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Introduction

This book represents the PhD thesis of the author that was carried out under the supervision
of Haim Brezis at the University Paris 6 between 2003-2006. This PhD thesis was refereed
by Francois Alouges and Peter Sternberg and was defended in December 11, 2006 in front of
the Jury composed by Amandine Aftalion, Francois Alouges, Fabrice Béthuel, Haim Brezis,
Mariano Giaquinta, Robert Jerrard and Felix Otto. For this PhD thesis, the author received the
Arconati-Visconti Prize in Sciences (Pure and Applied Mathematics) awarded by the Chancellery
of Universities of Paris in 2007.

The topic of this PhD thesis concerns the structure of singularities that appear in several
variational problems. These singularities play the role of vortex lines for superconductors, vor-
tices in Bose-Einstein condensates or domain walls in micromagnetics. Since these problems
are an interplay between analysis and geometry, the study of singularities lies on analytical and
geometrical tools based on variational methods, geometric measure theory as well as regularity
theory for partial differential equations.

The book is divided in three parts. A first one, formed by Chapters 1-5, deals with functions
with values into the unit circle S', in particular, the study of the (optimal) lifting of functions
of bounded variation. A second part, including Chapters 6 and 7, is devoted to the asymptotic
behavior of vortices in a two-dimensional rotating Bose-Einstein condensate. The third part
(Chapter 8) concerns the optimality of Néel walls in thin-film micromagnetics.

In the following, we present the main features of each chapter.

1 Lifting of functions with values into the unit circle S!

The study of functions with values into S* and having a certain regularity (for example, belonging
to some Sobolev space) is motivated by the theory of Ginzburg-Landau equation and the degree
theory. In this context, the main questions concern the regularity of the lifting of such functions
and the analysis of their topological singularities. The goal of this part is to answer to these
questions in the case of BV functions with values into S?.

This part is a collection of several works published by the author during his PhD thesis (cf.
[37, 51, 52, 53, 58]). Several changes and additional details have been introduced here with
respect to the published version, together with a work in progress (cf. [59]). Each chapter can

1



Introduction

be considered self-contained.

1.1 Lifting of BV functions with values into S' (joint work with J. Davila)

Let © ¢ RY be an open set and u : Q — S' be a measurable function. We call lifting of u, every

measurable function ¢ : 2 — R satisfying
u(z) = e ()

for almost every x € 2. A natural question concerns the existence of a lifting ¢ that preserves
the regularity of the function u. For example, if €2 is simply connected and u is continuous, then
there exists a continuous lifting ¢ of w that is unique up to an additional 277 constant.

The first existence result for the lifting in the case of Sobolev spaces has been proved by
Béthuel and Zheng [19]: if Q is a bounded simply connected domain in R and u € W?(Q, S!)
with p > 2 then u has a lifting ¢ € WHP(Q,R) that is unique up to a constant. Otherwise, if
1 <p<2and N > 2, then there exist some functions v € W1P(€, S) that cannot be lifted in
WLP: the standard example (in the case of N =2 and 0 € Q) is given by

u(r) = —. (1)

Later, Bourgain, Brezis and Mironescu [20] studied the existence of lifting in the general case of
Sobolev spaces W*P(,S'), 0 < s < oo and 1 < p < co. A complete description depending on
N, s and p is given for the cases where a lifting with the same regularity exists and for the other
cases where one can construct functions v € W*P(2, S') with no lifting belonging to W5,

In the case of BMO functions, we recall the work of Coifman and Meyer [35]. For the one-
dimensional case, they have showed that if u : R — S belongs to BMO and |u|gyo < 7y (where
~v > 0 is a specific constant) then u has a BMO lifting ¢ with a certain control on the BMO
seminorm of ¢. Later, Brezis and Nirenberg [31] extended this result to the case of general
domains  C RY; moreover, they also proved that every function u € VMO(£, S') has a VMO
lifting that is unique up an additional constant.

