VANISHING CYCLES AND DOLD - KAN CORRESPONDENCE

Talk at "Homological algebra of the infrared" conference

Tsinghua Sanya International Mathematics Forum, Beijing

Vadim Schechtman

January 12, 2023

Abstract

We discuss analogies between normalized chains and vanishing cycles These notes are a complement to previous joint works with Mikhail Kapranov and Michael Finkelberg.

Introduction

Solomon Lefschetz (1884-1972) was the author of several fundamental concepts in topology and algebraic geometry.

One of them is a notion of vanishing cycles (cycles évanouissants) which appeared in [L] (based on the previous work by Émile Picard, cf. [PS]) in what is called now the Picard - Lefschetz formula, see Figures 4 and 5 below.

§1. Hyperbolic sheaves and vanishing cycles

1.1. Moebius inversion is a rule of inverting a triangular matrix with 1's as their nonzero elements. Symbolically:

$$
\begin{gathered}
M=\sum L \\
L=\sum \pm M
\end{gathered}
$$

("inclusion - exclusion formula").
Example. Let

$$
\gamma: M(0) \longrightarrow M(1)
$$

be an epimorphism of vector spaces.
Define $L(1)=M(1)$ and $L(0)=\operatorname{Ker} \gamma$. So we have a resolution of $L(0)$

$$
0 \longrightarrow L(0) \longrightarrow M(0) \xrightarrow{\gamma} M(1) \longrightarrow 0 .
$$

Once we choose a left inverse to γ, i.e. $\delta: M(1) \longrightarrow M(0)$ such that $\gamma \delta=1_{M(1)}$, we get an isomorphism $M(0) \cong L(0) \oplus L(1)$.

Such objects appear in linear algebra descriptions of perverse sheaves and of their Fourier transforms.
1.2. Hyperbolic sheaves. Let $\mathcal{H}=\left\{H_{i}, i \in I\right\}$ be a finite collection of real hyperplanes in $V=\mathbb{R}^{n}$.

For each $J \subset I$ denote

$$
H_{J}:=\bigcap_{i \in J} H_{i}, H_{J}^{o}:=H_{J} \backslash \bigcup_{H_{J^{\prime}} \subset H_{J}, H_{J^{\prime}} \neq H_{J}} H_{J^{\prime}}
$$

Let us call a face (or a cell) a connected component of H_{J}^{o}; the set of faces \mathcal{C} is a poset: we write $A \leq B$ if A is contained in the closure of $B, A \subset \bar{B}$.

We have

$$
V=\cup_{A \in \mathrm{C}} A
$$

Example. $V=\mathbb{R}^{2}, \mathcal{H}=\left\{\ell_{i}, 1 \leq i \leq 3\right\} ; \mathcal{C}$ has 13 cells.
Let \mathcal{A} be a category. A bisheaf on \mathcal{C} with values in \mathcal{A} is a collection of objects $\{E(A) \in \mathcal{A}, A \in \mathcal{C}\}$ and morphisms

$$
\gamma_{A B}: E(A) \longrightarrow E(B), \delta_{B A}: E(B) \longrightarrow E(A) A \leq B
$$

such that $\left\{\gamma_{A B}\right\}$ (resp. $\left\{\delta_{B A}\right\}$) is a functor $\gamma: \mathcal{C} \longrightarrow \mathcal{A}$ (resp. $\delta: \mathfrak{C}^{\text {opp }} \longrightarrow \mathcal{A}$).
A hyperbolic sheaf on \mathcal{C} with values in \mathcal{A} is a bisheaf enjoying the following properties:
(Mon) For all $A \leq B$

$$
\gamma_{A B} \delta_{B A}=\operatorname{Id}_{E(B)} .
$$

This allows to define for all A, B a map

$$
\phi_{A B}:=\gamma_{C B} \delta_{A C}: E(A) \longrightarrow E(B)
$$

where C is any cell such that $C \leq A$ and $C \leq B$.
Let us call three cells A, B, C collinear if there exist points $x \in A, y \in B, z \in C$ lying on one straight line.
(Tran) If A, B, C are collinear then

