## Introduction au langage des catégories

Jean-Christophe San Saturnino

Équipe Émile Picard Université Paul Sabatier, Toulouse III

Séminaire étudiant du 20 Janvier 2010



## Pourquoi parler de catégories?

- Parce qu'il n'y a pas d'ensemble de tous les ensembles (paradoxe du barbier).
- Pour regrouper dans une même théorie des mots comme homéomorphisme, holomorphisme, application ensembliste...
- Pour pouvoir étudier certains objets mathématiques à l'aide d'autres objets plus simples à manipuler.



## Pourquoi parler de catégories?

- Parce qu'il n'y a pas d'ensemble de tous les ensembles (paradoxe du barbier).
- Pour regrouper dans une même théorie des mots comme homéomorphisme, holomorphisme, application ensembliste...
- Pour pouvoir étudier certains objets mathématiques à l'aide d'autres objets plus simples à manipuler.



## Pourquoi parler de catégories?

- Parce qu'il n'y a pas d'ensemble de tous les ensembles (paradoxe du barbier).
- Pour regrouper dans une même théorie des mots comme homéomorphisme, holomorphisme, application ensembliste...
- Pour pouvoir étudier certains objets mathématiques à l'aide d'autres objets plus simples à manipuler.



#### Pourquoi parler de catégories ?

- Parce qu'il n'y a pas d'ensemble de tous les ensembles (paradoxe du barbier).
- Pour regrouper dans une même théorie des mots comme homéomorphisme, holomorphisme, application ensembliste...
- Pour pouvoir étudier certains objets mathématiques à l'aide d'autres objets plus simples à manipuler.



## Un peu d'histoire...

- Samuel Eilenberg et Saunders Mac Lane en 1942-1945.
- Années 1960-70 en France par Alexander Grothendieck.

## Un peu d'histoire...

- Samuel Eilenberg et Saunders Mac Lane en 1942-1945.
- Années 1960-70 en France par Alexander Grothendieck.

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories



#### Définition

Une catégorie C consiste en :

- -une collection d'objets Ob(C)
- -un ensemble Hom(X, Y) de **morphismes** (ou **flèches**) de X dans Y où  $X, Y \in Ob(\mathcal{C})$
- -une loi de composition (une application) :
- $\circ$ :  $Hom(Y,Z) \times Hom(X,Y) \rightarrow Hom(X,Z), \ X,Y,Z \in Ob(\mathcal{C})$  satisfaisant aux trois axiomes suivant :

**Cat 1**  $Hom(X, Y) \cap Hom(X', Y') = \emptyset$  sauf si X = X' et Y = Y', auquel cas ils sont égaux;

**Cat 2**  $\forall X \in Ob(\mathcal{C})$ ,  $\exists id_X \in Hom(X, X)$  tel que  $\forall Y \in Ob(\mathcal{C})$ ,  $\forall f \in Hom(X, Y)$ ,  $f \circ id_X = f$  et  $\forall g \in Hom(Y, X)$ ,  $id_X \circ g = g$ ; **Cat 3** la loi de composition est associative.

- End(X) := Hom(X, X): endomorphismes de  $X \in Ob(C)$ ; c'est un monoïde.
- $f \in Hom(X, Y)$  est un **isomorphisme** si  $\exists g \in Hom(Y, X)$  tel que  $g \circ f = id_X$  et  $f \circ g = id_Y$ .
- Un isomorphisme de End(X) est un automorphisme
- L'ensemble des automorphismes de X est noté Aut(X), c'est un groupe.

- End(X) := Hom(X, X): endomorphismes de  $X \in Ob(C)$ ; c'est un monoïde.
- $f \in Hom(X, Y)$  est un **isomorphisme** si  $\exists g \in Hom(Y, X)$  tel que  $g \circ f = id_X$  et  $f \circ g = id_Y$ .
- Un isomorphisme de End(X) est un automorphisme
- L'ensemble des automorphismes de *X* est noté Aut(X), c'est un groupe.

