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Abstract. — These are the notes of a talk I gave at the CIRM during the meeting "The geometry of the
Frobenius automorphism" (which took place during the last week of March 2013). The prerequisites are
algebraic geometry at the level of the three first chapters of Hartshorne’s book on algebraic geometry.

Please note that this text is not in final form and that it hasn’t been scanned for
mistakes or misprints very thoroughly.

1. Introduction

The aim of the following text is to prove the following results, which constitutes a step toward the main
result (Th. 1.1) of [4].

Let B be a scheme of finite type over Z.

Let π : V → B be morphism of finite type.

We shall write

B2 := B ×B

and

V 2 = V × V.

We view V 2 as a B2-scheme in the natural way.

Let β : B′ → B2 be a morphism of finite presentation. Let p1 : B′ → B (resp. p2 : B′ → B) be the
morphism obtained by composing β with the first projection (resp. the second projection) B2 → B. Note
that there is a natural isomorphism

V 2 ×B2 B′ ' p∗1V ×B′ p∗2V.

We shall write π1 : V 2 ×B2 B′ → p∗1V , π2 : V 2 ×B2 B′ → p∗2V for the natural projections.

Let now S ↪→ V 2 ×B2 B′ be a closed immersion.



2 DAMIAN RÖSSLER (1)

1.1. The projective and smooth case. — In this subsection, we make the following supplementary
hypothesies:
• π is a smooth, projective and of constant relative dimension d;
• there is an open subscheme U1 ⊆ p∗1V such that the restriction to U1 of the natural projection S → p∗1V

is finite and flat of constant degree δ1;
• U1 is dense in every fibre of p1;
• there is an open subscheme U2 ⊆ p∗2V such that the restriction to U2 of the natural projection S → p∗2V

is finite and flat of constant degree δ2;
• U2 is dense in every fibre of p2;

Theorem 1.1 (slight refinement of Th. 11.2 in [4]). — There exists a constant C > 0 with the
following property.

Let a : Spec F̄p → B be a geometric point with values in F̄p and let n ∈ N∗. Define

a2 := (a, a ◦ Frob◦nSpec F̄p) = (a,Frob◦nBFp
◦ a) : Spec F̄p → B2.

Let now b : Spec F̄p → B′ and suppose that β(b) = a2. Then

|deg(Sb · ΓFrob
(pn)

Va/Spec F̄p
)− δ1 · pnd| 6 C · pn(d−1/2)

The notation Γ
Frob

(pn)

Va/Spec F̄p
refers to the graph in Va ×F̄p V

(pn)
a of the relative Frobenius morphism

Frob
(pn)

Va/Spec F̄p
: Va → V

(pn)
a (see below for the latter).

Here Sb · ΓFrob
(pn)

Va/Spec F̄p
is the degree of the intersection product of the cycles Sa and Γ

Frob
(pn)

Va/Spec F̄p
in the

Chow theory ring A∗(Va ×F̄p V
(pn)
a ) = CH∗(Va ×F̄p V

(pn)
a ) of Va ×F̄p V

(pn)
a .

Notations. If k is a field, a variety over k is a morphism of schemes X → Spec k, which is separated and
of finite type. We say that the variety is geometrically integral if X ×k k̄ is integral. A subvariety of X/k
is a closed integral subscheme of X.

If S is an irreducible scheme, we write ηS for the generic point of S.

If X is a scheme of characteristic p > 0 we write FrobX for the absolute Frobenius morphism X → X. If
X → S is an S-scheme and S is of characteristic p (ie there exists a morphism S → Spec Fp), we write
X(pn) for the base-change of X by the n-th power Frob◦nS of the absolute Frobenius morphism on S. We are
then provided with a canonical S-morphism Frob

(pn)
X/S : X → X(pn), called the relative Frobenius morphism.

See [6, 3.2.4] for details.

If R is a commutative ring, an anticommutative Z-graded R-algebra A is the following set of data:

- a ring A,

- a Z-grading
⊕

n∈ZAn = A of A as a ring,

- together with a ring morphism R→ A0, where the image of R lies in the centre of A0,

such for any an ∈ An and am ∈ Am, we have an · am = (−1)nmam · an.