$$
\phi_{A C}=\phi_{B C} \phi_{A B} .
$$

(Inv) Let A, B be two d-dimensional cells belonging to the same d-dimensional linear subspace $L=H_{J} \subset V$ lying on the opposite sides of a ($d-1$)-dimensional cell $C, C<A, C<B$. Then the map

$$
\phi_{A B}=\gamma_{C B} \delta_{A C}
$$

is an isomorphism.
We denote by $\mathcal{H} \operatorname{yp}(\mathcal{C} ; \mathcal{A})$ the category of hyperbolic sheaves.
1.3. Complexification. Inside $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$ consider the collection of complex hyperplanes $\left\{H_{i \mathbb{C}}, i \in I\right\}$. Similarly to the above, it gives rise to a stratification

$$
V=\bigcup H_{J \mathbb{C}}^{o}
$$

where

$$
H_{J \mathbb{C}}:=\bigcap_{i \in J} H_{i \mathbb{C}}, H_{J \mathbb{C}}^{o}:=H_{J \mathbb{C}} \backslash \bigcup_{H_{J^{\prime} \mathbb{C}} \subset H_{J \mathbb{C}}, H_{J^{\prime} \mathbb{C} \neq H_{J \mathbb{C}}} H_{J^{\prime} \mathbb{C}} .}
$$

The strata $H_{J \mathbb{C}}^{o}$ are complex linear subspaces without some hyperplanes. We denote by $\mathcal{S}=\mathcal{C}_{\mathbb{C}}$ the set of complex strata. We have an obvious map

$$
\mathcal{C} \longrightarrow \mathcal{S} .
$$

Let \mathbf{k} be a field, $\mathcal{A}(\mathbf{k})$ the category of \mathbf{k}-vector spaces, $\mathcal{A}^{f}(\mathbf{k}) \subset \mathcal{A}(\mathbf{k})$ the full subcategory of finite dimensional spaces.

Let $\operatorname{Perv}\left(V_{\mathbb{C}}, \mathfrak{C}_{\mathbb{C}} ; \mathcal{A}(\mathbf{k})\right)$ be the category of $\mathcal{A}(\mathbf{k})$-valued perverse sheaves over $V_{\mathbb{C}}$ smooth along \mathcal{S}.

The main result of [KS16] says that we have an equivalence of categories

$$
\mathcal{Q}: \operatorname{Perv}\left(V_{\mathbb{C}}, \mathfrak{C}_{\mathbb{C}} ; \mathcal{A}(\mathbf{k})\right) \xrightarrow{\sim} \mathcal{H} y p\left(\mathcal{C} ; \mathcal{A}^{f}(\mathbf{k})\right) .
$$

For $\mathcal{M} \in \operatorname{Perv}\left(V_{\mathbb{C}}, \mathrm{C}_{\mathbb{C}} ; \mathcal{A}(\mathbf{k})\right)$

$$
\mathcal{Q}(\mathcal{M})=\left(E(\mathcal{M}, A), \gamma_{A B}, \delta_{B A}\right)
$$

where

$$
\left.E(\mathcal{M}, A)=R \Gamma\left(A, i_{A}^{*} i_{V}^{!} \mathcal{M}\right)\right), i_{A}: A \hookrightarrow V, i_{V}: V \hookrightarrow V_{\mathbb{C}}
$$

(these finite dimensional spaces are called hyperbolic stalks of \mathcal{M}).
1.4. Vanishing cycles. Let us suppose that $\cap_{i \in I} H_{i}=\{0\}$.

Let $f: V \longrightarrow \mathbb{R}$ be a linear function such that the hyperplane

$$
H_{f}=\{x \in V \mid f(x)=0\}
$$

is in general position to all subspaces H_{J}.
Let $f_{\mathbb{C}}: V_{\mathbb{C}} \longrightarrow \mathbb{C}$ be the complexification of f.
For any $\mathcal{M} \in \operatorname{Perv}\left(V_{\mathbb{C}}, \mathcal{C}_{\mathbb{C}} ; \mathcal{A}(\mathbf{k})\right)$ the sheaf of vanishing cycles

$$
\Phi_{f_{\mathbb{C}}}(\mathcal{N}) \in \operatorname{Perv}\left(H_{f \mathbb{C}} ; \mathcal{A}(\mathbf{k})\right)
$$

is supported at 0 . Let us denote by $\Phi(\mathcal{N})$ its stalk at 0 .
The main result of [FKS] describes $\Phi(\mathcal{M})$ in terms of the linear algebra data $\mathcal{Q}(\mathcal{M})$.
We shall describe it for two particular cases.
1.4.1. Example. A disc. $V=\mathbb{R}, \mathcal{H}=\{0\}$. There are three cells, $0, A^{+}$and A^{-}, see Fig. 1 below.

