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Abstract. We study the orbital stability of single-spike semiclassical
standing waves of a nonhomogeneous in space nonlinear Schrödinger-
Poisson equation. When the nonlinearity is subcritical or supercritical
we prove that the nonlocal Poisson-term does not influence the stability
of standing waves, whereas in the critical case it may create instability
if its value at the concentration point of the spike is too large. The
proofs are based on the study of the spectral properties of a linearized
operator and on the analysis of a slope condition. Our main tools are
perturbation methods and asymptotic expansion formulas.

1. Introduction

In this paper, we are concerned with the following nonlinear Schrödinger-
Poisson equation:

−iϵΨt−ϵ
2∆xΨ+W (x)Ψ+K(x)

(

|x|−1 ∗ K(x)|Ψ|2
)

Ψ− |Ψ|p−1Ψ = 0, (1.1)

where Ψ = Ψ(x, t) : R3 × R → C, ϵ > 0 is a small parameter meant to tend
to 0, W, K : R3 → R and 1 < p < 5. These types of equations, sometimes
also referred to as Schrödinger-Maxwell equations, arise in various physical
and mathematical contexts. In the theory of Bose-Einstein condensates,
Ψ is the wave function of the condensate and W stands for an external
potential. The constant ϵ represents the Planck constant (often denoted by
!). The fact that ϵ tends to 0 is modeling the transition between quantum
and classical mechanics, hence the terminology of semiclassical analysis. The
nonlocal term in (1.1) corresponds to the interaction of a charged wave
with its own electrostatic field (as was introduced by Benci and Fortunato
[7]). We refer to the books of Cazenave [10] and Sulem and Sulem [42]
for more on the physical and mathematical background as well as to the
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papers [7, 12, 13, 16, 25, 26, 39] for a particular emphasis on Schrödinger-
Poisson/Maxwell equations.

Among solutions of (1.1), some are of particular interest: the standing
waves. They are solutions appearing because of the balance between the
dispersion generated by the linear part of (1.1) and nonlinear effects. Pre-
cisely, a standing wave is a solution of the form

Ψ(x, t) = exp
( iω

ϵ
t
)

v(x), where ω > 0 and v : R
3 → R.

For a function of this type (1.1) is satisfied if and only if v is a solution of
the stationary Schrödinger-Poisson equation

−ϵ2∆v + [W (x) + ω] v + K(x)
(

|x|−1 ∗ K(x)v2
)

v − |v|p−1v = 0. (1.2)

In the study of standing waves, two main questions arise naturally: existence
and stability (see e.g. [33] for an introduction to the theory for standing
waves).

When K ≡ W ≡ 0, sufficient and necessary conditions for the existence
of solutions to (1.2) for all ϵ > 0 are known since the fundamental work of
Berestycki and Lions [9]. When W ̸≡ 0 and K ≡ 0, the study of existence for
solutions to (1.2) when ϵ→ 0 (the so-called semiclassical limit) was initiated
by Floer and Weinstein [19] and followed by a large amount of work (see e.g.
[1, 18, 35, 43] for the existence of spike solutions, [24, 29, 38, 44] for multi-
bump solutions, and the more recent works [3, 6] for solutions concentrating
around a sphere). The case K ≡ W ≡ 1 has recently attracted the attention
of many authors, see e.g. [4, 12, 14, 15, 17, 31, 32, 40] and the references
therein. In particular, [13, 16, 39] are concerned with the semiclassical limit.
We also refer to [5, 45] when K ≡ 1 and the potential W is nontrivial.

When not only W , but also K, is nontrivial, the difficulty of having nonho-
mogeneity in space is combined within the nonlocal term. To our knowledge,
the only existence results for the semiclassical states with nontrivial poten-
tials are due to Ianni and Vaira in [26] for the existence of single spikes
(namely solutions concentrating at non-degenerate critical points of the po-
tential W ) and in [25, 27] for the existence of solutions concentrating on
spheres.

In this paper, we are interested in the stability properties of the single spike
semiclassical standing waves found in [26] (see Proposition 2.1 for a precise
statement of the existence result of [26]). For standing waves, it is well known
that the relevant concept of stability is orbital stability, namely Lyapunov
stability up to phase shifts. Precisely, the concept of orbital stability is the
following.
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Definition 1.1. A standing wave exp ( iω
ϵ t)v(x) of (1.1) is said to be orbitally

stable in H1(R3, C) if for any δ > 0 there exists γ > 0 such that if w0 ∈
H1(R3, C) satisfies ∥w0 − v∥H1(R3,C) < γ then the maximal solution Ψ(·, t)
of (1.1) with Ψ(·, 0) = w0 exists for all t ≥ 0 and

sup
t≥0

inf
θ∈R

∥Ψ(·, t) − exp (iθ)v∥H1(R3,C) < δ.

Otherwise the standing wave is said to be unstable. By extension, we shall
say that a solution of (1.2) is stable/unstable if the corresponding standing
wave is stable/unstable.

The study of the orbital stability of standing waves for nonlinear Schrö-
dinger equations has seen the contributions of many authors since the pio-
neering works of Berestycki and Cazenave [8], Cazenave and Lions [11], and
Weinstein [46, 47] (see e.g. [20, 21, 28, 32, 34]).

In the case K ≡ W ≡ 0, least energy solutions of (1.2) are stable if
p < 1 + 4

3 and unstable if p ! 1 + 4
3 . For this reason, when talking about

stability, the exponent p = 1+ 4
3 is called the critical exponent. Accordingly,

we shall say that we are in the subcritical, critical or supercritical case if,
respectively, p < 1 + 4

3 , p = 1 + 4
3 or p > 1 + 4

3 .
Very few works are concerned with the stability of standing waves at the

semiclassical limit. When K ≡ 0 and W is nontrivial, stability of spikes was
studied in [22, 36, 37]. As in the case K ≡ W ≡ 0, the single-spike standing
waves concentrating at a local non-degenerate minimum of the potential W
are stable if p < 1 + 4

3 and unstable if p > 1 + 4
3 (see [22, 37]). Moreover,

in dimension 1 and for p < 5, it was proved in [37] that standing waves
concentrating at a local non-degenerate maximum of the potential W are
unstable. The critical case p = 1 + 4

3 has been treated by Lin and Wei [36].
In this case, conversely to what happens for K ≡ W ≡ 0, the single-spike
standing waves concentrating at a local non-degenerate minimum of W are
stable. On the other hand, the single-spike standing waves concentrating
at more general non-degenerate critical points of W (for example local non-
degenerate maxima) are unstable under some extra assumptions.

Our goal in this paper is to investigate further the stability of semiclassical
standing waves for (1.1), when not only W, but also K, is nontrivial, treating
at the same time the nonhomogeneity in space generated by the potentials
K and W and the presence of a nonlocal term.

Here, as in the rest of the paper, the potentials K and W satisfy the
assumptions (K1)-(K2), (V1)-(V3) of [26] (see Proposition 2.1). We denote
by vϵ the single-spike solutions for (1.2) at a non-degenerate critical point of
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W found in [26] and by Ψϵ(x, t) := exp
(

iω
ϵ t

)

vϵ(x) the corresponding standing
waves. We assume that the family vϵ is C1 in ω uniformly in ϵ with value in
H1(R3).

Our main results are the following.

Theorem 1. Let p < 1 + 4
3 . Let x0 be a non-degenerate critical point for

the potential W and let m denote the number of negative eigenvalues of the
matrix HessW (x0). If the parameter ϵ is small enough, then Ψϵ is orbitally
stable if x0 is a local minimum and orbitally unstable if m is odd.

Theorem 2. Let p > 1 + 4
3 . Let x0 be a non-degenerate critical point for

the potential W and let m denote the number of negative eigenvalues of the
matrix HessW (x0). If the parameter ϵ is small enough, then Ψϵ is orbitally
unstable if x0 is a local minimum or if m is even.

Theorem 3. Let p = 1 + 4
3 . Let x0 be a non-degenerate critical point for

the potential W such that ∆W (x0) − K(x0)2 [W (x0) + ω]
2

p−1 C ̸= 0, where
the constant C is explicitly known and positive. Let m denote the number of
negative eigenvalues of the matrix HessW (x0). If the parameter ϵ is small
enough, then Ψϵ is orbitally stable if x0 is a local minimum and

∆W (x0) > K(x0)
2 [W (x0) + ω]

2
p−1 C,

while it is orbitally unstable if x0 is a local minimum and

∆W (x0) < K(x0)
2 [W (x0) + ω]

2
p−1 C,

or if the quantity

m −
1

2

(

1 +
∆W (x0) − K(x0)2 [W (x0) + ω]

2
p−1 C

|∆W (x0) − K(x0)2 [W (x0) + ω]
2

p−1 C|

)

is even.

Remark 1.2. When p is subcritical or supercritical (i.e., p ̸= 1 + 4
3), the

stability results given in Theorem 1 and Theorem 2 are independent of the
value of K and of its derivatives in the concentration point x0. In particular
the results are identical to those obtained for the nonlinear Schrödinger
equation without the non-local term K(x)

(

|x|−1 ∗ K(x)Ψ2
)

Ψ (see [22, 37]).
Conversely, when p is critical (i.e., p = 1 + 4

3), the potential K has an
influence on stability through its value at x0: For example, if x0 is a local
minimum of W , then there is stability when K(x0)2 is small and instability
when K(x0)2 is large.
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If K(x0) = 0, in the critical case, we get the same stability result obtained
in the case K ≡ 0 by Lin and Wei [36]: Ψϵ is orbitally stable if x0 is a

minimum for W , unstable if m − 1
2

(

1 + ∆W (x0)
|∆W (x0)|

)

is even.

