Nori's approach to the Riemann-Roch theorem

PIMS, Sept. 7th 2007

The geometric fixed point formula I

We shall work with the following setup:

- X a projective smooth variety over \mathbb{C}
- g an automorphism of finite order of X
- $\mathrm{K}_{\mathrm{eq}}(\bullet)$ the Grothendieck group of g-equivariant vector bundles
- $\rho: X_{g} \hookrightarrow X$ the fixed point variety of X

The geometric fixed point formula II

The group $\mathrm{K}_{\mathrm{eq}}(\bullet)$ has a natural covariant and contravariant structure. A natural question is thus: does the following diagram commute ?

The geometric fixed point formula III

The answer is NO.
Nevertheless, there is the following formula.

Theorem (geometric fixed point formula)

Let N be the normal bundle of X_{g} in X.

- The element $\Lambda_{-1}\left(N^{\vee}\right):=\sum_{k \geqslant 0}(-1)^{k} \Lambda^{k}\left(N^{\vee}\right)$ is invertible in $\mathrm{K}_{\mathrm{eq}}\left(X_{g}\right) \otimes_{\mathrm{K}_{\text {eq }}(\mathbb{C})} \mathbb{C}$.
- For every g-equivariant vector bundle E on X, the equality

$$
\operatorname{Trace}\left[\mathrm{R}^{\bullet} \Gamma\left(\left(\Lambda_{-1}\left(N^{\vee}\right)\right)^{-1} \otimes \rho^{*}(E)\right)\right]=\operatorname{Trace}\left[\mathrm{R}^{\bullet} \Gamma(E)\right]
$$

holds in \mathbb{C}.

The Lefschetz fixed point formula

Suppose momentarily that X_{g} is discrete.
The Lefschetz fixed point formula is then the following equality

$$
\text { Trace }\left[H_{\text {sing }}^{\bullet}(X)\right]=\# X_{g}
$$

Using the Hodge decomposition of singular cohomology, it can be deduced from the geometric fixed point formula, applied to the element

$$
\Lambda_{-1}\left(\Omega_{X}\right)=\sum_{k \geqslant 0}(-1)^{k} \Lambda^{k}\left(\Omega_{X}\right)
$$

The Riemann-Roch formula for curves I

Let us now turn to an apparently unrelated theorem.
Suppose that C is a curve.
Let D be a divisor on C.

Theorem (Riemann-Roch theorem for curves)

The equality

$$
\chi(\mathcal{O}(D))=\operatorname{deg}(D)-\frac{1}{2} \operatorname{deg}\left(\Omega_{C}\right)
$$

holds.

The Riemann-Roch theorem for curves II

By induction on $\operatorname{deg}(D)$, this Theorem can be reduced to the equality

$$
\chi\left(\mathcal{O}_{C}\right)=-\frac{1}{2} \operatorname{deg}\left(\Omega_{C}\right)
$$

Again by induction on $\operatorname{deg}(D)$, one can show that

$$
\operatorname{deg}(L)=\chi(L)-\chi\left(\mathcal{O}_{C}\right)
$$

for any line bundle L on C. Hence the Theorem can be further reduced to the equality

$$
\chi\left(\mathcal{O}_{C}\right)=-\chi\left(\Omega_{C}\right)
$$

The black magic of the diagonal I

We shall now apply the geometric fixed point formula to the following situation:

- $X=C \times C$, where C is a curve;
- g is the automorphism of X swapping the two factors;
- $E:=\mathcal{O}_{X}$.

The black magic of the diagonal II

In this case

- X_{g} is the diagonal in $C \times C$;
- $N^{\vee}=\Omega_{C}$;
- $\rho^{*}(E)=\mathcal{O}_{C}$ where \mathcal{O}_{C} has a trivial g-equivariant structure.

With this input, the geometric fixed point formula says that

$$
\operatorname{Trace}\left[\mathrm{R}^{\bullet} \Gamma\left(\mathcal{O}_{X}\right)\right]=\operatorname{Trace}\left[\mathrm{R}^{\bullet} \Gamma\left(\left(1+\Omega_{C}\right)^{-1}\right)\right] \quad(*)
$$

where Ω_{C} has a trivial equivariant structure.