- End(X) := Hom(X, X): endomorphismes de  $X \in Ob(C)$ ; c'est un monoïde.
- $f \in Hom(X, Y)$  est un **isomorphisme** si  $\exists g \in Hom(Y, X)$  tel que  $g \circ f = id_X$  et  $f \circ g = id_Y$ .
- Un isomorphisme de End(X) est un **automorphisme**.
- L'ensemble des automorphismes de X est noté Aut(X), c'est un groupe.

- End(X) := Hom(X, X) : endomorphismes de X ∈ Ob(C);
   c'est un monoïde.
- $f \in Hom(X, Y)$  est un **isomorphisme** si  $\exists g \in Hom(Y, X)$  tel que  $g \circ f = id_X$  et  $f \circ g = id_Y$ .
- Un isomorphisme de *End(X)* est un **automorphisme**.
- L'ensemble des automorphismes de X est noté Aut(X), c'est un groupe.

## Sous-catégories

#### Définition

La catégorie  $\mathcal{C}'$  est une **sous-catégorie** d'une catégorie  $\mathcal{C}$  si  $Ob(\mathcal{C}') \subset Ob(\mathcal{C})$  et si  $Hom_{\mathcal{C}'}(X,Y) \subset Hom_{\mathcal{C}}(X,Y)$ ,  $\forall X,Y \in Ob(\mathcal{C}')$ .

Elle est dite **pleine** si  $Hom_{\mathcal{C}'}(X, Y) = Hom_{\mathcal{C}}(X, Y)$  et **essentielle** si tout objet de  $\mathcal{C}$  est isomorphe à un objet de  $\mathcal{C}'$ .

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories

## La catégorie des ensembles

#### Exemple

- -Les objets sont les ensembles.
- -Les morphismes sont les applications ensemblistes, les isomorphismes sont les bijections.
- -On parle donc de catégorie des ensembles et non pas d'ensemble de tous les ensembles.
- -On la note Ens.

# Les catégories des groupes, anneaux commutatifs, corps

#### Exemples

- -Les objets sont respectivement les groupes, les anneaux commutatifs, les corps.
- -Les morphismes sont respectivement les morphismes de groupes, d'anneaux et de corps.
- -On note ces catégories Gr, Ann, Cor.

## La catégorie des A-modules

#### Exemple

- -Les objets sont les A-modules à gauche où A est un anneau quelconque.
- -Les morphismes sont les applications A-linéaires.
- -On la note  $\mathcal{M}od_A$ , si A est un corps commutatif K on note plutôt  $\mathcal{E}v_K$ .
- -La catégorie  $\mathcal{E}vf_K$  dont les objets sont les espaces vectoriels de dimension finie sur un corps commutatif K et les morphismes sont les applications K-linéaires, est une sous-catégorie pleine de  $\mathcal{E}v_K$ .

# Les catégories des espaces topologiques, des espaces mesurables et des espaces de Banach

#### Exemples

- -Les objets sont respectivement les espaces toplogiques, les espaces mesurables et les espaces de Banach.
- -Les morphismes sont respectivement les applications continues, les applications mesurables et les applications linéaires continues.
- -On les note Top, Mes, Ban.
- -Dans le cas de Top, les isomorphismes sont les homéomorphismes.



# Les catégories $C^0$ , $C^{\infty}$ , $\mathcal{H}ol$

#### Exemples

- -Les objets de  $\mathcal{C}^0$  et de  $\mathcal{C}^\infty$  sont les ouverts de  $\mathbb{R}^n$ , ceux de  $\mathcal{H}$ ol sont les ouverts de  $\mathbb{C}^n$ .
- -Les morphismes de  $\mathcal{C}^0$  sont les applications continues, ceux de  $\mathcal{C}^\infty$  sont les applications  $\mathcal{C}^\infty$  et ceux de  $\mathcal{Hol}$  sont les applications holomorphes.