1.2. Theorem 1B in [4]. — The following theorem is Theorem 1B in [4], which implies the main theorem
1.1. We include its statement to underline the analogy with Theorem 1.1.
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We make the following hypothesies.
• there is an open subscheme U1 ⊆ p∗1V such that the restriction to U1 of the natural projection S → p∗1V

is finite and flat of constant degree δ1;
• U1 is dense in every fibre of p1;
• there is an open subscheme U2 ⊆ p∗2V such that the restriction to U2 of the natural projection S → p∗2V

is étale of constant degree δ2;
• U2 is dense in every fibre of p2;
• the natural projection S → p∗2V is quasifinite.

Theorem 1.2 (Th. 1B in [4] with separability assumption (see Lemma 10.19))
There exists a constant C and an open subset B′′ ⊆ B′ with the following property.

Let a : Spec F̄p → B be a geometric point with values in F̄p and let n ∈ N∗. Define

a2 := (a, a ◦ Frob◦nSpec F̄p) = (a,Frob◦nBFp
◦ a) : Spec F̄p → B2.

Let now b : Spec F̄p → B′′ and suppose that β(b) = a2. Then

|#(Sb ∩ Γ
Frob

(pn)

Va/Spec F̄p
)− δ1 · pnd| 6 C · pn(d−1/2)

for all n > C.

2. Preliminaries

2.1. The Chow ring. — .

In this subsection, we shall briefly recall the definition of the Chow ring of a smooth variety over a field and
describe some of its basic properties. The fundamental reference for this material is Fulton’s book [2]. Let
X be a variety over a field k.

A cycle over X is a formal Z-linear combination of subvarieties of X. So the cycles form an abelian group,
which is the free abelian group generated by all the subvarieties of X.

If n ∈ N, an n-cycle is a cycle
∑
imiZi, such that Zi is of dimension n.

An effective cycle is a cycle
∑
imiZi such that mi > 0 for all i.

If S is a closed subscheme of X, we define the cycle class [S] of S by the formula

[S] :=
∑
C

lengthOS,ηC
(OS,ηC )C

Here C runs through the irreducible components of S, endowed with the reduced structure induced by X.

We now turn to the definition of rational equivalence of cycles.

Let n > 0. Let W1, . . .Wr be n + 1-dimensional subvarieties of X ×k P1
k. We suppose that W1, . . . ,Wr

dominate P1
k via the second projection. Write Wi,0 := W ∩ X × 0 (resp. Wi,∞ := W ∩ X × ∞) for the

scheme theoretic intersection in X ×k P1
k between W and X × 0 (resp. the scheme theoretic intersection in

X ×k P1
k between W and X ×∞).

In this situation, the n-cycle
∑
i[Wi,0] is said to be rationally equivalent to the n-cycle

∑
i[Wi,∞]. We write∑

i

[Wi,0] ∼
∑
i

[Wi,∞].
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Rational equivalence of n-cycles can be shown to be an equivalence relation ∼ and we define

An(X) = n-cycles on X/∼

as the set of classes of rationally equivalent n-cycles on X. We define furthermore

A∗(X) :=
⊕
n

An(X).

Dually, we shall write Al(X) := Adim(X)−l(X) and A∗(X) :=
⊕

lA
l(X).

We shall also need the following notion.

Definition 2.1. — Let Y and Z be subvarieties of X. We say that Y and Z meet properly if for every
irreducible component W of Y ∩ Z, we have

codimX(Y ) + codimX(Z) = codim(W ).

If C1 =
∑
imiYi and C2 =

∑
j njZj are two cycles on X, we say that C1 and C2 meet properly if every Yi

meets every Zj properly.

Let us now suppose until the end of this subsection that X is smooth over k.

