Parametric curves, Polar curves

Exercise 1 (A parametric curve). We consider the following parametric curve

$$
\begin{aligned}
\gamma:[0, \pi] & \rightarrow \mathbb{R}^{2} \\
t & \mapsto(x(t), y(t))=(2 \cos (t), 3 \sin (t)) .
\end{aligned}
$$

1. By evaluating $\gamma(t)$ for a certain number of well-chosen values of t, give a preliminary sketch of the curve parametrized by γ.
2. Show that the function $t \mapsto 9 x(t)^{2}+4 y(t)^{2}$ is constant.
3. What curve is represented by γ ?

Exercise 2 (Folium). We consider the parametric curve defined by the following equations

$$
\left\{\begin{array}{l}
x(t)=\sin (2 t), \\
y(t)=\sin (3 t),
\end{array} \quad t \in \mathbb{R} .\right.
$$

1. Using the symmetry properties of the curve, show that we can restrict the domain of study first to $t \in[-\pi, \pi]$, then to $t \in[0, \pi]$.
2. Express $x(\pi-t)$ and $y(\pi-t)$ in terms of $x(t)$ and $y(t)$. Show that the curve has an additional symmetry and that we can restrict the domain of study to $t \in\left[0, \frac{\pi}{2}\right]$.
3. Construct the tableau de variation ${ }^{1}$ of x and y on $\left[0, \frac{\pi}{2}\right]$. Indicate the values of $x, x^{\prime}, y, y^{\prime}$ at $t=0, \frac{\pi}{6}, \frac{\pi}{4}$, and $\frac{\pi}{2}$.
4. Sketch the curve first for $t \in\left[0, \frac{\pi}{2}\right]$, then sketch the whole curve.

Exercise 3 (Astroid). We consider the parametric curve defined by the following equations

$$
\left\{\begin{array}{l}
x(t)=\cos ^{3}(t), \\
y(t)=\sin ^{3}(t),
\end{array} \quad t \in \mathbb{R} .\right.
$$

1. Using the symmetry properties of the curve, restrict the domain of study of the curve to an interval of \mathbb{R}.
2. Construct the tableau de variation for x and y.
3. Give the coordinates of the curve when $t=0, \frac{\pi}{2}, \pi$ and give the direction vectors of the tangents at these points.
4. Sketch the curve.
5. Calculate the length and curvature of the astroid.

Exercise 4 (Infinite branches). We consider the parametric curve defined by the following equations

$$
\left\{\begin{array}{l}
x(t)=\frac{1}{t(t-1)}, \quad t \in \mathbb{R} . \\
y(t)=\frac{t^{2}}{1-t},
\end{array}\right.
$$

1. Express $x\left(\frac{1}{t}\right)$ and $y\left(\frac{1}{t}\right)$ in terms of $x(t)$ and $y(t)$. Show that the curve has a symmetry and that we can restrict the domain of study to $I=(-1,1) \backslash\{0\}$.
2. Construct the tableau de variation on I.
3. Study the infinite branches on I.
4. Sketch the curve.

Exercise 5. We consider the polar curve defined by

$$
\rho(\theta)=\sin (3 \theta), \quad \theta \in \mathbb{R} .
$$

1. What is the period of ρ ?
2. Express $\rho(-\theta)$ and $\rho(\pi-\theta)$ in terms of $\rho(\theta)$. What are the symmetries of the curve? Show that we can restrict the domain of study to $\theta \in\left[0, \frac{\pi}{3}\right]$.
3. Construct the tableau de variation on I. Give the equations for the tangents at the curve when $\theta=0$ and $\theta=\frac{\pi}{3}$.
4. Sketch the curve.

Exercise 6. Study the polar curves defined for $\theta \in \mathbb{R}$ by
(1) $\rho(\theta)=\cos (\theta)+2$,
(2) $\rho(\theta)=\cos ^{2}\left(\frac{\theta}{3}\right)$,
(3) $\rho(\theta)=1+\sin (3 \theta)$.

[^0] expression in this document.

[^0]: 1. The tableau de variation is a specifically French concept. For lack of an appropriate translation, we have chosen to keep the French
