈ [2, ∞] by (1.6). The second sum
is also finite for r ∈ [2, ∞] by (1.14). Thus

∥∇R∞(t)∥L2∩L∞ # A1 + V∗.

We next consider the estimates of H = f (R∞)−
∑

j∈N f (Rj ). Fix t > 0. As in the proof
of lemma 4.2, take any x ∈ Rd and choose m = m(x) ∈ N so that φm is a nearest soliton, i.e.

|x − vmt | = min
j∈N

|x − vj t |.

Since α1 < αmax and r0 < 2 + α1, there exists s = α1+2−ϵ
α1+1 with 0 < ϵ ≪ 1 such that

r0 < 2 + α1 − ϵ,
α1 + 1

α1
− d

2
· 1
s

! 1
α1

− d

2r0
.

From arguments identical to those of the proof of lemma 4.2, we have

∥H(t)∥Lr " Ce−c(1−s/r)v∗t , ∀r ∈ (s, ∞),

with acceptable r including α1+2
α1+1 and 2.
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To estimate ∥∇H(t)∥L2 , recall that by the Chain Rule we have

∇H = ∇(f (R∞)) −
∑

j∈N
∇(f (Rj ))

=
∑

j∈N
(fz(R∞) − fz(Rj ))∇Rj +

∑

j∈N
(fz̄(R∞) − fz̄(Rj ))∇Rj .

(4.13)

Here, we denoted fz = ∂
∂z

f and fz̄ = ∂
∂ z̄

f the Wirtinger derivatives of f . Thus (here x and
m = m(x) are still as above), we have

|∇H(t, x)| #
∑

j ̸=m

|∇Rj | +
(
|fz(R∞) − fz(Rm)| + |fz̄(R∞) − fz̄(Rm)|

)
|∇Rm|

#
∑

j ̸=m

⟨vj ⟩ω1/α1
j e−aω

1/2
j |x−vj t | + (δm(t, x))min(1,α1)⟨vm⟩ω1/α1

m e−aω
1/2
m |x−vmt |

#
∑

j ̸=m

⟨vj ⟩ω1/α1
j e− 1

2 aω
1/2
j |x−vj t |e− a

4 v∗t + e− a
2 min(1,α1)v∗t ⟨vm⟩ω1/α1

m e−aω
1/2
m |x−vmt |

# e−λt
∑

j∈N
⟨vj ⟩ω1/α1

j e− 1
2 aω

1/2
j |x−vj t |

where δm(t, x) is defined and estimated in (4.3)–(4.4), and λ = a
4 min(1, 2α1)v∗. Thus

∥∇H(t)∥L2 # e−λt
∑

j∈N
⟨vj ⟩ω

1/α1− d
4

j # e−λtV∗

by assumption (1.14). The proof of lemma 4.4 is complete. $
We now prove theorem 1.8.

Proof of theorem 1.8. By lemma 4.4, there exists v♯ such that if v∗ > v♯, then the hypothesis
(3.3) of proposition 3.1 is satisfied under the assumptions of theorem 1.8, with W = R∞
and H = f (R∞) −

∑
j∈N f (Rj ). By proposition 3.1, there exists T0 large enough and

η ∈ C([T0, ∞), H 1) with ∥⟨∇⟩η∥S([t,∞)) (in particular ∥η(t)∥H 1 ) decaying exponentially
in t . $

Remark 4.5. Assumption (1.14) guarantees that ∥∇W∥L2 < +∞. One may tend to relax the
exponent 2 in the norm ∥∇W∥L2 so that ∇W is not that localized. However, ∥∇W∥L2+β1 with
β1 < 0.01 is used in the proof of proposition 3.1. It would not gain much trying to optimize it.

5. Construction of infinite kink-soliton trains

In this section we prove theorems 1.14 and 1.15, and construct a train made of infinitely many
solitons and a half-kink for space dimension 1.

We first examine assumption (F1) and give some examples. Estimate (1.20) is natural
since f ′ is Hölder continuous. If f ′(b) ̸= 0, we can only take α̃ = 0. Otherwise, we may take
α̃ = 1 if f is locally C1,1 near b. For certain f (s) we have α̃ > 1.

Example 5.1. Let f (s) = s − sin |s|
|s| s. If we write f (s) = f1(s) + f2(s) with f1(s) = 1

3 |s|2s
and f2(s) = s − sin |s|

|s| s − 1
3 |s|2s = O(s5), f satisfies assumptions (F0) and (F2) with α1 = 2

and α2 = 4. We can choose r0 = 1 + ϵ, 0 < ϵ ≪ 1, for assumption (T1). The function f (s)

also satisfies assumption (F1) with ω = 1, b = 2π , h(s) = sin s and h′(b) = 1. Moreover,
f (2π) = 2π ̸= 0, |f ′(2π + s)| = |1 − cos s| " Cs α̃, α̃ = 2.

