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Introduction

We consider the problem of online nonparametric regression with individual
sequences. We present an algorithm based on the chaining technique.

Outline of the talk:

1 The chaining technique in the stochastic setting

2 Our setting: online regression with individual sequences

3 Large (nonparametric) function sets

4 An algorithm based on the chaining technique
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Bounding the expected supremum of a stochastic process

Technique introduced by Dudley (1967). Let (Xf )f∈F be a centered
stochastic process (indexed by a �nite metric space (F , d)) with
subgaussian increments:

∀f , g ∈ F , ∀λ > 0, logEeλ(Xf−Xg ) 6
λ2

2
d(f , g)2 .

Goal: upper bound the quantity E
[
supf∈F Xf

]
= E

[
supf∈F (Xf − Xf0)

]
for any f0 ∈ F .

Lemma (see, e.g., Boucheron et al. 2013)

Let Z1, . . . ,ZN be such that logEeλZi 6 λ2v/2 for all λ ∈ R and i ∈ [N].

Then, Emaxi=1,...,N Zi 6
√
2v logN .

This lemma entails the pessimistic bound (correlations are not used):
E
[
supf∈F (Xf − Xf0)

]
6 B

√
2 log (cardF) with B = supf∈F d(f , f0).
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Discretizing the space (F , d) into small balls

De�nition (metric entropy)

Let (F , d) be a metric space of �nite cardinality.

ε-net: any subset G ⊆ F such that

∀f ∈ F , ∃g ∈ G : d(f , g) 6 ε ⇐⇒
⋃
g∈G

B̄(g , ε) = F

Nd(F , ε): smallest cardinality of an ε-net.

metric entropy of F at scale ε: logNd(F , ε).
It measures the complexity (richness) of the space (F , d).
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Multi-scale discretization to exploit the correlations

Successive re�ning discretizations:
Let F (0) = {f0},F (1), . . . ,F (K−1),F (K) = F be minimal B/2k -nets of F :

∀f ∈ F , ∃πk(f ) ∈ F (k), d
(
f , πk(f )

)
6 B/2k .

Chaining argument: using the lemma at multiple scales, we get:

E
[
sup
f∈F

(Xf − Xf0)
]

= E

[
sup
f∈F

K∑
k=1

(
Xπk (f ) − Xπk−1(f )

)]

6
K∑

k=1

E

[
sup
f∈F

(
Xπk (f ) − Xπk−1(f )︸ ︷︷ ︸
small increments

)]

6 6

K∑
k=1

B2−k
√
logNd(F ,B/2k)

6 12

∫ B/2

0

√
logNd(F , ε) dε .
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Dudley's entropy integral

.
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Setting: online regression with individual sequences

Prediction task: at each time t ∈ N∗, predict the observation yt ∈ R from
the input xt ∈ X , on the basis of the past data (x1, y1), . . . , (xt−1, yt−1).

Initial step: the environment chooses arbitrary deterministic sequences
(yt)t>1 in R and (xt)t>1 in X but the forecaster has not access to them.

At each time round t ∈ N∗,
1 The environment reveals the input xt ∈ X .
2 The forecaster chooses a prediction ŷt ∈ R.
3 The environment reveals the observation yt ∈ R and the forecaster

incurs the loss (yt − ŷt)
2.
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Goal: minimizing regret

Let F ⊆ RX be a set of functions.

Goal of the forecaster: on the long run, to predict almost as well as the
best function f ∈ F in hindsight, that is, to minimize the regret:

RegT (F) ,
T∑
t=1

(
yt − ŷt

)2 − inf
f∈F

T∑
t=1

(
yt − f (xt)

)2
.

Individual sequence setting: our goal is to minimize the regret RegT (F)
uniformly over all sequences (yt)t>1 in [−B,B] and (xt)t>1 in X ; typically:

sup
|yt |6B
xt∈X

{
1

T

T∑
t=1

(yt − ŷt)
2 − inf

f∈F

1

T

T∑
t=1

(yt − f (xt))2

}
6 o(1) when T → +∞ .
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Particular case: �nite F

Assume that F = {f1, f2, . . . , fN} ⊆ RX is �nite. We can use a well-known
algorithm studied, e.g., by Kivinen and Warmuth (1999) and Vovk (2001):

Algorithm (Exponentially Weighted Average forecaster (EWA))

Parameter: η > 0

At each round t > 1,

Using past data, compute the weight vector ŵ t = (ŵt,1, . . . , ŵt,N) as

ŵt,j ,
exp
(
−η
∑t−1

s=1
(ys − fj(xs))2

)
∑N

j′=1
exp
(
−η
∑t−1

s=1
(ys − fj′(xs))2

) , 1 6 j 6 N ;

Compute the convex combination (convex aggregate):

ŷt ,
N∑
j=1

ŵt,j fj(xt) .
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Regret guarantee when F is �nite

If F contains N functions, then we have a O(logN) upper bound on the
regret under the boundedness assumption:

|y1|, . . . , |yT | 6 B and ‖f1‖∞ , . . . , ‖fN‖∞ 6 B .