To prove Theorem 1, Theorem 2 and Theorem 3 we work within the frame-
work introduced by Grillakis, Shatah and Strauss [22, 23] to study orbital
stability for a large class of Hamiltonian systems. In our case, the results
of [22, 23] allow us to determine whether there is stability or instability
provided two pieces of information are available:

(i) The spectral information: the number of eigenvalues of Lϵ, the lin-
earized operator corresponding to (1.2) (see (2.11) for a precise def-
inition).

(ii) The slope information: the sign of D(ω) := ∂
∂ω∥uϵ∥L2(R3) (where uϵ

is a re-scaled version of vϵ, see Section 2 for details).

We denote by n(Lϵ) the number of negative eigenvalues of Lϵ and set
p(D(ω)) = 0 if D(ω) < 0, p(D(ω)) = 1 if D(ω) > 0. Then, according to
the theory developed in [22, 23], the standing wave Ψϵ is orbitally stable if
n(Lϵ) = p(D(ω)) and orbitally unstable if n(Lϵ) − p(D(ω)) is odd.

To obtain the spectral information, our approach is the following (see
[34, 36] for related arguments). We analyze the spectrum of the linearized
operator Lϵ by a perturbation method. When ϵ → 0, Lϵ converges, at least
formally, toward an operator L0 whose spectrum is well known. Thanks to
the perturbation theory for linear operators, we show that the spectrum of
Lϵ is close to the one of L0 when ϵ is small. Then we study the splitting of
the 0 eigenvalue of L0 into negative or positive eigenvalues for Lϵ. For this
purpose, we perform an ϵ-expansion of the eigenvalues close to 0 of Lϵ and
find that their signs are related to the eigenvalues of the matrix HessW (x0).

To deal with the slope information, we use an asymptotic expansion of vϵ

(see Proposition 2.5) in the subcritical and supercritical case. The critical
case is more difficult to handle, since when ϵ = 0 the function D(ω) has
some degeneracy, in the sense that D(ω) = 0, and we need to develop a
method inspired from the one introduced by Lin and Wei [36]. It relies on
the analysis of a function Rϵ

ω satisfying LϵRϵ
ω = −uϵ. The main point of

the analysis is to decompose Rϵ
ω in terms of the eigenfunctions in the kernel

of Lϵ, a limit function R0, and some small remainder. This decomposition,
along with some remarkable identities, allows us to perform an ϵ-expansion
for D(ω) and to find its sign for ϵ small.

The paper is organized as follows: in Section 2, after collecting some
notation and useful definitions, we recall the existence result proved in [26]
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for bound states vϵ of (1.2) concentrating at a non-degenerate critical point
of the potential W and infer some useful properties of these solutions. Next,
in Section 3, we study the spectrum of the linearized operator Lϵ as ϵ goes
to zero while in Section 4 we determine the sign of D(ω). Finally, in Section
5, we conclude the proofs of Theorem 1, Theorem 2 and Theorem 3.

2. Preliminaries

Let us fix some notation. For f : R3 *→ R smooth, we denote its partial
derivatives by fi := ∂

∂xi
f(x), and fij := ∂

∂xi∂xj
f(x). We indicate the gradient

by ∇f(x) := (fi)i=1,2,3 and the Hessian matrix by Hessf(x) := (fij)i,j=1,2,3 .
We write δij to denote the Kronecker symbol; i.e.,

δij =

{

1 if i = j,
0 if i ̸= j

.

The symbol ⊥L2 means the orthogonality relation in the Hilbert spaceL2(R3).
For x0 given, we use the notation xϵ := ϵx + x0. For any λ > 0, let Uλ be
the unique positive radial solution (see e.g. [2]) of

−∆u + λ2u − up = 0, x ∈ R
3. (2.1)

A simple computation gives Uλ(x) = λ
2

p−1 U1(λx). Moreover, it is known that
it satisfies the following decay properties: Uλ(s), U

′

λ(s) ≤ Ce−λs, |s| > 1.
We define also

L0v := −∆v + λ2v − pUp−1
λ v,

and

R0 :=
1

p − 1
Uλ +

1

2
x ·∇Uλ. (2.2)

It is easy to see that

L0(Uλ)jh = p(p − 1)Up−2
λ (Uλ)j(Uλ)h, (2.3)

L0R0 = −λ2Uλ. (2.4)

We shall also need to consider the translated function Uλ,ϵ := Uλ(· − ξϵ),
where ξϵ ∈ R3 is given by Proposition 2.1 below. Obviously Uλ,ϵ satisfies

also (2.1) and, setting R0,ϵ := R0(·− ξϵ) and L0,ϵv := −∆v + λ2v − pUp−1
λ,ϵ v,

we have identities analogous to (2.3) and (2.4).
We now recall the existence result for positive bound states of (1.2) proved

in [26].

Proposition 2.1. Let p ∈ (1, 5) and make the following assumptions on W
and K:
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(V1) W ∈ C∞(R3), W and its derivatives are uniformly bounded.
(V2) infR3 {W + ω} > 0.
(V3) There exists x0 ∈ R3 such that ∇W (x0) = 0.
(K1) K ∈ C∞(R3), K and its derivatives are uniformly bounded.
(K1) K ≥ 0.

Let x0 be a non-degenerate critical point for W . Then, for ϵ small enough,
there exists vϵ ∈ H1(R3), vϵ > 0, such that vϵ is a solution of (1.2) and

∥

∥

∥
vϵ − Uλ

( ·− x0

ϵ

)
∥

∥

∥

H1(R3)
→ 0 as ϵ→ 0, (2.5)

where λ2 = W (x0) + ω. Moreover, there exists ξϵ ∈ R3, wϵ ∈ H1(R3), such
that

vϵ = Uλ

( ·− x0

ϵ
− ξϵ

)

+ wϵ

( ·− x0

ϵ

)

, (2.6)

ξϵ → 0 in R
3, (2.7)

∥wϵ∥H1(R3) ≤ Cϵ2.

From now on, it is assumed that λ2 := W (x0) + ω. For the proof of
Theorem 1, Theorem 2 and Theorem 3, it is convenient to rescale the time
and space variables by t = ϵs and x = ϵy + x0 = yϵ. Setting Φ(y, s) :=
Ψ(yϵ, ϵs), we get the rescaled equation

−iΦs−∆yΦ+W (yϵ)Φ+ϵ2K(yϵ)
(

|y|−1 ∗ K(yϵ)|Φ|2
)

Φ− |Φ|p−1Φ = 0. (2.8)

A standing wave Ψϵ(x, t) = exp( iω
ϵ t)vϵ(x) for (1.1) becomes, in the new

time and space variables, the following standing wave for (2.8): Φϵ(y, s) =
exp(iωs)uϵ(y), where uϵ(y) := vϵ(yϵ) is a solution of

−∆u + [W (yϵ) + ω]u + ϵ2K(yϵ)
(

|y|−1 ∗ K(yϵ)u
2
)

u − |u|p−1u = 0. (2.9)

It is clear that Ψϵ is stable/unstable if and only if Φϵ is stable/unstable.
We point out that, in terms of the rescaled function uϵ(x) := vϵ(xϵ), from

Proposition 2.1 it follows that, for ϵ sufficiently small, uϵ is a positive solution
of equation (2.9), and that ∥uϵ − Uλ∥H1(R3) → 0 as ϵ → 0. Moreover, (2.6)
becomes

uϵ = Uλ(·− ξϵ) + wϵ. (2.10)

We consider the linearized operator of (2.9) in uϵ

Lϵv := − ∆v + [W (xϵ) + ω] v − pup−1
ϵ v + ϵ2K(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

v

+ 2ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)uϵv
)

uϵ (2.11)
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and the function

D(ω) :=
∂

∂ω
∥uϵ∥

2
L2(R3).

As announced in the Introduction, the number of eigenvalues of the operator
Lϵ and the sign of the function D(ω) allow us to determine whether there
is stability or instability for the standing wave Ψϵ. Hence, we need to study
the spectral properties of Lϵ and to determine the sign of D(ω). In order to
do that we derive asymptotic expansion formulas for the operator Lϵ and
the function D(ω) as the parameter ϵ goes to zero. This is obtained, in both
cases, starting from an expansion in ϵ of the solution uϵ (see Proposition
2.5).

Before doing the asymptotic expansion for uϵ, we derive some useful prop-
erties of the solution uϵ such as regularity and exponential decay.

Lemma 2.2. One has uϵ ∈ H1(R3) ∩ C1(R3). In particular, it follows that
uϵ ∈ L∞(R3) and lim|x|→+∞ uϵ(x) → 0.

Proof. The function uϵ satisfies (2.9); namely

−∆uϵ + ωuϵ = fϵ,

where
fϵ := −W (xϵ)uϵ + up

ϵ − ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ.

It is easy to see, using Sobolev embeddings, that fϵ ∈ Lm
loc(R

3), where m :=
min{3, 6

p}. The result follows by a classical bootstrap argument and we omit
the details. "

Lemma 2.3. There exist δ > 0 and C1, C2 > 0 independent of ϵ such that

∥uϵ∥L∞(R3) ≤ C1, (2.12)

|uϵ(x)| ≤ C2e
−δ|x| for all x ∈ R

3. (2.13)

Proof. First we prove (2.12). Let ζϵ be the maximum point of uϵ (it exists
because uϵ ∈ C0(R3) and lim|x|→∞ uϵ = 0). We define the auxiliary function

ũϵ := uϵ(· + ζϵ).

