

MATHS180-102

Intructor: Stefan LE COZ

November 28, 2014

```
Common webpage:
http://www.math.ubc.ca/~andrewr/maths100180/maths100_180_
common.html
Section webpage:
http://www.math.univ-toulouse.fr/~slecoz/MATHS180-102.html
```

Survival Guide

- Come to class and be active: take notes, participate, ask questions !
- Nevertheless: Most of the work will be done outside the class
 - Study the textbook
 - Do WeBWorK assignements
 - Do the suggested homework problems
- Seek for help:
 - Discuss with your classmates
 - Go to the Maths Learning Centre (see common webpage for infos)
 - Look at AMS tutoring
 - See the Mathematics Department website (lots of ressources)
 - Come to Office hours

Calculus is the mathematical study of change

Gottfried Leibniz (1646-1716) and Isaac Newton (1643-1727)

- 2. Limits and Derivatives
- 2.1 The Tangent and Velocity Problems
- 2.2 The limit of a function
- 2.3 Calculating limits using the limits laws
- 2.5 Continuity
- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The derivative as a function
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

2.1 The Tangent and Velocity Problems

- 2.2 The limit of a function
- 2.3 Calculating limits using the limits laws
- 2.5 Continuity
- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The derivative as a function
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

The Tangent Problem

Problem

Given the graph of a function, find the equation of the tangent at a point on the graph.

The Velocity Problem

Problem

Given the position at each time of an object moving on a straight line, find the *instantaneous* speed of the object at a given time.

- 2.1 The Tangent and Velocity Problems
- 2.2 The limit of a function
- 2.3 Calculating limits using the limits laws
- 2.5 Continuity
- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The derivative as a function
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

Definition

Suppose that f is a function defined close to a number a. Then we write

 $\lim_{x\to a} f(x) = L$

and say "the limit of f(x), as x approaches a, equals L" if we can make the values of f(x) arbitrarily close to L by taking x sufficiently close to a (but different from a) Limits on the left and on the right

Definition (limit on the left) We write

$$\lim_{x\to a^-} f(x) = L$$

and say "the limit of f(x), as x approaches a from the left, equals L" if we can make the values of f(x) arbitrarily close to L by taking x (different from a) sufficiently close to a and less than a.

Remark Another notation: $\lim_{\substack{x \to a \\ x < a}} f(x) = L$

Remark (limit on the right) *We define*

$$\lim_{x\to a^+} f(x) = L$$

in a similar manner

Infinite Limits

Definition (Infinite limit)

We write

$$\lim_{x\to a} f(x) = \infty$$

and if we can make the values of f(x) arbitrarily large by taking x (different from a) sufficiently close to a.

```
Remark (negative infinite limit)
We say
```

$$\lim_{x\to a}f(x)=-\infty$$

if we can make the values of f(x) arbitrarily small by taking x (different from a) sufficiently close to a.

Remarks

Remark (Uniqueness of the limit) A function can have only one limit at a point.

Remark We have

$$\lim_{x\to a} f(x) = L$$

if and only the limits on the left and on the right exist and

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$$

- 2.1 The Tangent and Velocity Problems
- 2.2 The limit of a function
- 2.3 Calculating limits using the limits laws
- 2.5 Continuity
- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The derivative as a function
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

Limit laws

Limit laws

Let c be a constant. Assume that $\lim_{x\to a} f(x)$, and $\lim_{x\to a} g(x)$ exist. Then

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$$

Direct substitution property

Direct substitution property

If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x\to a}f(x)=f(a).$$

Comparison of limits and the Squeeze Theorem

Theorem (Comparison Theorem) If $f(x) \le g(x)$ for x close to a (but different from a), then, provided the limits exist, we have

$$\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x),$$

Theorem (The Squeeze Theorem or the Sandwich Theorem) If for x close to a (but different from a)

$$f(x) \le g(x) \le h(x)$$
, and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$,

then

$$\lim_{x\to a}g(x)=L.$$

A useful Substitution Property

Theorem (Substitution Property)

If f(x) = g(x) for x close to a (but different from a), then, provided the limit exist, we have

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x),$$

- 2.1 The Tangent and Velocity Problems
- 2.2 The limit of a function
- 2.3 Calculating limits using the limits laws

2.5 Continuity

- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The derivative as a function
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

Continuity

Definition A function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

Definition

A function f is continuous on an interval I if it is continuous at every point of I.

