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Introduction

ive + Au+ g(|u*)u=0
(NLS) _ u:R; xRS = C
ult:O = Up

(A0) (regular) g € C*((0,+o0),R)

(A1) (superlinear) g(0) =0, lim sg’(s) =0

5—0
(A2) (H'-subcritical) 3p € (1,2* —1) s.t. }s2g’(52)‘ <sP (s> 1)

(A3) (focusing) Jsg s.t. F(sp) > 523; F(z) = /IZl g(s2)sds.
0



Introduction
Cauchy Problem

(NLS) ius 4+ Au+ g(Jul*)u=0

Proposition

(NLS) is locally well-posed in H' under (A0)-(A3), i.e. there exists
a unique maximal solution u € C((—T,, T*), H').

Conserved Quantities

( 1
E(u) :”VUH%z—/ F(u)dx (Energy)
2 -
1
M(u) :§||U||%2 (Mass)
P(u) zllm/ Viudx (Momentum)
\ 2 Rd

Blow Up Alternative : If T* < +oo, then Iin% lu(t)|| g = +o0
t— T




Introduction

Large Time Behavior - Heuristic

u solution of (NLS) ius + Au+ g(|u]*)u=0

3 possible behaviors at large time

@ Scattering u(t) ~ e "ty as t — +oo

@ Focusing/Blow Up T < +0

@ Soliton fixed profile in a moving frame

— Solitons Resolution Conjecture

Modest Goal
Study solutions of NLS composed of several solitons




Introduction

Solitons

Definition of a soliton

Take a frequency w > 0, a speed v € R, an initial phase v € R,
an initial position xg € RY and a bound state solution ® € H! to

(SNLS) —Ad +wd — g(|®)d=0, deH.

A soliton is a solution of (NLS) traveling on the line x = xp + vt
and given by

R(t,x) := &(x — vt — xo)e"(%"'xf%l"‘zﬂr‘“””).




Introduction
Bound states

(SNLS) —A® +wd —g(|o)d =0, PdeH

Proposition

o (Ground State) There exists a solution® Q of (SNLS), which
minimizes the action S, i.e.

S(Q) = min{S(w)|w sol of (SNLS)}

where S(w) 1= E(w) + wM(w).
o (Excited States) If d > 2, there exists infinitely many other
solutions to (SNLS)
@ (Exponential Decay) Any solution ® to (SNLS) verifies
e
90| S & F

unique if g(|ul*)u = |uPtu
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Dynamical properties of the solitons

In the case g(|u|?)u = |u[P~tu.
@ with ground states
o 1< p<1+4%: stability (Cazenave-Lions, 1982)
o 1+ % < p: instability (Berestycki-Cazenave, 1981; Weinstein,
1983)
@ with excited states
o 1< p<1-+2: partial results of instability (Grillakis 1990,
Mizumachi 2007, Chang, Gustafson, Nakanishi et Tsai 2007).
o 1+ 4 < p: instability for real and radial excited states
(Grillakis 1988, Jones 1988) or for some vortices (Mizumachi
2005).



Introduction
Set ans sum of solitons

Definition of a set of solitons

A set of solitons is the data of (N,wj, vj, xj,vj, ®j), where N € N,
N >1, and for j =1,..., N, we have w; > 0, x;, v; € RY with

vj # vk if j # k, 7 € R, and ®; is a sol of (SNLS) (with w; instead
of w).

Given a set of solitons, we define the sum of solitons

N
R(t,x) = Ri(t,x),
j=1

(Lo L [vi 2ttty
where Rj(t,x) == ®;(x — vjt — x;)e/(2¥i>x—alvlFttwitt),

NB : R is not a solution to (NLS)
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Multi-solitons

Definition of a multi-soliton

A multisoliton is a solution u of (NLS) for which there exist Ty and
R defined as above such that u exists on [Ty, +00) and

im_ () = ()]l =0.

v

Natural questions about multisolitons

@ Existence

@ Uniqueness
@ Stability




Existence of multi-solitons

SOVIET PHYSICS JETP VOLUME 34, NUMBER 1 JANUARY 1972
EXACT THEORY OF TWO-DIMENSIONAL SELF-FOCUSING AND ONE-

DIMENSIONAL SELF-MODULATION OF WAVES IN NONLINEAR MEDIA
y. E. ZAKHAROV and A. B. SHABAT

Institute of Hydrodynamics, Siberian Division, US.S.R. Academy of Sciences

Submitted December 22, 1970
2. Eksp. Teor. Fiz. 83, 118-134 (uly, 1971)