By definition, ũϵ(0) = uϵ(ζϵ) = ∥uϵ∥L∞(R3), ∥ũϵ∥L∞(R3) = ∥uϵ∥L∞(R3), and
ũϵ satisfies

−∆ũϵ + ωũϵ = gϵ in R
3, (2.14)

where

gϵ := −W (xϵ + ϵζϵ)ũϵ + ũp
ϵ − ϵ2K(xϵ + ϵζϵ)

(

|x|−1 ∗ K(xϵ + ϵζϵ)ũ
2
ϵ

)

ũϵ.
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Let R > 0; then ũϵ satisfies (2.14) in BR. It is easy to see that gϵ ∈ Lm(BR),
where m := min{6

p , 3}, and that, moreover, there exists C > 0, independent

of ϵ, such that ∥gϵ∥Lm(BR) ≤ C. Thus, by a bootstrap argument, we have
∥ũϵ∥L∞(BR) ≤ C, independently of ϵ. The conclusion follows observing that,
by definition,

∥uϵ∥L∞(R3) = ∥ũϵ∥L∞(R3) = ∥ũϵ∥L∞(BR).

We turn now to the proof of (2.13). We define

H(x) := [W (xϵ) + ω] + ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

− up−1
ϵ .

Then uϵ satisfies

−∆uϵ + H(x)uϵ = 0.

We claim that H ∈ L∞(R3). Indeed W ∈ L∞(R3), K ∈ L∞(R3), up−1
ϵ ∈

L∞(R3) and
(

|x|−1 ∗ K(xϵ)u2
ϵ

)

∈ L∞(R3) because it is in C0(R3) (uϵ, K ∈
C0(R3)) and in L6(R3). Moreover, since uϵ(x) → 0 as |x| → ∞, we have
l := limR→∞ ess inf |x|≥R H(x) ≥ infR3{ω + W} > 0. Hence, 0 is below the
essential spectrum of the Schrödinger operator −∆+H(x). As a consequence
it follows (see e.g. [41, page 281]) that the eigenfunction uϵ of −∆ + H(x)
decays exponentially. Precisely, there exist δ > 0 and C > 0 (independent
of ϵ) such that

|uϵ(x)| ≤ C∥uϵ∥L∞(R3)e
−δ|x|.

The conclusion follows from (2.12). "

Lemma 2.4. We have uϵ −→ Uλ in L∞(R3) as ϵ→ 0.

Proof. Let δ > 0. Since uϵ and Uλ decay exponentially independently of ϵ,
there exists R such that

∥uϵ − Uλ∥L∞(R3/BR) ≤ ∥uϵ∥L∞(R3/BR) + ∥Uλ∥L∞(R3/BR) ≤
δ

2
.

Moreover, uϵ → Uλ in H1(BR) as ϵ→ 0 and uϵ, Uλ ∈ C0(BR) hence uϵ(x) →
Uλ(x) for all x ∈ BR and so for ϵ small we also have

∥uϵ − Uλ∥L∞(BR) ≤
δ

2
.

Combining this with the previous inequality and letting δ go to zero we get
the conclusion. "

We are now in position to perform the asymptotic expansion of uϵ. Recall
that ξϵ → 0 as ϵ→ 0 and that Uλ,ϵ is defined by Uλ,ϵ := Uλ(·− ξϵ).
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Proposition 2.5. There exists w0 ∈ H1(R3) such that

uϵ = Uλ,ϵ + ϵ2w0 + o(ϵ2)

(with o(ϵ2) ∈ H1(R3)) and

L0w0 = −K(x0)
2
(

|x|−1 ∗ U2
λ

)

Uλ − 1
2 < HessW (x0)x, x > Uλ.

Proof. By (2.10) we have uϵ = Uλ,ϵ+wϵ and ∥wϵ∥H1(R3) ≤ Cϵ2. Substituting
into (2.9), and dividing by ϵ2, we get

8
∑

k=1

Ak = 0,

where

A1 := ϵ−2
[

− ∆Uλ,ϵ + λ2Uλ,ϵ − Up
λ,ϵ

]

, A2 := −∆w̃ϵ + λ2w̃ϵ − pUp−1
λ w̃ϵ,

A3 := ϵ−2 [W (xϵ) − W (x0)]Uλ,ϵ, A4 := [W (xϵ) − W (x0)] w̃ϵ,

A5 := ϵ−2
[

Up
λ,ϵ − (Uλ,ϵ + wϵ)

p + pUp−1
λ wϵ

]

,

A6 := K(xϵ)
(

|x|−1 ∗ K(xϵ)U
2
λ,ϵ

)

Uλ,ϵ,

A7 := K(xϵ)
(

|x|−1 ∗ K(xϵ)
(

2Uλ,ϵwϵ + w2
ϵ

))

(Uλ,ϵ + wϵ) ,

A8 := K(xϵ)
(

|x|−1 ∗ K(xϵ)U
2
λ,ϵ

)

wϵ,

and where we have defined w̃ϵ := wϵ

ϵ2 . Obviously, A1 = 0. Moreover, A2 →
L0w0 in H−1(R3) as ϵ → 0. In fact ∥w̃ϵ∥H1(R3) ≤ C, therefore there exists
w0 ∈ H1(R3) such that w̃ϵ → w0 weakly in H1(R3).

In addition A3 → 1
2 < HessW (x0)x, x > Uλ(x) in H1(R3) as ϵ → 0. In

fact, since x0 is a non-degenerate critical point for W (and we also assumed
that the derivatives of W are bounded), we have

W (xϵ) = W (x0) +
ϵ2

2
< HessW (x0)x, x > +O(ϵ3)|x|3,

thus in H1(R3)

A3 = 1
2 < HessW (x0)x, x > Uλ,ϵ + O(ϵ)|x|3Uλ,ϵ

→ 1
2 < HessW (x0)x, x > Uλ(x).

We show that A4 → 0 in H1(R3) as ϵ→ 0. Observe that wϵ = uϵ −Uλ,ϵ, and
so, from (2.13), it follows that wϵ is exponentially decaying (independently of
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ϵ). Let δ > 0 and let R be large enough to have ∥O(ϵ)|x|3wϵ∥H1(R3/BR) < δ
2

and ∥1
2 < HessW (x0)x, x > wϵ∥H1(R3/BR) < δ

2 . As before

[W (xϵ) − W (x0)] w̃ϵ = 1
2 < HessW (x0)x, x > wϵ + O(ϵ)|x|3wϵ.

Therefore, the conclusion follows observing that, for ϵ small enough, we have
∥

∥

1
2 < HessW (x0)x, x > wϵ

∥

∥

H1(BR)
≤
δ

2
,

and also

∥O(ϵ|x|3)∥H1(BR) ≤
δ

2
.

We show that A5 → 0 in L2(R3) as ϵ→ 0. Define

N(wϵ) :=
[

Up
λ,ϵ − (Uλ,ϵ + wϵ)

p + pUp−1
λ wϵ

]

,

so we have to show that ϵ−2N(wϵ) → 0 in L2(R3) as ϵ→ 0. Observe that

∥N(wϵ)∥
2
L2(R3) ≤ ∥N(wϵ)∥L∞(R3)∥N(wϵ)∥L1(R3),

and that (see [2, page 132]) also

∥N(wϵ)∥L1(R3) ≤ C
(

∥wϵ∥
2
H1(R3) + ∥wϵ∥

p+1
H1(R3)

)

.

Therefore, since ∥wϵ∥H1(R3) = O(ϵ2),

∥N(wϵ)∥L1(R3) = O(ϵ4).

On the other hand, by Lemma 2.4, we have

∥wϵ∥L∞(R3) = ∥uϵ − Uλ∥L∞(R3) + ∥Uλ − Uλ,ϵ∥L∞(R3) = o(1),

therefore, ∥N(wϵ)∥L∞(R3) = o(1), indeed,

∥p|Uλ|
p−1wϵ∥L∞(R3) ≤ C∥wϵ∥L∞(R3) = o(1)

and
∥Up

λ,ϵ − (Uλ,ϵ + wϵ)
p ∥L∞(R3) ≤ 2p−1∥wϵ∥

p
L∞(R3) = o(1).

We now prove that A6 → K(x0)2
(

|x|−1 ∗ U2
λ

)

Uλ in L2(R3), as ϵ→ 0.
∥

∥K(xϵ)
(

|x|−1 ∗ K(xϵ)U
2
λ,ϵ

)

Uλ,ϵ − K(x0)
2
(

|x|−1 ∗ U2
λ

)

Uλ

∥

∥

L2(R3)
(2.15)

≤
∥

∥(K(xϵ) − K(x0))
(

|x|−1 ∗ K(xϵ)U
2
λ,ϵ

)

Uλ,ϵ

∥

∥

L2(R3)

+
∥

∥K(x0)
(

|x|−1 ∗ K(xϵ)U
2
λ,ϵ

)

(Uλ,ϵ − Uλ)
∥

∥

L2(R3)

+
∥

∥K(x0)
(

|x|−1 ∗ (K(xϵ) − K(x0))U2
λ,ϵ

)

Uλ

∥

∥

L2(R3)

+
∥

∥K(x0)
2
(

|x|−1 ∗
(

U2
λ,ϵ − U2

λ

))

Uλ

∥

∥

L2(R3)
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=: I + II + III + IV.