Suppose that Y and Z are subvarieties of X, which meet properly. If W is an irreducible component of
Y ∩ Z, we write

i(W,Y · Z,X) :=
∑
j>0

(−1)j · lengthOX,ηW
(TorOXj (OY ,OZ))

The invariant i(W,Y · Z,X) is called the intersection multiplicity of W with respect to Y and Z in X. It
can be shown that i(W,Y ·Z,X) > 1 (see [2, 20.4]). We then define the intersection product of Z and Y by
the formula

[Z] · [Y ] :=
∑

W irred. comp. of Y ∩ Z

i(W,Y · Z,X) ·W.

We linearly extend this intersection product to any two cycles, which meet properly.

Theorem 2.2. — (moving lemma) Let C1 be an cycle and C2 be a n-cycle on X. Then there exists a
n-cycle C ′2, which is rationally equivalent to C2 and which meets C1 properly. Furthermore if C ′′2 is another
n-cycle, which is rationally equivalent to C2 and which meets C1 properly then the cycles C ′2 ·C1 is rationally
equivalent to C ′′2 · C1.

Proof. See the talk by J.-B. Bost and also [2, 11.4] & [8].

Theorem 2.2 can be used to show that the intersection product descends to a bilinear pairing A∗(X) ⊗
A∗(X)→ A∗(X), which makes A∗(X) into a commutative N-graded ring.

Let f : X → Y be a morphism. Suppose until the end of the subsection that X and Y are projective and
that k is algebraically closed.

There exists a push-forward map

(1) f∗ : A∗(X)→ A∗(Y )

defined as follows. Let Z be a subvariety of X. Consider the extension of function fields k(Z)|k(f(Z)). If
this extension is infinite, then we define f∗(Z) = 0. Otherwise, we define

f∗(Z) := [k(Z) : k(f(Z))] · f(Z).
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As usual, we linearly extend this definition to cycles. This descends to the map (1). The push-forward map
is by construction a map of groups but it does not in general respect the ring structure and the grading of
the Chow groups.

Furthermore, there exists a canonical pull-back map f∗ : A∗(Y ) → A∗(X). Suppose first that f is smooth.
Let Z be a subvariety of Y . Then we define

f∗([Z]) =
∑

C irr. comp. of f−1(Z)

C

and we extend this linearly. In general, without the assumption of smoothness on f , the operation f∗ is
described by the formula

f∗(y) = pX∗(p
∗
Y (y) · Γf )

where pX : X × Y → X and pY : X × Y → Y are the obvious projections and Γf ↪→ X × Y is the graph f .
In can be shown that the pull-back map respects the ring structure and the grading of Chow groups. Thus
if we restrict A∗(·) to smooth and projective varieties over k, we obtain a contravariant functor from the
category of smooth and projective varieties over k to the category of Z-graded anti-commutative Z-algebras.

Finally, the pull-back and push-forward operations are related by the projection formula:

(2) f∗(x · f∗(y)) = y · f∗(x).

See [2, Ex. 8.1.7, chap. 8] for this.

N.B. Pull-back maps can be defined in other situations than the one described above (see [2, 1.7, 6.5]) but
we won’t need these variants.

2.2. Refinements of Bezout’s theorem and of the moving lemma. The norm of a cycle. — Let
X be a smooth variety over a field k. Let Y (resp. Z) be a subvariety of X. Let L be a line bundle on X.
If X is projective, we write

degL(Y ) := degX([Y ] · c1(L)codimX(Y ))

(and similarly for Z). Here c1(L) ∈ A1(X) is the first Chern class of L. It can be represented by the divisor
of any rational section of L. See [2, 3.2] for more details.

Theorem 2.3 (very refined Bezout theorem; Lemma 10.12 in [4])
Suppose that X is projective and that L is very ample. Suppose that Y and Z meet properly. Then we have∑

W irred. comp. of Y ∩ Z

i(W,Y · Z,X) · degL(W ) 6 degL(Y ) · degL(Z).

Proof. See [2, 12.3, esp. Ex. 12.3.1, 11.4.3 and also 6.1, 20.4].

N.B. The classical form of Bezout’s theorem (which is less difficult to prove) gives the weaker inequality∑
W irred. comp. of Y ∩ Z

degL(W ) 6 degL(Y ) · degL(Z).