1on 138/3t « by + K130 =0, which deseribes plane self-focusing and
T

Theorem (Zakharov and Shabat 1972) A

If d = 2y =
1, g(|u|?)u = |u|?u (completely integrable case), then for

any set of solitons (N, w;
Vi, Xi, i, ®; . .
(NLS) such that ,Wj, Vj, Xj,Vj, ®;), there exists a solution u of

@ u exists on R

o . .
there is an explicit construction for u

u(t) — R(t) = 0as t — —oo .
u(t) — R(t) = 0 as t = +o0, where R ~ R with (%;,%;).

1t s convenient to assign the variable ¢ the meaning ol Guan . y
Hime. ation. Ity case constren 2 L Loy
| : tor 1, was played by the one-dimensio
T the present paper we shall iavestigate £4. @witn D operat
<> 0. As applied to Eq. (1), this means onmb‘:— o. U Schrodinger operior ey revealed the :““:;’"“‘
o thon, Eq. e ationary two- e mlayed by the particular solutions of the KDY #152-
- tio conditon, Eq. 0) describes sttt 0 T P etitons, which are directly cguaected with £
was

Smensional self-focusing and the assoclated transverse

dimensiona . 5% e monochromat e isorete spectram of the operator L, name
jshed that the asymptotic state

c . ginite set of solif

estab)




Existence of multi-solitons

Comman. Math. Phys. 129, 223240 {1990)

y k Blow-up Points
itical Nonlinearity

Construction of Solutions ?vith I'Exa:‘tl
for the Schridinger Equation with Cr

75230 Paris,

Frank Merle )
Centre de Mathématiques Appliquées, E
Ceder 05, France

~Merle 1990

Let d > 1 and take a set of solitons (N,wj, v}, X;, ¥j, ®;).

Assume g(|u|?)u = |u|*9u (L?-critical case) and a large
frequencies assumption.

Then there exists Top > 0 and a multisoliton solution u of (NLS) s.t.

lim_u(t) = R(2)[| . = 0.

cole Normale Supérieure, 45, rae d'Ulm, ¥

t

A

;vig‘tﬂ: Th
Remark

It is the dual version of the result of existence of a multiple blow-up
points solutions (by conformal invariance).

Ginibre and Velo [4, 51, Kato {71 Furthermore, we nive vesps = N



Existence of multi-solitons
2006

Theorem (Martel-Merle 2006)

Let d > 1 and take a set of solitons (N,wj, vj, X;, ¥j, ®;).
Assume g(|u|?)u verifies a stability assumption (L?-subcritical) and
(®;) are ground states.
Then there exist Tp € R and a solution u of (NLS) on [Tg, +00)
S.t.

lu(t) = R(t)[m < €7 V2" on [To, +00)

where o > 0 and

Ve == min{|v; — vk|,j, k =1,...,N,j # k} (minimal relative speed)

wy = min{wj,j = 1,..., N} (minimal frequency)




Existence of multi-solitons

REV. MAT. IBEROAMERICANA 27

e T
‘\ Construction of multi-sol

‘ for the L-supercritical gKdVv |

(2011), no. 1, 273-302

—|

. . \
iton solutions \‘

\
‘ and NLS equations ‘

Raphagl Cote, Yvan Martel and Frank Merle

Theorem (Coéte-Martel-Merle 2011)
'I&es’; d> 1(‘an|<i)take a set of solitons (N, wj, vj, xj, vj, ®;)
ume g(|ul?)u = |u|P~tu, p>1 ' (12 —supercriti
S ol p + 4/d (L—supercritical) and

Then there exist T .
ot 0 € R and a solution u of (NLS) on [Ty, +00)

t _ _
u(t) = R(t)[|pn < em V@t on [To, +00)
where a > 0 and

Vi = min{|v; — i,k = ]
w* - minguj . vk1|,J, k=1,..,N,j# k} (minimal relative speed)
x = ivJ —
iy ) sy N} (minimal frequency)

2000 Mathematics ation: 35Q51, 35Q53, 35Q55-
D quation, nonlincar Schrédinger




Existence of multi-solitons

sciencedirect.com P

MATHEMATIQUES

Available online at www.

