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PLAN

1. Perverse sheaves on the disc, vanishing cycles, cohomology.

2. Atiyah flop and sl2; flober.

3. Parabolic Grothendieck resolutions. sl3 and spaces of triangles.

This is a report on a joint work with Alexei Bondal and Mikhail Kapranov,
see [BKS].

§1. Vanishing cycles and perverse sheaves

1.1. What is the vanishing cycles? Let D(A1; 0) denote the bounded
derived category of complexes F of sheaves over A1 = C (in the usual topology)
with values in vector spaces over a fixed field k; we require the cohomology of
these complexes to be locally constant over U = A1 \ {0}, and of finte type over
k.

In other words H∗(F) ∈ Constr(A1, 0).

VARIANT: one could take Db(Constr(A1, 0)).

We have
F0

∼
= RΓ(A1,F) ∈ D(∗)

We define

Φ(F) := Cone(F0 = RΓ(A1,F) −→ RΓ(U1,F) = F1)

where U1 = D(1, ε) - small disc with center at 1;

Ψ(F) = F1.
1
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Thus we have a canonical map

u : Ψ(F) −→ Φ(F).

Duality theorem. The functors Φ, Ψ commute with (Verdier) duality.

Corollary. We define the variation map

v(F) = u(F∗)∗ : Φ(F) −→ Ψ(F).

Unravelling the definitions,
vu = 1− T

where
T : Ψ

∼−→ Ψ

is the monodromy.

It follows that

RΓ(A1;F) = Cone(u : Ψ(F) −→ Φ(F))[−1]

Dually,
RΓc(A1;F) = Cone(v : Φ(F) −→ Ψ(F))[???]

1.2. What is a perverse sheaf?

Definition. F is called a perverse sheaf if Ψ(F),Φ(F) ∈ Constr(A1, 0).

The full subcategory
Perv(A1, 0) ⊂ D(A1; 0)

whose objects are perverse sheaves, is an abelian category.

LetHyp′(A1, 0) denote an abelian category whose objects ("hyperbolic sheaves")
are collections

E = (Φ,Ψ, v : Φ −→ Ψ, u : Ψ −→ Φ)

where Φ,Ψ ∈ V ectf (k), u, v are k-linear maps such that

Tψ : 1− vu (Inv)

is invertible.

Lemma. (Inv) is equivalent to

Tφ : 1− uv (Inv)′

is invertible.

Theorem (Kashiwara, Malgrange, Beilinson, . . . ). The above functors induce
an equivalence of categories

Perv(A1, 0)
∼−→ Hyp′(A1, 0)
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UNITARY SHEAVES

1.3. DIRAC VERSION

1.3.1. For F ∈ D(A1, 0) we define

E±(F) = F±1 = RΓ(F;Ui) ∈ D(k), i = ±1

where U(a) = D(a; ε) - small disc with center a.

E0(F) = Cone(RΓ(A1;F) −→ RΓ(F;U1 ∪ U−1))

Thus we have canonical maps

δ± : E±(F) −→ E0(F)

1.3.2. Duality. The functors E±, E0 commute with Verdier duality.

As a corollary we get maps

γ±(F) := δ±(F∗)∗ : E0(F) −→ E±(F)

The compositions

T+ = γ−δ+ : F1 −→ F−1, T− = γ+δ− : F−1 −→ F1

are (upper, lower) half-monodromies.

1.3.3.
RΓ(A1;F) = [E+(F)⊕ E−(F)

δ−→ E0(F)],

in horizontal degrees 0, 1;

RΓc(A1;F) = [E0(F)
γ−→ E+(F)⊕ E−(F)],

in horizontal degrees 1, 2 (NON STANDARD NORMALIZATION)

1.3.4. A complex F ∈ D(A1, 0) belongs to Perv(A1, 0) iff E∗(F) ∈ V ectf (k) ⊂
D(k), ∗ = 0,±.

Let us denote S a stratification of R into 3 strata:

C0 = {0}, C+ = R>0, C− = R<0,

and by Hyp(S) a category whose objects are collections

E0, E± ∈ V ectf (k), γ± : E0 −→ E±, δ± : E± −→ E0

such that:

(a) γ±δ± = Id;

(b) The maps γ∓δ± : E± −→ E∓ are isomorphisms.

Theorem [KS] (a). The above functors induce an equivalence of categories

E : Perv(A1, 0)
∼−→ Hyp(S)
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1.4. CATEGORICAL VERSIONS: SPHERICAL FUNCTORS AND SPHERICAL
PAIRS
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Fig. Schober.
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Fig. Another Schober.
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????????????????????