In this chapter, we study the case of functions of bounded variation with values into the
unit circle St ie., u = (ug,us) € Li (Q,R?), |u(z)] = 1 for almost every z € Q and the

loc
BV —seminorm is finite:

2 2
|ulpy = sup {/ > updiv@edr : Go€ CR(Q,RY), Y T |G[> < 1in Q} < 00,
Qp=1

k=1

where | - | denotes the euclidian norm over RY. Our main result shows that u always has a BV
lifting with an optimal control on the total variation:

Theorem 0.1 (/37]) Let  C RN be an open set and u € BV (2, SY). Then there exists a lifting
p € BVNL>®(Q,R) of u such that

lolBy < 2Julpy. (2)



1. Lifting of functions with values into the unit circle S*

If N > 2 and Q is a bounded open set in RY, the constant 2 in inequality (2) is optimal; it
can be checked for the standard example (1). In dimension N =1 (i.e., {2 is an interval), every
function u € BV(£, S') has a BV lifting ¢ such that |¢|py < Z|u|py and the constant 5 is
optimal.

The idea of the proof of Theorem 0.1 is to consider the argument function L : S* — R,
L) =60, V-n<6<m.

Then ¢ = L(u) is a (measurable) lifting of u, as well as every function L(e**u) — o with a € R.

Next we prove a co-area type inequality
2 )
/ L(e®u)| gy dev < 4refu gy (3)
0

which leads to our result. In particular, for almost every a € R, the lifting L(e**u) — « is of
bounded variation. The main tool to prove (3) resides in the chain rule for BV functions; a new
proof of (3) without using the chain rule was later found by Merlet [69].

Remark 0.1 (a) If u € WH1(©,S') and 2 C R? is a bounded smooth simply connected open
set, Brezis and Mironescu showed that u has a lifting ¢ € BV (€2, R) satisfying (2). The idea
consists in applying the density result of Béthuel and Zheng [19] so that the proof reduces to
the case of functions that are smooth away from a finite set of singular points: for such a
function u, one can construct a BV —lifting that has the jump set concentrated on the minimal
connection between the point singularities of u (taking into account their topological degree)
and the boundary of Q. This lifting satisfies condition (2).

(b) The existence of a BV lifting of u € BV(€,S') (when € is a bounded smooth simply
connected open set) was proved before by Giaquinta, Modica and Soucek [47], but without an
optimal control on the BV —seminorm of a lifting.

1.2 Optimal lifting for BV (S?, S)
Let g € BV(S!,SY), ie. g € BV(S',R?) and |g(y)| = 1 for almost every y € S'. The aim of

this chapter is to compute the total variation of an optimal BV lifting of g:

E(g) = inf{/s1 |¢| : ¢ € BV(SY,R),e"” =g ae. in Sl} 4)

Wwen

where stands for the tangential derivative. The above infimum is achieved and equal to the

relaxed energy
Era(g) = inf{liminf/ \gn|dHE = g, € C(SY, 8%, deggn =0, g, — g ae. in Sl}.
n—oo Sl

In the sequel, we identify g to the precise representative, that is a Borel function defined as

o(y) = 9(y+) +9(y—-)

vy € S1
5 , Vye s,
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where g(y+) are the left and right limits of g at y with respect to the counterclockwise orientation

of S'. The vector measure ¢ is decomposed as

9= (9)"+(9)° + (9),
where (§)! = Z (9(y+) — 9(y—))dy-
y€S(9)

Here, (¢)%, (§)¢ and (g)’ correspond to the absolutely continuous part, to the Cantor part and

to the jump part of the measure g, respectively. The (most) countable set

S(g) ={y e S g({y}) #0}

corresponds to the jump set of g. For every jump point y € S(g), we consider the signed jump
size dy(g) € (—m, 7] \ {0} defined as

i) _ 9W)
9(y—)

)

so that the modulus |dy(g)| = ds1(g(y+), g(y—)) coincides with the geodesic distance on S*.
We want to study the structure of an (optimal) lifting of g. So, let ¢ € BV(S',R) be a
lifting of ¢g (such a function exists thanks to Theorem 0.1). As above, we decompose the finite

measure ¢ into three terms:

p=(@)"+ @+ > (olz+) — p(z-))d..

z€5(p)

We deduce that the absolutely continuous part and the Cantor part of ¢ are completely deter-
mined by the following equations:

(@) *=gA(g)* and (@)°=gA(9)¢ in S.
For the jump part, we only know that

o(y+) — p(y—) = dy(g) (mod 2m)  if y € S(g),

S S and
(9) € S(p) o(y+) — o(y—) = 0 (mod 27) if y € S() \ S(g).