Operations and classical functions

Proposition

Take two functions f and g both continuous at a number a and c a constant. Then the following functions are also continuous at a:

$$f+g$$
, $f \cdot g$, $c \cdot f$, $\frac{f}{g}$ if $g(a) \neq 0$.

Theorem

The following classical types of functions are continuous at every number in their domain:

polynomials, rational functions, root functions, trigonometric functions, inverse trigonometric functions, exponential functions, logarithmic functions.

Intermediate Value Theorem (IVT)

Theorem

Assume that f is continuous on [a, b] and $f(a) \neq f(b)$. Let N be any number between f(a) and f(b). Then there exists c in [a, b]such that f(c) = N.

Composition

Theorem Assume that f is continuous at b and $\lim_{x\to a} g(x) = b$. Then

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(b)$$

Theorem

Assume that f is continuous at b, g is continuous at a and g(a) = b. Then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

- 2.1 The Tangent and Velocity Problems
- 2.2 The limit of a function
- 2.3 Calculating limits using the limits laws
- 2.5 Continuity
- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The derivative as a function
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

Definition Let f be defined on $(a, +\infty)$. We say that

$$\lim_{x\to+\infty}f(x)=L$$

if the value of f(x) becomes arbitrarily close to L as x is taken sufficiently large.

Remark We define $\lim_{x\to -\infty} f(x) = L$ in a similar way.

Definition

The line y = L is called an horizontal asymptote for the graph of f if either

$$\lim_{x \to +\infty} f(x) = L, \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L.$$

Important rule

Let r be a positive rational number, then

$$\lim_{x\to+\infty}\frac{1}{x^r}=0.$$

If x^r is defined for x negative, then

$$\lim_{x\to -\infty}\frac{1}{x^r}=0.$$

- 2.1 The Tangent and Velocity Problems
- 2.2 The limit of a function
- 2.3 Calculating limits using the limits laws
- 2.5 Continuity
- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The derivative as a function
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

Definition The derivative of a function f at a number a, denoted by f'(a) is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

We say that f is differentiable at a.

Remark

Equivalently, we have
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
.

- 2.1 The Tangent and Velocity Problems
- 2.2 The limit of a function
- 2.3 Calculating limits using the limits laws
- 2.5 Continuity
- 2.6 Limits at Infinity; Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8 The derivative as a function
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

Definition

Assume that f is differentiable at each point of an interval (a, b). Then the derivative f' is a function:

$$f':(a,b)
ightarrow\mathbb{R}$$

 $x\mapsto f'(x)$

Remark (Other notations) If y = f(x), then f'(x) can also be denoted

$$y' = rac{dy}{dx} = rac{df}{dx} = rac{d}{dx}f(x) = Df(x) = D_x f(x).$$

Theorem If f is differentiable at a, then f is continuous at a.

Definition

We denote by f'' and call the second derivative of f the function obtained as the derivative of the derivative of f.

Remark

We can define define analogously the third derivative f''', etc.

- 3. Differentiation rules
- 3.1 Derivatives of Polynomials and Exponential Functions
- 3.2 The product and quotient rules
- 3.3 Derivatives of Trigonometric Functions
- 3.4 The Chain Rule
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

3. Differentiation rules

3.1 Derivatives of Polynomials and Exponential Functions

- 3.2 The product and quotient rules
- 3.3 Derivatives of Trigonometric Functions
- 3.4 The Chain Rule
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

Derivative of a constant

$$\frac{d}{dx}(c) = 0$$

Derivative of a power For any r,

$$\frac{d}{dx}(x^r) = r \cdot x^{r-1}$$

Operations compatibles with derivations

Sum, Difference, product with a constant Let f and g be differentiable and c a constant. Then

$$\frac{d}{dx}(f+g) = \frac{d}{dx}f + \frac{d}{dx}g,$$
$$\frac{d}{dx}(f-g) = \frac{d}{dx}f - \frac{d}{dx}g,$$
$$\frac{d}{dx}(cf) = c \cdot \frac{d}{dx}f.$$

The exponential function

Derivative of the exponential

$$\frac{d}{dx}e^{x}=e^{x}$$

Remark The number e is such that $e = e^1 = 2.711828$.

2. Limits and Derivatives

3. Differentiation rules

3.1 Derivatives of Polynomials and Exponential Functions

3.2 The product and quotient rules

- 3.3 Derivatives of Trigonometric Functions
- 3.4 The Chain Rule
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

The Product rule If f and g are differentiable, then

$$\frac{d}{dx}(f(x) \cdot g(x)) = \left(\frac{d}{dx}f(x)\right) \cdot g(x) + f(x) \cdot \left(\frac{d}{dx}g(x)\right)$$

Remark

In short:

$$(f \cdot g)' = f' \cdot g + f \cdot g'.$$

The Quotient Rule If f and g are differentiable, then

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\left(\frac{d}{dx}f(x)\right) \cdot g(x) - f(x) \cdot \left(\frac{d}{dx}g(x)\right)}{(g(x))^2}$$

Remark In short:

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}.$$

Remark

Note that we need
$$g(x) \neq 0$$
 for $\frac{f(x)}{g(x)}$ to be differentiable.

2. Limits and Derivatives

3. Differentiation rules

- 3.1 Derivatives of Polynomials and Exponential Functions
- 3.2 The product and quotient rules
- 3.3 Derivatives of Trigonometric Functions
- 3.4 The Chain Rule
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

Proposition

$$\lim_{h\to 0}\frac{\sin(h)}{h}=1,\quad \lim_{h\to 0}\frac{\cos(h)-1}{h}=0.$$

Theorem

$$\frac{d}{dx}\sin(x) = \cos(x), \quad \frac{d}{dx}\cos(x) = -\sin(x).$$

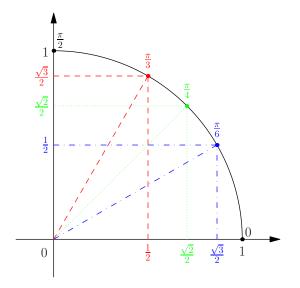
Rule of thumb

Differentiating cos and sin is like making a quarter turn on the trigonometric circle.

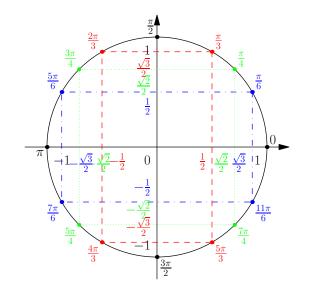
Trigonometric circle



Remarkable values



More remarkable values



2. Limits and Derivatives

3. Differentiation rules

- 3.1 Derivatives of Polynomials and Exponential Functions
- 3.2 The product and quotient rules
- 3.3 Derivatives of Trigonometric Functions
- 3.4 The Chain Rule
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation

The Chain Rule

Assume g is differentiable at x and f is differentiable at g(x). Then the composite function $h = f \circ g$ is differentiable at x and h' is

$$h'(x) = f'(g(x)) \cdot g'(x)$$

Other Notation
Set
$$y = f(u)$$
 and $u = g(x)$, then
 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Applications of the Chain Rule

f(x)	f'(x)
$u^lpha(x)$, $lpha\in\mathbb{R}^*$	$\alpha u'(x)u^{\alpha-1}(x)$
$e^{u(x)}$	$u'(x)e^{u(x)}$
$\sin(u(x))$	$u'(x)\cos(u(x))$
$\cos(u(x))$	$-u'(x)\sin(u(x))$

- 2. Limits and Derivatives
- 3. Differentiation rules
- Functions and models
 Inverse Functions and Logarithms
- 3. Differentiation rules
- 4. Applications of Differentiation

- 2. Limits and Derivatives
- 3. Differentiation rules
- Functions and models
 Inverse Functions and Logarithms
- 3. Differentiation rules
- 4. Applications of Differentiation

A note on the definition of a function

Definition

A function is a relation between a set of input numbers (the *domain*) and a set of permissible output numbers (the *codomain*) with the property that each input is related to exactly one output.

Remark

- The domain and codomain are often implicit
- Usually the function is given by a formula
- Do not confuse the codomain and the range (or image).

Definition

We say that a function is one to one if it never take the same value twice. That is:

If
$$x_1 \neq x_2$$
, then $f(x_1) \neq f(x_2)$.

Horizontal line test

A function is one-to-one if and only if no horizontal line x = c intersects the graph y = f(x) more than once.

Definition

Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

for any $y \in B$.

Definition (Logarithmic functions)

Let a > 0. The function \log_a is the inverse of the function $y \mapsto a^y$ and is defined by

$$\log_a(x) = y \Leftrightarrow a^y = x.$$

Remark

 $ln(x) = log_e(x)$ (natural or Naperian logarithm) and log_{10} (common or decimal logarithm) are the most used.

Laws of Logarithms

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y),$$

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x),$$

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}.$$

How did people compute logarithms not so long ago ?

			LOG	GAR	ITH	MS	OF	NUI	IBE	RS.	JL
N	0	1	2	3	4	5	6	7	8	9	Differences.
100	000000	0434	0868	1301	1784	2166	2598	3029	3461	3891	435 430 425 430 1 44 43 43 43
101	4321	4751	5181	5609	6038	6466	6804	7321	7748	8174	
102	8600	9026	9451	9876	*300	*724	1147	1570	1993	2415	3 131 129 128 126 4 174 172 170 148
103	012837 7033	-3259 7451	3680 7868	4100 8284	4521 8700	4940 9116	5300 9532	5779 9947	6197 *361	6616 *775	5 218 215 213 210
105	021189	1603	2016	2428	2841	3252	3664	4075	4486	4806	6 261 258 255 255 7 305 301 298 294
106	5306	5715	6125	6533.	6942	7350	7757	8164	8571	8978	8 348 344 340 336
107	9384	9789	*195	*600	1004	1408	1812	2216	2619	3021	
108	033424	3826	4227	4628	5029	5430	5890	6230	6629	7028	1 42 41 41 40
100	7420	7825	8223	8620	9017	9414	9811	*207	*002	*998	2 83 82 81 80 3 123 125 122 120
110	041893	1787	2182	2576	2060	3362	3755	4148	4540	4932	4 106 164 162 160
111	5323	5714 9006	6105 9993	6495	6885 *766	7275	7664	8053	8442 2309	8830 2004	5 208 203 203 200 6 249 246 243 246
112 113	9218 053078	3463	3846	4230	4613	4996	1638 5378	$1924 \\ 5760$	2309 6142	6524	
114	6905	7286	7666	8046	8426	8805	9185	9563	9942	*320	8 332 328 324 320 9 374 360 365 366
115	060698	1075	1452	1829	2206	2582	2958	3333	3709	4083	395 390 385 386
116	4458	4832	5206	5580	5053	6326	6690	7071	7448	7815	1 40 39 39 39 2 79 78 77 76
117	8186	8557	8028	9298	9668	**38	*407	*776	1145	1514	
118	071882	2250	2617	2985	3352	3718	4085	4451	4816	5182	4 158 156 154 153
119	5547	5012	6276	6640	7664	7368	7731	8004	8457	8819	6 207 234 233 220
120 121	079181 082785	9543 3144	9904 3503	*266 3861	*026 4219	*987 4576	1347 4934	1707 5291	2067 5647	2420 6004	8 316 312 308 304
122	6360	6716	7071	7426	7781	8136	8400	8845	9198	9552	9 556 351 347 345
123	9905	*258	*611	*963	1315	1667	2018	2370	2721	3071	375 370 365 360
124	003422	3772	4122	4471	4820	5169	5518	5806	6215	6562	12 75 74 78 71
125	6910	7257	7604	7951	8208	8644	8990	9335	9681	**26	3 113 111 110 108 4 150 148 146 144
126	100371	0715	1059	1403	1747	2091	2434	2777	3119	3462	5 188 185 183 186
127	3804	4146	4487	4828	5169	5510	5851	6191	6531	6871	6 223 222 219 214
128	7210	7549	7888	8227	8565	8903	9241	9579	9916	*253	8 500 295 292 28
129	110590	0926	1263	1599	1984	2270	2605	2940	3275	3609	9 338 333 329 324 355 350 345 340
130 131	113943 7271	4277 7003	4611 7934	4944 8265	5278 8505	5611 8926	5940 9256	. 6276 9586	6608 9915	6940 *245	1 36 35 35 34
132	120574	0903	1231	1560	1888	2216	2544	2871	3198	3525	2 71 70 60 64
133	3852	4178	4504	48:30	5156	5481	5806	6131	6456	6781	4 142 140 138 130
134	7105	7429	7753	8076	8399	8722	9045	9368	9690	**12	5 178 175 173 178 6 213 210 207 208
135	130334	0655	0077	1208	1619	1939	2260	2580	2900	3219	7 249 245 242 238
136	3539	3858	4177	4496	4814	5133	5451	5769	6086	6403	8 284 290 276 275 9 320 315 311 304
137	6721 9879	7037	7354 *508	7671	7987	8303	8618 1763	8984 2076	0240 2380	9504 2702	335 330 325 320
139	143015	3327	3639	3951	4263	4574	4885	5196	5507	5818	1 34 33 38 33 2 67 66 65 66
140	146128	6438	6748	7058	7307	7676	7985	8204	8603	8911	
141	9219	9527	0835	*142	*449	*756	1063	1370	1676	1982	4 134 132 130 125
142	152288	2594	2900	3205	3510	3815	4120	4424	4728	5032	6 201 198 195 195
143	5:336	5640	5948	6246	6549	6852	7154	7457	7759	8061	7 235 231 228 22 8 258 254 200 234 9 392 297 296 28
144	8362	8004	8965	9266	9567	9868	*168	*469	•769	1068	
145 146	161368 4353	1667 4650	1967 4947	$\frac{2266}{5244}$	$2564 \\ 5541$	2863 5838	3161 6134	3460 6430	3758 6726	$\frac{4055}{7022}$	315 310 305 300 1 32 31 31 3
147	7317	7613	7908	8203	8497	8792	0104	9380	9674	9968	2 63 62 61 6
148	170262	0555	0848	1141	1434	1726	2019	2311	2603	2895	4 126 124 122 12
149	3186	3478	3769	4000	4351	4641	4932	5222	5512	5802	5 158 155 153 156 6 180 186 183 180
150	176001	6381	0070	6959	7248	7538	7825	8118	8401	8080	7 221 217 214 234 8 252 248 244 244
151	8977	9264	9552 2415	9839 2700	*126 2085	*413 3270	*690 3555	*986 3839	1272	1558	9 284 279 275 27
152	181844 4091	$\frac{2129}{4975}$	2415 5259	5542	2085	6108	6391	3830	4123 6956	4407 7230	293 290 285 280
154	7521	7803	8084	8366	8647	8928	9200	9400	9771	**51	1 30 29 29 2 2 50 58 57 56
155	190532	0612	0892	1171	1451	1730	2010	2289	2567	2846	3 89 87 86 8 4 118 116 114 115
156	3125	3403	3681	3959	4237	4514	4792	5009	5346	5623	
	5900	6176	6453	6720	7005	7281	7556	7832	8107	8382	5 148 145 143 14 6 177 174 171 16 7 207 298 200 736
158	8057 201397	8932 1670	9200	9481 9916	9755	**29 9761	*303	*577	*850	1124	8 125 232 228 22

Definition

The inverse sine function denoted by $\arcsin or \sin^{-1}$ is defined by

arcsin :
$$[-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

arcsin $(x) = y \Leftrightarrow \sin(y) = x$

Definition

The inverse cosine function denoted by $\arccos or \cos^{-1}$ is defined by

$$\operatorname{arccos} : [-1, 1] \rightarrow [0, \pi]$$

 $\operatorname{arccos}(x) = y \Leftrightarrow \operatorname{cos}(y) = x$

Definition

The inverse tangent is denoted by arctan or tan^{-1} is defined by

arctan :
$$(-\infty, +\infty) \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

arctan $(x) = y \Leftrightarrow \tan(y) = x$

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay
- 3.9 Related rates
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

4. Applications of Differentiation

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules

3.5 Implicit Differentiation

- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay
- 3.9 Related rates
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

4. Applications of Differentiation

Definition

$$y = f(x)$$
 y is explicit
 $g(x, y) = 0$ y is implicit

Rule

If y is implicitly defined as one or more functions of x, it is possible to compute y' by differentiating the implicit relation.

Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1 - x^2}},$$
$$\frac{d}{dx} \arccos(x) = \frac{-1}{\sqrt{1 - x^2}},$$
$$\frac{d}{dx} \arctan(x) = \frac{1}{1 + x^2}.$$

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay
- 3.9 Related rates
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

4. Applications of Differentiation

Derivative of the natural logarithm

$$\frac{d}{dx}\log(x) = \frac{1}{x}$$

Remark

Derivative of others logarithms

$$\frac{d}{dx}\log_a(x) = \frac{1}{x\log(a)}.$$

Useful trick: logarithmic differentiation
Calculate
$$\frac{d}{dx} \left(\frac{x^2 \sqrt{1+x}}{(2+\sin(x))^7} \right)$$
.

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models

3. Differentiation rules

- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay
- 3.9 Related rates
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

4. Applications of Differentiation

Definition

If a quantity y depends explicitely on a quantity x, meaning y = f(x), the

• average rate of change of y with respect to x over $[x_1, x_2]$ is

$$rac{\Delta y}{\Delta x}$$
, where $\begin{cases} \Delta y = f(x_2) - f(x_1) \\ \Delta x = x_2 - x_1 \end{cases}$

• instantaneous rate of change of y with respect to x at x_1 is

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Some examples

In Physics

With f(t) the position at time t of a particle moving in a straight line (e.g. a photon in a laser beam).

In Chemistry

With V(P) the volume of balloon of gas with respect to the pressure.

In Biology

With f(t) the number at time t of individual of an animal or plant population.

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models

3. Differentiation rules

- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay
- 3.9 Related rates
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

4. Applications of Differentiation

Theorem The only solutions to the differential equation

$$\frac{dy}{dt} = ky$$

are the exponential functions

$$y = y(0)e^{kt}$$

Population growth

The rate of change in the population is proportional to the size of the population:

$$\frac{dP}{dt} = kP.$$

Newton's law of cooling

The rate of change in temperature of an object is proportional to the difference between its temperature and that of its surroundings:

$$\frac{dT}{dt} = k(T - T_{\rm surroundings}).$$

Coffee at home

- ▶ temperature when the coffee comes out of the machine: 93°C
- Neighbor comes at door to borrow suggar: 1 minute
- Temperature of the coffee after I get rid of neighbor: 88°C

Questions:

- ► When can I drink my coffee without burning myslelf (i.e. at 63°C) ?
- What happens if I have to leave my coffee for a long time ?

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models

3. Differentiation rules

- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay

3.9 Related rates

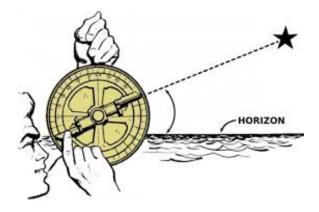
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

4. Applications of Differentiation

Problem solving strategy

- 1. Read the problem carefully.
- 2. Draw a diagram if possible.
- 3. Introduce notation. Assign symbols to all quantities that are functions of time.
- 4. Express the given information and the required rate in terms of derivatives.
- 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate one of the variables by substitution
- 6. Use the Chain Rule to differentiate both sides of the equation with respect to t.
- 7. Substitute the given information into the resulting equation and solve for the unknown rate.

Astrolabe/Protractor



- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models

3. Differentiation rules

- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay
- 3.9 Related rates
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

Definition Let f be a differentiable function. We say that

$$f(x) \simeq f(a) + f'(a)(x-a)$$

is the linear approximation of f at a. We call

$$L(x) = f(a) + f'(a)(x - a)$$

the linearization of f at a.

Midterm teaching survey

- Writing/Pronunciation
- Office hours
- Webwork
- Class atmosphere
- Hard Problems during the lectures

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models

3. Differentiation rules

- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay
- 3.9 Related rates
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

Goal Approximate functions by a polynomial.

Definition

Let f be n time differentiable at a point a. The Taylor Polynomial of degree n for f at a is

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Taylor Polynomials for Classical Functions at a = 0

$$e^{x}: \quad T_{n}(x) = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!}$$

$$\sin(x): \quad T_{n}(x) = x - \frac{x^{3}}{3!} + \dots + (-1)^{k} \frac{x^{2k+1}}{(2k+1)!}$$

$$(2k+1 \text{ greatest odd integer } \leq n)$$

$$\cos(x): \quad T_{n}(x) = 1 - \frac{x^{2}}{2!} + \dots + (-1)^{k} \frac{x^{2k}}{(2k)!}$$

$$(2k \text{ greatest even integer } \leq n)$$

$$\ln(1+x): \quad T_{n}(x) = x - \frac{x^{2}}{2} + \dots + (-1)^{n+1} \frac{x^{n}}{n}$$

$$\frac{1}{1-x}: \quad T_{n}(x) = 1 + x + x^{2} + \dots + x^{n}$$

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models

3. Differentiation rules

- 3.5 Implicit Differentiation
- 3.6 Derivatives of Logarithmic Functions
- 3.7 Rates of Change in the Natural and Social Sciences
- 3.8 Exponential growth and decay
- 3.9 Related rates
- 3.10 Linear approximation and differentials
- 3.11 Taylor Polynomials
- 3.12 Taylor's Formula with Remainder