## La catégorie des morphismes d'une catégorie

#### Exemple

Soit  $\mathcal C$  une catégorie, on peut concevoir les morphismes de  $\mathcal C$  comme les objets d'une nouvelle catégorie :

si  $f: X \to Y$  et  $f': X' \to Y'$  sont deux morphismes dans  $\mathcal C$  on définit un morphisme  $f \to f'$  comme un couple  $(\varphi, \psi)$  de morphismes dans  $\mathcal C$  tel que le diagramme suivant soit commutatif :

$$\begin{array}{c|c}
X & \xrightarrow{f} & Y \\
\varphi \downarrow & \circlearrowleft & \downarrow \psi \\
X' & \xrightarrow{f'} & Y'
\end{array}$$

# Catégorie opposée

#### Définition

Soit  $\mathcal{C}$  une catégorie, on appelle **catégorie opposée** à  $\mathcal{C}$  la catégorie  $\mathcal{C}^{op}$  définie par :

$$Ob(\mathcal{C}^{op}) = Ob(\mathcal{C});$$
  
 $Hom_{\mathcal{C}^{op}}(X, Y) = Hom_{\mathcal{C}}(Y, X);$   
 $g \circ_{\mathcal{C}^{op}} f = f \circ_{\mathcal{C}} g.$ 

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories

## objet intitial, objet final

#### Définition

Soit C une catégorie,  $Z \in Ob(C)$  est dit **final** si :

$$\exists ! f: X \rightarrow Z, \forall X \in Ob(C).$$

Il est dit **initial** s'il est final dans  $C^{op}$ , c'est-à-dire :

$$\exists ! f: Z \rightarrow Y, \forall Y \in Ob(C).$$

De tels objets sont appelés des **objets universels**, de plus ils sont uniques à isomorphisme unique près.



# Premiers exemples

- Ø est initial dans Ens.
  - $\{\emptyset\}$  est final dans  $\mathcal{E}ns$ .

# Premiers exemples

•  $\emptyset$  est initial dans  $\mathcal{E}ns$ .  $\{\emptyset\}$  est final dans  $\mathcal{E}ns$ .

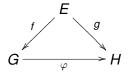
 $\mathbb{Z}$  est initial dans  $\mathcal{A}nn$ .

## Premiers exemples

- $\emptyset$  est initial dans  $\mathcal{E}ns$ .
  - $\{\emptyset\}$  est final dans  $\mathcal{E}ns$ .
  - $\mathbb{Z}$  est initial dans  $\mathcal{A}nn$ .

## Le quotient

Soient E un espace vectoriel, F un sous-espace vectoriel de E, on forme la catégorie dont les objets sont les couples (G,f) où G est un espace vectoriel et  $f:E\to G$  une application linéaire telle que  $F\subset\ker f$  et les morphismes de (G,f) dans (H,g) sont les  $\varphi:G\to H$  tels que le diagramme suivant soit commutatif :

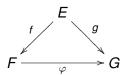


Le quotient  $(E/F, \pi)$ , où  $\pi : E \to E/F$  est la projection canonique, est alors un objet initial dans cette catégorie.



## Le complété d'un espace vectoriel normé

Soit E un espace vectoriel normé, on forme la catégorie dont les objets sont les couples (F,f) où F est un espace vectoriel normé et  $f:E\to F$  une application linéaire continue et les morphismes de (F,f) dans (G,g) sont les  $\varphi:F\to G$  tels que le diagramme suivant soit commutatif :



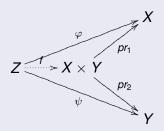
Le complété  $(\hat{E}, \iota)$ , où  $\iota : E \hookrightarrow \hat{E}$  est l'inclusion canonique, est alors un objet initial dans cette catégorie.



## Produits dans les catégories

#### Définition

Soient  $\mathcal{C}$  une catégorie et  $X, Y \in Ob(\mathcal{C})$ , un **produit** de X et de Y dans  $\mathcal{C}$  est un triplet  $(X \times Y, pr_1, pr_2)$  constitué d'un objet de  $\mathcal{C}$ , noté  $X \times Y$  et de deux morphismes  $pr_1 : X \times Y \to X$  et  $pr_2 : X \times Y \to Y$  tels que  $\forall \varphi : Z \to X$  et  $\psi : Z \to Y, Z \in Ob(\mathcal{C})$ ,  $\exists ! f : Z \to X \times Y$  rendant commutatif le diagramme :



- Le produit est un objet universel dans une catégorie convenablement choisie.
  - De manière identique, on peut définir le produit d'une famille quelconque d'objets.
  - Dans £ns, le produit existe : c'est le produit cartésien avec les projections canoniques.
  - Dans  $G_T$ ,  $\mathcal{A}nn$ ,  $\mathcal{M}od_A$ , le produit existe : on prend l'ensemble produit en le munissant de la bonne structure.
  - Dans Top, le produit quelconque existe : on munit l'ensemble produit de la topologie produit.