Let $\mathcal{M} \in \operatorname{Perv}\left(V_{\mathbb{C}}, 0 ; \mathcal{A}(\mathbf{k})\right)$. The hyperbolic sheaf $Q(\mathcal{M})$ consists of three spaces

$$
M_{0}=E(0), M_{+}=E\left(A^{+}\right), M_{-}=E\left(A^{-}\right)
$$

and four linear maps

$$
\gamma_{ \pm}: M_{0} \longrightarrow M_{ \pm}, \delta_{ \pm}: M_{ \pm} \longrightarrow M_{0}
$$

such that $\gamma_{ \pm} \delta_{ \pm}=\operatorname{Id}_{M_{ \pm}}$, and two maps

$$
\phi_{ \pm}=\gamma_{\mp} \delta_{ \pm}: M_{ \pm} \longrightarrow M_{\mp}
$$

are isomorphisms.

Fig. 1. A line

Let $f=\mathrm{Id}: V \longrightarrow \mathbb{R}$. The space

$$
L_{0}=\Phi_{f}(\mathcal{M})
$$

may be identified with $\operatorname{Ker}\left(\gamma_{+}\right)$. Thus we have a right resolution of L_{0}

$$
\begin{equation*}
0 \longrightarrow L_{0} \longrightarrow M_{0} \xrightarrow{\gamma_{+}} M_{+} \longrightarrow 0 \tag{1.4.1}
\end{equation*}
$$

(note that γ_{+}is surjective since $\gamma_{+} \delta_{+}=\operatorname{Id}_{M_{+}}$).
A dual way to describe the same space is by introducing $L_{0}^{\prime}=\operatorname{Coker}\left(\delta_{+}\right)$, so that we have a left resolution of it

$$
\begin{equation*}
0 \longrightarrow M_{+} \xrightarrow{\delta_{+}} M_{0} \longrightarrow L_{0}^{\prime} \longrightarrow 0 . \tag{1.4.2}
\end{equation*}
$$

A map

$$
\mathrm{Id}-\delta_{+} \gamma_{+}: M_{0} \longrightarrow M_{0}
$$

induces an isomorphism

$$
L_{0}^{\prime} \xrightarrow{\sim} L_{0}
$$

We can dock two complexes (1.4.1) and (1.4.2) together and get an acyclic Janus complex

$$
\begin{equation*}
0 \longrightarrow M_{+} \longrightarrow M_{0} \longrightarrow M_{0} \longrightarrow M_{+} \longrightarrow 0, \tag{1.4.3}
\end{equation*}
$$

see Fig. 2 below.

Fig. 2. Janus
1.4.2. Define maps

$$
u: M_{-} \longrightarrow L_{0}
$$

as the composition

$$
M_{-} \xrightarrow{\delta_{-}} M_{0} \xrightarrow{p} L_{0}
$$

where $p=\operatorname{Id}-\delta_{+} \gamma_{+}$, and

$$
v: L_{0} \longrightarrow M_{-}
$$

as the composition

$$
L_{0} \hookrightarrow M_{0} \xrightarrow{\gamma_{-}} M_{-} .
$$

Then

$$
v u=\operatorname{Id}_{M_{-}}-\phi_{+} \phi_{-} .
$$

The quadruple ($\left.L_{0}, L_{-}=M_{-}, v, u\right)$ forms the classical description of perverse sheaves over \mathbb{C} with one possible singularity at 0 .

We may denote $L_{+}:=M_{+}$, and we have

$$
\begin{equation*}
M_{0} \cong L_{0} \oplus L_{1} \tag{1.4.4}
\end{equation*}
$$

1.5. Example. Three lines on the plane. $V=\mathbb{R}^{2}, \mathcal{H}=\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$. There are 13 cells:

0 , six 1-dimensional ones $\ell_{i}^{ \pm}, 1 \leq i \leq 3$, and six 2-dimensional ones $A_{12}^{ \pm}, A_{23}^{ \pm}, A_{31}^{ \pm}$, see Fig. 3 below.