§2. Grothendieck resolution for sl2 and the Atiyah flop

2.1. Let g = sl2(C), h ⊂ g the Cartan subalgebra of diagonal matrices. The
Weyl group W = {1, s} acts on h, sh = −h.

ch : g −→ h/W, p(A) = − detA = −ad+ bc = λ2

where Spec(A) = {λ,−λ}.

F` = G/B = {0 = V0 ⊂ V1 ⊂ V2 = V = C2} ∼= P1

- the variety of flags.

We denote by g̃ the variety

g̃ = {(A ∈ g,F ∈ F`)| A(V1) ⊂ V1}

We have an obvious projection g̃ −→ F` which identifies g̃ with the cotangent
bundle T ∗F`.

A map
g̃ −→ h, (A,F) 7→ A|V1 ∈ C

Another obvious projection
π : g̃ −→ g

is nonramified two-fold covering over the open subvariety grss of matrices A with
λ(A) 6= 0. Its complement

N = {A|λ(A) = 0} = {A| detA = 0}

is the subvariety of nilpotent matrices, a quadratic cone.

For A ∈ N \ {0} π−1(A) consists of 1 element; π−1(0) = G/B = P1.

We have a commutatice square

g̃ −→ g
↓ ↓
h −→ h/W

2.2. Atiyah flop. We define

Z = h×h/W g
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Explicitely, a point of Z is a couple (A, λ), where A is a matrix from sl2 and λ is
a square root of its determinant:

−a2 − bc = λ2.

In other words, Z is a quadratic cone in C4.

Thus, we have canonical maps

g̃
π1−→ Z

π2−→ g

In fact, (3.2) is the Stein decomposition of π:

Z = Γ(g̃;Og̃),

and π1 is the canonical map (EXPLAIN)

π2 is a ramified covering, whereas the fibers of π1 are connected.

π1 is a blowing down of a curve C ∼
= P1; it is a small resolution of the isolated

singularity 0 ∈ Z.
We denote

π+ = π1 : X+ = g̃ −→ Z.

Let s : h −→ h be the Weyl reflection, s(λ) = −λ on h.

We define X− := s∗g̃, i.e. it fits into the Cartesian square
X− −→ g̃
↓ ↓
h

s−→ h

We have a canonical map
π− : X− −→ Z.

which is a small resolution.

Finally, we define
X0 := X− ×Z X+

it is the blowing up of the singularity 0 ∈ Z.
The diagram

X−
p−←− X0

p+−→ X+ (At)

is an example of an Atiyah flop. The maps p± are proper.

2.3. Atiyah - Grothendieck flober. For a variety X let D(X) denote the
bounded derived category of coherent sheaves onX, and Perf(X) the trangulated
category of perfect complexes; if X is smooth these categories are equivalent.

The diagram (At) induces two diagrams functors between triangulated categories

D(X−)
p−∗←− D(X0)

p+∗−→ D(X+) (At∗)
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and
D(X−)

p∗−−→ D(X0)
p∗+←− D(X+) (At∗)

which is a categorical analog of a hyperbolic shea f over A1, in the Dirac form.

This means that it satisfies the properties:

???

Let us denote it AG.

2.4. RΓ and RΓc for a Schober.

Definition.
H0(A1,AG) = holim(At∗),

this is the homotopy kernel of a couple of arrows;

H2
c (A1,AG) = hocolim(At∗),

this is the homotopy cokernel of a couple of arrows.

Theorem. We have equivalences of stable categories

Perf(Z)
∼
= H0(A1,AG); D(Z)

∼
= H2

c (A1,AG).

????????????????????

§3. Parabolic Grothendieck resolutions: the case of sl3

3.1. Levis, parabolics, complex and real strata. Let L0 ⊂ G = GLn(R) be
the subgroup of diagonal matrices, the minimal Levi subgroup, h = Lie(L0) = Rn,
with coordinates x1, . . . , xn.

In h consider the root arrangement consisting of hyperplanes xi = xj. Let S

(resp. SC) denote the corresponding stratification of h (resp. the corresponding
complex stratification of hC).

We have a canonical map
S −→ SC. (3.1.1)

We have bijections
SC

∼−→ {Levi subgroups L ⊃ L0}
Given a Levi L ⊃ L0, the corresponding complex stratum is Lie(Z(L)).

S
∼−→ {Parabolic subgroups P ⊃ L0}
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The map (3.1.1) corresponds to associating to a parabolic its Levi factor.

Example. n = 3. (we list the closures of strata).

L0 corresponds to hC. 6 real chambers in h are in bijection with 6 parabolics
Pijk where (ijk) is a permutation of (123) and Pijk consists of matrices respecting
the flag ViRei ⊂ Vi ⊕ Vj.

There are 3 Levi’s Lij corresponding to three complex lines `ij,C : xi = xj,

Lij = GL(Vi ⊕ Vj)×GL(Vk).