Hence conditions (1.21)–(1.22) are satisfied. Thus we can construct infinite kink-soliton trains
using theorem 1.14. Since α1 > 4/3, theorem 1.15 does not apply to this example. $

2703



Nonlinearity 27 (2014) 2689 Stefan Le Coz and Tai-Peng Tsai

Example 5.2. Let f (s) = |s|αs−|s|βs, 0 < α < β < ∞. Clearly f satisfies assumptions (F0)
and (F2) with α1 = α and α2 = β. The conditions h(b) = 0 =

∫ b

0 h(s) ds in assumption (F1)
give

ω = bα − bβ = 2
2 + α

bα − 2
2 + β

bβ .

Thus

bβ−α = α(2 + β)

(2 + α)β
∈

(α

β
, 1

)
, ω = bα(1 − bβ−α) > 0,

and

h′(b) = ω − (1 + α)bα + (1 + β)bβ = −αbα + βbβ > 0.

Thus (1.19) can be always satisfied by unique ω > 0 and b > 0. For (1.20), we have α̃ = 0
for most pair (α, β). Theorem 1.14 is not applicable in those cases. The exception is when
0 = f ′(b) = (1 + α)bα − (1 + β)bβ , hence bβ−α = α(2+β)

(2+α)β
= 1+α

1+β
, or αβ = 2. Thus the

exceptional case is

α̃ = 1 if 0 < α <
√

2, β = 2
α

.

Since dα/2 < 1, we can take r0 = 1. Conditions (1.21)-(1.22) imply
√

5 − 1
2

" α <
√

2, β = 2
α

. (5.1)

Thus for α satisfying (5.1), using theorem 1.14 we can construct infinite kink-soliton trains
for the nonlinearity f (u) = (|u|α − |u|2/α)u. On the other hand, by theorem 1.15 we can
construct infinite kink-soliton trains if

0 < α < 4/3, α < β < ∞. (5.2)

We do not need αβ = 2. Indeed, since dα/2 < 1 for α < 4/3, we can take r0 = 1,
and condition (1.24) is satisfied for any α̃ ! 0. We can choose ωj and vj as in (1.16) or
(1.17). In comparison, theorem 1.15 covers more exponents than theorem 1.14 except when
4/3 " α <

√
2 and β = 2/α. $

As mentioned in section 1, a kink solution of (NLS) with parameters (v0, γ ) is (setting
the spatial translation to x0 = 0)

K(t, x) = φK(x − v0t)e
i(ω0t+ 1

2 v0x− 1
4 v2

0 t+γ ).

For notational simplicity, we denote K = R0 and we consider the kink-soliton train profile

W = K + R∞ =
∞∑

j=0

Rj

where R∞ and Rj , j > 0, are given in (1.4).

5.1. Proof of theorem 1.14

We will solve the difference η = u − W in the class (1.23).
To start the proof, we note that, because α̃ satisfies the same conditions as α1, we can

choose r0 as in lemma 1.1 to satisfy (1.22) in addition to (1.7)–(1.9). From now on we fix r0.
We start by estimating the source term.
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Lemma 5.3. Under the assumptions of theorem 1.14, the source term H = f (W) −∑∞
j=0 f (Rj ) satisfies, for some c1 > 0,

∥H(·, t)∥
L∞∩Lr′2 " Ce−c1v∗t .

Proof. By (1.22), we have α̃+1
r0

> 1
r ′

2
. We can choose s as in the proof of lemma 4.2 to satisfy

(4.6) and α̃+1
r0

> 1
s

> 1
r ′

2
.

For x ! 1
2 (v0 + v1)t , the contribution from R0 is the same as if R0 were a soliton. Thus

the estimate follows from lemma 4.2.
For x " 1

2 (v0 + v1)t , we have H = (f (W) − f (K)) −
∑∞

j=1 f (Rj ). In the proof of
lemma 4.2 we have shown

|R∞(t, x)| " Ce− 1
2 av∗t , ∥R∞∥Lr0 " C, (5.3)

∣∣∣
∞∑

j=1

f (Rj )(t, x)
∣∣∣ " Ce− 1

2 av∗t ,

∥∥∥∥∥∥

∞∑

j=1

f (Rj )

∥∥∥∥∥∥
Ls

" C.

For simplicity in notations, we assume now that v0 = γ0 = 0. This causes no loss of generality
since (NLS) is invariant under a Galilean transform and it guarantees that the left part of the
kink is approximately b without correction by a phase factor containing ei 1

2 v0x . By assumption
(F1), the mean value theorem, and since K, R∞ ∈ L∞, we have

|f (W) − f (K)| = |f (b + K − b + R∞) − f (b + K − b)| # (||K| − b| + |R∞|)α̃|R∞|.
We first derive

|f (W) − f (K)| " Ce− 1
2 av∗t .

