Parametric Curves
duration : 30 minutes

No documents, no calculator, no mobile phone.

Exercise 1 (20 points). We consider the parametric curve defined by

$$
\left\{\begin{array}{l}
x(t)=3 \cos (t)+\cos (3 t) \\
y(t)=3 \sin (t)-\sin (3 t)
\end{array}\right.
$$

1. (1 point) For which values of t are $x(t)$ and $y(t)$ well defined?

Solution: The curve is defined for all $t \in \mathbb{R}$.
2. (1 point) What is the minimal period of the curve?

Solution: The functions sin and cos are periodic with minimal period 2π, therefore the functions $t \mapsto \cos (3 t), t \mapsto \sin (3 t)$ are periodic with minimial period $\frac{2 \pi}{3}$. The least common multiple of 2π and $\frac{2 \pi}{3}$ is 2π, therefore x et y are periodic with minimal period 2π.
3. (3 points) Calculate $x(-t)$ and $y(-t)$ in terms of $x(t)$ and $y(t)$.

What is the corresponding symmetry for the curve?

Solution: Since $\cos (-t)=\cos (t)$ and $\sin (-t)=\sin (t)$ for any $t \in \mathbb{R}$, we have

$$
x(-t)=x(t), \quad y(-t)=-y(t)
$$

The curve is therefore symmetric with respect to the x-axis.
4. (3 points) Same question with $x(\pi-t)$ and $y(\pi-t)$.

Solution: Since $\cos (\pi-t)=-\cos (t)$ and $\sin (\pi-t)=\sin (t)$ for any $t \in \mathbb{R}$ and the functions sin et cos are periodic with period 2π, we have

$$
\cos (3(\pi-t))=\cos (\pi-3 t+2 \pi)=\cos (\pi-3 t)=-\cos (3 t), \quad \sin (3(\pi-t))=\sin (3 t)
$$

and therefore

$$
x(\pi-t)=-x(t), \quad y(\pi-t)=y(t)
$$

Thus, the curve is symmetric with respect to the y-axis.
5. (3 points) Same question with $x(\pi+t)$ and $y(\pi+t)$.

Solution: Since $\cos (\pi+t)=-\cos (t)$ and $\sin (\pi+t)=-\sin (t)$ for any $t \in \mathbb{R}$ and the functions sin et cos are periodic with period 2π, we have

$$
\cos (3(\pi+t))=\cos (\pi+3 t+2 \pi)=\cos (\pi+3 t)=-\cos (3 t), \quad \sin (3(\pi-t))=-\sin (3 t)
$$

and therefore

$$
x(\pi-t)=-x(t), \quad y(\pi-t)=-y(t)
$$

Thus, the curve is symmetric with respect to the origin.
6. (1 point) Show that we can restrict the domain of study to $\left[0, \frac{\pi}{2}\right]$.

Solution: Since the curve is periodic, we can restrict the domain of study to $[-\pi, \pi]$. From 3, we can restrict further to $[0, \pi]$ and from 4 we can restrict to $\left[0, \frac{\pi}{2}\right]$. No further restriction occurs from 5.
7. (2 points) After some simplifications, the derivatives of x and y are given by

$$
x^{\prime}(t)=-12 \sin (t) \cos ^{2}(t), \quad y^{\prime}(t)=12 \cos (t) \sin ^{2}(t),
$$

Find the values of $t \in\left[0, \frac{\pi}{2}\right]$ such that $x^{\prime}(t)=0$ or $y^{\prime}(t)=0$.
Solution: For $t \in\left[0, \frac{\pi}{2}\right]$ we have $x^{\prime}(t)=0$ when $t=0$ and $t=\frac{\pi}{2}$ and $y^{\prime}(t)=0$ also when $t=0$ and $t=\frac{\pi}{2}$.
8. (3 points) Construct the tabeau de variation of the curve (do not forget the last line for the slopes of the tangents).

Solution: The tabeau de variation is the following

t	0		$\frac{\pi}{2}$
$x^{\prime}(t)$	\vdots	-	\vdots
$x(t)$	4		\vdots
$y^{\prime}(t)$	\vdots	+	\vdots
$y(t)$	0		\vdots
$\frac{y^{\prime}(t)}{x^{\prime}(t)}$	0		$-\infty$

Notice that

$$
\frac{y^{\prime}(t)}{x^{\prime}(t)}=-\frac{\sin (t)}{\cos (t)}=-\tan (t) .
$$

9. (3 points) Sketch the curve.

Solution:

