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Abstract. For a one-phase free boundary problem involving a fractional

Laplacian, we prove that “flat free boundaries” are C1,α. We recover the
regularity results of Caffarelli for viscosity solutions of the classical Bernoulli-

type free boundary problem with the standard Laplacian.

1. Introduction

The purpose of this paper is to answer a question left open in [CafRS] on the
regularity of free boundaries for the fractional Laplacian of order α - with 0 < α < 1,
in the particular case α = 1/2. Here is the setting: consider g a viscosity solution
(this notion will be defined properly later) of the following free boundary problem
in the ball B1 ⊂ Rn+1 = Rn × R,

(1.1)

∆g = 0, in B+
1 (g) := B1 \ {(x, 0) : g(x, 0) = 0},

∂g

∂U
= 1, on F (g) := ∂Rn{x ∈ B1 : g(x, 0) > 0} ∩ B1,

where

(1.2)
∂g

∂U
(x0) := lim

(x,z)→(x0,0)

g(x, z)− g(x0, 0)
U((x− x0) · ν(x0), z)

, x0 ∈ F (g)

and Br ⊂ Rn is the n-dimensional ball of radius r (centered at 0).
The function U(t, z) is the harmonic extension of

√
t+ to the upper half-plane

R2
+ = {(t, z) ∈ R × R, z > 0}, reflected evenly across {z = 0}. Precisely, after the

polar change of coordinates

t = r cos θ, z = r sin θ, r ≥ 0,−π ≤ θ ≤ π,
U is given by

(1.3) U(t, z) = r1/2 cos
θ

2
.

One can show that if a function g ≥ 0 is harmonic in B+
1 (g) and F (g) is smooth

around a point x0 then ∂g
∂U (x0) exists always and it is finite. Here ν(x0) denotes as

usually the normal to F (g) at x0 pointing toward {x : g(x, 0) > 0}.
In this paper, we introduce the notion of viscosity solutions to (1.1) and prove

the following result about the regularity of their free boundaries under appropriate
flatness assumptions (for all the relevant definitions see Section 2).

Theorem 1.1. There exists a universal constant ε̄ > 0, such that if g is a viscosity
solution to (1.1) satisfying

(1.4) ‖g − U‖L∞(B1) ≤ ε̄,
1
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and

(1.5) {x ∈ B1 : xn ≤ −ε̄} ⊂ {x ∈ B1 : g(x, 0) = 0} ⊂ {x ∈ B1 : xn ≤ ε̄},

then F (g) is C1,α in B1/2.

Consequentely ∂g
∂U exists and g is a classical solution to (1.1). Moreover, given

a point x0 on the free boundary F (g) if one knows that a blow-up sequence of g
around x0 “converges” to the function U , then the flatness assumptions (1.4)-(1.5)
are satisfied and hence the free boundary is C1,α around that point.

Assumption (1.4) is a (slightly improved) nondegeneracy assumption which is
usually true, and certainly satisfied in the framework of [CafRS]. In any case it
could be removed, but we keep it for simplicity.

The interest in our free boundary problem (1.1) arises from a natural general-
ization of the following classical Bernoulli-type one-phase free boundary problem:

(1.6)

{
∆u = 0, in Ω ∩ {u > 0},
|∇u| = 1, on Ω ∩ ∂{u > 0},

with Ω a domain in Rn. A pioneering investigation was that of Alt and Caffarelli
[AC] (variational context), and then Caffarelli [C1, C2, C3] (viscosity solutions
context). See also [CS] for a complete survey.

A special class of viscosity solutions to (1.1) (with the constant 1 replaced by a
precise constant A) is provided by minimizers to the energy functional

J(v,B1) =
∫
B1

|∇v|2dxdz + LRn({v > 0} ∩ Rn ∩B1).

Such minimizers have been investigated by Caffarelli, Sire and the second author in
[CafRS], where general properties (optimal regularity, nondegeneracy, classification
of global solutions), corresponding to those proved by Alt and Caffarelli in [AC] for
the Bernoulli-type problem (1.6), have been obtained.

As for the next issue, i.e. the regularity of the free boundary, here is what is
proved in [CafRS] in the setting of (1.1):

Let u(x, y, z) be a solution of (1.1) in B1 ⊂ R3. Assume that the free boundary
of u is a Lipschitz graph in B1. Then it is a C1 graph in B1/2.

The idea of this result is that (i) one can find two points on each side of 0 where
the free boundary is flatter than what is dictated by the Lipschitz constant, (ii)
this improvement could be propagated inside a small ball of controlled size. Thus
the three-dimensionality of the problem (or, equivalently, the one-dimensionality
of the free boundary) is heavily used. Moreover, this argument does not yield the
extra Hölder regularity of the derivative - which we believe could itself yield C∞

regularity of the free boundary. What we propose in this paper is to fill the gap
between C1 and C1,α, in arbitrary space dimension.

In view of the results in [CafRS], one knows that the flatness assumptions (1.4),
(1.5) in our main Theorem 1.1 are satisfied around each point of the reduced part
of the free boundary of a minimizer (see Propositions 4.2 and Theorems 1.2,1.3 in
[CafRS]). We thus obtain the following corollary to Theorem 1.1.

Corollary 1.2. Let v be a local minimizer to

J(v,B1) =
∫
B1

|∇v|2dxdz + LRn({v > 0} ∩ Rn ∩B1).
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Then the reduced part of the free boundary F ∗(v) is C1,α.

Let us now recall how the fractional Laplacian is involved in (1.1). Consider, for
α ∈ (0, 1), the model (which generalizes (1.6))

(1.7)

(−∆)αu = 0, in Ω ∩ {u > 0},

lim
x→x0

u(x)
((x− x0) · ν(x0))α

= const., on Ω ∩ ∂{u > 0},

with u defined on the whole Rn with prescribed values outside of Ω. Recall that,
up to a normalization constant

(−∆)αu(x) = PV

∫
Rn

u(x)− u(y)
|x− y|n+2α

dy

where PV denotes the Cauchy principal value.
When studying local property of the free boundary in (1.7), the non-locality of

the fractional Laplace makes the problem quite delicate. To avoid this “contrast”
one can make use of an extension property proved by Caffarelli and Silvestre in [CSi]
(see for example the work of Caffarelli, Savin and the second author [CafRSa], the
paper [CafRS], and the work of Caffarelli, Salsa and Silvestre [CSS] where this
strategy has been employed.) Precisely, let u ∈ C2(Rn) and let v solve

(1.8)

{
−div(zβ∇v) = 0, in Rn+1

+ = {(x, z) ∈ Rn × R, z > 0},
v(x, 0) = u(x), on Rn,

with β = 1− 2α. Then,

(1.9) (−∆α)u(x) = − lim
z→0

(zβvz(x, z)).

After extending v evenly across the hyperplane {z = 0}, the first equation in
(1.8) can be thought in the whole Rn+1. In view of this formula, the focus shifts on
the free boundary problem,
(1.10)−div(|z|β∇v) = 0, in B1 \ {(x, 0) : v(x, 0) = 0},

lim
(x,z)→(x0,0)

v(x, z)− v(x0, 0)
U((x− x0) · ν(x0), z)

= const., on ∂Rn{x : v(x, 0) > 0} ∩ B1,

where U(t, z) solves (1.8) in R2 with u(t) = (t+)α and it is extended evenly across
{z = 0}.

For simplicity of exposition we have focused here on the case when α = 1/2 (in
which case the extension formula of [CSi] is a well-know fact). However our result
can probably be extended to the general case α ∈ (0, 1).

Our definition of viscosity solution to (1.1) is similar to the one introduced by
Caffarelli in [C1, C2] to deal with the problem (1.6). Indeed our result generalizes to
this non-local setting the “flatness implies regularity” theory developed by Caffarelli
in [C2]. Let us also mention that Theorem 1.1 is probably optimal. Indeed, quite
similarly to what happens for minimal surfaces, singular free boundaries for the
Bernoulli-type problem (1.6) were discovered by Jerison and the first author [DSJ].

Let us now describe our strategy to obtain Theorem 1.1. The main idea to prove
Theorem 1.1 is to show that F (g) enjoys an “improvement of flatness” property,
that is if F (g) oscillates ε away from a hyperplane in B1 (ε small), then in Bρ (ρ
universal) it oscillates ερ/2 away from possibly a different hyperplane. To obtain
this improvement of flatness, we use a compactness argument which goes as follows:
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assume one cannot do it however flat the free boundary is, then we blow it up it
in the xn direction, thus linearizing the problem into a limiting one, for which we
prove that improvement of flatness holds - thus a contradiction. This scheme was
used by Savin [S] to prove regularity of small solutions of fully nonlinear equations
- including an elegant proof of the De Giorgi theorem for minimal surfaces. The
key tool is a geometric Harnack inequality that localizes the free boundary well,
and allows the passage to the limit under rescalings.

Such compactness arguments can also be found in Wang [W] for the regularity
of the solutions of p-Laplace equations. More recently, the first author followed
this strategy in [D] to provide a new proof of the Caffarelli “flat implies smooth”
theory. The scheme is the same here, up to the fact that the construction of the
sub-solution opening the way to the Harnack inequality is different to that of [D],
and that the linear problem obtained eventually is non-standard (and interesting
in its own).

The paper is organized as follows. In Section 2 we introduce the notion of
viscosity solutions to (1.1) and we prove a basic Comparison Principle for such
solutions. In Section 3 we explain how to interpret our solutions as perturbations
of U after a “domain variation” in the en-direction and we present basic facts
about such domain variations. Throughout the paper, this will be a convenient
way of thinking about our viscosity solutions. In Section 4 we describe the linear
problem associated to (1.1) and later in Section 8 we obtain a regularity result
for its solutions. Section 5 contains some technical lemmas leading to the proof of
Harnack inequality. In Section 6 we exhibit the proof of Harnack inequality using
the barrier which we will construct later in the Appendix. Finally in Section 7 we
provide the proof of the “improvement of flatness” property.

Acknowledgement. J.-M. R. is supported by the ANR grant PREFERED.

2. Definitions and basic lemmas

In this Section we introduce notation and definitions which we will use through-
out the paper and we prove a standard basic lemma (Comparison Principle).

A point X ∈ Rn+1 will be denoted by X = (x, z) ∈ Rn×R. We will also use the
notation x = (x′, xn) with x′ = (x1, . . . , xn−1). A ball in Rn+1 with radius r and
center X is denoted by Br(X) and for simplicity Br = Br(0). Also we use Br to
denote the n-dimensional ball Br ∩ {z = 0}.

Let v(X) be a continuous non-negative function in B1. We associate to v the
following sets:

B+
1 (v) := B1 \ {(x, 0) : v(x, 0) = 0} ⊂ Rn+1;

B+
1 (v) := B+

1 (v) ∩ B1 ⊂ Rn;

F (v) := ∂RnB+
1 (v) ∩ B1 ⊂ Rn;

B0
1(v) := IntRn{x ∈ Rn : v(x, 0) = 0} ⊂ Rn.

Often subsets of Rn are embedded in Rn+1, as it will be clear from the context.
We may refer to B0

1(v) as to the zero plate of v, while F (v) is called the free
boundary of v.

We consider the free boundary problem
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(2.1)

∆g = 0, in B+
1 (g),

∂g

∂U
= 1, on F (g),

where
∂g

∂U
(x0) := lim

X→X0

g(X)− g(X0)
U((x− x0) · ν(x0), z)

, X0 = (x0, 0) ∈ F (g).

Here ν(x0) denotes the unit normal to F (g) at x0 pointing toward B+
1 (g) and U is

the function defined in (1.3). Also, throughout the paper we call U(X) := U(xn, z).
We now introduce the notion of viscosity solutions to (2.1). First we need the

following standard notion.

Definition 2.1. Given g, v continuous, we say that v touches g by below (resp.
above) at X0 ∈ B1 if g(X0) = v(X0), and

g(X) ≥ v(X) (resp. g(X) ≤ v(X)) in a neighborhood O of X0.

If this inequality is strict in O \ {X0}, we say that v touches g strictly by below
(resp. above).

Definition 2.2. We say that v ∈ C2(B1) is a (strict) comparison subsolution to
(2.1) if v is a non-negative function in B1 which is even with respect to z = 0 and
it satisfies

(i) ∆v ≥ 0 in B+
1 (v);

(ii) F (v) is C2 and if x0 ∈ F (v) we have

v(x, z) = αU((x− x0) · ν(x0), z) + o(|(x− x0, z)|1/2), as (x, z)→ (x0, 0),

with
α ≥ 1,

where ν(x0) denotes the unit normal at x0 to F (v) pointing toward B+
1 (v);

(iii) Either v is not harmonic in B+
1 (v) or α > 1.

Similarly one can define a (strict) comparison supersolution.

Definition 2.3. We say that g is a viscosity solution to (2.1) if g is a continuous
non-negative function in B1 which is even with respect to z = 0 and it satisfies

(i) ∆g = 0 in B+
1 (g);

(ii) Any (strict) comparison subsolution (resp. supersolution) cannot touch g
by below (resp. by above) at a point X0 = (x0, 0) ∈ F (g).

Remark 2.4. By standard arguments, if g is a viscosity solution to (2.1) and F (g)
is C1 then g is a classical solution of the free boundary problem (see for example
Proposition 4.2 in [CafRS].) Moreover, as remarked in the Introduction one can
show that given any continuous function g which is harmonic in B+

1 (g), then ∂g
∂U (x0)

exists at each point around which F (g) is C1,α. These facts motivate our problem
and the definition of viscosity solution.
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Remark 2.5. We remark that if g is a viscosity solution to (2.1) in Bρ, then

gρ(X) = ρ−1/2g(ρX), X ∈ B1

is a viscosity solution to (2.1) in B1.

We finish this section by stating and proving a comparison principle for problem
(2.1) which will be a key tool in the proof of Harnack inequality in Section 7.

Lemma 2.6 (Comparison principle). Let g, vt ∈ C(B1) be respectively a solution
and a family of subsolutions to (2.1), t ∈ [0, 1]. Assume that

(i) v0 ≤ g, in B1;
(ii) vt ≤ g on ∂B1 for all t ∈ [0, 1];
(iii) vt < g on F(vt) which is the boundary in ∂B1 of the set ∂B+

1 (vt) ∩ ∂B1,
for all t ∈ [0, 1];

(iv) vt(x) is continuous in (x, t) ∈ B1 × [0, 1] and B+
1 (vt) is continuous in the

Hausdorff metric.
Then

vt ≤ g in B1, for all t ∈ [0, 1].

Proof. Let
A := {t ∈ [0, 1] : vt(x) ≤ g(x) on B1}.

In view of (i) and (iv) A is closed and non-empty. Our claim will follow if we show
that A is open. Let t0 ∈ A, then vt0 ≤ g on B1 and by the definition of viscosity
solution

F (vt0) ∩ F (g) = ∅.
Together with (iii) this implies that

B+
1 (vt0) ⊂ B+

1 (g), F (vt0) ∪ F(vt0) ⊂ {x ∈ B1 : g(x, 0) > 0}.
By (iv) this gives that for t close to t0

(2.2) B+
1 (vt) ⊂ B+

1 (g), F (vt) ∪ F(vt) ⊂ {x ∈ B1 : g(x, 0) > 0}.
Call D := B1 \ (B0

1(vt) ∪ F (vt)). Combining (2.2) with assumption (ii) we get that

vt ≤ g on ∂D,

and by the maximum principle the inequality holds also in D. Hence

vt ≤ g in B1,

and t ∈ A which shows that A is open. �

Corollary 2.7. Let g be a solution to (2.1) and let v be a subsolution to (2.1) in
B2 which is strictly monotone increasing in the en-direction in B+

2 (v). Call

vt(X) := v(X + ten), X ∈ B1.

Assume that for −1 ≤ t0 < t1 ≤ 1

vt0 ≤ g, in B1,

and
vt1 ≤ g on ∂B1, vt1 < g on F(vt1).

Then
vt1 ≤ g in B1.
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3. The function g̃

Let g be a viscosity solution to (2.1). Throughout the paper, it will be convenient
to interpret g as a perturbation of U via a domain variation in the en-direction. In
this section we explain some basic facts about such domain variations.

Let ε > 0 and let g be a continuous non-negative function in Bρ. Here and
henceforth we denote by P the half-hyperplane P := {X ∈ Rn+1 : xn ≤ 0, z = 0}
and by L := {X ∈ Rn+1 : xn = 0, z = 0}. To each X ∈ Rn+1 \ P we associate
g̃ε(X) ⊂ R via the formula

(3.1) U(X) = g(X − εwen), ∀w ∈ g̃ε(X).

We sometimes call g̃ε the ε- domain variation associated to g. By abuse of
notation, from now on we write g̃ε(X) to denote any of the values in this set.

If g satisfies

(3.2) U(X − εen) ≤ g(X) ≤ U(X + εen) in Bρ,

then
g̃ε(X) ∈ [−1, 1].

Indeed call
Y = X − εg̃ε(X)en, X ∈ Rn+1 \ P.

Then according to (3.2),

U(Y − εen) ≤ g(Y ) = U(Y + εg̃ε(X)en) ≤ U(Y + εen).

Since U(Y + εg̃ε(X)en) = U(X) > 0 our claim follows from the strict monotonicity
of U in the en-direction (outside of P .)

Moreover, under the assumption (3.2) for each X ∈ Bρ−ε \P there exists at least
one value g̃ε(X) such that

(3.3) U(X) = g(X − εg̃ε(X)en).

Indeed, it follows from (3.2) that

g(X − εen) ≤ U(X) ≤ g(X + εen), X ∈ Bρ−ε
and our claim follows by the continuity of g(X − δεen), δ ∈ [−1, 1].

Thus if (3.2) holds, for all ε > 0 we can associate to g a possibly multi-valued
function g̃ε defined at least on Bρ−ε \ P and taking values in [−1, 1] which satisfies
(3.3). Moreover if g is strictly monotone in the en-direction in B+

ρ (g), then g̃ε is
single-valued.

The following elementary lemma will be used to obtain a useful comparison
principle for the ε-domain variations of solutions to (2.1).

Lemma 3.1. Let g, v be non-negative continuous functions in Bρ. Assume that g
satisfies the flatness condition (3.2) in Bρ and that v is strictly increasing in the
en-direction in B+

ρ (v). Then if

v ≤ g in Bρ,

and ṽε exists on Bρ−ε \ P we have that

ṽε ≤ g̃ε on Bρ−ε \ P.
Viceversa, if ṽε exists on Bs \ P and

ṽε ≤ g̃ε on Bs \ P,
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then
v ≤ g on Bs−ε.

Proof. The first implication is obvious. Indeed, assume by contradiction that v ≤ g
in Bρ and there exists X ∈ Bρ−ε \ P such that

ṽε(X) > g̃ε(X).

By the strict monotonicity of v in the en-direction in B+
ρ (v) we have that

0 < U(X) = g(X − εg̃ε(X)en) = v(X − εṽε(X)en) < v(X − εg̃ε(X)en).

Thus there exists Y = X − εg̃ε(X)en ∈ Bρ such that g(Y ) < v(Y ), a contradiction.
Viceversa, suppose that ṽε ≤ g̃ε in Bs \ P . For a fixed Y ∈ Bs−ε we know by the
flatness assumption (3.2) that

U(Y − εen) ≤ g(Y ) ≤ U(Y + εen).

Thus, there exists X ∈ Bs with xi = yi for i 6= n and xn ∈ [yn− εen, yn + εen] such
that

g(Y ) = U(X).
Suppose g(Y ) 6= 0, then the identity above means that one of the possible values
of g̃ε(X) = yn−xn

ε . Again, using that v is increasing in the en-direction we get:

g(Y ) = U(X) = v(X − εṽε(X)en) ≥ v(X − εg̃ε(X)en) = v(Y ), Y ∈ B+
s (g).

Thus the desired inequality holds in B+
s (g) and hence by continuity it holds in the

full ball Bs. �

We now state and prove the desired comparison principle, which will follow
immediately from the Lemma above and Corollary 2.7.

Lemma 3.2. Let g, v be respectively a solution and a subsolution to (2.1) in B2,
with v strictly increasing in the en-direction in B+

2 (v). Assume that g satisfies the
flatness assumption (3.2) in B2 for ε > 0 small and that ṽε exists in B2−ε \ P and
satisfies

|ṽε| ≤ C.
If,

(3.4) ṽε + c ≤ g̃ε in (B3/2 \B1/2) \ P,

then

(3.5) ṽε + c ≤ g̃ε in B3/2 \ P.

Proof. We wish to apply Corollary 2.7 to the functions g and

vεt = v(X + εten).

We need to verify that for some t0 < t1 = c

(3.6) vεt0 ≤ g in B1,

and for all δ > 0 and small

(3.7) vεt1 ≤ g on ∂B1, vεt1 < g on F(vε(t1−δ)).

Then our Corollary implies

vε(t1−δ) ≤ g in B1.
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By letting δ go to 0, we obtain that

vεt1 ≤ g in B1,

which in view of Lemma 3.1 gives

(̃vεt1)ε ≤ g̃ε in B1−ε \ P ,

assuming that the ε-domain variation on the left hand side exists on B1−ε \ P. On
the other hand, it is easy to verify that on such set

(3.8) (̃vεt)ε(X) = ṽε(X) + t,

and hence we have

ṽε + c = ṽε + t1 ≤ g̃ε in B1−ε \ P,

which gives the desired conclusion. We are left with the proof of (3.6)-(3.7).
In view of Lemma 3.1, in order to obtain (3.6) it suffices to show that

(̃vεt0)ε ≤ g̃ε, in B1+ε \ P,

which by (3.8) becomes

ṽε + t0 ≤ g̃ε, in B1+ε \ P.

This last inequality holds trivially since g̃ε and ṽε are bounded.
For (3.7), notice that the first inequality follows easily from our assumption (3.4)

together with (3.8) and Lemma 3.1. More precisely we have that

vεt1 ≤ g in B 3
2−ε
\B 1

2 +ε.

In particular, from the strict monotonicity of v in the en-direction in B+
2 (v) we

have that

vεt1 > 0 on F(vε(t1−δ)),

which combined with the previous inequality gives that

g > 0 on F(vε(t1−δ)),

that is the second condition in (3.7). �

Finally, given ε > 0 small and a Lipschitz function ϕ̃ defined on Bρ(X̄), with
values in [−1, 1], then there exists a unique function ϕε defined at least on Bρ−ε(X̄)
such that

(3.9) U(X) = ϕε(X − εϕ̃(X)en), X ∈ Bρ(X̄).

Moreover such function ϕε is increasing in the en-direction.
With a similar argument as in Lemma 3.1 we can conclude that if g satisfies the

flatness assumption (3.2) in B1 and ϕ̃ is as above then (say ρ, ε < 1/4, X̄ ∈ B1/2,)

(3.10) ϕ̃ ≤ g̃ε in Bρ(X̄) \ P ⇒ ϕε ≤ g in Bρ−ε(X̄).

We will use this fact in the proof of our improvement of flatness theorem.
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4. The linearized problem.

We introduce here the linearized problem associated to (2.1). Here and later
Un denotes the xn-derivative of the function U defined in (1.3). Recall also that
we denote by P the half-hyperplane P := {X ∈ Rn+1 : xn ≤ 0, z = 0} and by
L := {X ∈ Rn+1 : xn = 0, z = 0}.

Given w ∈ C(B1) and X0 = (x′0, 0, 0) ∈ B1 ∩ L, we call

|∇rw|(X0) := lim
(xn,z)→(0,0)

w(x′0, xn, z)− w(x′0, 0, 0)
r

, r2 = x2
n + z2.

Once the change of unknowns (3.1) has been done, the linearized problem associated
to (2.1) is

(4.1)

{
∆(Unw) = 0, in B1 \ P,
|∇rw| = 0, on B1 ∩ L.

As we will show later in Section 8, if w ∈ C(B1) satisfies

∆(Unw) = 0 in B1 \ P,
w is even with respect to {z = 0}, and w is smooth in the x′-direction, then given
X0 = (x′0, 0, 0) ∈ B1 ∩ L,

(4.2) w(X) = w(X0) + a · (x′ − x′0) + br +O(|x′ − x′0|2 + r3/2),

with a ∈ Rn−1, b ∈ R depending on X0.
This motivates our notion of viscosity solution for this problem which we define

below.

Definition 4.1. We say that w is a solution to (4.1) if w ∈ C(B1), w is even with
respect to {z = 0} and it satisfies

(i) ∆(Unw) = 0 in B1 \ P ;

(ii) Let φ be continuous around X0 = (x′0, 0, 0) ∈ B1 ∩ L and satisfy

φ(X) = φ(X0) + a(X0) · (x′ − x′0) + b(X0)r +O(|x′ − x′0|2 + r3/2),

with
b(X0) 6= 0.

If b(X0) > 0 then φ cannot touch w by below at X0, and if b(X0) < 0 then
φ cannot touch w by above at X0.

In Section 8, we will show the following main regularity result about viscosity
solutions to (4.1).

Theorem 4.2 (Improvement of flatness). There exists a universal constant C such
that if w is a viscosity solution to (8.1) in B1 with

−1 ≤ w(X) ≤ 1 in B1,

then
a0 · x′ − C|X|3/2 ≤ w(X)− w(0) ≤ a0 · x′ + C|X|3/2,

for some vector a0 ∈ Rn−1.

We conclude this short section with a remark which we will use in the proof of
the theorem above.
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Lemma 4.3. Let w1, w2 ∈ C(B1) satisfy

∆(Unwi) = 0, in B1 \ P , i=1,2.

Then w1 and w2 cannot touch (either by above or below) on P \ L, unless they
coincide.

Proof. Assume by contradiction that

w1(X0) = w2(X0), X0 ∈ P \ L,
and

w1 ≥ w2, in Bρ(X0).
Then Un(w1 − w2) is a non-negative harmonic function in B1 \ P which vanishes
continuously on P \L. Hence unless w1 = w2, by the boundary Harnack inequality
(in the appropriate domain),

Un(w1 − w2) ≥ δUn in Bρ/2(X0) ∩ {z > 0},
for some small positive constant δ. Thus

w1 − w2 ≥ δ in Bρ/2(X0) ∩ {z > 0},
and by continuity

(w1 − w2)(X0) > 0,
a contradiction. �

5. Properties of U .

The first two lemmas in this Section describe properties of U which will be used
in the proof of Harnack inequality, and in particular when constructing the barriers
which are used in that proof.

The third lemma, which is incorporated here since its proof uses similar argu-
ments to the proof of the first two lemmas, allows us to replace the assumptions in
our main Theorem 1.1 with a more standard “flatness” assumption of the form

U(X − εen) ≤ g(X) ≤ U(X + εen), in B1.

Lemma 5.1. Let g ∈ C(B2), g ≥ 0 be a harmonic function in B+
2 (g) and let

X̄ = 3
2en. Assume that

g ≥ U in B2, g(X̄)− U(X̄) ≥ δ0
for some δ0 > 0, then

(5.1) g ≥ (1 + cδ0)U in B1

for a small universal constant c. In particular, for any 0 < ε < 2

(5.2) U(X + εen) ≥ (1 + cε)U(X) in B1,

with c small universal.

Proof. Call g∗ the harmonic function in

D = B3/2 \ {x ∈ B3/2 : xn ≤ 0},
such that

g∗ = g on ∂B3/2, g∗ = 0 on {x ∈ B3/2 : xn ≤ 0}.
Then by the maximum principle

g ≥ g∗ on B3/2,
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and it suffices to show that (5.1) holds with g∗ on the left hand side.
Since g ≥ U in B2 we have

g∗ − U = g − U ≥ 0 on ∂B3/2, g∗ − U = 0 on {x ∈ B3/2 : xn ≤ 0},

and hence g∗−U ≥ 0 in D where it is also harmonic. Moreover, from the assumption
g(X̄)− U(X̄) ≥ δ0 we get by Harnack inequality that

g∗ − U = g − U ≥ c0δ0 on ∂B3/2 ∩B1/4(X̄).

Thus
g∗(X̃)− U(X̃) ≥ c1δ0, at some X̃ ∈ B1 ∩D.

Thus, by the boundary Harnack inequality we get that for c > 0 universal,

g∗ − U ≥ c2
g∗(X̃)− U(X̃)

U(X̃)
U ≥ cδ0U in B1,

as desired.
In particular, if g(X) = U(X + εen) the assumptions of the lemma are satisfied.

Indeed U is monotone increasing in the en-direction thus U(X + εen) ≥ U(X) in
B2. Moreover,

U(X̄ + εen)− U(X̄) = Ut(X̄ + λen)ε ≥ c′ε, λ ∈ (0, ε),

with c′ universal. �

Lemma 5.2. For any ε > 0 small, given 2ε < δ̄ < 1, there exists a constant C > 0
depending on δ̄ such that

U(t+ ε, z) ≤ (1 + Cε)U(t, z) in B1 \Bδ̄ ⊂ R2.

Proof. In this Lemma Bρ denotes a ball of radius ρ in R2.
Since U is monotone increasing in the t-direction, U(t + ε, z) − U(t, z) is non-

negative and harmonic in the set Dδ̄ := (B2\{t ∈ (−2, 2) : t ≤ 0})\Bδ̄/2. Moreover,

U(3/2 + ε, 0)− U(3/2, 0) = Ut(t, 0)ε ≤ C0ε, t ∈ (3/2, 3/2 + ε),

with C0 universal. By the boundary Harnack inequality in Dδ̄,

U(t+ ε, z)−U(t, z) ≤ C1
U(3/2 + ε, 0)− U(3/2, 0)

U(3/2, 0)
U(t, z) ≤ CεU(t, z) in B1 \Bδ̄,

as desired. �

Lemma 5.3. Let g ∈ C(B2), g ≥ 0 be a harmonic function in B+
2 (g) satisfying

(5.3) ‖g − U‖L∞(B2) ≤ δ,

and
{x ∈ B2 : xn ≤ −δ} ⊂ {x ∈ B2 : g(x, 0) = 0} ⊂ {x ∈ B2 : xn ≤ δ},

with δ > 0 small universal. Then

(5.4) U(X − εen) ≤ g(X) ≤ U(X + εen) in B1,

for some ε = Kδ, K universal.
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Proof. Let ḡ be the harmonic function in

Bδ2 := B2 \ {x ∈ B2 : xn ≤ −δ},

such that

ḡ = g on ∂B2, ḡ = 0 on {x ∈ B2 : xn ≤ −δ}.

Since g is subharmonic in Bδ2 , the maximum principle gives us

g ≤ ḡ on B2.

We need to show that for K > 0 universal,

(5.5) ḡ ≤ U(X +Kδen) in B1.

(The lower bound follows from a similar argument). Since U is monotone increasing
in the en-direction and it satisfies (5.3) we get that

U(X + δen) ≥ U(X) ≥ g(X)− δ on B2,

and hence

U(X + δen) ≥ ḡ(X)− δ on ∂B2.

By the maximum principle in the domain Bδ2 we get that this inequality holds in
B2 and hence

(5.6) ḡ(X)− U(X + δen) ≤ δ in B2.

Let g∗ be the harmonic function in B3/2 \ {x ∈ B3/2 : xn ≤ −δ} such that

g∗ = δ on ∂B3/2, g∗ = 0 on {x ∈ B3/2 : xn ≤ −δ}.

Clearly

0 ≤ g∗ ≤ δ.

Then by the boundary Harnack inequality, say for X̄ = en

(5.7) g∗(X) ≤ C̄ g∗(X̄)
U(X̄ + δen)

U(X + δen) ≤ CδU(X + δen) in B1,

with C > 0 universal. Moreover, in view of (5.6) again by the maximum principle
we have

ḡ(X)− U(X + δen) ≤ g∗(X) in B3/2.

This inequality together with (5.7) gives that

ḡ(X) ≤ (1 + Cδ)U(X + δen) in B1.

By (5.2) (applied to a translate of U) we have that for K > 1

(1 + Cδ)U(X + δen) ≤ 1 + Cδ

1 + cKδ
U(X +Kδen) ≤ U(X +Kδen) in B1,

as long as K is large enough. Combining these two last inequalities we obtain the
desired claim (5.5). �
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6. Harnack Inequality

In this Section we state and prove a Harnack type inequality for solutions to our
free boundary problem (2.1).

Theorem 6.1 (Harnack inequality). There exists ε̄ > 0 such that if g solves (2.1)
and it satisfies

(6.1) U(X + εa0en) ≤ g(X) ≤ U(X + εb0en) in Bρ(X∗),

with
ε(b0 − a0) ≤ ε̄ρ,

then

(6.2) U(X + εa1en) ≤ g(X) ≤ U(X + εb1en) in Bηρ(X∗),

with
a0 ≤ a1 ≤ b1 ≤ b0, (b1 − a1) ≤ (1− η)(b0 − a0),

for a small universal constant η.

From this statement we get the desired corollary to be used in the proof of our
main result. Precisely, if g satisfies (6.1) with say ρ = 1/2 , then we can apply
Harnack inequality repeatedly and obtain

U(X + εamen) ≤ g(X) ≤ U(X + εbmen) in B 1
2η
−m(X∗),

with

(6.3) bm − am ≤ (b0 − a0)(1− η)m,

for all m’s such that

(6.4) 2ε(1− η)mη−m(b0 − a0) ≤ ε̄.
This implies that for all such m’s, the function g̃ε defined in Subsection 2.3 satisfies

(6.5) am ≤ g̃ε(X) ≤ bm, in B 1
2η
−m−ε(X

∗) \ P,

with am, bm as in (6.3). Let Aε be the following set

(6.6) Aε := {(X, g̃ε(X)) : X ∈ B1−ε \ P} ⊂ Rn+1 × [a0, b0].

Since g̃ε may be multivalued, we mean that given X all pairs (X, g̃ε(X)) belong to
Aε for all possible values of g̃ε(X). In view of (6.5) we then get

(6.7) Aε ∩ (B 1
2η
−m−ε(X

∗)× [a0, b0]) ⊂ B 1
2η
−m−ε(X

∗)× [am, bm],

with am, bm as in (6.3) for all m’s such that (6.4) holds.
Thus we get the following corollary.

Corollary 6.2. If

U(X − εen) ≤ g(X) ≤ U(X + εen) in B1,

with ε ≤ ε̄/2, given m0 > 0 such that

2ε(1− η)m0η−m0 ≤ ε̄,
then the set Aε ∩ (B1/2 × [−1, 1]) is above the graph of a function y = aε(X) and it
is below the graph of a function y = bε(X) with

bε − aε ≤ 2(1− η)m0−1,
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and aε, bε having a modulus of continuity bounded by the Hölder function αtβ for
α, β depending only on η.

The proof of Harnack inequality will easily follow from the Lemma below.

Lemma 6.3. There exists ε̄ > 0 such that for all 0 < ε ≤ ε̄ if g is a solution to
(2.1) in B1 such that

(6.8) g(X) ≥ U(X) in B1/2,

and at X̄ ∈ B1/8( 1
4en)

(6.9) g(X̄) ≥ U(X̄ + εen),

then

(6.10) g(X) ≥ U(X + τεen) in Bδ,

for universal constants τ, δ. Similarly, if

g(X) ≤ U(X) in B1/2,

and
g(X̄) ≤ U(X̄ − εen),

then
g(X) ≤ U(X − τεen) in Bδ.

The main tool in the proof of Lemma 6.3 will be the following family of radial
subsolutions. Let R > 0 and denote by

VR(t, z) = U(t, z)((n− 1)
t

R
+ 1).

Then set

(6.11) vR(X) = VR(R−
√
|x′|2 + (xn −R)2, z),

that is we obtain the n+ 1-dimensional function vR by rotating the 2-dimensional
function VR around (0, R, z).

Proposition 6.4. If R is large enough, the function vR(X) is a comparison sub-
solution to (2.1) in B2 which is strictly monotone increasing in the en-direction in
B+

2 (vR). Moreover, there exists a function ṽR such that

U(X) = vR(X − ṽR(X)en) in B1 \ P,

and

|ṽR(X)− γR(X)| ≤ C

R2
|X|2, γR(X) = −|x

′|2

2R
+ 2(n− 1)

xnr

R
,

with r =
√
x2
n + z2 and C universal.

The proof of Proposition 6.4 follows from long and tedious computations and we
postpone it till the Appendix. Using the estimate for ṽR in Proposition 6.4 and
Lemma 3.1, we also obtain the following Corollary which will be crucial for the
proof of Lemma 6.3. Its proof is again presented in the Appendix.
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Corollary 6.5. There exist δ, c0, C0, C1 universal constants, such that

(6.12) vR(X +
c0
R
en) ≤ (1 +

C0

R
)U(X), in B1 \B1/4,

with strict inequality on F (vR(X + c0
R en)) ∩B1 \B1/4,

vR(X +
c0
R
en) ≥ U(X +

c0
2R

en), in Bδ,(6.13)

vR(X − C1

R
en) ≤ U(X), in B1.(6.14)

We are now ready to present the proof of Lemma 6.3.

Proof of Lemma 6.3. We prove the first statement. In view of (6.9)

g(X̄)− U(X̄) ≥ U(X̄ + εen)− U(X̄) = ∂tU(X̄ + λen)ε ≥ cε, λ ∈ (0, ε).

As in Lemma 5.1 we then get

(6.15) g(X) ≥ (1 + c′ε)U(X) in B1/4.

Now let
R =

C0

c′ε
,

where from now on the Ci, ci are the constants in Corollary 6.5. Then, for ε small
enough vR is a subsolution to (2.1) in B2 which is monotone increasing in the en-
direction and it also satisfies (6.12)–(6.14). We now wish to apply the Comparison
Principle as stated in Corollary 2.7. Let

vtR(X) = vR(X + ten), X ∈ B1,

then according to (6.14),

vt0R ≤ U ≤ g in B1/4, with t0 = −C1/R.

Moreover, from (6.12) and (6.15) we get that for our choice of R,

vt1R ≤ (1 + c′ε)U ≤ g on ∂B1/4, with t1 = c0/R,

with strict inequality on F (vt1R ) ∩ ∂B1/4. In particular

g > 0 on F(vt1R ) in ∂B1/4.

Thus we can apply Corollary 2.7 in the ball B1/4 to obtain

vt1R ≤ g in B1/4.

From (6.13) we have that

U(X +
c1
R
en) ≤ vt1R (X) ≤ g(X) on Bδ

which is the desired claim (6.10) with τ = c1c
′

C0
. �

We now present the proof of the Harnack Inequality.

Proof of Theorem 6.1. Without loss of generality, we can assume a0 = −1, b0 = 1.
Also, in view of Remark 2.5 we can take ρ = 1 (thus 2ε ≤ ε̄).

We distinguish several cases. In what follows ε̄ and δ denote the universal con-
stants in Lemma 6.3.
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Case 1. If
d(X∗, {xn ≥ ε, z = 0}) > δ/16,

then U(X−εen) > 0 in Bδ/16(X∗) ⊂ B1(X∗). Thus the functions U(X−εen), U(X+
εen) and g(X) are positive and harmonic in Bδ/16(X∗). Assume that (the other
case is treated similarly)

g(X∗) ≥ U(X∗).
Then,

g(X∗) ≥ U(X∗) = U(X∗ − εen) + Un(X∗ − λεen)ε, λ ∈ (0, 1).

Since Un is positive and harmonic in Bδ/16(X∗) and for ε̄ < δ/16

X∗ − λεen ∈ Bδ/32(X∗),

we can apply Harnack inequality to conclude that

g(X∗) ≥ U(X∗ − εen) + cUn(X∗)ε,

for c small universal.
Then again by Harnack inequality in Bδ/16(X∗) for g(X)− U(X − εen) ≥ 0 we

get that for c′ universal

g(X) ≥ U(X − εen) + c′Un(X∗)ε, in Bδ/32(X∗).
By a similar argument, for ε̄ < δ/32

U(X − (1− η)εen)− U(X − εen) ≤ CUn(X∗)ηε, in Bδ/64(X∗),
with C universal.

Thus, combining these two last inequalities we obtain that for η = min{c′/C, δ/64}

g(X) ≥ U(X − (1− η)εen), in Bη(X∗),
as desired.

Case 2. If
d(X∗, {xn = −ε, z = 0}) ≤ δ/2,

we wish to apply Lemma 6.3. Then (for ε̄ < δ/4)

g(X) ≥ U(X − εen) in B1/2(εen) ⊂ B1(X∗).

Let X̄ = 1
4en and assume that (the other case follows similarly)

g(X̄) ≥ U(X̄).

Since (for ε̄ small)

X̄ ∈ B1/8((
1
4

+ ε)en),

we can apply Lemma 6.3 and conclude that

g(X) ≥ U(X − (1− η)εen), in Bδ(εen).