- Le produit est un objet universel dans une catégorie convenablement choisie.
- De manière identique, on peut définir le produit d'une famille quelconque d'objets.
- Dans Ens, le produit existe : c'est le produit cartésien avec les projections canoniques.
- Dans  $G_T$ ,  $\mathcal{A}nn$ ,  $\mathcal{M}od_A$ , le produit existe : on prend l'ensemble produit en le munissant de la bonne structure.
- Dans Top, le produit quelconque existe : on munit l'ensemble produit de la topologie produit.



- Le produit est un objet universel dans une catégorie convenablement choisie.
- De manière identique, on peut définir le produit d'une famille quelconque d'objets.
- Dans £ns, le produit existe : c'est le produit cartésien avec les projections canoniques.
- Dans  $G_T$ ,  $\mathcal{A}nn$ ,  $\mathcal{M}od_A$ , le produit existe : on prend l'ensemble produit en le munissant de la bonne structure.
- Dans Top, le produit quelconque existe : on munit l'ensemble produit de la topologie produit.



- Le produit est un objet universel dans une catégorie convenablement choisie.
- De manière identique, on peut définir le produit d'une famille quelconque d'objets.
- Dans £ns, le produit existe : c'est le produit cartésien avec les projections canoniques.
- Dans Gr, Ann,  $Mod_A$ , le produit existe : on prend l'ensemble produit en le munissant de la bonne structure.
- Dans Top, le produit quelconque existe : on munit l'ensemble produit de la topologie produit.



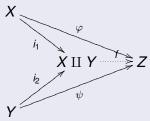
- Le produit est un objet universel dans une catégorie convenablement choisie.
- De manière identique, on peut définir le produit d'une famille quelconque d'objets.
- Dans £ns, le produit existe : c'est le produit cartésien avec les projections canoniques.
- Dans Gr, Ann,  $Mod_A$ , le produit existe : on prend l'ensemble produit en le munissant de la bonne structure.
- Dans Top, le produit quelconque existe : on munit l'ensemble produit de la topologie produit.



### Sommes dans les catégories

#### Définition

Soient  $\mathcal C$  une catégorie et  $X,Y\in Ob(\mathcal C)$ , une **somme** (ou **coproduit**) de X et de Y dans  $\mathcal C$  est un triplet  $(X\amalg Y,i_1,i_2)$  constitué d'un objet de  $\mathcal C$ , noté  $X\amalg Y$  et de deux morphismes  $i_1:X\to X\amalg Y$  et  $i_2:Y\to X\amalg Y$  tels que  $\forall \varphi:X\to Z$  et  $\psi:Y\to Z,Z\in Ob(\mathcal C),\,\exists!\,f:X\amalg Y\to Z$  rendant commutatif le diagramme :



- La somme est le produit dans la catégorie opposée, on peut donc définir des sommes de familles quelconques d'objets et c'est un objet universel.
- Dans  $\mathcal{E}ns$ , la somme correspond à la réunion disjointe :  $X \coprod Y = (\{1\} \times X) \cup (\{2\} \times Y)$  muni  $i_1(x) = (1, x)$  et  $i_2(x) = (2, x)$ .
- Dans Top, la somme s'obtient en munissant la somme ensembliste de la topologie dont les ouverts sont les sommes d'ouverts.

- La somme est le produit dans la catégorie opposée, on peut donc définir des sommes de familles quelconques d'objets et c'est un objet universel.
- Dans  $\mathcal{E}ns$ , la somme correspond à la réunion disjointe :  $X \coprod Y = (\{1\} \times X) \cup (\{2\} \times Y)$  muni  $i_1(x) = (1, x)$  et  $i_2(x) = (2, x)$ .
- Dans Top, la somme s'obtient en munissant la somme ensembliste de la topologie dont les ouverts sont les sommes d'ouverts.