Observe that

I ≤ Cϵ
∥

∥

(

|x|−1 ∗ K(xϵ)U
2
λ,ϵ

)

Uλ,ϵ|x|
∥

∥

L2(R3)

≤ Cϵ
∥

∥|x|−1 ∗ K(xϵ)U
2
λ,ϵ

∥

∥

L6(R3)
∥Uλ,ϵ|x|∥L3(R3)

≤ Cϵ∥Uλ,ϵ∥
2
H1(R3)∥|x|Uλ,ϵ∥L3(R3)

= Cϵ∥Uλ∥
2
H1(R3)∥|x + |ξϵ|Uλ∥L3(R3) ≤ Cϵ,

where we used the fact that ξϵ → 0 as ϵ→ 0. Moreover,

II ≤ C∥Uλ,ϵ∥
2
H1(R3)∥Uλ,ϵ − Uλ∥L3(R3) = o(1),

III ≤ Cϵ
∥

∥

(

|x|−1 ∗ |x|U2
λ,ϵ

)

Uλ

∥

∥

L2(R3)
≤ Cϵ,

IV ≤ C∥U2
λ,ϵ − U2

λ∥H1(R3)∥Uλ∥L3(R3) = o(1).

Finally, putting together the four estimates, we obtain the conclusion.
We prove that A7 → 0 in H−1(R3) as ϵ→ 0. Take φ ∈ H1(R3), then

∫

R3

K(xϵ)
(

|x|−1 ∗ K(xϵ)
(

2Uλ,ϵwϵ + w2
ϵ

))

(Uλ,ϵ + wϵ)φdx

≤
∥

∥K(xϵ)
(

|x|−1 ∗ K(xϵ)
(

2Uλ,ϵwϵ + w2
ϵ

))

(Uλ,ϵ + wϵ)
∥

∥

L2(R3)
∥φ∥L2(R3)

≤ C
∥

∥

(

|x|−1 ∗
(

2Uλ,ϵwϵ + w2
ϵ

))
∥

∥

L6(R3)
∥(Uλ,ϵ + wϵ)∥L6(R3) ∥φ∥L2(R3)

≤ C ∥wϵ∥H1(R3) ∥2Uλ,ϵ + wϵ∥H1(R3) ∥(Uλ,ϵ + wϵ)∥L6(R3) ∥φ∥L2(R3)

≤ C∥wϵ∥H1(R3) = O(ϵ2).

Last we prove that A8 → 0 in H−1(R3) as ϵ→ 0. Take φ ∈ H1(R3), then
∫

R3

K(xϵ)
(

|x|−1 ∗ K(xϵ)U
2
λ,ϵ

)

wϵφdx

≤ C
∥

∥

(

|x|−1 ∗ U2
λ,ϵ

)

wϵ

∥

∥

L2(R3)
∥φ∥L2(R3)

≤ C
∥

∥|x|−1 ∗ U2
λ,ϵ

∥

∥

L6(R3)
∥wϵ∥L3(R3) ∥φ∥L2(R3) ≤ C∥wϵ∥H1(R3) = O(ϵ2).

This concludes the proof. "

3. The spectral information

In this section, we study the spectral properties of the operator Lϵ, as ϵ
goes to zero. In doing so, the well-known properties of the spectrum of the
operator L0 (Lemma 3.1 below) will be useful (for the proof see e.g [2]).
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Lemma 3.1. The spectrum of L0v = −∆v+λ2v−pUp−1
λ v consists of essen-

tial spectrum in [λ2,+∞) and of a finite number of eigenvalues in (−∞, λ2

2 ).
The first eigenvalue µ1 of L0 is negative and simple. The second eigenvalue
is 0 and is of multiplicity 3. The kernel of L0 is spanned by (Uλ)j , j = 1, 2, 3,

where (Uλ)j = ∂Uλ
∂xj

.

The general perturbation result is the following.

Proposition 3.2. The spectrum of Lϵ consists of essential spectrum in
[C,+∞), for a certain C > 0 and a finite number of eigenvalues in (−∞, C ′)
for any C ′ < C. In particular, there exists a set of simple eigenvalues
{µϵ,1, µϵ,2, µϵ,3, µϵ,4} such that µϵ,1 < µϵ,2 ≤ µϵ,3 ≤ µϵ,4 and satisfying as
ϵ → 0, µϵ,1 → µ1 < 0, µϵ,h → 0, h = 2, 3, 4. Moreover, letting ψϵ,h be such
that Lϵψϵ,h = µϵ,hψϵ,h, for h = 2, 3, 4, one has

ψϵ,h −→
3

∑

j=1

αh
j (Uλ)j as ϵ→ 0 in L2(R3), αh

j ∈ R.

Proof. Since Lϵ is a self-adjoint operator, its spectrum lies on the real line.
From (V1)-(V3), (K1)-(K2) and (2.5), we infer that the operator Lϵ is a
compact perturbation of −∆+C for some C > 0. Hence, by Weyl’s theorem,
the essential spectrum of Lϵ lies in [C,+∞). Since Lϵ is bounded from
below, for any C ′ < C there exists only a finite number of eigenvalues of
Lϵ in (−∞, C ′]. The existence and properties of {µϵ,h} and {ψϵ,h} follow
from the classical perturbation theory for linear operators (see e.g. [30, page
213]). "

Proposition 3.2 is not sufficient to count the number of negative eigen-
values of Lϵ. Indeed, when h = 2, 3, 4, we only know that the eigenvalues
{µϵ,h} are close to 0 without having information on their sign. Hence, in the
following proposition, we derive an asymptotic expansion formula for the
eigenvalues of Lϵ. Note that the eigenvalues of Lϵ close to 0 are intimately
related with the eigenvalues of the Hessian matrix HessW (x0).

Proposition 3.3. The eigenvalues (µϵ,h) of Lϵ can be expanded in the fol-
lowing way:

µϵ,h = chϵ
2 + o(ϵ2), h = 2, 3, 4,

where ch := 1
2

∥Uλ∥2

L2

∥(Uλ)h∥
2

L2

ah and {ai}i=1,2,3 are the eigenvalues of the matrix

HessW (x0).
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Before proving Proposition 3.3, we need some preparation. We first ob-
serve that, since HessW (x0) is a symmetric real matrix, it can be diagonal-
ized through an orthogonal matrix. Hence, without loss of generality, we
assume in the rest of the paper that HessW (x0) = diag{a1, a2, a3}.

Lemma 3.4. For ϵ close to 0, we have

Lϵ (Uλ,ϵ)j = ϵ2
[

1
2 < HessW (x0)x, x > −p(p − 1)Up−2

λ,ϵ w0

]

(Uλ,ϵ)j

+ 2ϵ2K(x0)
2
(

|x|−1 ∗ Uλ(Uλ)j
)

Uλ

+ ϵ2K(x0)
2
(

|x|−1 ∗ U2
λ

)

(Uλ)j + o(ϵ2) in L2(R3).

Proof. By definition of Lϵ (see (2.11)), we have

Lϵ (Uλ,ϵ)j = −∆ (Uλ,ϵ)j + [W (xϵ) + ω] (Uλ,ϵ)j − pup−1
ϵ (Uλ,ϵ)j

+ ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

(Uλ,ϵ)j

+ 2ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)uϵ (Uλ,ϵ)j

)

uϵ.

We decompose Lϵ (Uλ,ϵ)j in the following way:

Lϵ (Uλ,ϵ)j =
5

∑

k=1

Ak,

where

A1 := −∆ (Uλ,ϵ)j + [W (x0) + ω] (Uλ,ϵ)j − pUp−1
λ,ϵ (Uλ,ϵ)j ,

A2 := [W (xϵ) − W (x0)] (Uλ,ϵ)j , A3 := −p
[

up−1
ϵ − Up−1

λ,ϵ

]

(Uλ,ϵ)j ,

A4 := ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

(Uλ,ϵ)j ,

A5 := 2ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)uϵ (Uλ,ϵ)j

)

uϵ.

Since Uλ,ϵ satisfies (2.1), by deriving with respect to xj we see that A1 = 0.
Remembering that x0 is a critical point of W , a Taylor expansion gives

A2 =
ϵ2

2
< HessW (x0)x, x > (Uλ,ϵ)j + O(ϵ3)|x|3 (Uλ,ϵ)j .

By Proposition 2.5 we have

A3 = −p
[

(

Uλ,ϵ + ϵ2w0 + o(ϵ2)
)p−1

− Up−1
λ,ϵ

]

(Uλ,ϵ)j

= −p(p − 1)Up−2
λ,ϵ w0ϵ

2 (Uλ,ϵ)j + o(ϵ2).
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For A4 and A5, it is easy to see that we have in L2(R3) as ϵ→ 0

K(xϵ)
(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

(Uλ,ϵ)j −→ K(x0)
2
(

|x|−1 ∗ U2
λ

)

(Uλ)j ,

K(xϵ)
(

|x|−1 ∗ K(xϵ)uϵ (Uλ,ϵ)j

)

uϵ −→ K(x0)
2
(

|x|−1 ∗ Uλ(Uλ)j
)

Uλ,

which concludes the proof. "

Lemma 3.5. For ϵ close to 0, we have
∫

R3

(

Lϵ (Uλ,ϵ)j

)

(Uλ,ϵ)k =
ϵ2

2
ak∥Uλ∥

2
L2(R3)δjk + o(ϵ2).

Proof. From Lemma 3.4, we get
∫

R3

(

Lϵ (Uλ,ϵ)j

)

(Uλ,ϵ)k

= ϵ2
∫

R3

[

1

2
< HessW (x0)x, x > −p(p − 1)Up−2

λ,ϵ w0

]

(Uλ,ϵ)j (Uλ,ϵ)k

+ 2ϵ2K(x0)
2
∫

R3

(

|x|−1 ∗ Uλ(Uλ)j
)

Uλ (Uλ,ϵ)k

+ ϵ2K(x0)
2
∫

R3

(

|x|−1 ∗ U2
λ

)

(Uλ)j (Uλ,ϵ)k + o(ϵ2).