Thus the desired improvement holds by choosing η < δ/4. Indeed for such η and
ε̄ < δ/4 we have that d(X∗, {xn = ε, z = 0}) ≤ 3δ/4 and hence

Bη(X∗) ⊂ Bδ(εen).
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Case 3. If

d(X∗, {xn = −ε, z = 0}) > δ/2 and d(X∗, {xn ≥ ε, z = 0}) ≤ δ/16,

then the functions U(X − εen), U(X + εen) and g(X) are positive and harmonic in
the half ball Bδ/4(X̃)∩{z > 0} for some X̃ ∈ {xn ≤ −ε, z = 0} and they all vanish
continuously on Bδ/4(X̃) ∩ {z = 0}. Thus we can repeat a similar argument as in
Case 1, by using the boundary Harnack inequality. Precisely, let X̄ = X̃ + δ

6en+1

and assume that (the other case is treated similarly)

g(X̄) ≥ U(X̄).

Then,
g(X̄) ≥ U(X̄) = U(X̄ − εen) + Un(X̄ − λεen)ε, λ ∈ (0, 1).

By Harnack inequality for Un in the ball B2ε(X̄) ⊂ Bδ/4(X̃) ∩ {z > 0} (with
ε̄ < δ/12) we conclude that

(6.16) g(X̄) ≥ U(X̄ − εen) + cUn(X̄)ε,

for c small universal.
Then by Boundary Harnack inequality in Bδ/4(X̃) ∩ {z > 0}, for the functions

g(X)− U(X − εen) and Un(X) we get that for c′ universal

(6.17) g(X) ≥ U(X − εen) + c′Un(X)ε, in Bδ/8(X̃) ∩ {z ≥ 0}.
Thus to obtain the desired claim it is enough to choose η small such that for

X ∈ Bδ/8(X̃) ∩ {z ≥ 0}

U(X − εen) + c′Un(X)ε ≥ U(X − (1− η)εen).

By a similar argument as above

U(X̄ − (1− η)εen)− U(X̄ − εen) ≤ CUn(X̄)ηε,

and hence by boundary Harnack inequality,

U(X − (1− η)εen)− U(X − εen) ≤ C ′Un(X)ηε, in Bδ/8(X̃) ∩ {z ≥ 0}.
Combining this inequality with (6.17) we obtain that for η = c′/C ′

g(X) ≥ U(X − (1− η)εen), in Bδ/8(X̃) ∩ {z ≥ 0}.
Since all the functions involved are even with respect to {z = 0} and for η < δ/16

Bη(X∗) ⊂ Bδ/8(X̃),

our proof is complete. �

7. Improvement of flatness.

In this Section we state the improvement of flatness property for solutions to
(2.1) and we provide its proof. Our main Theorem 1.1 follows from Theorem 7.1
and Lemma 5.3.

Theorem 7.1 (Improvement of flatness). There exists ε̄ > 0 and ρ > 0 universal
constants such that for all 0 < ε ≤ ε̄ if g solves (2.1) with 0 ∈ F (g) and it satisfies

(7.1) U(X − εen) ≤ g(X) ≤ U(X + εen) in B1,

then

(7.2) U(x · ν − ε

2
ρ, z) ≤ g(X) ≤ U(x · ν +

ε

2
ρ, z) in Bρ,
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for some direction ν ∈ Rn, |ν| = 1.

The proof of Theorem 7.1 will easily follow from the next four lemmas.

Lemma 7.2. Let g be a solution to (2.1) with 0 ∈ F (g) and satisfying (7.1).
Assume that the corresponding g̃ε satisfies

(7.3) a0 · x′ −
1
4
ρ ≤ g̃ε(X) ≤ a0 · x′ +

1
4
ρ in B2ρ \ P,

for some a0 ∈ Rn−1. Then if ε ≤ ε̄(a0, ρ) g satisfies (7.2) in Bρ.

Proof. We prove that the lower bound holds (the upper bound can be proved sim-
ilarly.)

Let,

ν = (ν′, νn) :=
(0, 1) + ε(a0, 0)√

1 + ε2a2
0

,

and call
u(X) = U(x · ν − ε

2
ρ, z).

Notice that since νn > 0, u is strictly monotone increasing in the en-direction say
in B+

2ρ(u). Also, we can easily compute ũε by its definition. Indeed, the identity

u(X − εũε(X)en) = U(X), X ∈ Rn+1 \ P

reads as
U(x′ · ν′ + xnνn − εũε(X)νn −

ε

2
ρ, z) = U(xn, z),

and hence

(7.4) ũε(X) =
x′ · ν′ + (νn − 1)xn

ενn
− ρ

2νn
.

Thus, according to Lemma 3.1 it suffices to show that

ũε ≤ g̃ε in Bρ+ε \ P,

and hence in view of (7.3) we must show that

ũε(X) ≤ a0 · x′ −
1
4
ρ in Bρ+ε \ P.

From the choice of ν we see that
ν′

ενn
= a0,

and
|νn − 1|
ενn

=
1− νn
ενn

≤ εa2
0.

Thus, in view of the formula (7.4) the desired inequality reduces to

x′ · a0 + 2ρεa2
0 −

ρ

2
≤ x′ · a0 −

ρ

4
,

which is trivially satisfied for ε small enough (depending on a0, ρ.) �

The next lemma follows immediately from the Corollary 6.2 to Harnack inequal-
ity.
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Lemma 7.3. Let εk → 0 and let gk be a sequence of solutions to (2.1) with 0 ∈
F (gk) satisfying

(7.5) U(X − εken) ≤ gk(X) ≤ U(X + εken) in B1.

Denote by g̃k the εk-domain variation of gk. Then the sequence of sets

Ak := {(X, g̃k(X)) : X ∈ B1−εk \ P},
has a subsequence that converge uniformly (in Hausdorff distance) in B1/2 \ P to
the graph

A∞ := {(X, g̃∞(X)) : X ∈ B1/2 \ P},
where g̃∞ is a Holder continuous function.

From here on g̃∞ will denote the function from Lemma 7.3.

Lemma 7.4. The function g̃∞ satisfies the linearized problem (4.1) in B1/2.

Proof. We start by showing that Ung̃∞ is harmonic in B1/2 \ P.
Let ϕ̃ be a C2 function which touches g̃∞ strictly by below at X0 ∈ B1/2 \ P.

We need to show that

(7.6) ∆(Unϕ̃)(X0) ≤ 0.

Since by the previous lemma, the sequence Ak converges uniformly to A∞ in B1/2\P
we conclude that there exist a sequence of constants ck → 0 and a sequence of points
Xk ∈ B1/2 \ P , Xk → X0 such that ϕ̃k := ϕ̃+ ck touches g̃k by below at Xk for all
k large enough.

Define the function ϕk by the following identity

(7.7) ϕk(X − εkϕ̃k(X)en) = U(X).

Then according to (3.10) ϕk touches gk by below at Yk = Xk − εkϕ̃k(Xk)en ∈
B+

1 (gk), for k large enough. Thus, since gk satisfies (2.1) in B1 it follows that

(7.8) ∆ϕk(Yk) ≤ 0.

Let us compute ∆ϕk(Yk). Since ϕ̃ is smooth, for any Y in a neighborhood of Yk
we can find a unique X = X(Y ) such that

(7.9) Y = X − εkϕ̃k(X)en.

Thus (7.7) reads
ϕk(Y ) = U(X(Y )).

Using this identity we can compute that

(7.10)

∆ϕk(Y ) = Un(X)∆Xn(Y ) +
∑
j 6=n

(Ujj(X) + 2Ujn(X)
∂Xn

∂Yj
) + Unn(X)|∇Xn|2(Y ).

From (7.9) we have that

DXY = I − εkDX(ϕ̃ken).

Thus, since ϕ̃k = ϕ̃+ ck

DYX = I + εkDX(ϕ̃en) +O(ε2k),

with a constant depending only on the C2-norm of ϕ̃.
It follows that
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(7.11) |∇Xn|2(Y ) = 1 + 2εk∂nϕ̃(X) +O(ε2k).

Also,

∂2Xn

∂Y 2
j

= εk
∑
i

∂jiϕ̃
∂Xi

∂Yj
= εk

∑
i 6=n

∂jiϕ̃δij + εk∂jnϕ̃
∂Xn

∂Yj
,

from which we obtain that

(7.12) ∆Xn = εk∆ϕ̃+O(ε2k).

Combining (7.10) with (7.11) and (7.12) we get that

∆ϕk(Y ) = ∆U(X) + εkUn∆ϕ̃+ 2εk∇ϕ̃ · ∇Un +O(ε2k)(Un(X) + Unn(X)).

Using (7.8) together with the fact that U is harmonic at Xk we conclude that

0 ≥ ∆(Unϕ̃)(Xk) +O(ε2k)(Un(Xk) + Unn(Xk)).
The desired inequality (7.6) follows by letting k → +∞.
Next we need to show that

|∇rg̃∞|(X0) = 0, X0 = (x′0, 0, 0) ∈ B1/2 ∩ L,

in the viscosity sense of Definition 4.1.
Assume by contradiction that there exists a function φ which touches g̃∞ by

below at X0 = (x′0, 0, 0) ∈ B1/2 ∩ L and such that

φ(X) = φ(X0) + a(X0) · (x′ − x′0) + b(X0)r +O(|x′ − x′0|2 + r3/2),

with
b(X0) > 0.

Then we can find constants α, δ, r̄ and a point Y ′ = (y′0, 0, 0) ∈ B2 depending on
φ such that the polynomial

q(X) = φ(X0)− α

2
|x′ − y′0|2 + 2α(n− 1)xnr

touches φ by below at X0 in a tubular neighborhood Nr̄ = {|x′− x′0| ≤ r̄, r ≤ r̄} of
X0, with

φ− q ≥ δ > 0, on Nr̄ \Nr̄/2.
This implies that

(7.13) g̃∞ − q ≥ δ > 0, on Nr̄ \Nr̄/2,

and

(7.14) g̃∞(X0)− q(X0) = 0.

In particular,

(7.15) |g̃∞(Xk)− q(Xk)| → 0, Xk ∈ Nr̄ \ P,Xk → X0.

Now, let us choose Rk = 1/(αεk) and let us define

wk(X) = vRk(X − Y ′ + εkφ(X0)en), Y ′ = (y′0, 0, 0),
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with vR the function defined in Proposition 6.4. Then the εk-domain variation of
wk, which we call w̃k, can be easily computed from the definition

wk(X − εkw̃k(X)en) = U(X).

Indeed, since U is constant in the x′-direction, this identity is equivalent to

vRk(X − Y ′ + εkφ(X0)en − εkw̃k(X)en) = U(X − Y ′),

which in view of Proposition 6.4 gives us

ṽRk(X − Y ′) = εk(w̃k(X)− φ(X0)).