Theorem (Kivinen and Warmuth 1999)

Assume that F = {f1, f2, . . . , fN} ⊆ [−B,B]X .

Then, the EWA algorithm tuned with η = 1/(8B2) satis�es: for all
sequences (yt)t>1 in [−B,B] and (xt)t>1 in X , for all T > 1,

T∑
t=1

(
yt − ŷt

)2 − min
16j6N

T∑
t=1

(
yt − fj(xt)

)2
6 8B2 logN .

Remark 1: the requirement ∀j , ‖fj‖∞ 6 B can be removed via clipping.

Remark 2: we can obtain a similar bound if B = max16t6T |yt | is unknown.
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Large function sets F : �nite approximation

De�nition (metric entropy for sup norm)

Let F ⊆ RX be a set of bounded functions endowed with the sup
norm ‖f ‖∞ , supx∈X |f (x)|.

ε-net: any subset G ⊆ F such that

∀f ∈ F , ∃g ∈ G : ‖f − g‖∞ 6 ε .

N∞(F , ε): smallest cardinality of an ε-net.

metric entropy of F at scale ε: logN∞(F , ε).
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Large function sets F : �nite approximation (2)

Assume that F is in�nite (the EWA algorithm cannot be used). Small
regret is still achievable if F can be well approximated by a �nite set.

Discretizing F (Vovk, 2006): approximate F with a minimal ε-net and
run the EWA algorithm on this �nite subset:

T∑
t=1

(
yt − ŷt

)2
6 min

16j6N∞(F,ε)

T∑
t=1

(
yt − fj(xt)

)2
+ 8B2 logN∞(F , ε)

6 inf
f∈F

T∑
t=1

(
yt − f (xt)

)2
+ Tε2 + 4TBε+ 8B2 logN∞(F , ε)

Finite-dimensional case: given ϕj : X → [−B,B] and a compact set
Θ ⊆ Rd , de�ne

F =


d∑

j=1

θjϕj : θ ∈ Θ

 ⊆ RX .

Note that N∞(F , ε) . (1/ε)d . Choosing ε ≈ 1/T yields a regret at most
of the order of d log(T ), which is optimal (parametric rate).
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What if F is very large (nonparametric)?

Nonparametric set: assume that F is much larger than in the
�nite-dimensional case:

logN∞(F , ε) ≈ (1/ε)p as ε→ 0 .

Example: Hölder class F ⊆ R[0,1] of regularity β = q + α:∣∣f (q)(x)− f (q)(y)
∣∣ 6 λ|x − y |α and ∀k 6 q, ‖f (k)‖∞ 6 B

In this case, logN∞(F , ε) ≈ ε−1/β so that p = 1/β.

EWA is suboptimal: the regret bound Tε2 + 4TBε+ 8B2 logN∞(F , ε)
becomes roughly Tε+ (1/ε)p. Optimizing in ε only yields:

T∑
t=1

(
yt − ŷt

)2
6 inf

f∈F

T∑
t=1

(
yt − f (xt)

)2
+O

(
T p/(p+1)

)
,

which is worse than the optimal rate O
(
T p/(p+2)

)
.
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Optimal rates by Rakhlin and Sridharan (2014)

We still assume that logN∞(F , ε) ≈ (1/ε)p as ε→ 0.

Optimal regret: through a non-constructive approach (reduction to a
stochastic problem via von Neumann minimax theorem), Rakhlin and
Sridharan (2014) proved that, if p ∈ (0, 2), then

RegT (F) 6 c1B
2
(
1 + logN∞(F , γ)

)
+ c2B

√
T

∫ γ

0

√
logN∞(F , ε)dε

. γ−p +
√
T

∫ γ

0

ε−p/2dε

. T p/(p+2) for γ = T−1/(p+2).

The rate T p/(p+2) is better than T p/(p+1) obtained previously with EWA,
and it is (in a sense) optimal.
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Therefore, same rate as in the statistical setting (for β > 1/2).
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The above integral is a Dudley entropy integral.

In statistical learning with i.i.d. data, useful to derive risk bounds for
empirical risk minimizers (e.g., Massart 2007; Rakhlin et al. 2013).

