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Abstract

We discuss analogies between normalized chains and vanishing cycles

These notes are a complement to previous joint works with Mikhail Kapranov and
Michael Finkelberg.

Introduction

Solomon Lefschetz (1884 - 1972) was the author of several fundamental concepts in
topology and algebraic geometry.

One of them is a notion of vanishing cycles (cycles évanouissants) which appeared
in [L] (based on the previous work by Émile Picard, cf. [PS]) in what is called now the
Picard - Lefschetz formula, see Figures 4 and 5 below.
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§1. Hyperbolic sheaves and vanishing cycles

1.1. Moebius inversion is a rule of inverting a triangular matrix with 1’s as their
nonzero elements. Symbolically:

M =
∑

L,

L =
∑
±M

("inclusion - exclusion formula").

Example. Let
γ : M(0) −→M(1)

be an epimorphism of vector spaces.

Define L(1) = M(1) and L(0) = Ker γ. So we have a resolution of L(0)

0 −→ L(0) −→M(0)
γ−→M(1) −→ 0.

Once we choose a left inverse to γ, i.e. δ : M(1) −→ M(0) such that γδ = 1M(1), we
get an isomorphism M(0)

∼
= L(0)⊕ L(1).

Such objects appear in linear algebra descriptions of perverse sheaves and of their
Fourier transforms.

1.2. Hyperbolic sheaves. Let H = {Hi, i ∈ I} be a finite collection of real
hyperplanes in V = Rn.

For each J ⊂ I denote

HJ :=
⋂
i∈J

Hi, H
o
J := HJ \

⋃
HJ′⊂HJ , HJ′ 6=HJ

HJ ′

Let us call a face (or a cell) a connected component of Ho
J ; the set of faces C is a poset:

we write A ≤ B if A is contained in the closure of B, A ⊂ B.

We have
V = ∪A∈CA

Example. V = R2, H = {`i, 1 ≤ i ≤ 3}; C has 13 cells.

Let A be a category. A bisheaf on C with values in A is a collection of objects
{E(A) ∈ A, A ∈ C} and morphisms

γAB : E(A) −→ E(B), δBA : E(B) −→ E(A) A ≤ B
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such that {γAB} (resp. {δBA}) is a functor γ : C −→ A (resp. δ : Copp −→ A).

A hyperbolic sheaf on C with values inA is a bisheaf enjoying the following properties:

(Mon) For all A ≤ B
γABδBA = IdE(B).

This allows to define for all A,B a map

φAB := γCBδAC : E(A) −→ E(B)

where C is any cell such that C ≤ A and C ≤ B.

Let us call three cells A,B,C collinear if there exist points x ∈ A, y ∈ B, z ∈ C
lying on one straight line.

(Tran) If A,B,C are collinear then

φAC = φBCφAB.

(Inv) Let A,B be two d-dimensional cells belonging to the same d-dimensional
linear subspace L = HJ ⊂ V lying on the opposite sides of a (d − 1)-dimensional cell
C, C < A,C < B. Then the map

φAB = γCBδAC

is an isomorphism.

We denote by Hyp(C;A) the category of hyperbolic sheaves.

1.3. Complexification. Inside VC := V ⊗R C consider the collection of complex
hyperplanes {HiC, i ∈ I}. Similarly to the above, it gives rise to a stratification

V =
⋃

Ho
JC

where
HJC :=

⋂
i∈J

HiC, H
o
JC := HJC \

⋃
HJ′C⊂HJC, HJ′C 6=HJC

HJ ′C.

The strata Ho
JC are complex linear subspaces without some hyperplanes. We denote by

S = CC the set of complex strata. We have an obvious map

C −→ S.

Let k be a field,A(k) the category of k-vector spaces,Af (k) ⊂ A(k) the full subcategory
of finite dimensional spaces.
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Let Perv(VC,CC;A(k)) be the category of A(k)-valued perverse sheaves over VC
smooth along S.

The main result of [KS16] says that we have an equivalence of categories

Q : Perv(VC,CC;A(k))
∼−→ Hyp(C;Af (k)).

