

Parametric Curves duration : 30 minutes No documents, no calculator, no mobile phone.

Exercise 1 (20 points). We consider the parametric curve defined by

$$\begin{cases} x(t) = 3\cos(t) + \cos(3t), \\ y(t) = 3\sin(t) - \sin(3t). \end{cases}$$

1. (1 point) For which values of t are x(t) and y(t) well defined?

Solution: The curve is defined for all $t \in \mathbb{R}$.

2. (1 point) What is the minimal period of the curve?

Solution: The functions sin and cos are periodic with minimal period 2π , therefore the functions $t \mapsto \cos(3t), t \mapsto \sin(3t)$ are periodic with minimal period $\frac{2\pi}{3}$. The least common multiple of 2π and $\frac{2\pi}{3}$ is 2π , therefore x et y are periodic with minimal period 2π .

3. (3 points) Calculate x(-t) and y(-t) in terms of x(t) and y(t). What is the corresponding symmetry for the curve?

Solution: Since $\cos(-t) = \cos(t)$ and $\sin(-t) = \sin(t)$ for any $t \in \mathbb{R}$, we have

 $x(-t) = x(t), \quad y(-t) = -y(t).$

The curve is therefore symmetric with respect to the x-axis.

4. (3 points) Same question with $x(\pi - t)$ and $y(\pi - t)$.

Solution: Since $\cos(\pi - t) = -\cos(t)$ and $\sin(\pi - t) = \sin(t)$ for any $t \in \mathbb{R}$ and the functions sin et cos are periodic with period 2π , we have

$$\cos(3(\pi - t)) = \cos(\pi - 3t + 2\pi) = \cos(\pi - 3t) = -\cos(3t), \quad \sin(3(\pi - t)) = \sin(3t),$$

and therefore

 $x(\pi - t) = -x(t), \quad y(\pi - t) = y(t).$

Thus, the curve is symmetric with respect to the y-axis.

5. (3 points) Same question with $x(\pi + t)$ and $y(\pi + t)$.

Solution: Since $\cos(\pi + t) = -\cos(t)$ and $\sin(\pi + t) = -\sin(t)$ for any $t \in \mathbb{R}$ and the functions sin et cos are periodic with period 2π , we have

 $\cos(3(\pi+t)) = \cos(\pi+3t+2\pi) = \cos(\pi+3t) = -\cos(3t), \quad \sin(3(\pi-t)) = -\sin(3t),$

and therefore

 $x(\pi-t)=-x(t),\quad y(\pi-t)=-y(t).$

Thus, the curve is symmetric with respect to the origin.

6. (1 point) Show that we can restrict the domain of study to $\left[0, \frac{\pi}{2}\right]$.

Solution: Since the curve is periodic, we can restrict the domain of study to $[-\pi, \pi]$. From 3, we can restrict further to $[0, \pi]$ and from 4 we can restrict to $[0, \frac{\pi}{2}]$. No further restriction occurs from 5.

7. (2 points) After some simplifications, the derivatives of x and y are given by

$$x'(t) = -12\sin(t)\cos^2(t), \quad y'(t) = 12\cos(t)\sin^2(t),$$

Find the values of $t \in \left[0, \frac{\pi}{2}\right]$ such that x'(t) = 0 or y'(t) = 0.

Solution: For $t \in [0, \frac{\pi}{2}]$ we have x'(t) = 0 when t = 0 and $t = \frac{\pi}{2}$ and y'(t) = 0 also when t = 0 and $t = \frac{\pi}{2}$.

8. (3 points) Construct the *tabeau de variation* of the curve (do not forget the last line for the slopes of the tangents).

Solution: The <i>tabeau de variation</i> is the following				
	t	0		$\frac{\pi}{2}$
	x'(t)	0	_	0
	x(t)	4 —		→ 0
	y'(t)	0	+	0
	y(t)	0 —		→ 4
	$\frac{y'(t)}{x'(t)}$	0		$-\infty$
Notice that	$\frac{y'(t)}{x'(t)} =$	$-\frac{\sin(t)}{\cos(t)}$	$= - \tan \theta$	n(t).

9. (3 points) Sketch the curve.