In order to compute (4), it is sufficient to determine the minimal total variation of the jump
part of . If g was defined on an interval of R instead of S!, then the jump part of an optimal

lifting would have the total variation given by

> ldy(g)l. ()

y€S(9)

In our framework, since g is defined on S!, a new constraint needs to be added for a lifting ¢:

/Sﬁbzo' (6)



1. Lifting of functions with values into the unit circle S*

Because of this (topological) constraint, the minimal total variation of a lifting is in general
larger than (5). For example, if g = Id : S' — S! is the indentity, i.e., g(z) = z for z € S', then
g has a topological degree equal to 1, so that any BV —lifting of g cannot be continuous and thus,
has a jump of size larger than 27. In fact, in the case of continuous functions g € BV (S, S1),

Bourgain, Brezis and Mironescu [22] proved the following formula:
Bo) = [ lil +2mdegg,

In the general case of an arbitrary function g € BV(S!, S1), the presence of jump points
turns the analysis more delicate. A jump of g cannot be always lifted to have the size of the jump
equal to the geodesic distance on S* (as in the case of an interval of R); therefore, we often have
lo(y+) —¢(y—)| > |dy(g)|. The idea is to define a new quantity m(g) € Z (a "pseudo-degree” of
g) corresponding to the number of jumps where the above inequality holds. Our main result is

the following:

Theorem 0.2 ([52]) If S(g) # @, then

E(g) = [S (@ +1@e) + min > 1dy(g) — 27 .

oy €Z,yeS(g)
#{yeS(9): ay#0}<oco yes(g)
2yes(g) w=m(9)

Next we construct a minimal configuration {ay},cg(y) that allows us to define an optimal

lifting. From this formula, we can give a different proof of (2), i.e., E(g) < 2/ lg|.
Sl

1.3 The space BV(S? S'): minimal connection and optimal lifting

The concept of minimal connection associated to a function defined in R? with values into
the unit sphere S? has been introduced by Brezis, Coron and Lieb [27]. That problem was
motivated by the theory of liquid crystals. Later, this notion has been used by Bourgain, Brezis
and Mironescu [22] in the case of a three-dimensional model for the Ginzburg-Landau equation:
the vortex lines correspond to minimal connection between the point singularities of a given
boundary data. Recently, Brezis, Mironescu and Ponce [30] studied the topological singularities
of functions g € WH1(S2%,S1). They show that the Jacobian of g (in the sense of distributions)
detects the position and the degree of the topological singularities of g. More precisely, let
T(g) € D'(S?,R) be the distribution defined on S? by

T(g) = 2det(Vg) = —(9 A ga)y + (9 A gy)a;
then there exist two sequences of points (py), (ng) on S? such that

Z lpr —ni| < oo and T(g) = 2772(5pk — Ony )-
k k
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The distribution T'(g) in general is not a finite measure and it always has a infinite number of

representations as a sum of dipoles. The length of a minimal connection of T'(g) is defined as:

IT(g)ll = sup (T'(g),¢)-
(eC(5?)
V(<1
m
For example, if T'(g) = 27 Z(épk — 0p, ) is a finite sum of dipoles, Brezis, Coron and Lieb [27]
k=1
have proved that
m
I7(g)]| = 27 min ;dSQ (P Mok
where S,,, denotes the group of permutations of {1,2,...,m} and dg» stands for the geodesic

distance on S?. For a countable sum of dipoles, Bourgain, Brezis and Mironescu [22] have

generalized the above result by showing that T'(¢) can be characterized as:

IT(g)ll = inf 27> dga(pr,mx) : T(9) =27 (6, — 0n,) and Y |p — gl < o0 b
(pk)v(nk) k k k
(7)