ScienceDirect

J 7. Mah, Puses Appl. 96 (2011) 135166
ELSEVIER

muli-solitons in nonlinear Schrodinger

ioh-speed excited
High-sp equations

Raphag] Cote”, Stefan Le Coz™* %)

Theorem (Céte-L.C. 2011)

Let d > 1 and take a set of solitons (N, wj, vj, X;, vj, ®;).

Assume g is generic (satisfies (A0)-(A3)) and

(®;) are ground states or excited states.

There exists vy such that if v, > v (high relative speeds)

then there exist To € R and a solution u of (NLS) on [T, +00) s.t.

lu(t) = R(&)][x < =@V on [To, +00)

where o > 0 and

Ve i=min{|v; — v|,j,k =1,..., N,j # k} (minimal relative speed)

wy = min{wj,j = 1,..., N} (minimal frequency)




Existence of multi-solitons

Summary for existence

@ 1972 Zakharov and Shabat, integrable case

@ 1990 Merle, L2-critical case, high frequencies

@ 2006 Martel-Merle, L? subcritical with ground states

@ 2011 Cote-Martel-Merle, L? supercritical with ground states

@ 2011 Coéte-L.C., any nonlinearity, ground and excited states,
high speeds

Open problem
@ Small speeds for excited states




Existence of multi-solitons

Scheme of proof : Backward resolution of (NLS)

Take a set of solitons (N, wj, vj, x;,vj, ®;).
Take (T,) T 400 and (uj,) solutions to (NLS)
with final data u,(T,) = R(Tp).

Goal

@ Approximate Multisolitons. Show that for each n, uj, exists on
[To, Tn] with Ty independent of n

e Convergence. Show that (u,) converges to a multi-soliton

v
Tools

@ Uniform Estimates

@ Compactness Argument

N




Existence of multi-solitons

Proposition (Uniform Estimates)

There exists vy > 0 s.t. if v, > vy there exists Ty independent of n
s.t. for n large up, exist on [Ty, T,] and for all t € [Ty, T,]

lun(t) = R(£)[pa < e7 Vst

Proposition (Compactness)

There exists uy € H! s.t.

nﬂTOOHUn(To) —uoll2=0

Rk: wug will be the initial data of the multisoliton.



Existence of multi-solitons

Proof of the existence of a multisoliton

Assume the uniform estimates and the compactness result.
Take the solution u of (NLS) with at Ty initial data u(To) = wo.

Then for t > Ty
L2
un(t) —% u(t).
Hl

Therefore
lu(t) = R(t)ll 2 < lim infllun(t) — R(t)[] ;2 < €™ et

Hence v is a multi-soliton.



Existence of multi-solitons

Proof of Uniform Estimates - Scheme

A bootstrap argument
Energy control of one soliton up to L? directions
Localization procedure
Energy control of N-solitons up to L? directions

Control of the L2 directions



Existence of multi-solitons

The Bootstrap argument

Proposition (Bootstrap)

There exists vy > 0 s.t. if v, > vy there exists Ty independent of n
s.t. for n large u, exist on [Ty, Tp] and verifies:
for all t* € [To, T,), if for all t € [tT, T,] we have

(Bootstrap-1) un(t) — R(t)||p < e~ OVt

then for all t € [T, T,] we have

1
(Bootstrap-1/2) un(t) — R(t)]|pr < Ee—a\/wiv*t.




Existence of multi-solitons

Energy control of one soliton

Ro(t,X) = ¢0(X — Wt — XO) i(zvo Xﬁi‘V0|2t+wot+’yo)

Ro is a critical point of

2
50=E+<w +7| Z' >M+V0'P

Define Ho(t, w) := (S{(Ro)w, w).
Proposition (Coercivity)
There exist vg € N\ {0} and X}, ..., X;° € L? s.t. for all w € H!

o

2
IwllFi < Ho(t, w) + D (w. X5 (£))3:
k=1

where Xé‘( t)(x) = Xo (x — vot — x)e i(2vox—3|vo[2t+wot+0)




Existence of multi-solitons

Localization of the conservation laws - 1

For each j =1,..., N, we define a cut-off function ¢; :

Ca e Crhor (@

0



Existence of multi-solitons

Localization of the conservation laws - 2

and we set
E(eow) =5 [ [VwPos(ex)de— [ Flw)as(ex)de
Mew) = [ wPo(edx
Pi(t,w) = 2\s/R wVwaei(t,x)dx

5(6w) =6t w) + (w54 125) W) - - e )

Hi(t, w) = (S} (Ri(t))we;(t), w)



Existence of multi-solitons

Energy control for N solitons

For any t large enough

N Vi
lwall3n S H(Ewa) + DD (wa, X[ (1))3,

j=1I=1

where H(t,w) = ZJN:;l H;(t, w).