Proposition 2.4 (refinement of Theorem 2.2; for a weaker version see Lemma 10.15 in [4])
Suppose that k is algebraically closed. Suppose that L is very ample and that X is projective. Let C1 be a
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cycle and C2 be an effective n-cycle on X. Then there exists a n-cycle C ′2 =
∑
imi Wi, which is rationally

equivalent to C2, which meets C1 properly and such that∑
i

|mi| · degL(Wi) 6 [ degL(X)

e−1∑
i=0

(degL(X)− 1)i + (degL(X)− 1)e] degL(C2)

6 (2 dim(X) + 1) degL(X)2 dim(X) degL(C2)

Proof. (sketch). In [8, par. 3, p. 95], we are provided with
– an integer e such that 0 6 e 6 2 dim(X);
– effective cycles C0

2 , C
2
2 , . . . , C

e−1
2 ;

– effective cycles X0, . . . , Xe, where X0 = C2;
such that

∑e−1
i=0 (−1)iCi2 + (−1)eXe is rationally equivalent to C2 and meets C1 properly. We are also

provided with the equalities

degL(Xi) = degL(Ci−1
2 )− degL(Xi−1)

for all i > 1. Furthermore, using the refined form of Bezout’s theorem, it can be shown that

degL(Ci2) 6 degL(X) · degL(Xi).

We deduce from all this that

degL(Xi) 6 (degL(X)− 1) degL(Xi−1)

and thus

degL(Xi) 6 (degL(X)− 1)i degL(C2).

Thus we get the inequality

degL [

e−1∑
i=0

Ci2 +Xe] 6 degL(X) degL(C2)

e−1∑
i=0

(degL(X)− 1)i + (degL(X)− 1)e degL(C2)

= degL(C2) · [ degL(X)

e−1∑
i=0

(degL(X)− 1)i + (degL(X)− 1)e].

The refined form of the moving lemma warrants the

Definition 2.5 (the norm of a cycle; see notation 10.13 in [4]). — Suppose that X is projective and
L very ample. Let U be a cycle on X. We define

|U | = |U |L := sup
S

inf{degL(U ′) + degL(U ′′)}U ′,U ′′ ∈ N ∪ {∞}

here S runs through all the cycles of X and U ′, U ′′ runs through all the pairs of effective cycles on X such
that U is rationally equivalent to U ′−U ′′ and such that U ′ & U ′′ cut S properly. The quantity |U |L is called
the norm of U .

Note that by Proposition 2.4, if we write U = U1 − U2 ,where U1 and U2 are effective, then we have

(3) |U |L 6 (2 dim(X) + 1) degL(X)2 dim(X)(degL(U1) + degL(U2)),

which implies that the norm is finite (which is the content of Lemma 10.15 in [4]).

We also note the important



TWISTED FROBENIUS BOUNDS IN THE SMOOTH AND PROJECTIVE CASE (ACCORDING TO E. HRUSHOVSKI) 7

Lemma 2.6 (Cor 10.14 in [4]). — If U and V are cycles on X, where X is supposed projective and
equipped with a very ample line bundle L. Then we have

|U · V |L 6 |U |L · |V |L

(here · is the intersection product in Chow theory).

Proof. Unwind the definitions and apply Theorem 2.3.

2.3. Correspondences. — Let X,Y, Z be smooth varieties over a field k. Let n > 0.

A correspondence (resp. n-correspondence, resp. effective correspondence) from X to Y is a cycle (resp.
n-cycle, resp. effective cycle) on X ×k Y .

We write Corr(X,Y ) (resp. Corrn(X,Y ), Correff(X,Y )) for the set of correspondences (resp. n-
correspondences, resp. effective correspondences) from X to Y . We write Corrrat(X,Y ) for the set of ratio-
nal equivalence classes of correspondences from X to Y . By definition, we have A∗(X×Y ) ' Corrrat(X,Y )

so that Corrrat(X,Y ) has a natural ring structure.