For M ∈ Perv(VC,CC;A(k))

Q(M) = (E(M, A), γAB, δBA)

where
E(M, A) = RΓ(A, i∗Ai

!
VM)), iA : A ↪→ V, iV : V ↪→ VC

(these finite dimensional spaces are called hyperbolic stalks of M).

1.4. Vanishing cycles. Let us suppose that ∩i∈IHi = {0}.
Let f : V −→ R be a linear function such that the hyperplane

Hf = {x ∈ V | f(x) = 0}

is in general position to all subspaces HJ .

Let fC : VC −→ C be the complexification of f .

For any M ∈ Perv(VC,CC;A(k)) the sheaf of vanishing cycles

ΦfC(M) ∈ Perv(HfC;A(k))

is supported at 0. Let us denote by Φ(M) its stalk at 0.

The main result of [FKS] describes Φ(M) in terms of the linear algebra data Q(M).

We shall describe it for two particular cases.

1.4.1. Example. A disc. V = R, H = {0}. There are three cells, 0, A+ and A−,
see Fig. 1 below.

Let M ∈ Perv(VC, 0;A(k)). The hyperbolic sheaf Q(M) consists of three spaces

M0 = E(0), M+ = E(A+), M− = E(A−)

and four linear maps

γ± : M0 −→M±, δ± : M± −→M0

such that γ±δ± = IdM± , and two maps

φ± = γ∓δ± : M± −→M∓

are isomorphisms.
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Fig. 1. A line
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Let f = Id : V −→ R. The space

L0 = Φf (M)

may be identified with Ker(γ+). Thus we have a right resolution of L0

0 −→ L0 −→M0
γ+−→M+ −→ 0 (1.4.1)

(note that γ+ is surjective since γ+δ+ = IdM+).

A dual way to describe the same space is by introducing L′0 = Coker(δ+), so that
we have a left resolution of it

0 −→M+
δ+−→M0 −→ L′0 −→ 0. (1.4.2)

A map
Id− δ+γ+ : M0 −→M0

induces an isomorphism
L′0

∼−→ L0

We can dock two complexes (1.4.1) and (1.4.2) together and get an acyclic Janus
complex

0 −→M+ −→M0 −→M0 −→M+ −→ 0, (1.4.3)

see Fig. 2 below.
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Fig. 2. Janus
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1.4.2. Define maps
u : M− −→ L0

as the composition
M−

δ−−→M0
p−→ L0

where p = Id− δ+γ+, and
v : L0 −→M−

as the composition
L0 ↪→M0

γ−−→M−.

Then
vu = IdM− − φ+φ−.

The quadruple (L0, L− = M−, v, u) forms the classical description of perverse sheaves
over C with one possible singularity at 0.

We may denote L+ := M+, and we have

M0
∼
= L0 ⊕ L1 (1.4.4)

1.5. Example. Three lines on the plane. V = R2,H = {`1, `2, `3}. There are
13 cells:

0, six 1-dimensional ones `±i , 1 ≤ i ≤ 3, and six 2-dimensional ones A±12, A
±
23, A

±
31,

see Fig. 3 below.

Let f : V −→ R be a linear function in general position such that for x ∈ `+i we
have f(x) > 0.

Let M ∈ Perv(VC, S;A(k)), with

Q(M) = (M(0),M(`±i ),M(A±ij), γAB, δBA).

According to [FKS] the space Φ(M) admits a right resolution

0 −→ Φ(M) −→M(0) −→ ⊕3
i=1M(`+i ) −→M(A+

12)⊕M(A+
23) −→ 0 (1.5.1)

where the matrix elements of the differential are ±γAB.
Dually, Φ(M) admits a left resolution

0 −→M(A+
12)⊕M(A+

23) −→ ⊕3
i=1M(`+i ) −→M(0) −→ Φ(M) −→ 0 (1.5.2)

where the matrix elements of the differential are ±δBA.
We can dock these two resolutions together and form an acyclic Janus complex.
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Let us denote

L(0) := Φ(M), M(`+i ) := Ker(γ : M(`+i ) −→M(A+
i,i+1)), L(A+

i,i+1) := M(A+
i,i+1)

Then
M(`+i )

∼
= L(`+i )⊕ L(A+

i,i+1).