Because r0 < (1 + α̃)s,

∥f (W) − f (K)∥Ls " ∥||K| − b|α̃|R∞|∥Ls + ∥|R∞|α̃+1∥Ls

" ∥|K| − b∥α̃
Lr0 ∩L∞∥R∞∥Lr0 ∩L∞ + ∥R∞∥α̃+1

Lr0 ∩L∞ " C.

Summing these estimates, we have

∥H(t)∥L∞ " Ce− 1
2 av∗t , ∥H(t)∥Ls " C.

The lemma follows by Hölder inequality between L∞ and Ls . $

Proof of theorem 1.14. Fix a choice of r0 satisfying (1.7)–(1.9) and (1.22). Let χ1 =
χ1(x, t) = 1x" 1

2 (v0+v1)t
and χ2 = 1 − χ1. Using (5.3), we have

∥χ1(W − b)∥Lr0 ∩L∞ + ∥χ2W∥Lr0 ∩L∞ # 1.

Assume

∥η(t)∥Lr2 + ∥η∥S([t,∞)) " e−c1v∗t , ∀t ! 0. (5.4)

Note

|f (W + η) − f (W)| # χ1|W − b|α̃|η| + χ2|W |α1 |η| + |η|α̃+1 + |η|α1+1 + |η|α2+1.

Thus by (1.8) and (1.22) we have

∥f (W + η) − f (W)∥
Lr′2 (τ ) " (1 + ∥χ1(W − b)∥α̃

Lr0 ∩L∞ + ∥χ2W∥α1
Lr0 ∩L∞)∥η∥L2∩Lr2

+∥η∥α̃+1
L2∩Lr2 + ∥η∥α1+1

L2∩Lr2 + ∥η∥α2+1
L2∩Lr2

" Ce−c1v∗τ .
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Denote the right side of (3.2) as .η. The same argument as for theorem 1.2 shows that

∥.η(t)∥Lr2 " Cv−1+θ
∗ e−c1v∗t , ∥.η∥S([t,∞)) " Cv−1+θ/2

∗ e−c1v∗t .

Thus ∥.η(t)∥Lr2 + ∥.η∥S([t,∞)) " e−c1v∗t for v∗ sufficiently large.
For the difference estimate, for η1 and η2 satisfying (5.4), we use

|f (W + η1) − f (W + η2)| #

⎛

⎝χ1|W − b|α̃ + χ2|W |α1 +
∑

j=1,2

(
|ηj |α̃ + |ηj |α1 + |ηj |α2

)
⎞

⎠|η|

where η = η1 −η2, and follow the same argument for theorem 1.2 to derive, for v∗ sufficiently
large,

∥.η1 − .η2∥ " 1
2
∥η1 − η2∥

where ∥η∥ = supt>0 ec1v∗t (∥η(t)∥Lr2 + ∥η∥S([t,∞))). We have shown that . is a contraction
mapping in the class (5.4). The proof of theorem 1.14 is complete. $

5.2. Proof of theorem 1.15

In this section we prove theorem 1.15 and use proposition 3.1 to construct a train of infinitely
many solitons and a half-kink for space dimension 1.

We assume throughout this section that the assumptions of theorem 1.15 hold. In particular,
(φj , ωj ) for j ∈ N denotes a sequence of bound states satisfying assumptions (T1), (1.25)
(with v♯ to be determined later) and φ0 = φK is the kink profile given in proposition 1.13.

As in section 4.2, our main task is to prove that the profile W = K + R∞ and the source
term H = f (W) − f (K) −

∑
j∈N f (Rj ) satisfy the hypotheses of proposition 3.1.

Lemma 5.4. Let a ∈ (0, 1). For λ = a min(1, 2a)v∗/4 > 0, we have

∥W(t)∥∞ + eλt∥H(t)∥2 " C1, ∀ t ! 0;
∥∇W(t)∥2 + ∥∇W(t)∥∞ + eλt∥∇H(t)∥2 " C(1 + V∗), ∀ t ! 0.

Proof. Since R∞ satisfies the same hypotheses as in lemma 4.4, we only have to treat the
addition of the kink. We have, by lemma 4.4 and proposition 1.13

∥W∥∞ + ∥∇W∥∞ " ∥K∥∞ + ∥R∞∥∞ + ∥∇K∥∞ + ∥∇R∞∥∞ " C.