Goal

Evaluate the difference between a function and its Taylor polynomial at a point

The Taylor-Lagrange Formula

Let f be n + 1 time differentiable at a. Then for each x there exists c between a and x such that

$$f(x) = T_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation
- 4.1 Maximum and minimum values
- 4.2 The mean value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.5 Summary of curve sketching
- 4.7 Optimization Problems
- 4.4 Indeterminate forms and L'Hospital's rule
- 4.9 Antiderivatives

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules
- 4. Applications of Differentiation
- 4.1 Maximum and minimum values
- 4.2 The mean value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.5 Summary of curve sketching
- 4.7 Optimization Problems
- 4.4 Indeterminate forms and L'Hospital's rule
- 4.9 Antiderivatives

Definition

Let c be in the domain D of a function f. We say that f(c) is an

- absolute maximum value for f if $f(c) \ge f(x)$ for all $x \in D$.
- absolute minimum value for f if $f(c) \le f(x)$ for all $x \in D$.

Definition

We say that f(c) is a

- ▶ local maximum value for f if $f(c) \ge f(x)$ for x close to c.
- ▶ local minimum value for f if $f(c) \le f(x)$ for x close to c.

Remark

In general, we speak about an extremum for a maximum or a minimum.

Extreme value theorem

If f is continuous on the closed interval [a, b], then f has a global maximum value f(c) and a global minimum value f(d) for some c, d in [a, b].

Definition A critical number of f is c such that

f'(c) = 0 or f'(c) DNE.

Theorem (Fermat's theorem) If f has a local extremum at c, then c is a critical number for f.

Closed interval method

To find the global extrema of f on [a, b] closed interval:

- Find all critical numbers and the values of f at that points
- ▶ Find *f*(*a*), *f*(*b*).
- The largest and smallest values give the extrema.

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules

- 4.1 Maximum and minimum values
- 4.2 The mean value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.5 Summary of curve sketching
- 4.7 Optimization Problems
- 4.4 Indeterminate forms and L'Hospital's rule
- 4.9 Antiderivatives

Theorem (Rolle's theorem)

Let f be such that

- ▶ f continuous on [a, b]
- ▶ f differentiable on (a, b)

•
$$f(a) = f(b)$$

Then there exists $c \in [a, b]$ such that f'(c) = 0.

The mean value Theorem Let f be such that

- ► f continuous on [a, b]
- f differentiable on (a, b)

Then there exists a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem If f'(x) = 0 for all $x \in (a, b)$, then f is constant on (a, b)Corollary If f'(x) = g'(x) for all $x \in (a, b)$, then there exists $K \in \mathbb{R}$ such that f(x) = g(x) + K.

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules

- 4.1 Maximum and minimum values
- 4.2 The mean value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.5 Summary of curve sketching
- 4.7 Optimization Problems
- 4.4 Indeterminate forms and L'Hospital's rule
- 4.9 Antiderivatives

Increasing/Decreasing test

- If f'(x) > 0 on (a, b), then f is increasing on (a, b).
- If f'(x) < 0 on (a, b), then f is decreasing on (a, b)

First derivative test

Suppose that c is a critical number of a continuous function f.

- If f' changes from positive to negative at c, then f has a local maximum at c.
- If f' changes from negative to positive at c, then f has a local minimum at c.
- ► If f' does not change sign at c, then f has no local maximum or minimum at c.

Definition

If the graph of f lies above all of its tangents on an interval I, then it is called concave upward on I. If the graph of f lies below all of its tangents on I, it is called concave downward on I.

Concavity Test

- If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Definition

A point P on a curve y = f(x) is called an inflection point if f is continuous there and the curve changes at P from concave upward to concave downward or vice-versa.

The Second Derivative Test

Suppose f is continuous near c.