We first remark that

(Uλ,ϵ)j = (Uλ)j (·− ξϵ) = (Uλ)j + O(|ξϵ|) = (Uλ)j + o(1),

where the last equality follows from (2.7). Therefore,
∫

R3

(

Lϵ (Uλ,ϵ)j

)

(Uλ,ϵ)k (3.1)

= ϵ2
∫

R3

[

1

2
< HessW (x0)x, x > −p(p − 1)Up−2

λ w0

]

(Uλ)j (Uλ)k

+ 2ϵ2K(x0)
2
∫

R3

(

|x|−1 ∗ Uλ(Uλ)j
)

Uλ (Uλ)k

+ ϵ2K(x0)
2
∫

R3

(

|x|−1 ∗ U2
λ

)

(Uλ)j (Uλ)k + o(ϵ2).

By integration by parts, we have

2

∫

R3

(

|x|−1 ∗ Uλ(Uλ)j
)

Uλ (Uλ)k +

∫

R3

(

|x|−1 ∗ U2
λ

)

(Uλ)j (Uλ)k

= −

∫

R3

(

|x|−1 ∗ U2
λ

)

Uλ (Uλ)jk ,
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and substituting into (3.1) we get
∫

R3

(

Lϵ (Uλ,ϵ)j

)

(Uλ,ϵ)k

= ϵ2
∫

R3

[

1

2
< HessW (x0)x, x > −p(p − 1)Up−2

λ w0

]

(Uλ)j (Uλ)k (3.2)

− ϵ2K(x0)
2
∫

R3

(

|x|−1 ∗ U2
λ

)

Uλ (Uλ)jk + o(ϵ2).

From (2.3), we get

− ϵ2
∫

R3

p(p − 1)Up−2
λ w0 (Uλ)j (Uλ)k

= −ϵ2
∫

R3

w0

(

L0 (Uλ)jk

)

= −ϵ2
∫

R3

(L0w0) (Uλ)jk .

By Proposition 2.5 this gives

− ϵ2
∫

R3

p(p − 1)Up−2
λ w0 (Uλ)j (Uλ)k

=ϵ2K(x0)
2
∫

R3

(|x|−1 ∗ U2
λ)Uλ(Uλ)jk +

ϵ2

2

∫

R3

< HessW (x0)x, x > Uλ(Uλ)jk.

Substituting into (3.2) we obtain
∫

R3

(

Lϵ (Uλ,ϵ)j

)

(Uλ,ϵ)k

=
ϵ2

2

∫

R3

< HessW (x0)x, x >
[

(Uλ)j (Uλ)k + Uλ (Uλ)jk

]

+ o(ϵ2).

Recalling that HessW (x0) = diag{a1, a2, a3} and integrating by parts, we
find

∫

R3

< HessW (x0)x, x > Uλ (Uλ)jk

= −

∫

R3

3
∑

i=1

aix
2
i (Uλ)k (Uλ)j − 2ak

∫

R3

xkUλ (Uλ)j .

Therefore, integrating by parts once more, we obtain
∫

R3

(

Lϵ (Uλ,ϵ)j

)

(Uλ,ϵ)k = −ϵ2ak

∫

R3

xkUλ (Uλ)j + o(ϵ2)

= −
ϵ2

2
ak

∫

R3

xk
∂

∂xj

(

U2
λ

)

+ o(ϵ2) =
ϵ2

2
δkjak

∫

R3

U2
λ + o(ϵ2),
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which concludes the proof. "

Lemma 3.6. Let ψϵ,h be given by Proposition 3.2. There exist {cϵ,h
j } and

ψ⊥
ϵ,h ∈

(

span
{(

Uλ,ϵ

)

j
, j = 1, 2, 3

})⊥L2 such that

ψϵ,h =
3

∑

j=1

cϵ,h
j (Uλ,ϵ)j + ψ⊥

ϵ,h. (3.3)

As ϵ→ 0, we have
∥ψ⊥

ϵ,h∥L2(R3) −→ 0 (3.4)

and
3

∑

j=1

cϵ,h
j (Uλ,ϵ)j −→

3
∑

j=1

αh
j (Uλ)j in L2(R3). (3.5)

Moreover, cϵ,h
j is bounded and cϵ,h

j → αh
j as ϵ→ 0 for j = 1, 2, 3.

Proof. Fix h ∈ {2, 3, 4}. For the sake of simplicity, we drop the dependency
in h in the notation. From Proposition 3.2 we already know that

∥

∥

∥
ψϵ −

3
∑

j=1

αj(Uλ)j

∥

∥

∥

2

L2(R3)
→ 0 as ϵ→ 0.

Observe now that
∥

∥

∥
ψϵ −

3
∑

j=1

αj(Uλ)j

∥

∥

∥

2

L2(R3)
=

∥

∥

∥

3
∑

j=1

cϵ
j (Uλ,ϵ)j −

3
∑

j=1

αj(Uλ)j + ψ⊥
ϵ

∥

∥

∥

2

L2(R3)

=
∥

∥

∥

3
∑

j=1

cϵ
j(Uλ,ϵ)j −

3
∑

j=1

αj(Uλ)j

∥

∥

∥

2

L2(R3)
+ ∥ψ⊥

ϵ ∥
2
L2(R3)

− 2
3

∑

j=1

αj
(

(Uλ)j ,ψ
⊥
ϵ

)

L2(R3)
.

Since ψϵ is bounded in L2(R3), ψ⊥
ϵ is also bounded in L2(R3) and there exists

ψ0 such that ψ⊥
ϵ → ψ0 weakly in L2(R3) as ϵ→ 0. Therefore,

(

(Uλ)j ,ψ
⊥
ϵ

)

L2(R3)
→ 0 as ϵ→ 0.

Consequently,

∥

∥

∥

3
∑

j=1

cϵ
j (Uλ,ϵ)j −

3
∑

j=1

αj(Uλ)j

∥

∥

∥

2

L2(R3)
+ ∥ψ⊥

ϵ ∥
2
L2(R3) → 0 as ϵ→ 0
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and this proves (3.4) and (3.5).
We now prove that cϵ

j is bounded. Suppose by contradiction that there
exists j such that |cϵ

j | → +∞, as ϵ → 0. Then, since (Uλ,ϵ)j ⊥L2 (Uλ,ϵ)h for

j ̸= h and ∥ (Uλ,ϵ)j ∥L2(R3) → ∥ (Uλ)j ∥L2(R3) as ϵ→ 0, we obtain

∥

∥

∥

3
∑

j=1

cϵ
j (Uλ,ϵ)j

∥

∥

∥

L2(R3)
=

3
∑

j=1

|cϵ
j |∥ (Uλ,ϵ)j ∥L2(R3) → +∞, as ϵ→ 0. (3.6)

This is impossible because (3.5) implies

∥

∥

∥

3
∑

j=1

cϵ
j (Uλ,ϵ)j

∥

∥

∥

L2(R3)
→

∥

∥

∥

3
∑

j=1

αj (Uλ)j

∥

∥

∥

L2(R3)
< +∞.

It remains to show that cϵ
j → αj , as ϵ→ 0. We already know that

∥

∥

∥

3
∑

j=1

(

cϵ
j (Uλ,ϵ)j − αj (Uλ)j

)
∥

∥

∥

L2(R3)
→ 0 as ϵ→ 0.

By (3.5), since (Uλ)j ⊥L2 (Uλ)h for j ̸= h and (Uλ,ϵ)j ⊥L2 (Uλ,ϵ)h for j ̸= h,
we also have

∥

∥

∥

3
∑

j=1

(

cϵ
j (Uλ,ϵ)j − αj (Uλ)j

)
∥

∥

∥

2

L2(R3)
=

3
∑

j=1

∥cϵ
j (Uλ,ϵ)j − αj (Uλ)j ∥

2
L2(R3)

+
3

∑

j, h = 1
j ̸= h

∫

R3

(

cϵ
j (Uλ,ϵ)j − αj (Uλ)j

)

(

cϵ
h (Uλ,ϵ)h − αh (Uλ)h

)

=
3

∑

j=1

∥cϵ
j (Uλ,ϵ)j − αj (Uλ)j ∥

2
L2(R3) − 2

3
∑

j, h = 1
j ̸= h

cϵ
hαj

∫

R3

(Uλ,ϵ)h (Uλ)j .

Since cϵ
j is bounded, (Uλ,ϵ)h → (Uλ)h in L2(R3) and (Uλ)j ⊥L2 (Uλ)h if

j ̸= h, it follows also that

3
∑

j, h = 1
j ̸= h

cϵ
hαj

∫

R3

(Uλ,ϵ)h (Uλ)j → 0 as ϵ→ 0.
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As a consequence

∥cϵ
j (Uλ,ϵ)j − αj (Uλ)j ∥L2(R3) → 0 as ϵ→ 0, ∀j = 1, 2, 3.