From the choice of Rk, the formula for q and (9.2), we then conclude that

w̃k(X) = q(X) + α2εkO(|X − Y ′|2),

and hence

(7.16) |w̃k − q| ≤ Cεk in Nr̄ \ P.

Thus, from the uniform convergence of Ak to A∞ and (7.13)-(7.16) we get that for
all k large enough

(7.17) g̃k − w̃k ≥
δ

2
in (Nr̄ \Nr̄/2) \ P.

Similarly, from the uniform convergence of Ak to A∞ and (7.16)-(7.15) we get that
for k large

(7.18) g̃k(Xk)− w̃k(Xk) ≤ δ

4
, for some sequence Xk ∈ Nr̄ \ P,Xk → X0.

On the other hand, it follows from Lemma 3.2 and (7.17) that

g̃k − w̃k ≥
δ

2
in Nr̄ \ P,

which contradicts (7.18). �

The lemmas above allow us to reduce the regularity question for our free bound-
ary problem (2.1) to the regularity of the linear problem (4.1). We will analyze such
question in the next section and we will consequently obtain the following lemma,
which we use here to conclude the proof of our improvement of flatness Theorem.

Lemma 7.5. There exists a universal constant ρ > 0 such that g̃∞ satisfies

(7.19) a0 · x′ −
1
8
ρ ≤ g̃∞(X) ≤ a0 · x′ +

1
8
ρ in B2ρ,

for a vector a0 ∈ Rn−1.

We are now ready to prove our main Theorem, by combining all of the lemmas
above.

Proof of Theorem 7.1. Let ρ be the universal constant from Lemma 7.5 and
assume by contradiction that we can find a sequence εk → 0 and a sequence gk of
solutions to (2.1) in B1 such that gk satisfies (7.1), i.e.

(7.20) U(X − εken) ≤ gk(X) ≤ U(X + εken) in B1,

but it does not satisfy the conclusion of the Theorem.
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Denote by g̃k the εk-domain variation of gk. Then by Lemma 7.3 the sequence
of sets

Ak := {(X, g̃k(X)) : X ∈ B1−εk \ P},
converges uniformly (up to extracting a subsequence) in B1/2 \ P to the graph

A∞ := {(X, g̃∞(X)) : X ∈ B1/2 \ P},

where g̃∞ is a Holder continuous function in B1/2. By Lemma 7.4, the function g̃∞
solves the linearized problem (4.1) and hence by Lemma 7.5 g̃∞ satisfies

(7.21) a0 · x′ −
1
8
ρ ≤ g̃∞(X) ≤ a0 · x′ +

1
8
ρ in B2ρ,

with a0 ∈ Rn−1.
From the uniform convergence of Ak to A∞, we get that for all k large enough

(7.22) a0 · x′ −
1
4
ρ ≤ g̃k(X) ≤ a0 · x′ +

1
4
ρ in B2ρ \ P,

and hence from Lemma 7.2, the gk satisfy the conclusion of our Theorem (for k
large). We have thus reached a contradiction. �

8. The regularity of the linearized problem.

The purpose of this section is to prove an improvement of flatness result for
viscosity solutions to the linearized problem associated to (2.1), that is

(8.1)

{
∆(Unw) = 0, in B1 \ P,
|∇rw| = 0, on B1 ∩ L,

where we recall that for X0 = (x′0, 0, 0) ∈ B1 ∩ L, we set

|∇rw|(X0) := lim
(xn,z)→(0,0)

w(x′0, xn, z)− w(x′0, 0, 0)
r

, r2 = x2
n + z2.

We remark that if we restrict this linear problem to the class of functions
w(X) = w̃(x′, r) that depend only on (x′, r) then the problem reduces to the clas-
sical Neumann problem {

∆w̃ = 0, in B+
1 ,

w̃r = 0, on {r = 0}.

The following is our main theorem.

Theorem 8.1. Given a boundary data h̄ ∈ C(∂B1), |h̄| ≤ 1, which is even with
respect to {z = 0}, there exists a unique classical solution h to (8.1) such that
h ∈ C(B1), h = h̄ on ∂B1, h is even with respect to {z = 0} and it satisfies

(8.2) |h(X)− h(X0)− a′ · (x′ − x′0)| ≤ C(|x′ − x′0|2 + r3/2), X0 ∈ B1/2 ∩ L,

for a universal constants C and a vector a′ ∈ Rn−1 depending on X0.

As a corollary of the theorem above we obtain the desired regularity result, as
stated also in Section 3.
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Theorem 8.2 (Improvement of flatness). There exists a universal constant C such
that if w is a viscosity solution to (8.1) in B1 with

−1 ≤ w(X) ≤ 1 in B1,

then

(8.3) a0 · x′ − C|X|3/2 ≤ w(X)− w(0) ≤ a0 · x′ + C|X|3/2,
for some vector a0 ∈ Rn−1.

Proof. Let h be the unique solution to (8.1) in B1/2 with boundary data w. We
will prove that w = h in B1/2 and hence it satisfies the desired estimate in view of
(8.2). Denote by

h̄ε := h− ε+ ε2r.

Then, for ε small
h̄ε < w on ∂B1/2.

We wish to prove that

(8.4) h̄ε ≤ w in B1/2.

Now, notice that h̄ε (and all its translations) is a classical strict subsolution to (8.1)
that is

(8.5)

{
∆(Unh̄ε) = 0, in B1/2 \ P,
|∇rh̄ε| > 0, on B1/2 ∩ L.

Since w is bounded, for t large enough h̄ε − t lies strictly below w. We let t → 0
and show that the first contact point cannot occur for t ≥ 0. Indeed since h̄ε − t is
a strict subsolution which is strictly below w on ∂B1/2 then no touching can occur
either in B1/2 \ P or on B1/2 ∩ L. We only need to check that no touching occurs
on P \ L. This follows from Lemma 4.3.

Thus (8.4) holds. Passing to the limit as ε→ 0 we get that

h ≤ w in B1/2.

Similarly we also obtain that

h ≥ w in B1/2,

and the desired equality holds. �

The existence of the classical solution of Theorem 8.1 will be achieved via a
variational approach in the appropriate weighted Sobolev space.

We say that h ∈ H1(U2
ndX,B1) is a minimizer to the energy functional

J(h) :=
∫
B1

U2
n|∇h|2dX,

if
J(h) ≤ J(h+ φ), ∀φ ∈ C∞0 (B1).

Since J is strictly convex this is equivalent to

lim
ε→0

J(h)− J(h+ εφ)
ε

= 0, ∀φ ∈ C∞0 (B1),

which is satisfied if and only if∫
B1

U2
n∇h · ∇φ dX = 0, ∀φ ∈ C∞0 (B1).
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As remarked above, if we restrict to the space of functions h which are axis-
symmetric with respect to L then the energy above reduces to the Dirichlet energy.

We start with a few standard facts about minimizers of J . First, h solves the
equation

div(U2
n∇h) = 0 in B1,

which is uniformly elliptic in any compact subset of B1 \ P where Un is bounded.
In particular h ∈ C∞(B1 \ P ), and we easily obtain the following lemma.

Lemma 8.3. Let h be a minimizer to J in B1, then

∆(Unh) = 0 in B1 \ P.

Proof. Since h is smooth in B1 \ P , from

div(U2
n∇h) = 0 in B1,

we obtain that

U2
n∆h+ 2

n+1∑
i=1

UnUnihi = 0 in B1 \ P.

Since Un > 0 and ∆U = 0 in B1 \ P the identity above is equivalent to

∆(Unh) = Un∆h+ 2∇Un · ∇h = 0 in B1 \ P,
as desired. �

The next lemma contains a characterization of minimizer, which we will be useful
later in this section.

Lemma 8.4. Let h ∈ C(B1) be a solution to

(8.6) ∆(Unh) = 0 in B1 \ P,
and assume that

lim
r→0

hr(x′, xn, z) = b(x′),

with b(x′) a continuous function. Then h is a minimizer to J in B1 if and only if
b ≡ 0.

Proof. By integration by parts and the computation in Lemma 8.3 the identity∫
B1

U2
n∇h · ∇φ dX = 0, ∀φ ∈ C∞0 (B1),

is equivalent to the following two conditions

(8.7) ∆(Unh) = 0 in B1 \ P,
and

(8.8) lim
δ→0

∫
∂Cδ∩B1

U2
nφ∇h · νdσ = 0,

where Cδ is the cylinder {r ≤ δ} and ν the inward unit normal to Cδ.
Here we use that

lim
ε→0

∫
{|z|=ε}∩(B1\Cδ)

U2
nφhνdσ = 0.

Indeed, in the set {|z| = ε} ∩ (B1 \ Cδ) we have

Un ≤ Cε,
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and
|∇(Unh)|, |∇Un| ≤ C,

from which it follows that
Un|∇h| ≤ C.

In conclusion we need to show that (8.8) is equivalent to b(x′) = 0.
Indeed,∫

∂Cδ∩B1

U2
nφ∇h · νdσ =

1
δ

∫
∂Cδ∩B1

cos2(
θ

2
)hrφdσ

=
∫
∂C1∩B1

cos2(
θ

2
)(hrφ)(X ′, δ cos θ, δ sin θ)dx′dθ,

hence

lim
δ→0

∫
∂Cδ∩B1

U2
nφ∇h · νdσ = π

∫
L

b(x′)φ(x′, 0, 0)dx′

and our claim clearly follows. �

The next lemma follows by standard arguments, hence we omit its proof.

Lemma 8.5 (Comparison Principle). Let h1, h2 be minimizers to J in B1. If

h1 ≥ h2 a.e in B1 \Bρ,

then
h1 ≥ h2 a.e. in B1.

Finally one of the main ingredient in the proof of Theorem 8.1 is the following
Harnack inequality.

Lemma 8.6 (Harnack inequality). Let h be a minimizer to J in B1 which is even
with respect to {z = 0}. Then h ∈ Cα(B1/2) and

[h]Cα(B1/2) ≤ C,

with C universal.

The proof of this lemma follows the same lines as the proof of Harnack inequality
(Theorem 6.1) for the free boundary problem (2.1). We briefly sketch it in what
follows.

Sketch of the Proof of Lemma 8.6. The key step consists in proving the following
claim, which plays the same role as Lemma 6.3 in the proof of Theorem 6.1. The
remaining ingredients are the standard Harnack inequality and Boundary Harnack
inequality for harmonic functions.