The aim of this chapter is to generalize these notions for functions u € BV (52, S'). In this
case, the difficulty of the analysis comes from the existence of two types of singularities: on one
hand, topological point singularities (carrying a degree), on the other hand, jump singularities
concentrated on curves. In the sequel, we will always identify u with the precise representative;
the 2 x 2 matrix measure Du is decomposed into three terms

Du = D% + Du+ (v —u™) @ v, H'LS(u),

where D%, D and D’u correspond to the absolutely continuous part, to the Cantor part and
to the jump part of Du. The jump set S(u) is an H!-rectifiable set on S2, oriented by the unit
normal vector v, : S(u) — S'. The Borel functions u™,u~ : S(u) — S! represent the traces of
u on the jump set S(u) with respect to the orientation v,.

We introduce the distribution T'(u) € D'(S?,R) as

(T(u),¢) = | V(- (un (D + D)) + / plut,u”) vy - VECAH!, V¢ € CH(S%R). (8)
S2 S(u)

Here, V¢ = ({y, —(,) and the antisymmetric application p(-, -) : St x S* — [—m, 7] corresponds

to a signed geodesic distance on S*:

Arg <§> if e £ 1
Arg (w1) — Arg (we) if ZE=-1

P(WlaWQ) = ) v(")1,(“j2 S Sl?

where Arg (w) € (—m, 7] stands for the argument of a unit complex number w € S'.
Our first result shows that T'(u) is a countable sum of dipoles. It is a generalization to the
case of BV functions of the result mentioned above for W1! functions in [30].

6



1. Lifting of functions with values into the unit circle S*

Theorem 0.3 (/53]) If u € BV (S?,S'), then there exist two sequences of points (px), (ny) in
S? such that

Z’pk—nkl<oo and T(u _2712 pk_ nk (9)

k

The proof relies on the fact that the derivative (in the sense of distributions) of the characteristic
function of a bounded measurable set in R can be written as a sum of countable dipoles. This
property allows us to introduce the set of functions defined on curves of S? and taking values

into 277 so that their tangential derivative is given by T'(u):

S is countably H!- rectifiable in S?, v is an orientation on S,

JACN =4S 216 927y so that /fy-V%dHl:<T(u)7C>7VC€Cl(SQ)
S

Then we deduce the following version of (7):
il =, win [ 7
(£:8:1)eT (T (w))

While the infimum in (7) in general is not achieved, the advantage of the above formula consists
in having the minimum always attained. It means that ||7'(u)|| corresponds to the minimal mass
that a function with values into the discrete set 277 could carry between the set of dipoles
prescribed by T'(u).

In the sequel, we deal with the question of lifting of functions v € BV (52, S'). A BV lifting
of u can be characterized via the set J(7T'(u)); more precisely, any lifting ¢ € BV (S%,R) of u
corresponds to a triplet (f,S,v) € J(T(u)) so that

Dy = u A (D% + D) + p(u™, u™ v, H'LS(u) — fr H'LS.

As in the case of functions BV(S!, S!), we are interested in the minimal total variation of a

lifting of u € BV (5?2, S1), i.e.,

E(u) = inf { / |Dy| : ¢ € BV(S%,R), ¢ = u ae. in 52}, (10)
SQ

as well as in constructing a minimizer of (10) called optimal lifting. The following result estab-
lishes the expression of F(u) via the distribution 7'(u).

Theorem 0.4 (/53]) If u € BV (S%,S1), then

E(u) = / (|D%u| + |Dul) + min /
g2 (f,5w)eT (T'(w) JSUS(u)

In particular, we recover the result of Brezis, Mironescu and Ponce [30] for the total variation of
an optimal BV lifting of functions g € W1(S2, S1): the gap between E(g) and the total varia-

tion of g corresponds to the length of a minimal connection between the topological singularities

Jvxs — p(u+’u_)7/u XS (u) dH'.

of g, i.e.,
= [ sl + ()



Introduction

In the spirit of [30], the length ||7°(u)|| has an interpretation as a distance:

i) = win |
YEBV(S2,R) J g2

Moreover, there exists at least one minimizer ¢ € BV (S?,R) of (11) that is a lifting of w.