Recalling that (Uλ,ϵ)j → (Uλ)j in L2(R3) as ϵ → 0, the conclusion follows.
"

Proof of Proposition 3.3. Fix h ∈ {2, 3, 4}. As before, we drop the de-
pendence on h in the notation and write

ψϵ := ψϵ,h and µϵ := µϵ,h.

From Lϵψϵ = µϵψϵ and (3.3) we obtain

3
∑

j=1

cϵ
jLϵ (Uλ,ϵ)j + Lϵψ

⊥
ϵ = µϵ

3
∑

j=1

cϵ
j (Uλ,ϵ)j + µϵψ

⊥
ϵ .

We multiply by (Uλ,ϵ)k and integrate over R3 to get

3
∑

j=1

cϵ
j

∫

R3

(

Lϵ (Uλ,ϵ)j

)

(Uλ,ϵ)k +

∫

R3

(

Lϵψ
⊥
ϵ

)

(Uλ,ϵ)k

= µϵ

3
∑

j=1

cϵ
j

∫

R3

(Uλ,ϵ)j (Uλ,ϵ)k + µϵ

∫

R3

ψ⊥
ϵ (Uλ,ϵ)k . (3.7)

Observe that by construction
∫

R3

ψ⊥
ϵ (Uλ,ϵ)k = 0

and that
∫

R3

(

Lϵψ
⊥
ϵ

)

(Uλ,ϵ)k =

∫

R3

ψ⊥
ϵ

(

Lϵ (Uλ,ϵ)k

)

.

Moreover,
∫

R3

(Uλ,ϵ)j (Uλ,ϵ)k = δjk∥ (Uλ)k ∥
2
L2(R3),

so (3.7) becomes

3
∑

j=1

cϵ
j

∫

R3

(

Lϵ (Uλ,ϵ)j

)

(Uλ,ϵ)k +

∫

R3

ψ⊥
ϵ

(

Lϵ (Uλ,ϵ)k

)

= µϵc
ϵ
k∥ (Uλ)k ∥

2
L2(R3).

(3.8)
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Using Lemma 3.4, Lemma 3.5 and Lemma 3.6, (3.8) becomes

ϵ2

2
cϵ
kak∥Uλ∥

2
L2(R3) + o(ϵ2)

3
∑

j=1

cϵ
j + o(ϵ2) = µϵc

ϵ
k∥ (Uλ)k ∥

2
L2(R3).

Since by Lemma 3.6 cϵ
k → αk as ϵ → 0, there exists at least an index k

such that for ϵ small enough cϵ
k ̸= 0 (because for such a k we have αk ̸= 0).

Dividing by cϵ
k∥ (Uλ)k ∥

2
L2(R3) we get

µϵ =
ϵ2

2
ak

∥Uλ∥2
L2(R3)

∥ (Uλ)k ∥
2
L2(R3)

+ o(ϵ2).

Observe now that in general (if a1 ̸= a2 ̸= a3) we necessarily have αk ̸= 0 for
one and only one k (otherwise our proof would lead to different expansions
for the same eigenvalue, which is of course impossible). Without loss of
generality we can take k = h and this finishes the proof. "

4. The slope information

This section is devoted to the study of the sign of D(ω). We have split
our result into the following two propositions.

Proposition 4.1. For ϵ small enough we have

D(ω) < 0 if p > 1 + 4
3 ,

D(ω) > 0 if p < 1 + 4
3 .

Proposition 4.2. Suppose that p = 1+ 4
3 . Then for ϵ small enough we have

D(ω) > 0, if ∆W (x0) > K(x0)2 [W (x0) + ω]
2

p−1 C,

D(ω) < 0, if ∆W (x0) < K(x0)2 [W (x0) + ω]
2

p−1 C,

where the constant C > 0 (independent of x0, K,W ) is explicitly known.

Before proving Propositions 4.1 and 4.2, some preliminaries are in order.

Lemma 4.3. Let Rϵ
ω be defined by Rϵ

ω := ∂
∂ωuϵ. Then

LϵR
ϵ
ω = −uϵ. (4.1)

Moreover,

Rϵ
ω =

3
∑

j=1

dϵ
j (Uλ)j +

1

W (x0) + ω
R0 + o(1), (4.2)

where dϵ
j = O(1) and R0 is given by (2.2).
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Remark 4.4. The decomposition (4.2) is used only in the case p = 1 + 4
3 .

We recall the following result (see e.g. [2]).

Lemma 4.5. For each ξ ∈ R3, the map

Lφ := −∆φ+ [W (x0) + ω]φ− pUλ(x − ξ)p−1φ

is invertible from K⊥
ξ to C⊥

ξ , where

K⊥
ξ :=

{

φ ∈ H2(R3) : φ ⊥L2 (Uλ(·− ξ))j , j = 1, 2, 3
}

⊂ H2(R3),

C⊥
ξ :=

{

φ ∈ L2(R3) : φ ⊥L2 (Uλ(·− ξ))j , j = 1, 2, 3
}

⊂ L2(R3).

Proof of Lemma 4.3. We derive

−∆uϵ + ωuϵ + W (xϵ)uϵ − up
ϵ + ϵ2K(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ = 0,

with respect to ω to obtain

− ∆Rϵ
ω + [ω + W (xϵ)]R

ϵ
ω − pup−1

ϵ Rϵ
ω + 2ϵ2K(xϵ)

(

|x|−1 ∗ K(xϵ)uϵR
ϵ
ω

)

uϵ

+ ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

Rϵ
ω = −uϵ.

This gives immediately
LϵR

ϵ
ω = −uϵ.

As a consequence we have LϵRϵ
ω −→ −Uλ in L2(R3) as ϵ → 0. Since uϵ is

uniformly differentiable in ω, Rϵ
ω is bounded in H1(R3), therefore,

(L0 − Lϵ) Rϵ
ω −→ 0 in L2(R3) as ϵ→ 0.

Consequently,

L0R
ϵ
ω = (L0 − Lϵ)Rϵ

ω + LϵR
ϵ
ω −→ −Uλ in L2(R3) as ϵ→ 0.

We decompose

Rϵ
ω =

3
∑

j=1

dϵ
j (Uλ,ϵ)j +

1

W (x0) + ω
R0,ϵ + Rϵ

ω
⊥, (4.3)

with

R0,ϵ := R0(·− ξϵ) and Rϵ
ω
⊥ ∈

(

span
{

(Uλ,ϵ)j

})⊥L2

.

We remark that (Uλ,ϵ)j = (Uλ)j + o(1) and R0,ϵ = R0 + o(1). Using the
decomposition we have

L0ϵR
ϵ
ω =

3
∑

j=1

dϵ
jL0ϵ (Uλ,ϵ)j +

1

W (x0) + ω
L0ϵR0,ϵ + L0ϵR

ϵ
ω
⊥,
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where L0ϵ := −∆ + [W (x0) + ω] − pUp−1
λ,ϵ . Therefore,

L0ϵR
ϵ
ω
⊥ = L0ϵR

ϵ
ω + Uλ,ϵ,

and so L0ϵRϵ
ω
⊥ −→ 0 in L2(R3) as ϵ → 0. Since L0ϵ is invertible from

H2(R3)/ ker L0ϵ to L2(R3)/ ker L0ϵ (see Lemma 4.5) and Rϵ
ω
⊥ ∈ (ker L0ϵ)⊥L2 ,

we get Rϵ
ω
⊥ → 0 in H2(R3) as ϵ → 0. It remains to show that dϵ

j = O(1).
From (4.1) and (4.3) we get

3
∑

j=1

dϵ
jLϵ (Uλ,ϵ)j +

1

W (x0) + ω
LϵR0,ϵ + LϵR

ϵ
ω
⊥ = −uϵ.

Multiplying by (Uλ,ϵ)k and integrating we obtain

−

∫

R3

uϵ (Uλ,ϵ)k =
3

∑

j=1

dϵ
j

∫

R3

Lϵ (Uλ,ϵ)j (Uλ,ϵ)k (4.4)

+
1

W (x0) + ω

∫

R3

LϵR0,ϵ (Uλ,ϵ)k +

∫

R3

LϵR
ϵ
ω
⊥ (Uλ,ϵ)k .

Let us analyze each term separately. From Lemma 3.5 we know that

3
∑

j=1

dϵ
j

∫

R3

Lϵ (Uλ,ϵ)j (Uλ,ϵ)k =
ϵ2

2
dϵ

kak∥Uλ∥
2
L2(R3) + o(ϵ2)

3
∑

j=1

dϵ
j .

Moreover, since from Lemma 3.4 we know that Lϵ (Uλ,ϵ)k = O(ϵ2) we have
∫

R3

LϵR0,ϵ (Uλ,ϵ)k =

∫

R3

R0,ϵLϵ (Uλ,ϵ)k

=

∫

R3

R0Lϵ (Uλ,ϵ)k + o(1)

∫

R3

Lϵ (Uλ,ϵ)k = O(ϵ2).

Recalling that Rϵ
ω
⊥ = o(1), we also have

∫

R3

LϵR
ϵ
ω
⊥ (Uλ,ϵ)k =

∫

R3

Rϵ
ω
⊥Lϵ (Uλ,ϵ)k = o(ϵ2).