Claim: There exist universal constants δ, c such that if h ≥ 0 a.e. in B1 and

h(
1
4
en) ≥ 1,

then
h ≥ c a.e. in Bδ.

As in the proof of Lemma 6.3, since minimizers satisfy the comparison principle
Lemma 8.5, the claim will follow if we provide the right family of comparison
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minimizers. This family plays the same role as the vR’s in Lemma 6.3 and it is
obtained by translations and multiplication by constants of the following function

v(X) := − |x
′|2

n− 1
+ 2xnr.

We need to show that v is a minimizer to J in B1. To do so we prove that v satisfies
Lemma 8.4.

To prove that
∆(Unv) = 0 in B1 \ P,

we use that 2rUn = U and that U,Un are harmonic outside of P and do not depend
on x′. Thus

∆(Unv) = −∆(
|x′|2

n− 1
Un) + ∆(xnU) = −2Un + 2Un = 0.

Finally the fact that
lim
r→0

vr(x′, xn, z) = 0,

follows immediately from the definition of v. �

Since our linear problem is invariant under translations in the x′-direction, we
see that discrete differences of the form

h(X + τ)− h(X),

with τ in the x′-direction are also minimizers. Now by standard arguments (see
[CC]) we obtain the following corollary.

Corollary 8.7. Let h be a minimizer to J in B1 which is even with respect to
{z = 0}. Then Dβ

x′h ∈ Cα(B1/2) and

[Dβ
x′h]Cα(B1/2) ≤ C,

with C depending on β.

We are now ready to prove our main theorem.

Proof of Theorem 8.1. We divide our proof in several steps.

Step 1. In this step, we show the existence of a classical solution to our problem,
which achieves the boundary data continuously.

Assume without loss of generality that h̄ ∈ C∞(∂B1). The general case when
h̄ ∈ C(∂B1) follows by approximation and the Comparison Principle.

We minimize J(·) among all functions h with boundary data h̄, which are even
with respect to {z = 0}. From Lemma 8.3 we have that

∆(Unh) = 0 in B1 \ P .

In Step 2-3 we will show that h satisfies the estimate (8.2) and in particular

h(x′0, xn, x)− h(x′0, 0, 0) = O(r3/2), X0 = (x′0, 0, 0) ∈ B1 ∩ L

which gives
|∇rh| = 0 on B1 ∩ L,



28 D. DE SILVA AND J.M. ROQUEJOFFRE

where we recall that

|∇rh|(X0) = lim
(xn,z)→(0,0)

h(x′0, xn, z)− h(x′0, 0, 0)
r

, r2 = x2
n + z2.

Notice that since |h̄| ≤ 1, also |h| ≤ 1 and h,Dx′h ∈ C0,α(B1) in view of Lemma
8.6 and its Corollary.

We now show that h achieves the boundary data h̄ continuously. Indeed this
follows by classical elliptic theory if we restrict to ∂B1 \ P.

If X0 ∈ ∂B1 ∩ (P \ L) then in a small neighborhood of X0 intersected with
B1 ∩ {z > 0} the function Unh is harmonic continuous up to the boundary and
vanishes continuously on {z = 0} (since h is bounded). The continuity of h at X0

then follows from standard boundary regularity for the harmonic function Unh.
Finally, on the set ∂B1 ∩ L as in the case of Laplace equation, it suffices to

construct at each point X0 a local barrier (minimizer) for h which is zero at X0

and strictly negative in a neighborhood of X0. Such barrier is given by (see Lemma
8.4)

(x′ − x′0) · x′0.

Step 2. In this step we wish to prove that

(8.9) |h(x′, xn, x)− h(x′, 0, 0)− b(x′)r| ≤ Cr3/2, (x′, 0, 0) ∈ B1/2 ∩ L,

(8.10) |hr(x′, xn, z)− b(x′)| ≤ Cr1/2, (x′, 0, 0) ∈ B1/2 ∩ L,

with C universal and b(x′) a Lipschitz function.
Indeed, h solves

∆(Unh) = 0 in B1 \ P .
Since Un is independent on x′ we can rewrite this equation as

(8.11) ∆xn,z(Unh) = −Un∆x′h,

and according to Lemma 8.6 we have that

∆x′h ∈ Cα(B1/2),

with universal bound. Thus, for each fixed x′, we need to investigate the 2-
dimensional problem

∆(Uth) = Utf, in B1/2 \ {t ≤ 0, z = 0}

with
f ∈ Cα(B1/2),

and h bounded. Without loss of generality, for a fixed x′ we may assume h(x′, 0, 0) =
0.

Let H(t, z) be the solution to the problem

∆H = Utf, in B1/2 \ {t ≤ 0, z = 0},

such that

H = Uth on ∂B1/2, H = 0 on B1/2 ∩ {t ≤ 0, z = 0}.

We wish to prove that

(8.12) Uth = H.
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First notice that

∆(H − Uth) = 0 in B1/2 \ {t ≤ 0, z = 0},
and

H = 0 on ∂B1/2 ∪ (B1/2 ∩ {t < 0, z = 0}).
We claim that

(8.13) lim
(t,z)→(0,0)

H − Uth
Ut

= lim
(t,z)→(0,0)

H

Ut
= 0.

If the claims holds, then given any ε > 0

−εUt ≤ H − Uth ≤ εUt, in Bδ

with δ = δ(ε). Then by the maximum principle the inequality above holds in the
whole B1/2 and by letting ε→ 0 we obtain (8.12).

To prove the claim (8.13) we show that H satisfies the following

(8.14) |H(t, z)− aU(t, z)| ≤ C0r
1/2U(t, z), r2 = t2 + z2, a ∈ R,

with C0 universal.
To do so, we consider the holomorphic transformation

Φ : (s, y)→ (t, z) = (
1
2

(s2 − y2), sy)

which maps B1 ∩ {s > 0} into B1/2 \ {t ≤ 0, z = 0} and call

H̃(s, y) = H(t, z), f̃(s, y) = f(t, z).
Then, easy computations show that

∆H̃ = sf̃ in B1 ∩ {s > 0}, H̃ = 0 on B1 ∩ {s = 0}.

Since the right-hand side is Cα we conclude that H̃ ∈ C2,α. In particular H̃s

satisfies
|H̃s(s, y)− a| ≤ C0|(s, y)|, a = H̃s(0, 0)

with C0 universal. Integrating this inequality between 0 and s and using that H̃ = 0
on B1 ∩ {s = 0} we get that

|H̃(s, y)− as| ≤ C0s|(s, y)|.
In terms of H, this equation gives us

(8.15) |H − aU | ≤ C0r
1/2U

as desired.
Thus (8.12) and (8.14) hold and by combining them and using that U/Ut = 2r

we get that
|h− 2ar| ≤ 2C0r

3/2,

which is the desired estimate (8.9) i.e. (recall that above we assumed h(x′, 0, 0) = 0)

|h(x′, xn, x)− h(x′, 0, 0)− b(x′)r| ≤ 2C0r
3/2,

with
b(x′) = 2H̃s(x′, 0, 0).

We remark that b(x′) is Lipschitz. Indeed, notice that the derivatives hi, i =
1, . . . , n − 1 still satisfy the same equation (8.11) as h, where the Cα norm of the
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right-hand side has a universal bound. Thus, we can argue as above to conclude
that

|∂iH̃s(x′, 0, 0)| ≤ C,
which together with the formula for b(x′) shows that b(x′) is a Lipschitz function.

Finally, to obtain the second of our estimate (8.10) we proceed similarly as above.
Since Uth = H one can compute easily that

(8.16) Uthr = Hr +
1
2
H

r
.

Moreover, after our holomorphic transformation

(8.17) 2rHr(t, z) = sH̃s(s, y) + yH̃y(s, y).

As observed above,
|H̃s − a(x′)| ≤ C|(s, y)|,

and similarly since H̃ = 0 on B1 ∩ {s = 0}
|H̃y| ≤ Cs.

These two inequalities combined with (8.17) give us

(8.18) |2rHr − a(x′)U | ≤ Cr1/2U.

Combining (8.16) with (8.15)-(8.18) we obtain (8.10) as desired.

Step 3. In this step we show that h satisfies (8.2).
In view of Lemma 8.4 and estimate (8.10) we obtain that b(x′) = 0. Since

b(x′) = 0 then (8.9) reads

|h(x′, xn, z)− h(x′, 0, 0)| ≤ Cr3/2.

Since h is C∞ in the x′ direction, we have that for a given X0 ∈ B1/4 ∩ L

|h(x′, 0, 0)− h(x′0, 0, 0)− a′ · (x′ − x′0)| ≤ C|x′ − x′0|2,
which combined with the previous inequality gives us the desired bound (8.2).

�

9. Appendix

The purpose of this Section is to provide the proof of Proposition 6.4 and Corol-
lary 6.5 which have been used in the proof of Harnack Inequality in Section 6. For
the reader’s convenience we recall their statements.

Let R > 0 and denote by

VR(t, z) = U(t, z)((n− 1)
t

R
+ 1).

Then set
vR(X) = VR(R−

√
|x′|2 + (xn −R)2, z).

Proposition 6.4. If R is large enough, the function vR(X) is a comparison
subsolution to (2.1) in B2 which is strictly monotone increasing in the en-direction
in B+

2 (vR). Moreover, there exists a function ṽR such that

(9.1) U(X) = vR(X − ṽR(X)en), in B1 \ P
and

(9.2) |ṽR(X)− γR(X)| ≤ C

R2
|X|2, γR(X) = −|x

′|2

2R
+ 2(n− 1)

xnr

R
,
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with r =
√
x2
n + z2 and C universal.

Proof. We divide the proof of this proposition in two steps.
Step 1. In this step we show that vR is a comparison subsolution in B2 which

is monotone in the en-direction.
First we need to show that vR is subharmonic (but not harmonic) in B+

2 (vR).
From the formula for vR we see immediately that (R > 2)

B+
2 (vR) = B2 \ (B2 \ BR(Ren)).

One can easily compute that on such set,

∆vR(X) = ((∂tt + ∂zz))VR)(R− ρ, z)− n− 1
ρ

∂tVR(R− ρ, z),

where for simplicity we call

ρ :=
√
|x′|2 + (xn −R)2.

Also for (t, z) outside the set {(t, 0) : t ≤ 0}

∆t,zVR(t, z) = (∂tt + ∂zz)VR(t, z) =
2(n− 1)

R
∂tU(t, z) + (1 + (n− 1)

t

R
)∆t,zU(t, z)

=
2(n− 1)

R
∂tU(t, z),

and

(9.3) ∂tVR(t, z) = (1 + (n− 1)
t

R
)∂tU(t, z) +

n− 1
R

U(t, z).