u A (D% + D) + p(u™, u™ v, H'LS(u) — D, (11)

1.4 On the relation between minimizers of a I'-limit energy and optimal lifting
in BV (joint work with A. Poliakovsky)

A natural method to approximate liftings of a function u € BV (€2, S1) is to consider the following
family of functionals {Ff.;(u’p)}{_:>O depending on a parameter 0 < p < +oc:

1 .
F“P(p) =¢ /Q Vel® + - /Q [u— P, Ve H'(QR). (12)

Due to the penalizing term in (12), sequences of minimizers . of Fe(u’p ) are expected to
converge to a lifting ¢g of u as ¢ — 0. Since we are interested in the asymptotic behavior
of minimizers, the concept of I'—convergence appears to be adapted to our context. Indeed,
Poliakovsky [70] proved that for p > 1 and for bounded domains Q C RY with Lipschitz
boundary, any sequence of minimizers ¢, € H'(2,R) of Flwr ), satisfying | [, | < C, converges
strongly in L! (up to a subsequence) to a lifting @9 € BV (£, R) of u as ¢ — 0 and ¢ is a
minimizer of the I'—limit energy Féu’p) : LY, R) — R given by

(up) 2 FP (ot — o) dHN ! if p is a BV lifting of u,
FO ’ (80) = S(p)

+00 otherwise.

Here, S(¢) is the jump set of ¢ € BV(2,R) and ¢, ¢ are the traces of ¢ on each of the
sides of the jump set and f®) : [0,4+00) — R is the function defined by

®) 0+t /2
p =i e 1 vo > 0.
fP(0) tlg[g/t le'® — 1|P/* ds, VO > 0

Notice that Féu’p)(gp) < +oo for a BV lifting ¢ of u since f%) is an increasing Lipschitz function.
Due to the fact that the energies {Fg(u’p ) }5>0 and Fo(u’p ) are invariant with respect to translations
by 27k, k € Z, uniqueness of minimizers has a meaning up to additive constants in 27Z.

Our goal is to study the question whether the minimizers of Fo(u’p ) are necessarily optimal
liftings of u, for any p. Surprisingly, this turns out to be the case (in general) only in dimension
one, while in dimension N > 2 this holds only for p = 4. Our main result is the following:

Theorem 0.5 (/58]) Let Q2 be a bounded domain in RY.

(i) If N = 1 then for every u € BV (2, S') and p € (0,+00), ¢ is a minimizer of Féu’p) if and
only if ¢ is an optimal lifting of u;

(ii) If N > 2, the minimizers of Fo(u’p) are optimal BV liftings of u, for every u € BV (Q, S1)
if and only if p = 4.



1. Lifting of functions with values into the unit circle S*

The key point of the proof relies on the construction of counter-examples for the case p # 4: If
p € (0,4), we construct a piecewise constant function u € BV (€, S!) (depending on p) such that
Fo(u’p ) has a unique minimizer &y, while v has a unique optimal BV lifting {y and the difference
& — Cp is not a constant. In the general case p # 4, we construct a family of functions {U}

FO(Ut :p)

among which some elements have a unique optimal BV lifting whose energy is strictly

larger than the minimal value min FéUt ) Moreover, for those elements Uy, we prove that FéUt )
has a unique minimizer.
Finally, we notice that if u belongs to the smaller class W11(Q, S!), then a lifting of u is

)

optimal if and only if it is a minimizer of Féu’p , for every p € (0, +00).

1.5 On an open problem about how to recognize constant functions

In the theory of Ginzburg-Landau equation, an important issue resides in the problem of ex-
istence and uniqueness of lifting in Sobolev spaces. More precisely, if @ C RY is an open set
and u € W*P(Q,S1), is there a lifting ¢ € W*P(Q,R) of u (i.e. u = € ae. in Q)? Is this
lifting unique in W*P (up to 277Z constants)? Here, 0 < s < oo et 1 < p < co. The answer
to the question of existence of lifting was given by Bourgain, Brezis and Mironescu (see [20]).
Moreover, if 0 < s < oo, p > 1 and sp > 1, a W*P lifting is always unique (modulo 27),
ie., if u€ W*P(Q,S1) has two liftings o1, p2 € WP(Q,R) then there exists k € Z such that
Y1 — 2 =27k a.e. in ). This is a consequence of the following result of Bourgain, Brezis and

Mironescu:

Let Q be a domain in RN, If f: Q — R is a measurable function that satisfies

F(@) — F)lP dedy
/Q/Q Ty oy %

for some fized p > 1, then f is a constant in €.