- La somme est le produit dans la catégorie opposée, on peut donc définir des sommes de familles quelconques d'objets et c'est un objet universel.
- Dans  $\mathcal{E}ns$ , la somme correspond à la réunion disjointe :  $X \coprod Y = (\{1\} \times X) \cup (\{2\} \times Y)$  muni  $i_1(x) = (1, x)$  et  $i_2(x) = (2, x)$ .
- Dans Top, la somme s'obtient en munissant la somme ensembliste de la topologie dont les ouverts sont les sommes d'ouverts.

- Dans *g<sub>r</sub>*, la somme n'est pas un objet "classique". Par contre dans la catégorie des groupes commutatifs, la somme est la somme directe et on note X II Y = X ⊕ Y.
   On peut l'identifier au produit dans le cas d'une somme finie mais pas dans le cas général.
- Dans Mod<sub>A</sub>, lorsque A est un anneau commutatif, la somme est la somme directe notée également ⊕.
- Dans Ann, la somme est le produit tensoriel.

- Dans *G<sub>T</sub>*, la somme n'est pas un objet "classique". Par contre dans la catégorie des groupes commutatifs, la somme est la somme directe et on note X II Y = X ⊕ Y.
   On peut l'identifier au produit dans le cas d'une somme finie mais pas dans le cas général.
- Dans Mod<sub>A</sub>, lorsque A est un anneau commutatif, la somme est la somme directe notée également ⊕.
- Dans Ann, la somme est le produit tensoriel.

- Dans *G<sub>T</sub>*, la somme n'est pas un objet "classique". Par contre dans la catégorie des groupes commutatifs, la somme est la somme directe et on note X II Y = X ⊕ Y.
   On peut l'identifier au produit dans le cas d'une somme finie mais pas dans le cas général.
- Dans Mod<sub>A</sub>, lorsque A est un anneau commutatif, la somme est la somme directe notée également ⊕.
- Dans Ann, la somme est le produit tensoriel.

# Plan de l'exposé

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories

# Plan de l'exposé

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories



Soient  $\mathcal{C}$  et  $\mathcal{C}'$  deux catégories. Un **foncteur covariant** de  $\mathcal{C}$  dans  $\mathcal{C}'$  est la donnée d'une fonction qui à  $X \in Ob(\mathcal{C})$  associe  $F(X) \in Ob(\mathcal{C}')$  et d'une application qui à tout morphisme  $f: X \to Y$  de  $\mathcal{C}$  associe un morphisme  $F(f): F(X) \to F(Y)$  de  $\mathcal{C}'$  vérifiant :

**FON 1**  $\forall X \in \mathcal{C}$ ,  $F(id_X) = id_{F(X)}$ ; **FON 2**  $\forall X, Y, Z \in \mathcal{C}$ ,  $f \in Hom(X, Y)$ ,  $g \in Hom(Y, Z)$ ,

$$F(g \circ f) = F(g) \circ F(f).$$

Un foncteur de C dans C' est dit **contravariant** s'il est covariant de C dans  $C'^{op}$ .

- Un foncteur transforme les isomorphismes en isomorphismes.
- Si le foncteur F est covariant on note parfois f\* au lieu de F(f).
- Si le foncteur F est contravariant on note parfois f\* au lieu de F(f).
- On peut former la catégorie des catégories : les objets sont les catégories et les morphismes sont les foncteurs covariants.

- Un foncteur transforme les isomorphismes en isomorphismes.
- Si le foncteur F est covariant on note parfois f<sub>\*</sub> au lieu de F(f).
- Si le foncteur F est contravariant on note parfois f\* au lieu de F(f).
- On peut former la catégorie des catégories : les objets sont les catégories et les morphismes sont les foncteurs covariants.

- Un foncteur transforme les isomorphismes en isomorphismes.
- Si le foncteur F est covariant on note parfois f<sub>\*</sub> au lieu de F(f).
- Si le foncteur F est contravariant on note parfois f\* au lieu de F(f).
- On peut former la catégorie des catégories : les objets sont les catégories et les morphismes sont les foncteurs covariants.