Computations I

We shall need the following lemma from linear algebra:

Lemma

Let V be a vector space over \mathbb{C} and let ι be the automorphism of $V \otimes_{\mathbb{C}} V$ swapping the factors. Then

$$
\operatorname{Trace}(\iota)=\operatorname{dim}(V)
$$

For the proof, choose any basis $\left(v_{i}\right)$ of V and write the matrix of ι in the basis $\left(v_{i} \otimes v_{j}\right)$ of $V \otimes_{\mathbb{C}} V$.

Computations II

Before resuming the computation, let us quote the following Proposition.

Proposition (Grothendieck group of a curve)

The map

$$
\mathrm{K}(C) \rightarrow \mathbb{Z} \oplus \operatorname{Pic}(C)
$$

given by

$$
E \mapsto \operatorname{rk}(E) \oplus \operatorname{det}(E)
$$

is an isomorphism of groups.

Computations III

Let us now resume the computation. Recall the equation $\left({ }^{*}\right)$:

$$
\operatorname{Trace}\left[\mathrm{R} \bullet \Gamma\left(\mathcal{O}_{X}\right)\right]=\operatorname{Trace}\left[\mathrm{R} \bullet \Gamma\left(\left(1+\Omega_{C}\right)^{-1}\right]\right.
$$

We shall first be concerned with the computation of

$$
\left(1+\Omega_{C}\right)^{-1}
$$

and of
Trace[•].

Computations IV

We start with the former. Let $k \geqslant 0$. We first compute that

$$
\left(\Omega_{C}-1\right)^{\otimes k}=\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} \Omega_{C}^{\otimes j}
$$

and thus, if $k \geqslant 1$, that

$$
\operatorname{rk}\left(\left(\Omega_{C}-1\right)^{\otimes k}\right)=(1-1)^{k}=0
$$

Similarly, if $k \geqslant 2$,

$$
\operatorname{det}\left(\left(\Omega_{C}-1\right)^{\otimes k}\right)=\Omega^{\left.\frac{d}{d x}(x-1)^{k}\right|_{x=1}}=\Omega_{C}^{\left.k(x-1)^{k-1}\right|_{x=1}}=\mathcal{O}
$$

Computations V

Using the Proposition, we thus obtain that

$$
\left(1-\Omega_{X}\right)^{\otimes k}=0
$$

in $K(C)$ if $k \geqslant 2$.
Using this, we can finally compute that

$$
\begin{aligned}
\left(1+\Omega_{C}\right)^{-1} & =\frac{1}{2-\left(1-\Omega_{C}\right)}=\frac{1 / 2}{1-\frac{1}{2}\left(1-\Omega_{C}\right)} \\
& =\frac{1}{2}+\frac{1}{4}\left(1-\Omega_{C}\right)
\end{aligned}
$$

in $K(C)$.

Computations VI

We can thus rewrite (*) as

$$
\operatorname{Trace}\left[\mathrm{R}^{\bullet} \Gamma\left(\mathcal{O}_{x}\right)\right]=\operatorname{Trace}\left[\mathrm{R}^{\bullet} \Gamma\left(\frac{1}{2}+\frac{1}{4}\left(1-\Omega_{C}\right)\right)\right]
$$

Using the Lemma from linear algebra, we see that this can be rewritten as

$$
\chi\left(\mathcal{O}_{C}\right)=\frac{1}{2} \chi\left(\mathcal{O}_{C}\right)+\frac{1}{4} \chi\left(\mathcal{O}_{C}\right)-\frac{1}{4} \chi\left(\Omega_{C}\right)
$$

or

$$
\chi\left(\mathcal{O}_{C}\right)=-\chi\left(\Omega_{C}\right)
$$

Generalisation

The computation above can be generalised to any dimension. The corresponding formula is known as the Adams-Riemann-Roch formula.

The Grothendieck-Riemann-Roch formula can be deduced from it.
The link between the geometric fixed point formula and the Grothendieck-Riemann-Roch theorem was first seen by M. Nori.

We shall study the implications of the Adams-Riemann-Roch formula in the next talk of this series.