The aim of the chapter is to generalize the above result. For that, let us denote by
W={we CR,R;)|w(0) =0, w(t) >0, Vt>0}.
The following problem now arises:

Problem 1 Find a necessary and sufficient condition for w € W so that any measurable function

f:Q — R satisfying @) = £ e
x)— f(y x dy
fofoo (PR e <+ )

is necessarily constant (a.e. in §2).

Observe that the restriction w € W is natural. Indeed, the continuity of w is needed to make
the left hand side of (13) well-defined. Also, w(0) = 0 (since for any constant function f, (13)
should hold) and w(t) > 0,Vt > 0 (if w(¢) = 0 for some t > 0, take N = 1 and f(z) = tx).
Henceforth it is assumed that w € W.

A necessary condition for Problem 1 (in order to avoid jump functions) is the following:

/1+<>0 % dt = +o0. (14)
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. . . . . . . . wl(t
Two sufficient conditions for w € W are also given: A first one consists in assuming lim inf;_, ; o %

A second one concerns the opposite case liminf;_, wt) _ 0; then the answer to Problem 1 is

¢
positive if (14) holds, w is increasing and the function ¢ — @ is decreasing at infinity. Observe
that the two sufficient conditions only concern the behavior of w € W at infinity without any
additional assumption on its behavior at 0. The question whether the necessary condition (14)
is also sufficient, remains open.

Next, we deal with the following problem:

Problem 2 What regularity on f should be assumed so that for any w € W, (13) imply f is a
constant?

The motivation is clear: if we don’t want any restriction on w € W, we need to impose an
additional condition on f in order that (13) yields f to be a constant. We will prove that the
condition f € T/Vlicl(Q) guarantees that Problem 2 has a positive answer. The other results deal
with the question raised by Brezis in [25]: Is the continuity (or even the Cloo’? reqularity) of f
sufficient for Problem 2¢ The answer is negative in general: if either w € W is bounded, or
w(t) = t? for some @ € (0,1), then we construct non-constants C%* N BV functions of Cantor
type (for an arbitrary chosen a € (0, 1)) that satisfy (13).

We also prove in a joint work with A.-R. Todor that the necessary condition (14) for Prob-
lem 1 forbids nontrivial characteristic functions defined on {2 as well as special Cantor type

functions.

2 Vortices in a 2d rotating Bose-Einstein condensate

The phenomenon of Bose-Einstein condensation has given rise to an intense research since its
first realization in alkali gases in 1995. A Bose-Einstein condensate (BEC) is a quantum gas that
can be described by a single complex-valued wave function (order parameter). The existence
of vortices is a major feature of these systems and they appear as zeroes of the wave function
around which there is a circulation of phase. Experimentally, these vortices can be obtained by
rotating the harmonic trap that strongly confines the atoms in the direction of the rotation axis
(see [1, 65]). For such a model, the wave function decouples and the reduced model becomes
two-dimensional (see Castin et Dum [34]). In the case of an asymmetric trap potential, the wave

function minimizes the following Gross-Pitaevskii energy

1 1 1
/R2 {§’Vu\2 +53 V(@)[ul® + 4—52\?1’4 — Q- (iu, V“)} dx (15)

/RQ lul? =1, (16)

where € >0 is a small parameter and 2 = €(e) >0 denotes the rotational velocity. Here, the

under the constraint

trapping potential is harmonic and given by V(z) = |z|3 := 2} + A%23 where A € (0,1] is a
fixed parameter. Our aim is to study the number and the location of vortices in function of the
angular velocity (g) as e — 0. The two chapters included in this part are joint works with V.
Millot and have been published in [56, 55, 54].