- Un foncteur transforme les isomorphismes en isomorphismes.
- Si le foncteur F est covariant on note parfois f<sub>\*</sub> au lieu de F(f).
- Si le foncteur F est contravariant on note parfois f\* au lieu de F(f).
- On peut former la catégorie des catégories : les objets sont les catégories et les morphismes sont les foncteurs covariants.

# Plan de l'exposé

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories



#### Le foncteur d'oubli

- -Ce foncteur est défini, par exemple, de Gr, Ann,  $Mod_A$ , Top, dans Ens, en oubliant la structure de l'objet de départ et en regardant les morphisme que de manière ensembliste.
- -On a également un foncteur d'oubli partiel de Ann dans Gr.



# Préfaisceaux sur un espace topolgique

- Soit X un espace topologique, on forme la catégorie OuvX dont les objets sont les ouverts de X et pour deux ouverts U et V, Hom(U, V) est réduit à un élément si U ⊂ V, vide sinon.
- Soit C une catégorie, un **préfaisceau** de base X à valeur dans C est un foncteur contravariant de  $Ouv_X$  dans C.
- Par exemple, si  $X = \mathbb{C}$  et  $\mathcal{C} = \mathcal{A}nn$ , le foncteur contravariant  $\mathcal{O}_{\mathbb{C}}$  qui à un ouvert U associe  $\mathcal{O}_{\mathbb{C}}(U)$ , l'ensemble des fonctions holomorphes sur U, est un préfaisceau d'anneaux.

# Préfaisceaux sur un espace topolgique

- Soit X un espace topologique, on forme la catégorie OuvX dont les objets sont les ouverts de X et pour deux ouverts U et V, Hom(U, V) est réduit à un élément si U ⊂ V, vide sinon.
- Soit C une catégorie, un **préfaisceau** de base X à valeur dans C est un foncteur contravariant de  $Ouv_X$  dans C.
- Par exemple, si  $X = \mathbb{C}$  et  $\mathcal{C} = \mathcal{A}nn$ , le foncteur contravariant  $\mathcal{O}_{\mathbb{C}}$  qui à un ouvert U associe  $\mathcal{O}_{\mathbb{C}}(U)$ , l'ensemble des fonctions holomorphes sur U, est un préfaisceau d'anneaux.

# Préfaisceaux sur un espace topolgique

- Soit X un espace topologique, on forme la catégorie OuvX dont les objets sont les ouverts de X et pour deux ouverts U et V, Hom(U, V) est réduit à un élément si U ⊂ V, vide sinon.
- Soit C une catégorie, un **préfaisceau** de base X à valeur dans C est un foncteur contravariant de  $Ouv_X$  dans C.
- Par exemple, si  $X=\mathbb{C}$  et  $\mathcal{C}=\mathcal{A}nn$ , le foncteur contravariant  $\mathcal{O}_{\mathbb{C}}$  qui à un ouvert U associe  $\mathcal{O}_{\mathbb{C}}(U)$ , l'ensemble des fonctions holomorphes sur U, est un préfaisceau d'anneaux.

#### Le foncteur de dualité

- -Soit A un anneau commutatif, on définit le foncteur (contravariant) de dualité de la catégorie  $\mathcal{M}od_A$  dans elle-même en associant à tout A-module M, son dual  $M^* = Hom(M, A)$  et à toute application linéaire sa transposée.
- -Dans  $\mathcal{E}vf_{K}$ , c'est la dualité classique.

### Le foncteur Spec

- Soit A un anneau commutatif, on note Spec(A) l'ensemble des idéaux premiers de A.
- Pour  $f: A \to B$ , morphisme d'anneaux commutatifs, on associe  $f^*: Spec(B) \to Spec(A)$  où  $f^*(P) = f^{-1}(P)$ , pour  $P \in Spec(B)$ .
- Le foncteur contravariant Spec est le foncteur définit de Ann dans Ens (et même Top) qui à A associe Spec(A) et à f associe f\*.