If X,Y, Z are projective over k, we define a bilinear pairing

◦ : Corrrat(Y,Z)⊗ Corrrat(X,Y )→ Corrrat(X,Z)

by the formula

β ◦ α := πXZ,∗(π
∗
XY (α) · π∗Y Z(β)).

Furthermore, if α ∈ Corrrat(X,Y ) and τ : X × Y → Y ×X is the isomorphism, which swaps the factors,
then we define the transpose of α by the formula

tα := τ∗(α) ∈ Corr(Y,X).

Proposition 2.7 (Lemma 10.17 (3) in [4]). — Suppose that X,Y, Z are projective varieties of dimension
d0. Let LX , LY , LZ be a very ample line bundles on X,Y, Z. Let LXY := LX � LY , LYZ := LY � LZ ,
LXZ := LX � LZ . Let V ∈ Corrrat(Y, Z) and U ∈ Corrrat(X,Y ). We have the inequality

|V ◦ U |LXZ 6

(
2d0

d0

)2

|U |LXY · |V |LYZ .

Proof. Exercise for the reader. Uses Lemma 2.6.

Proposition 2.7 justifies the following terminology. Keep the assumptions of Proposition 2.7. We define

||U || := ||U ||LXY :=

(
2d

d

)2

|U |LXY

so that the inequality in Proposition 2.7 can be rewritten as

||V ◦ U ||LXZ
6 ||U ||LXY

· ||V ||LYZ
.

2.4. l-adic cohomology and the Weil conjectures. —
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2.4.1. Weil cohomologies. — Suppose in this subsection that k is an algebraically closed field. Let K be
a field of characteristic 0. A Weil cohomology theory is a contravariant functor X 7→ H∗(X) from the
category of smooth and projective varieties over k to the category of Z-graded anticommutative K-algebras,
satisfying the following six properties:
(1) (finiteness) The group Hi(X) vanishes unless 0 6 i 6 2 dim(X) and they are finite-dimensional.
(2) (Poincaré duality) There is a canonical "trace morphism" trX : H2 dim(X)(X) → K. For any

0 6 i 6 2 dim(X), the bilinear map

Hi(X)×H2 dim(X)−i → K

given by the formula trX(x · y) is non-degenerate.
Property (2) gives a canonical isomorphism of K-vector spaces between H∗(X) and its dual K-vector space
H∗(X)∨ for any smooth and projective variety X. Let X → Y be a k-morphism between two smooth
and projective varieties over k. We write f∗ : H∗(Y ) → H∗(X) for the corresponding map of graded
anticommutative K-algebras ("pull-back") and f∗ : H∗(X)→ H∗(Y ) for the K-linear map ("push-forward")
obtained by taking the map dual to f∗ and identifying H∗(X)→ H∗(Y ) with their duals via (2). Note that
f∗ does not in general respect the underlying grading or the underlying ring structure.
(3) (Künneth formula) For any X,Y projective and smooth varieties over k, the natural projections induce

an isomorphism H∗(X)⊗K H∗(Y )→ H∗(X × Y ).
(4) (cycle maps) There exists a natural transformation of contravariant functors γ(·) : A∗(·)K → Hev(·),

called the cycle class map. Furthermore, γ(·) is compatible with push-forwards.
Here Hev(·) is the K-subalgebra of H∗(·), consisting of elements whose homogenous components are even
integers. This subalgebra is by construction commutative and defines a subfunctor.
(5) (weak Lefschetz theorem) Let h : X ↪→ Y be the inclusion of a smooth section of an ample line bundle on
Y . Then h∗ : Hi(Y )→ Hi(Y ) is an isomorphism for 0 6 i 6 dim(X)−2 and is injective if i = dim(X)−1.

(6) (strong Lefschetz theorem) Let x ∈ H2(X) be the cycle of the section of a ample line bundle. Let
0 6 i 6 dim(X). Then the map Hi(X)→ H2 dim(X)−i(X) given by multiplication by the (dim(X)− i)-th
power of x is an isomorphism.

Let k = C and K = Q in the next sentence only. An example of a Weil cohomology theory is X →
H∗(X(C),Q), which associates with X the singular cohomology with coefficients in Q of the complex points
of X.