Also appears in online learning with individual sequences. Earlier
appearances: Opper and Haussler (1997); Cesa-Bianchi and Lugosi
(1999, 2001).
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Our contributions

1 We provide an explicit algorithm that achieves the Dudley-type regret
bound (when p ∈ (0, 2)):

RegT (F) 6 c1B
2
(
1+logN∞(F , γ)

)
+c2B

√
T

∫ γ

0

√
logN∞(F , ε)dε .

Nota: contrary to Rakhlin and Sridharan (2014), our bounds are not
in terms of the stronger notion of sequential entropy.

2 This algorithm uses ideas from the chaining technique, and relies on a
new subroutine (Multi-variable Exponentiated Gradient algorithm) to
perform optimization at di�erent scales simultaneously.

3 We address computational issues by showing how to construct more
e�cient and quasi-optimal ε-nets (for Hölder classes).
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Linearizing the square loss can help locally (1)

Suppose we play with loss functions u 7→ `t(u), t > 1, that are convex and

di�erentiable over the simplex ∆N =
{
u ∈ RN

+ :
∑N

i=1
ui = 1

}
.

Algorithm (Exponentiated Gradient�EG)

Parameter: η > 0
At each round t > 1, compute the weight vector ût ∈ ∆N by

ût,j ,
1

Zt
exp

(
−η

t−1∑
s=1

∂ûs,j `s(ûs)

)
, 1 6 j 6 N .

Theorem (Kivinen and Warmuth 1999 and Cesa-Bianchi 1999)

Assume `t convex, di�, and ‖∇`t‖∞ 6 G . For η = G−1
√
2 log(N)/T ,

T∑
t=1

`t
(
ût

)
6 min

u∈∆N

T∑
t=1

`t(u) + G
√
2T logN .
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Linearizing the square loss can help locally (2)

Application: we want to predict almost as well as the best function in
F = {f0 + gj : j = 1, . . . ,N} with ‖gj‖∞ small (neighbors of f0).

We use EG with `t(u) =
(
yt − f0(xt)−

∑N
j=1

ujgj(xt)
)2
, u ∈ ∆N .

Since ‖∇`t‖∞ . B maxj ‖gj‖∞, the EG algorithm satis�es:

T∑
t=1

(
yt − f0(xt)−

N∑
j=1

ût,jgj(xt)︸ ︷︷ ︸
=ŷt

)
2

6 min
16j6N

T∑
t=1

(yt − f0(xt)− gj(xt))
2

+�B max
16j6N

‖gj‖∞
√

T logN

Advantage: the above regret bound B maxj ‖gj‖∞
√
T logN improves on

B2 logN (obtained by EWA) when maxj ‖gj‖∞ � B
√
log(N)/T .

Thus, linearizing the square loss can help if the functions in F are close.
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Turning the chaining technique into an online algorithm

We still assume that logN∞(F , ε) ≈ (1/ε)p as ε→ 0. Recall that we
want to prove a bound of the form:

T∑
t=1

(
yt − ŷt

)2
6 inf

f∈F

T∑
t=1

(
yt − f (xt)

)2
+ [small term]

Chaining principle: as previously, we discretize F and use projections
πk(f ) such that supf ‖πk(f )− f ‖∞ 6 γ/2k for all k > 0.

inf
f∈F

T∑
t=1

(
yt−f (xt)

)2
= inf

f∈F

T∑
t=1

(
yt−π0(f )(xt) −

∞∑
k=1

[
πk(f )− πk−1(f )

]
(xt)︸ ︷︷ ︸

|small increments|63γ/2k

)2
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Aggregation at two di�erent levels

inf
f∈F

T∑
t=1

(
yt−f (xt)

)2
= inf

f∈F

T∑
t=1

(
yt−π0(f )︸ ︷︷ ︸

∈F (0)

(xt)−
∞∑
k=1

[
πk(f )− πk−1(f )

]︸ ︷︷ ︸
∈G(k)

(xt)

)2

Su�cient goal:

T∑
t=1

(
yt−ŷt

)2
6 inf

f0,g1,...,gK

T∑
t=1

(yt − (f0 + g1 + . . .+ gK ) (xt))2+[small term]

Two aggregation levels:

f0,1

low scale
gradient descent−−−−−−−−−−→ f̂t,1

f0,2
gradient descent−−−−−−−−−−→ f̂t,2

...
...

f0,N0

gradient descent−−−−−−−−−−→ f̂t,N0


high scale
EWA−−−−−−→ ŷt =

N0∑
j=1

ŵt,j f̂t,j(xt)
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Combining two regret guarantees

High-scale aggregation Using an Exponentially Weighted Average
(EWA) forecaster f̂t =

∑N0

j=1
ŵt,j f̂t,j yields

T∑
t=1

(yt − ŷt)
2 6 min

16j6N0

T∑
t=1

(
yt − f̂t,j(xt)

)2
+�B2 logN0

Low-scale aggregation Recall that G(k) = {πk(f )− πk−1(f ) : f ∈ F}.
Denote G(k) =

{
g

(k)
1
, . . . , g

(k)
Nk

}
.