Finally, from Proposition 2.5 we have
∫

R3

uϵ (Uλ,ϵ)k =

∫

R3

Uλ,ϵ (Uλ,ϵ)k + ϵ2
∫

R3

w0 (Uλ,ϵ)k + o(ϵ2)

∫

R3

(Uλ,ϵ)k

= ϵ2
∫

R3

w0 (Uλ,ϵ)k + o(ϵ2) = O(ϵ2).
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So (4.4) becomes

ϵ2

2
dϵ

kak∥Uλ∥
2
L2(R3) + o(ϵ2)

3
∑

j=1

dϵ
j = O(ϵ2).

Dividing by ϵ2 we get dϵ
kC + o(1)

∑3
j=1 dϵ

j = O(1) and therefore it is clear
that dϵ

k = O(1), which concludes the proof. "

We now derive two useful identities.

Lemma 4.6. The following equalities hold:
∫

R3

Rϵ
ωLϵ

( 1

p − 1
uϵ +

1

2
x ·∇uϵ

)

=
(3

4
−

1

p − 1

)

∥uϵ∥
2
L2(R3). (4.5)

[W (xϵ) + ω]uϵ = −Lϵ

( 1

p − 1
uϵ +

1

2
x ·∇uϵ

)

−
ϵ

2
x ·∇W (xϵ)uϵ

+ ϵ2
4 − 2p

p − 1
K(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ + O(ϵ3). (4.6)

Proof. We start with the proof of (4.5). By symmetry of Lϵ, we have
∫

R3

Rϵ
ωLϵ

( 1

p − 1
uϵ +

1

2
x ·∇uϵ

)

=

∫

R3

LϵR
ϵ
ω

( 1

p − 1
uϵ +

1

2
x ·∇uϵ

)

.

By Lemma 4.3, we have LϵRϵ
ω = −uϵ, thus,

∫

R3

Rϵ
ωLϵ

( 1

p − 1
uϵ +

1

2
x ·∇uϵ

)

= −

∫

R3

uϵ

( 1

p − 1
uϵ +

1

2
x ·∇uϵ

)

= −
1

p − 1
∥uϵ∥

2
L2(R3) −

1

2

∫

R3

uϵx ·∇uϵ.

Integrating by parts it is easy to see that
∫

R3

uϵx ·∇uϵ = −3∥uϵ∥
2
L2(R3) −

∫

R3

uϵx ·∇uϵ.

The conclusion follows for (4.5).
We turn now to the proof of (4.6). First we remark that

1

p − 1
uϵ +

1

2
x ·∇uϵ =

∂

∂α
uα

ϵ

∣

∣

ω=1
,

where uα
ϵ = α1/(p−1)uϵ(α1/2 · ). We define by Iϵ the functional whose critical

points are solutions of (2.9):

Iϵ(v) :=

∫

R3

[1

2
|∇v|2 +

1

2
[W (xϵ) + ω] v2 −

1

p + 1
|v|p+1

]
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+

∫

R3

ϵ2

4
K(xϵ)

(

|x|−1 ∗ K(xϵ)v
2
)

v2.

Then

Lϵ

( 1

p − 1
uϵ +

1

2
x ·∇uϵ

)

= Lϵ

( ∂

∂α
uα

ϵ

∣

∣

α=1

)

= I ′′ϵ (uϵ)
( ∂

∂α
uα

ϵ

∣

∣

α=1

)

=
∂

∂α

(

I ′ϵ(u
α
ϵ )

)
∣

∣

α=1
.

Now, it is easy to see that

I ′ϵ(u
α
ϵ ) = −α

1
p−1

+1∆uϵ + [W (xϵ,α) + ω]α
1

p−1 uϵ − α
1

p−1
+1up

ϵ

+ϵ2α
4−p
p−1 K(xϵ,α)

(

|x|−1 ∗ K(xϵ,α)u2
ϵ

)

uϵ,

where we have set xϵ,α := ϵxα−1/2 + x0. Consequently,

∂

∂α

(

I ′ϵ(u
α
ϵ )

)

= −α
1

p−1
p

p − 1
∆uϵ + α

1
p−1

−1 1

p − 1
[W (xϵ,α) + ω]uϵ

−
ϵ

2
α

1
p−1

− 3
2 x ·∇W (xϵ,α)uϵ − α

1
p−1

p

p − 1
up

ϵ

+ ϵ2
4 − p

p − 1
α

4−p
p−1

−1K(xϵ,α)
(

|x|−1 ∗ K(xϵ,α)u2
ϵ

)

uϵ

−
ϵ3

2
α

4−p
p−1

− 3
2 x ·∇K(xϵ,α)

(

|x|−1 ∗ K(xϵ,α)u2
ϵ

)

uϵ

−
ϵ3

2
α

4−p
p−1

− 3
2 K(xϵ,α)

(

|x|−1 ∗ x ·∇K(xϵ,α)u2
ϵ

)

uϵ.

For α = 1 we get

∂

∂α

(

I ′ϵ(u
α
ϵ )

)
∣

∣

α=1
−

p

p − 1
∆uϵ +

1

p − 1
[W (xϵ) + ω]uϵ

−
ϵ

2
x ·∇W (xϵ)uϵ −

p

p − 1
up

ϵ + ϵ2
4 − p

p − 1
K(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ + O(ϵ3).

Recalling that uϵ satisfies (2.9), we get

∂

∂α

(

I ′ϵ(u
α
ϵ )

)
∣

∣

α=1
=

p

p − 1

(

∆uϵ + [W (xϵ) + ω]uϵ − up
ϵ

+ ϵ2K(xϵ)
(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ

)

+
( 1

p − 1
−

p

p − 1

)

[W (xϵ) + ω]uϵ −
ϵ

2
x ·∇W (xϵ)uϵ
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+ ϵ2
(4 − p

p − 1
−

p

p − 1

)

K(xϵ)
(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ + O(ϵ3)

= − [W (xϵ) + ω] uϵ −
ϵ

2
x ·∇W (xϵ)uϵ

+ ϵ2
4 − 2p

p − 1
K(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ + O(ϵ3),

which concludes the proof. "

Proof of Proposition 4.1. The proof consists in deriving an asymptotic
expansion formula for the function D(ω) as ϵ goes to zero. First observe
that

D(ω) =
∂

∂ω
∥uϵ∥

2
L2(R3) = 2

∫

R3

( ∂

∂ω
uϵ

)

uϵ = 2

∫

R3

Rϵ
ωuϵ.

Then

[W (x0) + ω]

∫

R3

Rϵ
ωuϵ =

∫

R3

Rϵ
ωuϵ [W (x0) − W (xϵ)]+

∫

R3

Rϵ
ωuϵ [W (xϵ) + ω] .

By (4.6), we have

[W (x0) + ω]

∫

R3

Rϵ
ωuϵ =

∫

R3

Rϵ
ωuϵ

[

W (x0) − W (xϵ) −
ϵ

2
x ·∇W (xϵ)

]

−

∫

R3

Rϵ
ωLϵ

( 1

p − 1
uϵ +

1

2
x ·∇uϵ

)

+ ϵ2
4 − 2p

p − 1

∫

R3

Rϵ
ωK(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ + O(ϵ3)

∫

R3

Rϵ
ω.

By (4.5), we have

[W (x0) + ω]

∫

R3

Rϵ
ωuϵ =

∫

R3

Rϵ
ωuϵ

[

W (x0) − W (xϵ) −
ϵ

2
x ·∇W (xϵ)

]

+
( 1

p − 1
−

3

4

)

∥uϵ∥
2
L2(R3) + ϵ2

4 − 2p

p − 1

∫

R3

Rϵ
ωK(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ

+ O(ϵ3).

Moreover, it is easy to see that
[

W (x0) − W (xϵ) −
ϵ

2
x ·∇W (xϵ)

]

= −ϵ2 < HessW (x0)x, x > +O(ϵ3|x|3).

Thus, we get

[W (x0) + ω]

∫

R3

Rϵ
ωuϵ =

( 1

p − 1
−

3

4

)

∥uϵ∥
2
L2(R3) (4.7)
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− ϵ2
∫

R3

Rϵ
ωuϵ < HessW (x0)x, x > +

∫

R3

O(ϵ3|x|3)Rϵ
ωuϵ

+ ϵ2
4 − 2p

p − 1

∫

R3

Rϵ
ωK(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ + O(ϵ3)

=
( 1

p − 1
−

3

4

)

∥uϵ∥
2
L2(R3) + O(ϵ2).

In conclusion, we have obtained

∂

∂ω
∥uϵ∥

2
L2(R3) =

( 1

p − 1
−

3

4

) 2

W (x0) + ω
∥uϵ∥

2
L2(R3) + O(ϵ2), (4.8)

and this finishes the proof. "

Proof of Proposition 4.2. If p = 1+ 4
3 then (4.8) is not sufficient to deter-

mine the sign of D(ω) for ϵ small. We derive now a more accurate asymptotic
expansion formula for D(ω). From (4.7) we have

D(ω) = −
2

[W (x0) + ω]
ϵ2

∫

R3

Rϵ
ωuϵ < HessW (x0)x, x >

−
1

[W (x0) + ω]
ϵ2

∫

R3

Rϵ
ωK(xϵ)

(

|x|−1 ∗ K(xϵ)u
2
ϵ

)

uϵ + O(ϵ3).