10



2. Vortices in a 2d rotating Bose-Finstein condensate

2.1 The critical velocity for vortex existence in a two dimensional rotating
Bose-Einstein condensate (joint work with V. Millot)

We start our analysis by estimating the critical velocity above which the wave function has
vortices. According to numerical and theoretical predictions (see [4, 34]), we expect to find the
critical speed in the regime Q = O(|In¢|) so that we restrict our study to this situation.

Due to the constraint (16), we may rewrite the energy (15) in the equivalent form
1 1 _ .
Rt = [ {510 + L0 — @) - (@ @) - 0t .V bde 1)

where a(z) = ap — |z[3 and ag is determined by [z a™(z) =1 so that ag = \/2A/7. Here a™
and a~ represent respectively the positive and the negative part of a. Then the wave function

ue is a solution of the variational problem
Min {Fz(u) : u €M, |Jull 22y =1} where H = {ue HY(R?%,C) : / |2|*|ul® < +o0}.
R2

In the limit ¢ — 0, the minimization of F. strongly forces |u.|? to be close to at which means
that the resulting density is asymptotically localized in the ellipsoidal region

D:={z¢ R? : a(z) > 0} = {(x1,22) € R? @ 2?2 + A%z2 < ao}-

We will also see that |u.| decays exponentially fast outside D. Actually, the domain D represents
the region occupied by the condensate and consequently, vortices will be sought inside D. Here,
a vortex corresponds to a small disc whose radius tends to vanish as ¢ — 0 and u. has a small
amplitude and a non-zero degree around the disc.

The main tools for studying vortices were developed by Béthuel, Brezis and Hélein [17]
for “Ginzburg-Landau type” problems. We also refer to Sandier [75] and Sandier and Serfaty
[76, 77, 78] for complementary techniques. In the case a(x) = 1 and for a disc in R?, Serfaty
proved the existence of local minimizers having vortices for different ranges of rotational velocity
(see [83]). In [4], Aftalion and Du follow the strategy in [83] for the study of global minimizers
of the Gross-Pitaevskii energy (17) where R? is replaced by D. In [3], Aftalion, Alama and
Bronsard analyze the global minimizers of (17) for potentials of different nature leading to an
annular region of confinement. We finally refer to [5, 6, 61] for mathematical studies on 3D
models.

We emphasize that we tackle here the problem which corresponds exactly to the physical
model. In particular, we minimize F. under the unit mass constraint and the admissible config-
urations are defined in the whole space R?. Several difficulties arise, especially in the proof of
the existence results and the construction of test functions. We point out that we do not assume
any implicit bound on the number of vortices. The singular and degenerate behavior of va*
near 9D induces a cost of order |Ing| in the energy and requires specific tools to detect vortices
in the boundary region.

We now start to describe our main results. We prove that the critical rotational velocity for
the nucleation of a first vortex in D is asymptotically given by

S PR VAI G I
agp V2A

Oy : nel.

11



Introduction

The critical angular velocity € coincides with the one found in [4, 34]. We observe that a
very stretched condensate, i.e., A < 1, yields a very large value of 2 and the smallest €y is
reached for A = 1/4/3 (and surprisingly not for the symmetric case, i.e., A = 1). For subcritical
QS

velocities, we will see that u. behaves as the “vortex-free” profile 7.e”*> where 7). is the positive

minimizer of

1 1 _
Ee(u) = / SIVul? + =5 [(lu]® = a(2))? = (¢~ (2))?] ¢ dz
R2 2 4e
under the constraint (16) and the phase S is given by

A% -1

For rotational speeds larger than €)1, we show the existence of vortices close to the origin. We
also give some fundamental energy estimates in the regime Q = Q; +O(In|In ¢|) which will allow

to study the precise vortex structure of u..

2.2 Energy expansion and vortex location for a two-dimensional rotating
Bose-Einstein condensate (joint work with V. Millot)

The goal of this chapter is to compute an asymptotic expansion of the energy F.(u.) and to
determine the number and the location of vortices according to the value of the angular speed
Q(e) in the limit e — 0. More precisely, we want to estimate the critical velocity €, for which
the dth vortex becomes energetically favorable and to derive a reduced energy governing the
location of the vortices (the so-called “renormalized energy” by analogy with [17, 80, 81]). We
prove the following estimate on the critical speed 24 for any integer d > 1 in the asymptotic

e—0,

2 e 2
A e 4 (- 1)) = %(Hnd%—(d—l)lﬁlnd).