Each Lij is contained in 2 parabolics P±ij corresponding to two rays of the real
line `ij.

For example:

L12 = {

∗ ∗ 0
∗ ∗ 0
0 0 ∗

}, Z(L12) = {

a 0 0
0 a 0
0 0 b

}
P+

12 = {

∗ ∗ ∗∗ ∗ ∗
0 0 ∗

}, P−12 = {

∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗

}.
We have 6 one-dimensional real strata.

Finally, G corresponds to the smallest stratum x1 = x2 = x3.

3.2. Parabolic Grothendieck resolutions. Let P ⊂ G be a parabolic, so

F`P = G/P = {P x := xPx−1}

is a partial flag variety.

By definition

g̃P = {(A,P ′), P ′ ∈ G/P, A ∈ p′ = Lie(P ′)}

Thus g̃ = g̃B, whereas g = g̃G.

For P ⊂ P ′ we have a commutative square

g̃P −→ g̃P ′
↓ ↓

G/P −→ G/P ′

3.3. SEVERAL DEFINITIONS OF SINGULAR VARIETIES ZP
(i) Stein factorization
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g̃P
π1−→ ZP = Spec(g̃P ,Og̃P )

π2−→ g̃G = g

where π2 is finite, and π1 has connected fibers and is birational.

(ii) Let p = Lie(P ), np ⊂ p its nilpotent radical, lp = p/np the Levi quotient,
m = l/Z(l).

Let
l̃ −→ Z(l) −→ l

be the Grothendieck resolution and its affinization. We define
Z(p) = p×l Z(l),

and varying P we get the unversal family
ZP = G×P Z(p) := (G× Z(p))/P −→ F`P = G/P

???????????????????????

3.4. Triangle and its flags. We consider the case of sl3.

We have a map
g̃ −→ F`

whose fiber over B ∈ F`, or over a flag
F : 0 ⊂ V1 ⊂ V2 ⊂ V3 = C3 (3.4.2)

is b = Lie(B), or the space of matrices A ∈ g = sl3(C) such that A(Vi) ⊂ Vi,
i = 1, 2.

Or we can consider the flag F as a pair

point ∗ = P(V1) ⊂ straight line P(V2)
∼
= P1 ⊂ P2 = P(V3)
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Fig. Triangle.
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Consider a triangle

∆ = ∪1≤i,j≤3`ij ⊂ P(V ), `ij = `ji

as on Fig. above, with vertices

p1 = `12 ∩ `13, p2 = `12 ∩ `23, p3 = `13 ∩ `23

To ∆ we associate a Cartan subalgebra

h(∆) = {A ∈ g| Api ⊂ pi}

(where pi is considered as a line in V ).

To ∆ there correspond 13 elements which are in bijection with the cells of the
root stratification S(A2) on R2, and with parabolics containing h(∆).

(a) Let us call a 0-element a flag F = (p`) in P = P(V ).

To each F ∈ ∆ there corresponds a Borel subalgebra b(F ) ⊂ g as above.

We denote
p(F ) = q(F ) = b(F )

We have dim b(F ) = 5;

The space of flags
Flags = Elements0

has dimension 3.

The borels b(F ) form a 2-dimensional vector bundle over Flags, whose total
space is nothing but the 8-dimensional Grothendieck resolution g̃.

0-elements belonging to a given triangle ∆ are in bijection with 6 chambers of
S(A2).

?????????????????????????????????

(b) By definition, 1-elements are of two kinds:

(b1) A 1-element of the first kind is a pair of distinct straight lines E = (`, `′)
in P. Let p = ` ∩ `′.

The element E contains 2 flags: F = (p ⊂ `) and F ′ = (p ⊂ `′). We write
F ∈ E.

Define two Lie subalgebras

p(E) = b(F ) ∪ b(F ′)
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it is a parabolic; and
q(E) = b(F ) ∩ b(F ′), dim q(E) = 4.

The space of 1-elements of the first kind is an open subspace
Elements′1 ⊂ P× P, dim Elements′1 = 4.

(b2) A 1-element of the second kind is a 1-element of the first kind in the dual
projective plane P∨.

Explicitely, it is a pair of distinct points E ′ = (p, p′) in P. Let ` be the straight
line through p, p′.

Two flags belong to this element F = (p ⊂ `) and F ′ = (p′ ⊂ `).

Define two Lie subalgebras
p(E ′) = b(F ) ∪ b(F ′), dim p(E) = 6.

it is a parabolic; and
q(E) = b(F ) ∩ b(F ′), dim q(E) = 4.

The space of 1-elements of the second kind is an open subspace
Elements′′1 ⊂ P∨ × P∨, dim Elements′′1 = 4.