If p > 0, l is a prime number 6= p, k = F̄p and K = Ql then an example of a Weil cohomology theory is
Grothendieck’s l-adic cohomology theory X 7→ H∗(X,Ql). For an introduction to the construction of this
cohomology theory, which involves the introduction of a new notion of topology, we refer to [3].

Let X and Y be smooth and projective varieties over k. Let α ∈ Corrrat(X,Y ). Then we obtain a map of
K-vector spaces α∗ : H∗(Y )→ H∗(X) by the formula

y 7→ pX∗(α · p∗Y (y))

where pX : X × Y → X and pY : X × Y → Y are the obvious projections. We define α∗ : H∗(X)→ H∗(Y )

by the identity
α∗ := (tα)∗

If Z is a third smooth and projective variety over k and γ ∈ Corrrat(Y,Z) then we have

α∗ ◦ γ∗ = (γ ◦ α)∗

If α is the graph of a morphism f : X → Y , then α∗ = f∗. See [2].



TWISTED FROBENIUS BOUNDS IN THE SMOOTH AND PROJECTIVE CASE (ACCORDING TO E. HRUSHOVSKI) 9

2.4.2. The Lefschetz fixed point theorem. — Let X be a smooth and projective variety of dimension d0

over an algebraically closed field k. Let α ∈ Corrd(X,X). The Lefschetz fixed point theorem asserts that
for any Weil cohomology theory H∗(·), we have

deg(α ·∆X) =
∑
i>0

(−1)iTrace(α∗ : Hi(X)→ Hi(X)).

Her ∆X is the graph if the identity morphism of X (ie the diagonal). This formula is a formal consequence
of the axioms for Weil cohomologies described in the last subsubsection. See [5, before Th. 3.1]. Here is
a generalization of this formula. Let X and Y be smooth projective varieties of dimension d0 over k. Let
α, β ∈ Corrd0

(X,Y ). Then

deg(α · β) = deg((tβ ◦ α) ·∆X) =
∑
i>0

(−1)iTrace(α∗β∗ : Hi(X)→ Hi(X)).

This last formula follows from the first one together with [2, Ex. 16.1.3, chap. 16, p. 309].

2.4.3. Deligne’s theorem. — We keep the notations of the last subsubsection but we let p > 0, l a prime
number 6= p, k = F̄p and K = Ql.

Let X be a smooth and projective variety over k. Suppose that X has a model over a finite field Fpr (ie
"X is defined over Fpr"). Then X(pr) ' X so that the relative Frobenius morphism Frob

(pr)
X/k : X → X(pr)

gives an endomorphism X → X. A natural question is: what can one say about the eigenvalues of the map
Frob

(pr),∗
X/k : Hi(X,Ql)→ Hi(X,Ql) induced on the i-th group of l-adic cohomology ?

Theorem 2.8. — Let αi be an eigenvalue of the map Frob
(pr),∗
X/k : Hi(X,Ql) → Hi(X,Ql). Then for any

embedding τ : Ql ↪→ C, we have |τ(αi)| = pri/2. Furthermore, αi is an algebraic integer.

Proof. For the proof (which requires a lot of machinery, esp. the theory of Lefschetz pencils), see [1].

3. Proof of Theorem 1.1

We shall first prove the following two results from [4].

Let X be a smooth and projective variety of dimension d0 over F̄p. Let L be a very ample line bundle on
X.

Theorem 3.1 (Prop. 11.11 in [4]). — Let α ∈ Corrd0
(X,X) and let M := L�L on X ×X. Let j > 0.

Then the characteristic polynomial of the linear map α∗ : Hj(X,Ql) → Hj(X,Ql) has rational coefficients
the absolute values of its roots 6 ||α||M .

Theorem 3.2 (Cor. 11.12 in [4]). — Let n, j > 0. Let α ∈ Corrd0(X,X(pn)). Then the characteristic
polynomial of the linear map (tα ◦ Γ

Frob
(pn)

X/F̄p
)∗ : Hj(X,Ql) → Hj(X,Ql) has rational coefficients and the

absolute value of its eigenvalues is 6 pnj/2 · ||tα||L�L(pn) .