Thus to show that ∆vR is subharmonic in B+
2 (vR) we need to prove that in such

set
2(n− 1)

R
∂tU −

n− 1
ρ

[(1 + (n− 1)
R− ρ
R

)∂tU +
n− 1
R

U ] ≥ 0,

where U and ∂tU are evaluated at (R− ρ, z).
Set t = R−ρ, then straightforward computations reduce the inequality above to

(n− 1)[2(R− t)−R− (n− 1)2t]∂tU(t, z)− (n− 1)2U(t, z) ≥ 0.

Using that ∂tU(t, z) = U(t, z)/(2r) with r2 = t2 + z2, this inequality becomes

R ≥ 2t+ (n− 1)2t+ 2(n− 1)r.

This last inequality is easily satisfied for R large enough, since t, r ≤ 3.
Now we prove that vR satisfies the free boundary condition in Definition 2.2.

First observe that
F (vR) = ∂BR(Ren, 0) ∩ B2,

and hence it is smooth. By the radial symmetry it is enough to show that the free
boundary condition is satisfied at 0 ∈ F (vR) that is

(9.4) vR(x, z) = αU(xn, z) + o(|(x, z)|1/2), as (x, z)→ (0, 0),

with α ≥ 1.
First notice since U is Holder continuous with exponent 1/2, it follows from the

formula for VR that

|VR(t, z)− VR(t0, z)| ≤ C|t− t0|1/2 for |t− t0| ≤ 1.
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Thus for (x, z) ∈ Bs, s small

|vR(x, z)− VR(xn, z)| = |VR(R− ρ, z)− VR(xn, z)| ≤ C|R− ρ− xn|1/2 ≤ Cs,

where we have used that (recall that ρ :=
√
|x′|2 + (xn −R)2)

(9.5) R− ρ− xn = − |x′|2

R− xn + ρ
.

It follows that for (x, z) ∈ Bs
|vR(x, z)− U(xn, z)| ≤ |vR(x, z)− VR(xn, z)|+ |VR(xn, z)− U(xn, z)|

≤ Cs+ |VR(xn, z)− U(xn, z)|.

Thus from the formula for VR

|vR(x, z)− U(xn, z)| ≤ Cs+ (n− 1)
|xn|
R

U(xn, z) ≤ C ′s, (x, z) ∈ Bs

which gives the desired expansion (9.4) with α = 1.
Now, we show that vR is strictly monotone increasing in the en-direction in

B+
2 (vR). Outside of its zero plate,

∂xnvR(x) = −xn −R
ρ

∂tVR(R− ρ, z).

Thus we only need to show that VR(t, z) is strictly monotone increasing in t outside
{(t, 0) : t ≤ 0} . This follows immediately from (9.3) and the formula for U .

Step 2. In this step we show the existence of ṽR satisfying (9.1) and (9.2). Since
we have a precise formula for vR in terms of U , this is only a matter of straightfor-
ward (though tedious) computations which we present here for completeness.

First we show that there exists a unique t̃ such that (here B1 is the 2-dimensional
ball)

(9.6) U(t, z) = VR(t+ t̃, z), in B1 \ {(t, 0) : t ≤ 0},

and

(9.7) |t̃+
2(n− 1)tr

R
| ≤ C̃

R2
r3, r2 = t2 + z2,

with C̃ universal. Since VR is strictly increasing in the t-direction in B1 \ {(t, 0) :
t ≤ 0} it suffices to show that

(9.8) VR(t− 2(n− 1)tr
R

− C̃

R2
r3) < U(t, z) < VR(t− 2(n− 1)tr

R
+

C̃

R2
r3).

Let us prove the lower bound. We call

t̄ = −2(n− 1)tr
R

− C̃

R2
r3,

and we use Taylor’s formula to compute

(9.9) VR(t+ t̄, z) = VR(t, z) + ∂tVR(t, z)t̄+
1
2
Et̄2, |E| ≤ |∂ttVR(s, z)|,

with s between t and t+ t̄. We claim that
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(9.10) |∂ttVR(s, z)| ≤ C ′

r2
U(t, z).

Indeed one can compute that

∂ttVR(s, z) = (1 + (n− 1)
s

R
)∂ttU(s, z) +

2(n− 1)
R

∂tU(s, z)(9.11)

= (1 + (n− 1)
s

R
)r−3/2∂ttU(

s

r
,
z

r
) + r−1/2 2(n− 1)

R
∂tU(

s

r
,
z

r
)

where we have used that U is homogeneous of degree 1/2.
Since s lies between t and t + t̄ we get that (s/r, z/r) ∈ B3/2 \ B1/2, thus by

boundary Harnack inequality in this annulus we get

|∂ttU(
s

r
,
z

r
)| ≤ K1U(

s

r
,
z

r
), ∂tU(

s

r
,
z

r
) ≤ K2U(

s

r
,
z

r
),

with K1,K2 universal.
Combining the above inequalities with (9.11) we obtain that

|∂ttVR(s, z)| ≤ C̄r−3/2U(
s

r
,
z

r
).

Thus the claim in (9.10) will follow if we show that for some K universal

U(
s

r
,
z

r
) ≤ KU(

t

r
,
z

r
).

Again, this follows by the boundary Harnack inequality in the annulus B3/2\B1/2

between U( tr ,
z
r ) and its translation U( t+τr , zr ), for τ small. Our claim is thus proved.

Thus, using (9.9) together with this claim, the lower bound in (9.8) will be proved
if we show that

U(t, z) > VR(t, z) + ∂tVR(t, z)t̄+
C ′

2r2
U(t, z)t̄2.

From the definition of VR this is equivalent to showing that

(n− 1)
t

R
U(t, z) + [(1 + (n− 1)

t

R
)∂tU(t, z) +

n− 1
R

U(t, z)]t̄+
C ′

2r2
U(t, z)t̄2 < 0.

Dividing everything by ∂tU(t, z) = 1
2rU(t, z) we get

2(n− 1)rt
R

+ [(1 + (n− 1)
t

R
) +

2r(n− 1)
R

]t̄+
C ′

r
t̄2 < 0,

and using the definition of t̄ we finally need to show that

(n− 1)
t+ 2r
R

t̄+
C ′

r
t̄2 <

C̃

R2
r3.

Using that for R large
|t̄| ≤ Kr2/R,

for K universal, we easily obtain that the inequality above holds for the appropriate
C̃ (universal) and R large.
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To conclude our proof, we use (9.5) to write

vR(X − ṽRen) = VR(R− ρ(ṽR), z) = VR(xn − ṽR −
|x′|2

R− xn + ṽR + ρ(ṽR)
, z),

with
ρ(η) :=

√
|x′|2 + (xn − η −R)2.

In view of (9.6) if there exists ṽR = ṽR(X) such that

(9.12) −ṽR −
|x′|2

R− xn + ṽR + ρ(ṽR)
= t̃,

then
vR(X − ṽRen) = U(X), in B+

1 (U).
By the strict monotonicity of vR in the en-direction in B+

1 (vR), in such set ṽR must
be unique.

Thus our claim will follow if we show that there exists ṽR satisfying (9.12) and
such that

|ṽR(X)− γR(X)| ≤ C |X|
2

R2
.

To do so, we call

f(η) = −η − |x′|2

R− xn + η + ρ(η)
, −1 ≤ η ≤ 1,

and we show that

f(γR(X) + C
|X|2

R2
) ≤ t̃ ≤ f(γR(X)− C |x|

2

R2
).

In view of (9.7) we need to prove that

f(γR(X) + C
|X|2

R2
) ≤ −2(n− 1)xnr

R
− C̃ r3

R2
,

and

f(γR(X)− C |X|
2

R2
) ≥ −2(n− 1)xnr

R
+ C̃

r3

R2
.

Let us prove the first inequality (the second one follows similarly.) Call

η̄ = γR(X) + C
|X|2

R2
.

From the definition of f and γR the desired inequality is equivalent to

|x′|2

2R
− C |X|

2

R2
− |x′|2

R− xn + η̄ + ρ(η̄)
≤ −C̃ r3

R2
.

Clearly −1 ≤ η̄ ≤ 1, and one can easily verify that

R− xn + η̄ + ρ(η̄) ≤ 2R+ 5.

Thus
|x′|2

2R
− |x′|2

R− xn + η̄ + ρ(η̄)
≤ |x′|2(

1
2R
− 1

2R+ 5
) ≤ |x

′|2

R2
,

and the desired inequality follows if we show that

|x′|2

R2
− C |X|

2

R2
≤ −C̃ r3

R2
.

This inequality is trivially satisfied as long as C − C̃ ≥ 1. �
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We now recall the statement of Corollary 6.5 and sketch its proof.

Corollary 6.5. There exist δ, c0, C0, C1 universal constants, such that

(9.13) vR(X +
c0
R
en) ≤ (1 +

C0

R
)U(X), in B1 \B1/4,

with strict inequality on F (vR(X + c0
R en)) ∩B1 \B1/4,

vR(X +
c0
R
en) ≥ U(X +

c0
2R

en), in Bδ,(9.14)

vR(X − C1

R
en) ≤ U(X), in B1.(9.15)

Proof. Estimates (9.14) and (9.15) are immediate consequences of (9.2) and Lemma
3.1.

To obtain (9.13), notice that in view of (9.2) and Lemma 3.1,

vR(X +
c0
R
en) ≤ U(X) in {X ∈ B1 : |x′| ≥ 1/8, |xn| ≤ δ̄},

for some c0, δ̄ small universal and R large (with strict inequality on F (vR(X +
c0
R en))). Hence the estimate (9.13) holds on the set {X ∈ B1\B1/4 :

√
x2
n + z2 ≤ δ̄}

and we only need to prove it on the complement of this set.
Again, from (9.2) and Lemma 3.1 we get that

(9.16) vR(X +
c0
R
en) ≤ U(X +

C̄

R
en) in B1,

for C̄ large universal. From Lemma 5.2 we know that

U(xn +
C̄

R
, z) ≤ (1 + C

C̄

R
)U(xn, z),

as long as
√
x2
n + z2 > δ̄, with C = C(δ̄) (and R large). Combining this fact with

(9.16) we get

vR(X +
c0
R
en) ≤ (1 +

C0

R
)U(xn, z),

on the desired set.
�
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