Let $f: V \longrightarrow \mathbb{R}$ be a linear function in general position such that for $x \in \ell_{i}^{+}$we have $f(x)>0$.

Let $\mathcal{M} \in \operatorname{Perv}\left(V_{\mathbb{C}}, \mathcal{S} ; \mathcal{A}(\mathbf{k})\right)$, with

$$
\mathcal{Q}(\mathcal{M})=\left(M(0), M\left(\ell_{i}^{ \pm}\right), M\left(A_{i j}^{ \pm}\right), \gamma_{A B}, \delta_{B A}\right) .
$$

According to [FKS] the space $\Phi(\mathcal{M})$ admits a right resolution

$$
\begin{equation*}
0 \longrightarrow \Phi(\mathcal{M}) \longrightarrow M(0) \longrightarrow \oplus_{i=1}^{3} M\left(\ell_{i}^{+}\right) \longrightarrow M\left(A_{12}^{+}\right) \oplus M\left(A_{23}^{+}\right) \longrightarrow 0 \tag{1.5.1}
\end{equation*}
$$

where the matrix elements of the differential are $\pm \gamma_{A B}$.
Dually, $\Phi(\mathcal{M})$ admits a left resolution

$$
\begin{equation*}
0 \longrightarrow M\left(A_{12}^{+}\right) \oplus M\left(A_{23}^{+}\right) \longrightarrow \oplus_{i=1}^{3} M\left(\ell_{i}^{+}\right) \longrightarrow M(0) \longrightarrow \Phi(\mathcal{M}) \longrightarrow 0 \tag{1.5.2}
\end{equation*}
$$

where the matrix elements of the differential are $\pm \delta_{B A}$.
We can dock these two resolutions together and form an acyclic Janus complex.

Let us denote

$$
L(0):=\Phi(\mathcal{M}), M\left(\ell_{i}^{+}\right):=\operatorname{Ker}\left(\gamma: M\left(\ell_{i}^{+}\right) \longrightarrow M\left(A_{i, i+1}^{+}\right)\right), L\left(A_{i, i+1}^{+}\right):=M\left(A_{i, i+1}^{+}\right)
$$

Then

$$
M\left(\ell_{i}^{+}\right) \cong L\left(\ell_{i}^{+}\right) \oplus L\left(A_{i, i+1}^{+}\right) .
$$

Note that in the Grothendieck group $K_{0}\left(\mathcal{A}^{f}(\mathbf{k})\right)$ all classes $\left[L\left(A_{i, i+1}^{+}\right)\right]$are equal; let us denote them $[L(A)]$.

We have

$$
\begin{equation*}
[M(0)]=[L(0)]+\sum_{i=1}^{3}\left[L\left(\ell_{i}\right)\right]+[L(A)] \tag{1.5.3}
\end{equation*}
$$

The complex (1.5.1) (or (1.5.2)) and (1.5.3) is an example of a Moebius inversion.
The summands here are in bijection with the complex strata ("Takeuchi formula"). This is a general phenomenon, cf. [T], [KS16], 4.C.1, [KS19], 1.3.

Fig. 3. Three lines on a plane
1.6. General case is similar. Let $\mathcal{M} \in \operatorname{Perv}(V, \mathcal{S} ; \mathcal{A}(\mathbf{k}))$ with

$$
\mathcal{Q}(\mathcal{M})=\left(M(A), \gamma_{A B}, \delta_{B A}\right) ;
$$

let

$$
f: V \longrightarrow \mathbb{R}
$$

a linear function in general position to \mathcal{H}.
Let $\mathcal{C}^{+} \subset \mathcal{C}$ be the subset of cells contained in the half-space $V^{+}=\{x \in V \mid f(x) \geq$ $0\}$, and for each i let $\mathcal{C}_{i}^{+} \subset \mathcal{C}^{+}$be the subset of cells of dimension i.