We designed a multi-variable extension of the Exponentiated Gradient algorithm:

f̂t,j , f0,j +
K∑

k=1

Nk∑
i=1

û
(j,k)
t,i g

(k)
i

which yields, for all j = 1, . . . ,N0,

T∑
t=1

(
yt − f̂t,j(xt)

)2
6 min

g1,...,gK

T∑
t=1

(yt − (f0,j + g1 + . . .+ gK ) (xt))2

+ 120B
√
T

∫ γ/2

0

√
logN∞

(
F , ε

)
dε .
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Main result

The next theorem indicates that the Chaining Exponentially Weighted
Average forecaster satis�es a Dudley-type regret bound.

Theorem (Gaillard and G., 2015)

Let B > 0, T > 1, and γ ∈
(
B
T ,B

)
.

Assume that max16t6T |yt | 6 B and that supf∈F ‖f ‖∞ 6 B.

Assume that (F , ‖·‖∞) is totally bounded and de�ne F (0) and G(k)

as above.

Then, the Chaining Exponentially Weighted Average forecaster (tuned
with appropriate parameters) satis�es:

RegT (F) 6 B2
(
5+50 logN∞(F , γ)

)
+120B

√
T

∫ γ/2

0

√
logN∞(F , ε)dε .
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Computational issues: dyadic discretization

We assume that F =
{
f : [0, 1]→ [−B,B] : f is 1-Lipschitz

}
.

Regret bound:
We know that logN∞(F , ε) = O

(
ε−1
)
.

Therefore, our algorithm obtains RegT (F) = O
(
T 1/3

)
, which is optimal.

Computational issue:
Our algorithm updates exp

(
O(T )

)
weights at every round t.

Hence very poor time and space computational complexities.

Solution:
F has a su�ciently nice structure that can be exploited to construct
computationally manageable ε-nets with quasi-optimal cardinality.

For example: piecewise-constant approximations on a dyadic discretization
lead to O

(
T 1/3 logT

)
regret and per-round time complexity.
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Conclusion

We designed an explicit algorithm with a Dudley-type regret bound
for online nonparametric regression.

We provided an e�cient implementation for Hölder classes.

Advertisement: we organize a workshop about Sequential learning and
applications in Toulouse on November 9-10, 2015.

http://www.irit.fr/cimi-machine-learning/node/8
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5 Computational issues: dyadic discretization



Lipschitz class F : a computationally e�cient discretization

We assume that F =
{
f : [0, 1]→ [−B,B] : f is 1-Lipschitz

}
.

Regret bound:
We know that logN∞(F , ε) = O

(
ε−1
)
.

Therefore, our algorithm obtains RegT (F) = O
(
T 1/3

)
, which is optimal.

Computational issue:
Our algorithm updates exponentially many weights at every round t.
Hence poor time and space computational complexities.

Solution:
F has a su�ciently nice structure that can be exploited to construct
computationally manageable ε-nets with quasi-optimal cardinality.
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High-level discretization (piecewise-constant approximation)

Partition the x-axis [0, 1]: Ia ,
[
(a− 1)γ, aγ

)
, a = 1, . . . , 1

γ
.

Discretize the y -axis [−B,B]: C(0) =
{
−B + jγ : j = 0, . . . , 2B

γ

}
.

F (0): set of piecewise-constant functions f (0)(x) =
∑

1/γ
a=1

c
(0)
a Ix∈Ia , c

(0)
a ∈ C(0).
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Low-level discretization (dyadic approximation)

F (M): set of all functions fc : [0, 1]→ R of the form

fc(x) =

1/γ∑
a=1

c (0)
a Ix∈Ia︸ ︷︷ ︸

f (0)(x)

+
M∑

m=1

1/γ∑
a=1

2
m∑

n=1

c (m,n)
a I

x∈I
(m,n)
a︸ ︷︷ ︸

g (m)(x)

.

+

+
+

+

+

+

26/22



Regret and computational e�ciency

Theorem (Gaillard and G., 2015)

Let B > 0, T > 2, and F be the set of all 1-Lipschitz functions from [0, 1]
to [−B,B]. Assume that max16t6T |yt | 6 B.

Then, the Dyadic Chaining Algorithm (see preprint) satis�es, for some
absolute constant c > 0,

RegT (F) 6 c max{B,B2}T 1/3 logT .

Remark: additional log factor, but computationally tractable:

per-round time complexity: O
(
T 1/3 logT

)
;

space complexity: O
(
T 4/3 logT

)
.
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