Note that in the Grothendieck group K0(A
f (k)) all classes [L(A+

i,i+1)] are equal; let us
denote them [L(A)].

We have

[M(0)] = [L(0)] +
3∑
i=1

[L(`i)] + [L(A)] (1.5.3)

The complex (1.5.1) (or (1.5.2)) and (1.5.3) is an example of a Moebius inversion.

The summands here are in bijection with the complex strata ("Takeuchi formula").
This is a general phenomenon, cf. [T], [KS16], 4.C.1, [KS19], 1.3.
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Fig. 3. Three lines on a plane
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1.6. General case is similar. Let M ∈ Perv(V, S;A(k)) with

Q(M) = (M(A), γAB, δBA);

let
f : V −→ R

a linear function in general position to H.

Let C+ ⊂ C be the subset of cells contained in the half-space V + = {x ∈ V | f(x) ≥
0}, and for each i let C+

i ⊂ C+ be the subset of cells of dimension i.

The space
Φ(M) = ΦfC(M)0

admits a right resolution

0 −→ Φ(M) −→M(0) −→ ⊕A∈C+
1
M(A) −→ ⊕A∈C+

2
M(A) −→ . . .⊕A∈C+

n
M(A) −→ 0

(1.6.1)
where n = dimV . The matrix elements of the differential are ±γ.

Dually the same space admits a left resolution

0 −→ ⊕A∈C+
n
M(A) −→ . . . −→ ⊕A∈C+

1
M(A) −→M(0) −→ Φ(M) −→ 0, (1.6.2)

the matrix elements of the differential being ±δ. Both complexes may be glued together
into an acyclic Janus complex.
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§2. Deriving normalized chains

2.1. Normalized chains. We will follow the notations of [DK].

Let ∆o be the category whose objects are (n), n ∈ Z≥0, and maps

di : (n) −→ (n− 1), 0 ≤ i ≤ n,

si : (n) −→ (n+ 1), 0 ≤ i ≤ n,

subjects to the usual relations

didj = dj−1di, i < j

sisj = sj+1si, i ≤ j

disj =


sj−1di, i < j,

1 if i = j, j + 1,
sjdi−1 i > j + 1

Let A be an abelian category, and ∆oA be the category of simplicial objects of A,
i.e. of functors A : ∆o −→ A.

Normalized chains

Let M = (M0,M1, . . .) ∈ ∆oA. There are two dual ways to define the normalized
chains.

(a) As subobjects. We define

Ln =
n⋂
i=1

Ker(di : Mn −→Mn−1) ⊂Mn (2.1.1)

(b) As quotient objects. We define

L′n = Mn/

n∑
i=0

si(Mn−1) (2.1.2)

Both ways give the same answer: the composition

Ln ↪→Mn −→ L′n
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is an isomorphism.

The above definitions suggest the idea that maybe (2.1.1) (resp. (2.1.2)) is the
beginning of a right (resp. left) resolution of Ln by objects Mi, i ≤ n.

2.1.1. Example. For n = 0, L0 = M0. For n = 1 we have an exact sequence

0 −→ L1 −→M1
d1−→M0 −→ 0

d1 is surjective since d1s0 = IdM0 .

Dually, we have an exact sequence

0 −→M0
s0−→M1 −→ L′1 −→ 0

2.2. Dold - Kan correspondence. Cf. [DK], 3.1.

Let M = (M0,M1, . . .) ∈∆oA. For each n ≥ 0 denote by

Bn =
n−1∑
i=0

si(Mn−1) ⊂Mn

the subobject of degenerate simplices.