The space

$$
\Phi(\mathcal{M})=\Phi_{f \mathbb{C}}(\mathcal{M})_{0}
$$

admits a right resolution

$$
\begin{equation*}
0 \longrightarrow \Phi(\mathcal{M}) \longrightarrow M(0) \longrightarrow \oplus_{A \in \mathrm{e}_{1}^{+}} M(A) \longrightarrow \oplus_{A \in \mathcal{C}_{2}^{+}} M(A) \longrightarrow \ldots \oplus_{A \in \mathcal{C}_{n}^{+}} M(A) \longrightarrow 0 \tag{1.6.1}
\end{equation*}
$$

where $n=\operatorname{dim} V$. The matrix elements of the differential are $\pm \gamma$.
Dually the same space admits a left resolution

$$
\begin{equation*}
0 \longrightarrow \oplus_{A \in \mathcal{C}_{n}^{+}} M(A) \longrightarrow \ldots \longrightarrow \oplus_{A \in \mathrm{e}_{1}^{+}} M(A) \longrightarrow M(0) \longrightarrow \Phi(\mathcal{M}) \longrightarrow 0 \tag{1.6.2}
\end{equation*}
$$

the matrix elements of the differential being $\pm \delta$. Both complexes may be glued together into an acyclic Janus complex.

§2. Deriving normalized chains

2.1. Normalized chains. We will follow the notations of [DK].

Let $\boldsymbol{\Delta}^{o}$ be the category whose objects are $(n), n \in \mathbb{Z}_{\geq 0}$, and maps

$$
\begin{aligned}
& d_{i}:(n) \longrightarrow(n-1), 0 \leq i \leq n, \\
& s_{i}:(n) \longrightarrow(n+1), 0 \leq i \leq n,
\end{aligned}
$$

subjects to the usual relations

$$
\begin{gathered}
d_{i} d_{j}=d_{j-1} d_{i}, \quad i<j \\
s_{i} s_{j}=s_{j+1} s_{i}, \quad i \leq j \\
d_{i} s_{j}=\left\{\begin{array}{cc}
s_{j-1} d_{i}, & i<j, \\
1 & \text { if } i=j, j+1, \\
s_{j} d_{i-1} & i>j+1
\end{array}\right.
\end{gathered}
$$

Let \mathcal{A} be an abelian category, and $\boldsymbol{\Delta}^{\circ} \mathcal{A}$ be the category of simplicial objects of \mathcal{A}, i.e. of functors $A: \Delta^{o} \longrightarrow \mathcal{A}$.

Normalized chains

Let $M=\left(M_{0}, M_{1}, \ldots\right) \in \boldsymbol{\Delta}^{\circ} \mathcal{A}$. There are two dual ways to define the normalized chains.
(a) As subobjects. We define

$$
\begin{equation*}
L_{n}=\bigcap_{i=1}^{n} \operatorname{Ker}\left(d_{i}: M_{n} \longrightarrow M_{n-1}\right) \subset M_{n} \tag{2.1.1}
\end{equation*}
$$

(b) As quotient objects. We define

$$
\begin{equation*}
L_{n}^{\prime}=M_{n} / \sum_{i=0}^{n} s_{i}\left(M_{n-1}\right) \tag{2.1.2}
\end{equation*}
$$

Both ways give the same answer: the composition

$$
L_{n} \hookrightarrow M_{n} \longrightarrow L_{n}^{\prime}
$$

is an isomorphism.
The above definitions suggest the idea that maybe (2.1.1) (resp. (2.1.2)) is the beginning of a right (resp. left) resolution of L_{n} by objects $M_{i}, i \leq n$.
2.1.1. Example. For $n=0, L_{0}=M_{0}$. For $n=1$ we have an exact sequence

$$
0 \longrightarrow L_{1} \longrightarrow M_{1} \xrightarrow{d_{1}} M_{0} \longrightarrow 0
$$

d_{1} is surjective since $d_{1} s_{0}=\operatorname{Id}_{M_{0}}$.
Dually, we have an exact sequence

$$
0 \longrightarrow M_{0} \xrightarrow{s_{0}} M_{1} \longrightarrow L_{1}^{\prime} \longrightarrow 0
$$