Existence of multi-solitons

Control of the linearized action

Take w, = u, — R and recall (Bootstrap-1)

IWa(t)l[pp < e Vet on [t To).

Control of the linearized action

1 _
Hlt.wn) S e o(wil) on [€ T

Almost conservation of the localized quantities

| \

For To large enough, we have on [tf, T,] and for any j

1 2 @ Vi
‘Mj(tv Wn)_IVIJ'(Tm Wn)|+|'Dj(t7 Wn)_Pj(Tm Wn)| S We 2 £

v

Key ingredient : exponential decay of the solitons.



Existence of multi-solitons

Control of the L2 directions

Recall that w, = u, — R and (Bootstrap-1):
lwa(£)[ g < e V&t on [¢F, T].
Then
i0¢wpn + Lw, + N (w,) = 0,
1d
2dt
It is easy to see that

[Wal[22 = (ILWn, Wn)2 + (iN (W), Wn)a.

. C .
(/['Wna Wn)2 < 7L||Wn‘|%2 , (IN(WH)7 Wn)2 = O(HWHH%-P)?

< Ce20v+t donc ||W,,||f2 < 205:\/* 20Vt

d 2
Then ‘EHWHHLJ




Existence of multi-solitons

Summary of the proof

e Backward resolution of (NLS)
@ Uniform estimates

e Energy control
e Localization procedure
o Deal with L[?-directions

o Compactness argument for the initial data



(In)stability

The notion of stability

If a solution of (NLS) starts close to a sum of solitons, then it

@ Orbital Stability: remains close for all time to the sum of
solitons, possibly modified by translations or phase shifts.

e Asymptotic Stability: converges as t — +00 to the sum of
solitons, possibly modified by translations or phase shifts.

e (Forward) Instability: leaves in finite time the neighborhood of
the sum of solitons, possibly modified by translations or phase
shifts.



(In)stability

Asymptotic st ability of N-soliton states of NITQ

A Soffer *
nd . Bofler COMMUNICATIONS IN PARTIAL DIF
Vol, 20, Nos. 7 & 8, pp. 105

1. Rodnianski, W, Schlag a FERENTIAL EQUATIONS

October 10 2003 11003, 2004
. Asymptotic Stability of Multi-soliton Solutions for
Abstract

- Nomfinear Schridinger Equations

ess of NLS solitons is

ifity and asymptotic cample
astiber of on-colliding

The
turbatior

Galina Perelman®

Perelman 1997,2004 /Rodnianski, Schlag, and Soffer 2003

If

o Flatness of the nonlinearity at 0
@ Spectral Assumptions (linear stability)
@ High relative speeds.

Then asym 2 -
ptotic stability of L o
norms. y of well-ordered multi-solitons in strong




(In)stability

STABILITY IN H' OF THE SUM OF K
SOLITARY WAVES FOR SOME NONLINEAR
SCHRODINGER EQUATIONS

YVAN MARTEL, FRANK MERLE, and TAI-PENG TSAL

Martel-Merle-Tsai 2006

If

@ Flatness of the nonlinearity at 0
@ Orbital Stability of each solitons
@ High relative speeds.

The i ili
n orbital stability of well-ordered multi-solitons in the energy

space H!
2. PTOPERIEs v e s
3. Monolonicity propeny Tor the NLS equadions . .« -« oo oo o070 - v
o Proof of the stabiliy result e 5
5. The two- and three-dimensional cases: Proof of Theorem2 . - -« v -+ 444
Appendices - - e 4SS

T ole of Lo 24 and Corolary 3+« + oo 455
T mositivity of quadratic forms .« — e 458



(In)stability

A new construction of a multisoliton...

Theoreme (Cote-L.C.)