For each sequence 0 ≤ p1 < . . . < pi ≤ n− 1 the composition

spi . . . sp1 : Ln−i −→Mn

is a monomorphism; denote its image

Lp1...pin−i ⊂ Bn

Dold - Kan affirms that we have an isomorphism

Mn
∼
= Ln ⊕ (⊕ni=1 ⊕0≤p1<...<pi≤n−1 L

p1...pi
n−i ) (2.2.1)

So in this sum for each 0 ≤ i ≤ n we have
(
n
i

)
copies of Li:

Mn
∼
= ⊕ni=1L

(n
i)
i

2.2.1. Example. n = 2

M2 = L2 ⊕ s0L1 ⊕ s1L1 ⊕ s1s0L0

13



2.3. Moebius inversion: two cubes. It follows that each Ln admits two resolutions
by the modules Mi:

(a) a right one:

0 −→ Ln −→Mn −→Mn
n−1 −→M

(n
2)

n−2 −→ . . . −→M0 −→ 0

whose differential should have various ±di, 1 ≤ i ≤ n as matrix elements.

In other words we can put the objects Mi, 0 ≤ i ≤ n into the vertices of an
n-dimensional cube.

Denote

L•n : 0 −→Mn −→Mn
n−1 −→M

(n
2)

n−2 −→ . . . −→M0 −→ 0

which we regard as a complex concentrated in degrees [0, n]. So we have a quasiisomirphism

Ln
∼−→ L•n

(b) a left one:

0 −→M0 −→Mn
1 −→ . . . −→Mn

n−1 −→Mn −→ L′n −→ 0

whose differential should have various ±si 0 ≤ i ≤ n− 1 as matrix elements.

In other words we can put the objects Mi, 0 ≤ i ≤ n into the vertices of an
n-dimensional cube.

We denote

L′n• : 0 −→M0 −→Mn
1 −→ . . . −→Mn

n−1 −→Mn −→ 0

which we regard as a complex concentrated in degrees [−n, 0].

Thus we have a quasiisomirphism

L′n•
∼−→ L′n

(c) Two-sided acyclic Janus complexes.

The composition
ψn : Ln ↪→Mn −→ L′n

is an isomorphism. We use its inverse to define a gluing map

g : Mn −→ L′n

ψn
∼−→ Ln −→Mn
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We use g to glue the complexes L′n• (b) and L•n (a) to get an acyclic complex:

0 −→M0 −→Mn
1 −→ . . . −→Mn

n−1 −→Mn
g−→

−→Mn −→Mn
n−1 −→M

(n
2)

n−2 −→ . . . −→M0 −→ 0

in the left (resp. right) part the differentials are various si (resp. di).

2.4. Example. n = 2

0 −→ L2 −→M2

(d2
d1

)
−→

M1

⊕
M1

(d1 −d1)−→ M0 −→ 0

Exatness at M2 and M0 is clear.

Let us prove the exactness at M2
1 . If we have(

x

y

)
∈M2

1

such that d1x− d1y = 0 then(
x

y

)
=

(
d2
d1

)
((s1 − s0)x+ s0y).

2.5. Derived normalized complex.

The normalized chains form a complex

. . . −→ L2
d0−→ L1

d0−→ L0 −→ 0

where the differential is induced by d0.

Let us replace Li by their resolutions L•i . As was remarked by M.Kapranov, it is
natural to expect that these complexes form a twisted complex.

This means that we can lift the maps d0 : Li −→ Li−1 to morphisms of complexes

d•0 : L•i −→ L•i−1

but the composition d•0 ◦ d•0 will not be 0. However, one can write down a homotopy h
between (d•0)

2 and 0, etc.
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2.6. Example. n = 2.

M2

↑
M1 ⊕M1

(0,d2)−→ M0

(d1, d2) ↑ ↑ d1
M2

d0−→ M1
d0−→ M0 −→ 0

A component of the homotopy:

h = (d0, 0) : M1 ⊕M1 −→M0.

This might be related to [D].

2.7. Complements. Moebius dual Kostka numbers appear in [FPS].

Some infinite Janus complexes related to chiral algebras are discussed in [MS].
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Fig. 4. Picard - Lefschetz formula
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Fig. 5. Cycles évanouissants
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