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The geometric fixed point formula I

We shall work with the following setup:

X a projective smooth variety over C
g an automorphism of finite order of X

Keq(•) the Grothendieck group of g -equivariant vector bundles

ρ : Xg ↪→ X the fixed point variety of X
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The geometric fixed point formula II

The group Keq(•) has a natural covariant and contravariant structure.
A natural question is thus: does the following diagram commute ?

Keq(X )
ρ∗ //

R•Γ

��

Keq(Xg )

R•Γ

��
Keq(C) = // Keq(C)
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The geometric fixed point formula III

The answer is NO.
Nevertheless, there is the following formula.

Theorem (geometric fixed point formula)

Let N be the normal bundle of Xg in X .

The element Λ−1(N
∨) :=

∑
k>0(−1)kΛk(N∨) is invertible in

Keq(Xg )⊗Keq(C) C.

For every g-equivariant vector bundle E on X , the equality

Trace[ R•Γ(
(
Λ−1(N

∨)
)−1 ⊗ ρ∗(E )) ] = Trace[ R•Γ(E ) ]

holds in C.
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The Lefschetz fixed point formula

Suppose momentarily that Xg is discrete.
The Lefschetz fixed point formula is then the following equality

Trace[ H•
sing(X ) ] = #Xg .

Using the Hodge decomposition of singular cohomology, it can be deduced
from the geometric fixed point formula, applied to the element

Λ−1(ΩX ) =
∑
k>0

(−1)kΛk(ΩX ).
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The Riemann-Roch formula for curves I

Let us now turn to an apparently unrelated theorem.

Suppose that C is a curve.

Let D be a divisor on C .

Theorem (Riemann-Roch theorem for curves)

The equality

χ(O(D)) = deg(D)− 1

2
deg(ΩC )

holds.
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The Riemann-Roch theorem for curves II

By induction on deg(D), this Theorem can be reduced to the equality

χ(OC ) = −1

2
deg(ΩC ).

Again by induction on deg(D), one can show that

deg(L) = χ(L)− χ(OC )

for any line bundle L on C . Hence the Theorem can be further reduced to
the equality

χ(OC ) = −χ(ΩC ).
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The black magic of the diagonal I

We shall now apply the geometric fixed point formula to the following
situation:

X = C × C , where C is a curve;

g is the automorphism of X swapping the two factors;

E := OX .
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The black magic of the diagonal II

In this case

Xg is the diagonal in C × C ;

N∨ = ΩC ;

ρ∗(E ) = OC where OC has a trivial g -equivariant structure.

With this input, the geometric fixed point formula says that

Trace[ R•Γ(OX ) ] = Trace[ R•Γ
(
(1 + ΩC )−1

)
] (∗)

where ΩC has a trivial equivariant structure.
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Computations I

We shall need the following lemma from linear algebra:

Lemma

Let V be a vector space over C and let ι be the automorphism of V ⊗C V
swapping the factors. Then

Trace(ι) = dim(V ).

For the proof, choose any basis (vi ) of V and write the matrix of ι in the
basis (vi ⊗ vj) of V ⊗C V .
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Computations II

Before resuming the computation, let us quote the following Proposition.

Proposition (Grothendieck group of a curve)

The map
K(C ) → Z⊕ Pic(C )

given by
E 7→ rk(E )⊕ det(E )

is an isomorphism of groups.
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Computations III

Let us now resume the computation. Recall the equation (*):

Trace[ R•Γ(OX ) ] = Trace[ R•Γ(
(
1 + ΩC

)−1
].

We shall first be concerned with the computation of(
1 + ΩC

)−1

and of
Trace[ · ].
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Computations IV

We start with the former. Let k > 0. We first compute that

(ΩC − 1)⊗k =
k∑

j=0

(
k

j

)
(−1)k−jΩ⊗j

C

and thus, if k > 1, that

rk((ΩC − 1)⊗k) = (1− 1)k = 0.

Similarly, if k > 2,

det((ΩC − 1)⊗k) = Ω
d
dx

(x−1)k |x=1 = Ω
k(x−1)k−1|x=1

C = O.
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Computations V

Using the Proposition, we thus obtain that

(1− ΩX )⊗k = 0

in K(C ) if k > 2.

Using this, we can finally compute that

(
1 + ΩC

)−1
=

1

2− (1− ΩC )
=

1/2

1− 1
2(1− ΩC )

=
1

2
+

1

4
(1− ΩC )

in K(C ).
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Computations VI

We can thus rewrite (*) as

Trace[ R•Γ(OX ) ] = Trace[ R•Γ(
1

2
+

1

4
(1− ΩC )) ].

Using the Lemma from linear algebra, we see that this can be rewritten as

χ(OC ) =
1

2
χ(OC ) +

1

4
χ(OC )− 1

4
χ(ΩC )

or

χ(OC ) = −χ(ΩC )
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Generalisation

The computation above can be generalised to any dimension. The
corresponding formula is known as the Adams-Riemann-Roch formula.

The Grothendieck-Riemann-Roch formula can be deduced from it.

The link between the geometric fixed point formula and the
Grothendieck-Riemann-Roch theorem was first seen by M. Nori.

We shall study the implications of the Adams-Riemann-Roch formula in
the next talk of this series.
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