2.2. Dold - Kan correspondence. Cf. [DK], 3.1.

Let $M=\left(M_{0}, M_{1}, \ldots\right) \in \boldsymbol{\Delta}^{\circ} \mathcal{A}$. For each $n \geq 0$ denote by

$$
B_{n}=\sum_{i=0}^{n-1} s_{i}\left(M_{n-1}\right) \subset M_{n}
$$

the subobject of degenerate simplices.
For each sequence $0 \leq p_{1}<\ldots<p_{i} \leq n-1$ the composition

$$
s_{p_{i}} \ldots s_{p_{1}}: L_{n-i} \longrightarrow M_{n}
$$

is a monomorphism; denote its image

$$
L_{n-i}^{p_{1} \ldots p_{i}} \subset B_{n}
$$

Dold - Kan affirms that we have an isomorphism

$$
\begin{equation*}
M_{n} \cong L_{n} \oplus\left(\oplus_{i=1}^{n} \oplus_{0 \leq p_{1}<\ldots<p_{i} \leq n-1} L_{n-i}^{p_{1} \ldots p_{i}}\right) \tag{2.2.1}
\end{equation*}
$$

So in this sum for each $0 \leq i \leq n$ we have $\binom{n}{i}$ copies of L_{i} :

$$
M_{n} \cong \oplus_{i=1}^{n} L_{i}^{\binom{n}{i}}
$$

2.2.1. Example. $n=2$

$$
M_{2}=L_{2} \oplus s_{0} L_{1} \oplus s_{1} L_{1} \oplus s_{1} s_{0} L_{0}
$$

2.3. Moebius inversion: two cubes. It follows that each L_{n} admits two resolutions by the modules M_{i} :
(a) a right one:

$$
0 \longrightarrow L_{n} \longrightarrow M_{n} \longrightarrow M_{n-1}^{n} \longrightarrow M_{n-2}^{\binom{n}{2}} \longrightarrow \ldots \longrightarrow M_{0} \longrightarrow 0
$$

whose differential should have various $\pm d_{i}, 1 \leq i \leq n$ as matrix elements.
In other words we can put the objects $M_{i}, 0 \leq i \leq n$ into the vertices of an n-dimensional cube.

Denote

$$
L_{n}^{\bullet}: 0 \longrightarrow M_{n} \longrightarrow M_{n-1}^{n} \longrightarrow M_{n-2}^{\binom{n}{2}} \longrightarrow \ldots \longrightarrow M_{0} \longrightarrow 0
$$

which we regard as a complex concentrated in degrees $[0, n]$. So we have a quasiisomirphism

$$
L_{n} \xrightarrow{\sim} L_{n}^{\bullet}
$$

(b) a left one:

$$
0 \longrightarrow M_{0} \longrightarrow M_{1}^{n} \longrightarrow \ldots \longrightarrow M_{n-1}^{n} \longrightarrow M_{n} \longrightarrow L_{n}^{\prime} \longrightarrow 0
$$

whose differential should have various $\pm s_{i} 0 \leq i \leq n-1$ as matrix elements.
In other words we can put the objects $M_{i}, 0 \leq i \leq n$ into the vertices of an n-dimensional cube.

We denote

$$
L_{n \bullet}^{\prime}: 0 \longrightarrow M_{0} \longrightarrow M_{1}^{n} \longrightarrow \ldots \longrightarrow M_{n-1}^{n} \longrightarrow M_{n} \longrightarrow 0
$$

which we regard as a complex concentrated in degrees $[-n, 0]$.
Thus we have a quasiisomirphism

$$
L_{n}^{\prime} \stackrel{\sim}{\sim} L_{n}^{\prime}
$$

(c) Two-sided acyclic Janus complexes.

The composition

$$
\psi_{n}: L_{n} \hookrightarrow M_{n} \longrightarrow L_{n}^{\prime}
$$

is an isomorphism. We use its inverse to define a gluing map

$$
g: M_{n} \longrightarrow L_{n}^{\prime} \xrightarrow{\psi_{n}} L_{n} \longrightarrow M_{n}
$$