Take a € R and a sum of solitons R = ZJN:1 R;.

Assume g € C* and one soliton (e.g. Ry ) is linearly unstable , i.e.
there exists an eigenvalue A € C with 3(\) > 0 of the linearization
L of (NLS) around R;. Then there exists v, > 0 s.t. if v, > v,
(large relative speeds) there exist Tg and u solution of (NLS) on
[To,+00) s.t. forall t > Ty

u(t) — R(t) — aY(t)||n < Ce 2RV

where Y is of the form

Y(t) = e RV (cos(S(N) 1) Y1 + sin(S(A)t) Ya).




(In)stability

. which turns out to be unstable

Corollary (Orbital instability of the multisoliton)

Same hypotheses.

There exists € > 0, such that for all n € N\ {0} and for all T € R
the following holds. There exists /,,J, e R, T </, < J, and a
solution w, € C([n, Jn], HY(R9)) to (NLS) such that

lim _{{wn(ln) = R(In)l| 2 =0,

n—-+o00

N
Wi (Jn) — Z d;(x — yj)ei(%Vj-ij)
i=1

> €.

inf >
yjeRd7ﬂ16R7
j=1,..N

L2




(In)stability

Proof of the Theorem

By fixed point around a good approximation of w.

Proposition

Take Ng € N and a € R. Then there exists
Who € C([0, +0), #) s.t. U= R+ W™No is a solution to
(NLS) up to an order O(e—PNo+1)t) when t — +o0, i.e.

Ur + AU+ g(|UP)U = Err = O(e=PNoF1)t)

Define the map
+oo |

wis W(w) = —i / e AET(F((U+w)(T))—F(U(T))—Err(T))dT.
t

Fixed point argument in

sup eMF |y (1)|| e < B}.

X-‘,’-07N0(B) = {W € C((To,+0o0), H?)
t>To




(In)stability

Construction of the profile - preliminaries

Inspired by works of Duyckaerts, Merle, Roudenko.
Look at the linearization of (NLS) around e/“f®(x).
If uis a solution of (NLS) and u = e/ “{(®(x) + w), then v is a
solution of
we + Lew = Ac(w),

where

Lew = —iAw + iww — idf (®).w,
Mc(w) = if (P + w) — if(®) — idf (P).w,



(In)stability

Construction of the profil

Proposition

Take Ng € N and a € R. Then there exists
Whe ¢ C>([0,4+00), ) s.t. when t — +o0,

WMo 4 Lo WMo — ffa (W) + O(e=P(No 1)ty

Separate L¢ into real and imaginary parts:

i WR\ J A—w+h WR
R? wy o -A+w-—1»b —J wy )

with | and J real valued potentials



(In)stability

Construction of the profile - order 1

Complexify Lg2 into L2

@ There exists an eigenvalue A = p + i € C of Lg2 with
maximal real part p > 0.
7+
@ Set Z = (Z) an eigenvector and denote Y1 = R(2),
Y, = 3(2).
@ Denote Y(t) = e P*(cos(At) Y1 + sin(0t) Y2).

Then atY + LR2Y =0.



(In)stability

Construction of the profile - order N

e Look for WMo in the form

Ee_”kt (Z x) cos(jOt) + B k(x )sin(j@t))

e Remark that

Mp2(W Ze‘”ptz; ( «(x) cos(jOt) + Bj . (x) sin(j@t)>+HOT
j

e In addition

No

k
(OWHLgaW) = Z e Pkt ( (Lr2Aj k +JOB) k — kpAj k) cos(jot)
k=1 =0

+ (LR2Bj,k —jQALk - kijﬂk)sin(th)> .



(In)stability

Construction of the profile - order N

e Therefore to find a satisfying W™ it is enought to solve for k > 2

{ L2 Ajk + 0Bk — kpAjk = Aj k,
LRz Bj,k —j@Aj’k - k,OBj,k = Bj,k»

which is possible because A is of maximal real part.



Open problems

o Existence for small speeds for excited states
@ Better stability/instability results

@ Uniqueness/Classification

Other equations

o KdV : Martel, Merle, Mufioz, Combet

@ Camassa-Holm : El Dika, Molinet

Schrédinger systems : lanni, L.C.
Hartree : Krieger, Martel, Raphaél

°
°
@ GP : Béthuel, Gravejat, Smets
°

etc.