From Proposition 2.5 and the fact that ξϵ → 0 and

A6 → K(x0)
2
(

|x|−1 ∗ U2
λ

)

Uλ,

in L2(R3) (see the proof of Proposition 2.5), we have

D(ω) = −
2

[W (x0) + ω]
ϵ2

∫

R3

Rϵ
ωUλ < HessW (x0)x, x >

−
1

[W (x0) + ω]
ϵ2K(x0)

2
∫

R3

Rϵ
ω

(

|x|−1 ∗ U2
λ

)

Uλ + o(ϵ2). (4.9)

Recall from Lemma 4.3 that

Rϵ
ω =

3
∑

j=1

dϵ
j (Uλ)j +

1

W (x0) + ω
R0 + o(1).

Thus,
∫

R3

Rϵ
ωUλ < HessW (x0)x, x >=

3
∑

j=1

dϵ
j

∫

R3

(Uλ)j Uλ < HessW (x0)x, x >

+
1

W (x0) + ω

∫

R3

R0Uλ < HessW (x0)x, x > +o(1)
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=
1

W (x0) + ω

∫

R3

R0Uλ < HessW (x0)x, x > +o(1), (4.10)

because the first term is cancelled by parity. Similarly,

∫

R3

Rϵ
ω

(

|x|−1 ∗ U2
λ

)

Uλ =
3

∑

j=1

dϵ
j

∫

R3

(Uλ)j

(

|x|−1 ∗ U2
λ

)

Uλ

+
1

W (x0) + ω

∫

R3

R0
(

|x|−1 ∗ U2
λ

)

Uλ + o(1)

=
1

W (x0) + ω

∫

R3

R0
(

|x|−1 ∗ U2
λ

)

Uλ + o(1). (4.11)

Substituting (4.10) and (4.11) into (4.9) we obtain

D(ω) = −
2

[W (x0) + ω]2
ϵ2

∫

R3

R0Uλ < HessW (x0)x, x >

−
1

[W (x0) + ω]2
ϵ2K(x0)

2
∫

R3

R0
(

|x|−1 ∗ U2
λ

)

Uλ + o(ϵ2). (4.12)

Now, recall that from our choice of p it follows that R0 = 3
4Uλ + 1

2x ·∇Uλ,
and that we have assumed that HessW (x0) = diag{a1, a2, a3}. Thus,

∫

R3

R0Uλ < HessW (x0)x, x >=
3

4

3
∑

i=1

ai

∫

R3

U2
λx2

i +
1

2

3
∑

i=1

ai

∫

R3

Uλx ·∇Uλx2
i .

Remarking that

∫

R3

Uλx ·∇Uλx2
i =

3
∑

k=1

∫

R3

Uλxk
∂

∂xk
Uλx2

i

=
1

2

3
∑

k=1

∫

R3

xk
∂

∂xk

(

U2
λ

)

x2
i = −

1

2

3
∑

k=1

∫

R3

∂

∂xk

(

xkx
2
i

)

U2
λ

= −
1

2

3
∑

k=1

∫

R3

(

x2
i + 2xixkδik

)

U2
λ = −

5

2

∫

R3

x2
i U

2
λ ,

we get

∫

R3

R0Uλ < HessW (x0)x, x >= −
1

2

3
∑

i=1

ai

∫

R3

U2
λx2

i = −
1

2
∆W (x0)

∫

R3

U2
λx2

i .

(4.13)
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On the other hand
∫

R3

R0
(

|x|−1 ∗ U2
λ

)

Uλ =
3

4

∫

R3

(

|x|−1 ∗ U2
λ

)

U2
λ+

1

2

∫

R3

(

|x|−1 ∗ U2
λ

)

Uλx·∇Uλ.

Remarking that
∫

R3

(

|x|−1 ∗ U2
λ

)

Uλx ·∇Uλ =
3

∑

k=1

∫

R3

(

|x|−1 ∗ U2
λ

)

Uλxk
∂

∂xk
Uλ

=
1

2

3
∑

k=1

∫

R3

(

|x|−1 ∗ U2
λ

)

xk
∂

∂xk
(U2

λ) = −
1

2

3
∑

k=1

∫

R3

∂

∂xk

[(

|x|−1 ∗ U2
λ

)

xk

]

U2
λ

= −
3

2

∫

R3

(

|x|−1 ∗ U2
λ

)

U2
λ −

1

2

3
∑

k=1

∫

R3

∂

∂xk

[(

|x|−1 ∗ U2
λ

)]

xkU
2
λ

= −
3

2

∫

R3

(

|x|−1 ∗ U2
λ

)

U2
λ −

3
∑

k=1

∫

R3

(

|x|−1 ∗ Uλ
∂

∂xk
Uλ

)

xkU
2
λ

= −
3

2

∫

R3

(

|x|−1 ∗ U2
λ

)

U2
λ −

∫

R3

(

|x|−1 ∗ Uλ∇Uλ

)

· xU2
λ ,

we obtain
∫

R3

R0
(

|x|−1 ∗ U2
λ

)

Uλ = −
1

2

∫

R3

(

|x|−1 ∗ Uλ∇Uλ

)

· xU2
λ . (4.14)

Finally, substituting (4.13) and (4.14) in (4.12), we obtain the following
expression for D(ω) :

D(ω) =
1

[W (x0) + ω]2
ϵ2∆W (x0)

∫

R3

U2
λx2

i

+
1

2 [W (x0) + ω]2
ϵ2K(x0)

2
∫

R3

(

|x|−1 ∗ Uλ∇Uλ

)

· xU2
λ + o(ϵ2)

= ϵ2
[

∆W (x0)C1 + K(x0)
2C2

]

+ o(ϵ2),

where

C1 :=
1

[W (x0) + ω]2

∫

R3

U2
λx2

i = λ
4

p−1
−9

∫

R3

U2
1 x2

i > 0,

and

C2 :=
1

2

1

[W (x0) + ω]2

∫

R3

(

|x|−1 ∗ Uλ∇Uλ

)

· xU2
λ

=
1

2
λ

8
p−1

−9
∫

R3

(

|x|−1 ∗ U1∇U1
)

· xU2
1 .
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The conclusion follows by taking

C := −
1

2

∫

R3

(

|x|−1 ∗ U1∇U1
)

· xU2
1

∫

R3 U2
1 xi

,

and recalling that λ2 = W (x0) + ω. Let us observe that the sign of the
constant C is positive. Indeed, we can prove that

∫

R3

(

|x|−1 ∗ U1∇U1
)

· xU2
1 < 0,

in the following way. For k = 1, 2, 3, we define the function

gk(x) := |x|−1 ∗ U1
∂

∂xk
U1 =

∫

R3

U1(y) ∂
∂xk

U1(y)

|x − y|
dy.

Then
∫

R3

(

|x|−1 ∗ U1∇U1
)

· xU2
1 =

3
∑

k=1

∫

R3

gk(x)xkU
2
1 .

Now, we show that
{

gk(x) < 0 if xk > 0,
gk(x) > 0 if xk < 0.

Let x ∈ R3 and k = 1, 2, 3 be fixed and assume that xk > 0. We define two
half-spaces by Γ+ := {y ∈ R3 : yk > 0}, Γ− := {y ∈ R3 : yk < 0}. Since U1

is radially decreasing, we clearly have

U1(y)
∂

∂xk
U1(y) < 0 for y ∈ Γ+ and U1(y)

∂

∂xk
U1(y) > 0 for y ∈ Γ−. (4.15)

For y ∈ R3, we denote by ỹ the reflection of y with respect to the hyperplane
{z ∈ R3 : zk = 0}. Since x ∈ Γ+, it is easy to see that for all y ∈ Γ+ we have

∣

∣

∣

U1(ỹ) ∂
∂xk

U1(ỹ)

|x − ỹ|

∣

∣

∣
<

U1(y) ∂
∂xk

U1(y)

|x − y|
.

Consequently,

∣

∣

∣

∫

Γ−

U1(y) ∂
∂xk

U1(y)

|x − y|
dy

∣

∣

∣
<

∫

Γ+

U1(y) ∂
∂xk

U1(y)

|x − y|
.

Combined with (4.15), this implies

gk(x) =

∫

R3

U1(y) ∂
∂xk

U1(y)

|x − y|
dy < 0.

The case xk < 0 follows from similar arguments, hence the conclusion. "
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5. Conclusion

From Proposition 3.2 and Proposition 3.3 it follows that Lϵ has m +
1 negative eigenvalues and no zero eigenvalue, where m is the number of
negative eigenvalues of the matrix HessW (x0). In particular m = 0 if x0 is
a local minimum, while 1 ≤ m ≤ 3 otherwise. Hence, indicating by n(Lϵ)
the number of negative eigenvalues of Lϵ, it follows that

n(Lϵ) =

{

1 if x0 is a minimum for W,
m + 1 ≥ 2 otherwise .

Moreover, we define

p(D) :=

{

0 if D(ω) < 0,
1 if D(ω) > 0.

Proposition 4.1 implies that for p ̸= 1 + 4
3

p(D) =

{

0 if p > 1 + 4
3 ,

1 if p < 1 + 4
3 ;

while for p = 1 + 4
3 it follows by Proposition 4.2 that

p(D) =
1

2

(

1 +
∆W (x0) − K(x0)2 [W (x0) + ω]

2
p−1 C

∣

∣∆W (x0) − K(x0)2 [W (x0) + ω]
2

p−1 C
∣

∣

)

.

Combining these results, by the orbital stability criteria of [22, 23], we obtain
Theorem 1, Theorem 2 and Theorem 3 respectively.
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