# Le foncteur Spec

- Soit A un anneau commutatif, on note Spec(A) l'ensemble des idéaux premiers de A.
- Pour  $f: A \to B$ , morphisme d'anneaux commutatifs, on associe  $f^*: Spec(B) \to Spec(A)$  où  $f^*(P) = f^{-1}(P)$ , pour  $P \in Spec(B)$ .
- Le foncteur contravariant Spec est le foncteur définit de Ann dans Ens (et même Top) qui à A associe Spec(A) et à f associe f\*.

### Le foncteur Spec

- Soit A un anneau commutatif, on note Spec(A) l'ensemble des idéaux premiers de A.
- Pour  $f: A \to B$ , morphisme d'anneaux commutatifs, on associe  $f^*: Spec(B) \to Spec(A)$  où  $f^*(P) = f^{-1}(P)$ , pour  $P \in Spec(B)$ .
- Le foncteur contravariant Spec est le foncteur définit de Ann dans Ens (et même Top) qui à A associe Spec(A) et à f associe f\*.

#### Un foncteur de mesures

En composant le foncteur contravariant de la catégorie des espaces compacts (muni des applications continues) vers  $\mathcal{B}an$  qui à X associe  $\mathcal{C}(X,\mathbb{R})$  avec le foncteur de dualité de  $\mathcal{B}an$  sur elle-même, on obtient un foncteur covariant qui à X associe  $\mathcal{M}(X)$  (espace des mesures sur X muni de la topologie de la norme) et à f associe  $f_*(\mu)$  (image directe de la mesure  $\mu$  par f).

### Plan de l'exposé

- Les catégories
  - Définitions
  - Des exemples
  - Objets universels
- 2 Les foncteurs
  - Définitons
  - Des exemples
  - Equivalence de catégories



Soient  $\mathcal{C}$  et  $\mathcal{C}'$  deux catégories, F et G deux foncteurs covariants de  $\mathcal{C}$  dans  $\mathcal{C}'$ . On appelle **morphisme de foncteur** (ou **transformation naturelle**), noté  $\Phi: F \to G$ , la donnée, pour chaque objet X de  $\mathcal{C}$ , d'un morphisme  $\Phi_X: F(X) \to G(X)$  tel que, pour tout  $f: X \to Y$  morphisme de  $\mathcal{C}$ , le diagramme suivant soit commutatif :

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\Phi_X \downarrow \qquad \qquad \downarrow \Phi_Y$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

- Si F et G sont contravariants de C dans C', on les considère comme covariants de  $C^{op}$  dans C'.
- On peut construire la catégorie des foncteurs entre deux catégories données, les objets étant les foncteurs et les morphismes étant les transformations naturelles.
- Un morphisme  $\Phi$  de foncteur est un isomorphisme ssi  $\Phi_X$  est un isomorphisme.

- Si F et G sont contravariants de C dans C', on les considère comme covariants de  $C^{op}$  dans C'.
- On peut construire la catégorie des foncteurs entre deux catégories données, les objets étant les foncteurs et les morphismes étant les transformations naturelles.
- Un morphisme  $\Phi$  de foncteur est un isomorphisme ssi  $\Phi_X$  est un isomorphisme.

- Si F et G sont contravariants de C dans C', on les considère comme covariants de  $C^{op}$  dans C'.
- On peut construire la catégorie des foncteurs entre deux catégories données, les objets étant les foncteurs et les morphismes étant les transformations naturelles.
- Un morphisme  $\Phi$  de foncteur est un isomorphisme ssi  $\Phi_X$  est un isomorphisme.

- On dit que F est pleinement fidèle si Hom<sub>C</sub>(X, Y) → Hom<sub>C'</sub>(F(X), F(Y)) est bijective.
- On dit que F est **essentiellement surjectif** si  $\forall X' \in Ob(\mathcal{C}'), \exists X \in Ob(\mathcal{C})$  tel que X' soit isomorphe à F(X).
- Si F est covariant, on dit que c'est une équivalence de catégories s'il est pleinement fidèle et essentiellement surjectif.
- Si F est contravariant, on dit que c'est une antiéquivalence de catégories si c'est une équivalence de C<sup>op</sup> dans C'.