Theorem 3.2 contains Theorem 3.1 as a special case but the proof of the former uses the latter.

Proof. (of Theorem 3.1). Suppose that X, as well as L and all the irreducible components of a fixed
representative of α have a common model over a finite field Fq, where q is a power of p. Call these models
X0, L0 and α0. Let n > 1. We view Frob

(q)

X/F̄p
as a an endomorphism of X.
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By Deligne’s theorem 2.8 and the Chinese remainder theorem, there is a polynomial Pj(t) ∈ Q(t), such that
the restriction of Pj(Frob

(q)

X/F̄p
) to Hj(X,Ql) is the identity and such that the restriction of Pj(Frob

(q)

X/F̄p
)

to Hi(X,Ql) vanishes for all i 6= j. By the Lefschetz fixed point theorem (see subsubsection 2.4.2), we have

α◦n · Pj(FrobX0/Fq ) = Tr(α◦n,∗ : Hj(X,Ql)→ Hj(X,Ql)).

Now we compute, using Proposition 2.7:

|α◦n · Pj(FrobX0/Fq )| 6 |α
◦n · Pj(FrobX0/Fq )|M

6 ||α◦n · Pj(FrobX0/Fq )||M 6 ||α
◦n||M · ||Pj(FrobX0/Fq )||M 6 ||α||

n
M · ||Pj(FrobX0/Fq )||M

and thus

|Tr(α◦n,∗ : Hj(X,Ql)→ Hj(X,Ql))|
||α||nM

= O(1)

which implies the result.

Proof. (of Theorem 3.2). Our first claim is that we may assume that X has a model over Fp. To see this,
let Fq = Fpr be a finite field such that X and and all the components of a fixed representative of α have
models X0 and α0 over Fq. Now let X1 := X0×Fp Fq. Notice that there is a natural isomorphism of schemes
over Fq

X1 '
∐

σ∈Gal(Fq|Fp)

Xσ
0 =

∐
k∈Z/rZ

X
(pk)
0 .

and the Fq-scheme X1 is equipped with a natural descent structure to Fp, given by the natural action by
permutation of the Galois group Gal(Fq|Fp) on the components of

∐
σ∈Gal(Fq|Fp)X

σ
0 . The corresponding

scheme over Fp is of course just X0 viewed as an Fp-scheme.

Notice that we have natural isomorphisms

X
(pn)
1 =

∐
k∈Z/rZ

X
(pk+n)
0

and ∐
k∈Z/rZ

X
(pk+n)
0 '

∐
k∈Z/rZ

X
(pk)
0 = X1

the latter being given by cyclic permutation of the indices. We leave it to the reader to verify the following
facts:

- the resulting isomorphism X
(pn)
1 ' X1 is the isomorphism arising from the model of X1 over Fp;

- the morphism X1 → X1 arising by base-change from the relative Frobenius morphism X0 → X0 (where
X0 is viewed as a scheme over Fp) is the composition of the relative Frobenius morphism X1 → X

(pn)
1 with

the above isomorphism X
(pn)
1 ' X1.

Finally, under the isomorphism X
(pn)
1 ' X1, we define the correspondence α1 ∈ Corr(X1, X1) by the formula

α1 =
∐

k∈Z/rZ

α
(pk)
0 .
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The correspondence α1 is compatible with the descent structure to Fp and thus arises by base-change from
a correspondence on the model of X1 on Fp. Now we compute

Tr(
t
α1 ◦ Γ

Frob
(pn)

X1/Fq
)∗ : Hj(X1,F̄p ,Ql)→ Hj(X1,F̄p ,Ql))

=
∑

k∈Z/rZ

Tr(
t
α

(pk)
0 ◦ Γ

Frob
(pn)

X
(pk)
0 /Fq

)∗ : Hj(X
(pk)

0,F̄p
,Ql)→ Hj(X

(pk)

0,F̄p
,Ql))