We use g to glue the complexes L_{n}^{\prime} • (b) and L_{n}^{\bullet} (a) to get an acyclic complex:

$$
\begin{aligned}
& 0 \longrightarrow M_{0} \longrightarrow M_{1}^{n} \longrightarrow \ldots \longrightarrow M_{n-1}^{n} \longrightarrow M_{n} \xrightarrow{g} \\
& \longrightarrow M_{n} \longrightarrow M_{n-1}^{n} \longrightarrow M_{n-2}^{\binom{n}{2}} \longrightarrow \ldots \longrightarrow M_{0} \longrightarrow 0
\end{aligned}
$$

in the left (resp. right) part the differentials are various s_{i} (resp. d_{i}).
2.4. Example. $n=2$

$$
0 \longrightarrow L_{2} \longrightarrow M_{2} \xrightarrow{\binom{d_{2}}{d_{1}}} \underset{M_{1}}{\stackrel{M_{1}}{\longrightarrow}} \stackrel{\left(d_{1}-d_{1}\right)}{\longrightarrow} M_{0} \longrightarrow 0
$$

Exatness at M_{2} and M_{0} is clear.
Let us prove the exactness at M_{1}^{2}. If we have

$$
\binom{x}{y} \in M_{1}^{2}
$$

such that $d_{1} x-d_{1} y=0$ then

$$
\binom{x}{y}=\binom{d_{2}}{d_{1}}\left(\left(s_{1}-s_{0}\right) x+s_{0} y\right) .
$$

2.5. Derived normalized complex.

The normalized chains form a complex

$$
\ldots \longrightarrow L_{2} \xrightarrow{d_{0}} L_{1} \xrightarrow{d_{0}} L_{0} \longrightarrow 0
$$

where the differential is induced by d_{0}.
Let us replace L_{i} by their resolutions L_{i}^{\bullet}. As was remarked by M.Kapranov, it is natural to expect that these complexes form a twisted complex.

This means that we can lift the maps $d_{0}: L_{i} \longrightarrow L_{i-1}$ to morphisms of complexes

$$
d_{0}^{\bullet}: L_{i}^{\bullet} \longrightarrow L_{i-1}^{\bullet}
$$

but the composition $d_{0}^{\bullet} \circ d_{0}^{\bullet}$ will not be 0 . However, one can write down a homotopy h between $\left(d_{0}^{\bullet}\right)^{2}$ and 0 , etc.
2.6. Example. $n=2$.

$$
\begin{array}{clll}
& \begin{array}{l}
M_{2} \\
\uparrow
\end{array} & & \\
& \\
M_{1} \oplus M_{1} & \xrightarrow{\left(0, d_{2}\right)} & & M_{0} \\
\left(d_{1}, d_{2}\right) \uparrow & & \uparrow d_{1} \\
M_{2} & \xrightarrow{d_{0}} & M_{1} \xrightarrow{d_{0}} & M_{0} \longrightarrow 0
\end{array}
$$

A component of the homotopy:

$$
h=\left(d_{0}, 0\right): M_{1} \oplus M_{1} \longrightarrow M_{0} .
$$

This might be related to [D].
2.7. Complements. Moebius dual Kostka numbers appear in [FPS].

Some infinite Janus complexes related to chiral algebras are discussed in [MS].

Fig. 4. Picard - Lefschetz formula

Fig. 5. Cycles évanouissants

References

[DK] W.G.Dwyer, D.M.Kan, Normalizing cyclic modules of Connes, Comment. Math. Helvetici 60 (1985), 582-600.
[D] T.Dyckerhoff, A categorified Dold - Kan correspondence, arXiv:1710.08356; Selecta
[FPS] M.Finkelberg, A.Postnikov, V.Schechtman, Kostka numbers and Fourier duality, https://arxiv.org/abs/2206.00324.
[KS16] M.Kapranov, V.Schechtman, Perverse sheaves over real hyperplane arrangements, Ann. Math. 183 (2016), 619-679.
[KS19] M.Kapranov, V.Schechtman, Shuffle algebras and perverse sheaves, arXiv:1904.09325
[L] S.Lefschetz, L'analysis situs et la géométrie algébrique, Paris, Gauthier-Villars, 1924
[MS] F.Malikov, V.Schechtman, Chiral Janus complexes, arXiv:2210.02814.
[PS] É.Picard, G.Simart, Théorie des fonctions algébriques de deux variables indépentantes, 1897
[T] K.Takeuchi, Dimension formulas for the hyperfunction solutions to holonomic D-modules, Adv. Math. 180 (2003), 134-145.