- On dit que F est pleinement fidèle si Hom<sub>C</sub>(X, Y) → Hom<sub>C'</sub>(F(X), F(Y)) est bijective.
- On dit que F est **essentiellement surjectif** si  $\forall X' \in Ob(\mathcal{C}'), \exists X \in Ob(\mathcal{C})$  tel que X' soit isomorphe à F(X).
- Si F est covariant, on dit que c'est une équivalence de catégories s'il est pleinement fidèle et essentiellement surjectif.
- Si F est contravariant, on dit que c'est une antiéquivalence de catégories si c'est une équivalence de C<sup>op</sup> dans C'.



- On dit que F est **pleinement fidèle** si  $Hom_{\mathcal{C}}(X,Y) \to Hom_{\mathcal{C}'}(F(X),F(Y))$  est bijective.
- On dit que F est **essentiellement surjectif** si  $\forall X' \in Ob(\mathcal{C}'), \exists X \in Ob(\mathcal{C})$  tel que X' soit isomorphe à F(X).
- Si F est covariant, on dit que c'est une équivalence de catégories s'il est pleinement fidèle et essentiellement surjectif.
- Si F est contravariant, on dit que c'est une antiéquivalence de catégories si c'est une équivalence de C<sup>op</sup> dans C'.



- On dit que F est pleinement fidèle si Hom<sub>C</sub>(X, Y) → Hom<sub>C'</sub>(F(X), F(Y)) est bijective.
- On dit que F est **essentiellement surjectif** si  $\forall X' \in Ob(\mathcal{C}'), \exists X \in Ob(\mathcal{C})$  tel que X' soit isomorphe à F(X).
- Si F est covariant, on dit que c'est une équivalence de catégories s'il est pleinement fidèle et essentiellement surjectif.
- Si F est contravariant, on dit que c'est une antiéquivalence de catégories si c'est une équivalence de C<sup>op</sup> dans C'.



- On dit que F est pleinement fidèle si Hom<sub>C</sub>(X, Y) → Hom<sub>C'</sub>(F(X), F(Y)) est bijective.
- On dit que F est **essentiellement surjectif** si  $\forall X' \in Ob(\mathcal{C}'), \exists X \in Ob(\mathcal{C})$  tel que X' soit isomorphe à F(X).
- Si F est covariant, on dit que c'est une équivalence de catégories s'il est pleinement fidèle et essentiellement surjectif.
- Si F est contravariant, on dit que c'est une antiéquivalence de catégories si c'est une équivalence de C<sup>op</sup> dans C'.

#### Proposition

Soient  $\mathcal{C}$  et  $\mathcal{C}'$  deux catégories et  $F:\mathcal{C}\to\mathcal{C}'$  un foncteur covariant.

Alors F est une équivalence de catégories ssi  $\exists G : C' \to C$  tel que  $G \circ F$  soit isomorphe à  $Id_{C'}$ .

#### Exemples

- Soient K un corps commutatif et End Evf | la catégorie formée par les endomorphismes de Evf | la catégorie entre End Evf | la catégorie entre End Evf | la catégorie entre Evf | la catégorie entre End Evf | la catégorie entre Evf | la
- Soit  $\mathcal{M}at(\mathbb{R})$  la catégorie dont les objets sont les espaces  $\mathbb{R}^n$  et  $Hom(\mathbb{R}^n,\mathbb{R}^m)=\mathcal{M}_{n\times m}(\mathbb{R})$ . On a une équivalence de catégorie entre  $\mathfrak{E}vf_{\mathbb{R}}$  et  $\mathcal{M}at(\mathbb{R})$ .

#### Exemples

- Soient K un corps commutatif et End Evf K la catégorie formée par les endomorphismes de Evf K.
   On a une équivalence de catégories entre End Evf K et Mod K[X].
- Soit  $\mathcal{M}at(\mathbb{R})$  la catégorie dont les objets sont les espaces  $\mathbb{R}^n$  et  $Hom(\mathbb{R}^n, \mathbb{R}^m) = \mathcal{M}_{n \times m}(\mathbb{R})$ . On a une équivalence de catégorie entre  $\mathfrak{E}vf_{\mathbb{R}}$  et  $\mathcal{M}at(\mathbb{R})$ .

# Merci de votre attention!