3+3 elements belonging to a fixed triangle ∆ are in bijection with 3+3 1-cells
of S(A2), see Fig. ??? below.

FIGURE: TRIANGLE AND ITS 1-ELEMENTS
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Fig. ???. 1-elements and 1-cells.
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(c) A 2-element is a triple of distinct points p1, p2, p3 in P, i.e. a triangle ∆. It
corresponds to the unique 0-cell in S(A2).

There are 6 flags F : pi ⊂ `ij in ∆; we write this as F ∈ ∆.

We define two Lie subalgebras

p(∆) = ∪F∈∆ b(F ) = G,

and
q(∆) = ∩F∈∆ b(F ) = h(∆), dim(q(∆)) = 2.

The space of triangles

Triangles = Elements2 ⊂ (P2)3

has dimension 6.

It carries a vector bundle whose fiber over ∆ is q(∆).

The total space of this bundle has dimension 8 and is birational with g.

?????????????????????

TO RECUPERATE:

Let E be an element ( = a triangle element), and Cell(E) the corresponding
cell of S(A2).

The flags F ∈ E are in bijection with chambers adjacent to Cell(E).

The parabolic corresponding to E is

p(E) =
∑

F∈Fl(E)

b(F ).

On the other hand
q(E) = ∩F∈Fl(E) b(F ).

We call Lie algebras q(E) carabolic ones, for Cartan, indicating that they lie
between a Cartan q(∆) = h(∆) and a Borel.

The carabolics (resp. parabolics) containing a given Cartan are in bijection
with S(A2).

??????????????????????,

COMPACTIFICATIONS AND DESINGULARIZATIONS

3.5. Origin: the Schubert variety. We have an embedding

i : Triangles ↪→ P(V )3 × P(V )∨3, i(∆) = (p1, p2, p3; `12, `13, `23). (3.5.1)

Let Tr denote the Zarisky closure of i(Triangles).
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SCHUBERT DESINGULARIZATION

For T = (pi) ∈ Triangles quadrics q ∈ S2(V ∗) circumscribed around T , i.e.
such that

q(p1) = q(p2) = q(p3) = 0

form a 3-dimensional linear subspace of S2(V ∗), whence an embedding

Triangles ↪→ P(V )3 × P(V )∨3 ×Gr(3, S2(V ∗).

By definition TrSch is the closure of its image, cf. [Sch], [Se], [KM]; according to
loc. cit. it is nonsingular.

It comes together with an obvous map

TrSch −→ Tr

which is an isomorphism over an open Triangles ⊂ Tr, and is therefore a
desingularization of the compact variety Tr.

????????????????????

ANOTHER REALIZATION OF THE SCHUBERT VARIETY; THE CARTAN
VECTOR BUNDLE ON IT

Variety of reductions

Let Ro denote the variety of Cartan subalgebras in g. We have an embedding

Ro ↪→ Gr(2, g);

let R denote its closure, cf. [IM]. R carries a tautological rank 2 vector bundle
???

We have an embedding

î : Triangles −→ P3 × P∨3 ×R,

with
î(∆) = (i(∆), h(∆)).

We define T̂ r as the Zarisky closure of the image of î.

Proposition.
T̂ r

∼
= TrSch

Therefore we have over TrSch the tautological 2-dimensional fiber bundle; denote
its total space X0.

3.6. 1-rays. Define two open 8-dimensional 1-element variety: Y ′1 (resp. Y ′′1 )
as the total space of a 4-dimensional fiber bundle over the 4-dimensional space
of 1-elements Elements′1 (resp. Elements′′1).
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The fiber of Y ′1 (resp. of Y ′′1 ) over an element E ′ = (p, p′, `) (resp. over E ′′ =
(p, `, `′)) is the corresponding carabolic subalgebra: interesection of two borels

q(E) = ∩F∈Eb(F ).

We compactify Elements′1 as follows: we have an open embedding
Elements′1 ↪→ Flags×P∨ Flags,

and we set
El′1 := Flags×P∨ Flags.

Similarly we set
El′′1 := Flags×P Flags.

The carabolic fiber bundles Y ′1 , Y ′′1 may be extended to the compactfied spaces.

????????????

This may be proved by constructing them as fiber products, similarly to Atiyah
case.

???????????????

We have an embedding
Y ′1 ↪→ Xw ×Xw′ = g̃w × g̃w′

(resp. Y ′′1 ↪→ Xw ×Xw′) corresponding to two chambers neighboring a wall. We
define X ′1 (resp. X ′′1 ) as the closure of its image.

3.7. Résumé. We have constructed a web of 13 smooth projective varieties
X(C), C ∈ S(A2), and proper morphisms

X(C) −→ X(C ′), C ≤ C ′
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