- If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules

- 4.1 Maximum and minimum values
- 4.2 The mean value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.5 Summary of curve sketching
- 4.7 Optimization Problems
- 4.4 Indeterminate forms and L'Hospital's rule
- 4.9 Antiderivatives

Informations to gather before sketching a graph

- Domain
- Intercepts
- Symmetries
- Asymptotes
- Increasing / decreasing
- Local max / min
- Concavity

Trick: Make a *table of changes*.

Slant Asymptotes

Definition A line y = mx + b is a slant asymptote if

$$\lim_{\substack{x \to +\infty \\ \text{or } x \to -\infty}} (f(x) - (mx + b)) = 0$$

Proposition

The graph of f admits a slant asymptote at $+\infty$ if and only if

$$\lim_{x \to +\infty} \frac{f(x)}{x} = m, \text{ with } m \text{ finite real number.}$$

In that case, the equation of the asymptote is

$$y = mx + b$$
,

where $b = \lim_{x \to +\infty} (f(x) - mx)$.

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules

- 4.1 Maximum and minimum values
- 4.2 The mean value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.5 Summary of curve sketching
- 4.7 Optimization Problems
- 4.4 Indeterminate forms and L'Hospital's rule
- 4.9 Antiderivatives

Problem solving strategy

- 1. Read the problem carefully.
- 2. Draw a diagram.
- 3. Introduce notation. E.g. call Q the quantity to maximize.
- 4. Express Q in terms of the other symbols.
- 5. If Q has been expressed as a function of more than one variable, use the given information to find relationships among these variables. Eliminate all but one variable.
- 6. Find the maximum value.
- 7. Verify that the value is consistent with the problem.

Problem 1

You need to make a box. You are given a square of cardboard (12cm by 12cm) and you need to cut out squares from the the corners of your sheet so that you may fold it into a box. How large should these cut-out squares be so as to maximise the volume of the box?

Problem 2

You need to cross a small canal to get from point A to point B. The canal is 300m wide and point B is 800m from the closest point on the other side. You can row at 6km/h and run at 10km/h. To which point on the opposite side of the canal should you row to in order to minimise your travel time from A to B?

Student Evaluation of Teaching

- > The feedback is used to assess and improve my teaching.
- Heads and Deans look at evaluation results as an important component of decisions about reappointment, tenure, promotion and merit for faculty members.
- Evaluations are used to shape departmental curriculum.
- We take 15 minutes of class to complete the survey (use your mobile devices)

More precise definitions

Definition Let $f : [a, b] \to \mathbb{R}$. A critical number of f is $c \in (a, b)$ (thus $c \neq a$ and $c \neq b$) such that

f'(c) = 0 or f'(c) DNE.

Definition

Let $f : [a, b] \to \mathbb{R}$. Let $c \in (a, b)$ (thus $c \neq a$ and $c \neq b$). We say that f(c) is a

- ▶ local maximum value for f if $f(c) \ge f(x)$ for x close to c.
- ▶ local minimum value for f if $f(c) \le f(x)$ for x close to c.

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules

- 4.1 Maximum and minimum values
- 4.2 The mean value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.5 Summary of curve sketching
- 4.7 Optimization Problems
- 4.4 Indeterminate forms and L'Hospital's rule
- 4.9 Antiderivatives

L'Hospital's Rule

Suppose f and g are differentiable and $g'(x) \neq 0$ for x close to a, $x \neq a$. Assume that

$$\lim_{x \to a} f(x) = 0 \qquad \text{and} \qquad \lim_{x \to a} g(x) = 0$$

or
$$\lim_{x \to a} f(x) = \pm \infty \qquad \text{and} \qquad \lim_{x \to a} g(x) = \pm \infty$$

Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}.$$

- 2. Limits and Derivatives
- 3. Differentiation rules
- 1. Functions and models
- 3. Differentiation rules

- 4.1 Maximum and minimum values
- 4.2 The mean value Theorem
- 4.3 How Derivatives Affect the Shape of a Graph
- 4.5 Summary of curve sketching
- 4.7 Optimization Problems
- 4.4 Indeterminate forms and L'Hospital's rule
- 4.9 Antiderivatives

Definition

A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.

Theorem

Let f be a function and F be an antiderivative of F. Then all antiderivatives of F are of the form

F(x) + C, $C \in \mathbb{R}$.

Rectilinear Motion, an example

A particle moves in a straight line and has acceleration given by a(t) = 6t + 4. Its initial velocity is v(0) = -6cm/s and its displacement is s(0) = 9cm. Find its position function s(t).