=
∑

k∈Z/rZ

Tr(
t
α0 ◦ Γ

Frob
(pn)

X0/Fq
)(pk),∗ : Hj(X

(pk)

0,F̄p
,Ql)→ Hj(X

(pk)

0,F̄p
,Ql))

=
∑

k∈Z/rZ

Tr(
t
α0 ◦ Γ

Frob
(pn)

X0/Fq
)∗ : Hj(X0,F̄p ,Ql)→ Hj(X0,F̄p ,Ql))

= r · Tr(
t
α ◦ Γ

Frob
(pn)

X/F̄p
)∗ : Hj(X,Ql)→ Hj(X,Ql))

and hence, assuming the conclusion of Theorem 3.2 holds for X1, we get that

r · |Tr(
t
α ◦ Γ

Frob
(pn)

X/F̄p
)∗ : Hj(X,Ql)→ Hj(X,Ql))| 6 pnj/2 · ||tα1||L1�L

(pn)
1

= pnj/2 · r · ||tα||L�L(pn)

whence the result for X.

We may thus assume that X, L and α have models X0, L0 and α0 over Fp. In this case X(pn) ' X and we
also have that the cycle classes in l-adic cohomology of ΓFrobX/F̄p

◦ tα and tα ◦ΓFrobX/F̄p
coincide under this

identification. To see this, we apply the formula [2, Prop. 16.1.1 (c), (i) & (ii), chap. 16, p. 306] and we
obtain that

(4) tα ◦ ΓFrobX/F̄p
= (FrobX/F̄p × IdX)∗(tα)

and

(5) ΓFrobX/F̄p
◦ tα = (IdX × FrobX/F̄p)∗(

tα)

in Ad(X ×X). Now to show that the cycle classes of (4) and (5) coincide, it sufficient to show that

(FrobX/F̄p × IdX)∗(FrobX/F̄p × IdX)∗(tα) = (FrobX/F̄p × IdX)∗(IdX × FrobX/F̄p)∗(
tα) = FrobX×X/F̄p,∗(

tα)

and by the projection formula (see (2)), we have

(FrobX/F̄p × IdX)∗(FrobX/F̄p × IdX)∗(tα) = deg(FrobX/F̄p × IdX) · tα = p2d0 · tα

Summarizing, to show that the cycle classes of ΓFrobX/F̄p
◦ tα and tα ◦ ΓFrobX/F̄p

coincide, it is sufficient to
show that

FrobX×X/F̄p,∗(
tα) = p2d0 · tα.

It is not clear that this holds, but it is sufficient to show that the cycle classes of both side coincide. This
is a consequence of the projection formula again and the fact that

Frob∗X0×X0/Fp(tα0) = pd0 · tα0.

To see this, one has to combine the following facts, which do not fall under the scope of these notes. First,
pull-back by the absolute Frobenius morphism coincides with the p-th Adams operation in the Grothendieck
group of locally free sheaves (for lack of a better reference, see [7, Intro.]). Then use the fact that the Chern
character isomorphism between the Grothendieck group and Chow theory (see [2, 15.1]) respects the Adams
operations. Now that we now that the cycle classes of ΓFrobX/F̄p

◦ tα and tα ◦ ΓFrobX/F̄p
coincide, we may

apply Deligne’s theorem 2.8 together with Theorem 3.1 to conclude the proof of Theorem 3.2.
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Proof of Theorem 1.1. Using Theorem 3.2 and Deligne’s theorem 2.8, we compute that

|deg(Sb · ΓFrob
(pn)

Va/Spec F̄p
)− δ2 · pnd| = |

∑
i>0

(−1)iTrace((tSb ◦ Γ
Frob

(pn)

Va/Spec F̄p
)∗ : Hi(Va)→ Hi(Va))− δ1 · pnd| 6

6 ||tSb||L�L(pn) [pn(d−1/2) + pn(d−1) + . . . ] 6 (2d− 1)||tSb||L�L(pn)pn(d−1/2)

Now the constant ||tSb||L�L(pn) is uniformly bounded for all b, because the degree is uniformly bounded and
because of inequality (3).
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