Note that by exponential decay ∇K ∈ L2(R), therefore, combined with lemma 4.4 this gives

∥∇W∥2 " ∥∇K∥2 + ∥∇R∞∥2 " C.

We now estimate the source term H . As in the proof of lemma 4.4, we fix t > 0, take any
x ∈ R and choose m = m(x) corresponding to the nearest profile, i.e.

|x − vmt | = min
j∈N

|x − vj t |.

If m ! 1, then as in the proof of lemma 4.2, we still have

|(R∞ − Rm)(t, x)| " Ce− 1
2 av∗t ,

and by proposition 1.13 it holds

|K(t, x)| " Dae−a|x−v0t | " Dae− 1
2 av∗t .

Therefore, if m ! 1 we have

H(t, x) " |f (R∞) −
∑

j∈N
f (Rj )| + A4|K| + |f (K)| # e− 1

2 av∗t ,
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where A4 = maxs∈[0,∥W∥∞] f
′(s). If m = 0, we replace the previous estimate by

H(t, x) " A4|R∞| +
∑

j∈N
|f (Rj )| # e− 1

2 av∗t .

This implies that

∥H(t)∥∞ # e− 1
2 av∗t .

With x and m as above, if m = 0, we have (using a similar expression as (4.13))

|∇H(t, x)| # (|fz(K + R∞) − fz(K)| + |fz̄(K + R∞) − fz̄(K)|)|∇K| +
∑

j∈N
|∇Rj |.

Since we are close to the kink (m = 0), the last sum will be small:
∑

j∈N
|∇Rj | # e− a

4 v∗t
∑

j∈N
⟨vj ⟩ω1/α1

j e− 1
2 ω

1/2
j |x−vj t |.

In addition we have

(|fz(K + R∞) − fz(K)| + |fz̄(K + R∞) − fz̄(K)|) # |R∞| # e− a
4 v∗t

∑

j∈N
ω

1/α1
j e− 1

2 ω
1/2
j |x−vj t |.

Therefore

|∇H(t, x)| # e− a
4 v∗t

∑

j∈N
⟨vj ⟩ω1/α1

j e− 1
2 ω

1/2
j |x−vj t |.

The estimate for the case m ! 1 is similar as in lemma 4.4 and we can conclude by (1.26) that

∥∇H∥2 # e−λt
∑

j∈N0

⟨vj ⟩ω1/α1−d/4
j " e−λtV∗.

Now let s be defined as in the proof of lemma 4.4. By (1.24), we can further assume

r0 " s(α̃ + 1). (5.5)

For simplicity in notations, assume that the kink is not moving, i.e. v0 = 0. Therefore the
main contribution will come from the kink for x < 0 and the soliton train for x > 0. We have
on the right

∥H∥Ls(x>0) " ∥f (K + R∞) − f (R∞)∥Ls(x>0) + ∥f (K)∥Ls(x>0) + ∥f (R∞)∥Ls

+
∑

j∈N
∥f (Rj )∥Ls " A4∥K∥Ls(x>0) + C < +∞,

where the last inequality is due to exponential decay to 0 on the right for the kink. On the left,
we have

∥H∥Ls(x<0) " ∥f (K + R∞) − f (K)∥Ls(x<0) +
∑

j∈N
∥f (Rj )∥Ls

The first term cannot be treated as previously (unless R∞ ∈ Ls(R), which is a priori not the
case). Since f verifies (1.20), by the mean value theorem we have

|f (K + R∞) − f (K)| #
(
(|K − b| + |R∞|)α̃ + (|K − b| + |R∞|)α2

)
|R∞|.

Hence,

∥f (K + R∞) − f (K)∥Ls(x<0) #
(
∥K − b∥α̃

L1(x<0)+ ∥K − b∥α2
L1(x<0)

)
∥R∞∥L∞ + ∥R∞∥1+α̃

Ls(α̃+1) .
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The right hand side is finite since K converges exponentially to b and the Ls(α̃+1)-norm of R∞
is finite thanks to our choice of r0 and (5.5). In conclusion,

∥H∥Ls " ∥H∥Ls(x<0) + ∥H∥Ls(x>0) < +∞.

By interpolation between s < 2 and ∞ we get

∥H∥L2 # e−λt .

This concludes the proof. $

Proof of theorem 1.15. By lemma 5.4, there exists v♯ such that if v∗ > v♯, then the hypothesis
(3.3) of proposition 3.1 is satisfied under the assumptions of theorem 1.15. The conclusion of
the theorem then follows immediately from the conclusion of proposition 3.1. $
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[5] Cortázar C, Garcı́a-Huidobro M and Yarur C S 2011 On the uniqueness of sign changing bound state solutions
of a semilinear equation Ann. Inst. Henri Poincaré Anal. Non-Linéaire 28 599–621
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