Then we show that for velocities ranged between {2; and €441, any minimizer has exactly d

Qy

vortices of degree +1 inside D. Establishing an asymptotic expansion of F.(u.) as ¢ — 0, we
derive the uniform distribution of vortices close to the origin: it is a minimizing configuration
of the reduced energy (19) below.

Our main theorem can be stated as follows:

Theorem 0.6 (/56]) Let u. be any minimizer of F. in H under the constraint (16) and let
0 <0 <1 be any small constant.

(i) If @ < Qy —dln|lne|, then for any Ry < \/ag, there exists eg = €o(Rp,d) > 0 such that
for any € < €9, us is vortex-free in Bﬁo = {:C eR? : |z = 22+ A%23 < R%}, i.e., Us

does not vanish in BI/%O. In addition,
Fo(ue) = Fe(ﬁseiﬂs) + o(1).

12



3. Optimality of the Néel wall (joint work with F. Otto)

(i) If Qg+ dln|lne| <Q < Qup1 —dln|lne| for some integer d > 1, then for any Ry <./aq,
there exists e1 = €1(Ro,d,0) > 0 such that for any € < €1, us has exactly d vortices
x,...,x5 of degree one in Bﬁo. Moreover,

|x§|§CQ_1/2 forany j=1,...,d, and |xf—:ﬂ§|ZCQ_1/Q for any i # j

where C' > 0 denotes a constant independent of €. Setting T5 = \/ﬁﬂtj , the configuration

(25,...,25) tends to minimize (as ¢ — 0) the renormalized energy
Tap o
0 2
w(bh---,bd):—Wao§1n\bi—bj’+mjzlfbj’/\- (19)
1#£] =

In addition,

ra3d
1+ A2

xen

Fe(ue) = F.(ij.*%)— (=) 4= (@ =d) In | Ine|+ Min w(b)+Qaa+o(1) (20)
S

where Qq a is a constant depending only on d and A.

These results are in agreement with the study made by Castin and Dum [34] who have looked
for minimizers in a reduced class of functions. More precisely, we find the same critical angular
velocities Qg as well as a uniform distribution of vortices around the origin at a scale Q~1/2.
The minimizing configurations for the renormalized energy w(-) have been studied in the radial
case A = 1 by Gueron and Shafrir in [49]. They prove that for d < 6, regular polygons centered
at the origin and stars are local minimizers. For larger d, they numerically found minimizers
with a shape of concentric polygons and then triangular lattices as d increases. These figures

are exactly the ones observed in physical experiments (see [65, 66]).

3 Optimality of the Néel wall (joint work with F. Otto)

Micromagnetics is a nonconvex and nonlocal variational principle whose (local) minimizers cor-
respond to stable states of a ferromagnetic material. One of the most studied issues concerns the
analysis of global minimizers. It’s because the main features of the steady state are shared by all
physical observed local minima. The variational problem contains various asymptotic regimes
where singularities at the mesoscopic level of the magnetization represent domain walls (Néel
wall, Bloch wall etc.) or vortices (Bloch lines or boundary vortices). The aim of this chapter is
to prove compactness of the Néel wall in a 2d model of a thin film.

The nondimensionalized magnetization of a ferromagnetic body Q C R? can be described by a
unit vector field m : Q — S2. The experimentally observed magnetizations are (local) minimizers
of the following energy functional (in the absence of crystalline anisotropy and external magnetic
field):

Esq(m) :d2/ |Vm|2dx—|—/ |Vul|® d.
Q R3

13
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The first term is called exchange energy while the second one represents the stray field or

magnetostatic energy. The stray field potential u : R — R is determined by

Au=V- <m19> (21)

ie., Vu-V{ds = / m-V(dz, Y¢eCX(R?).
R3 Q
It means that u is both generated by the divergence of m inside € (volume charges) and by the
normal component of m at the boundary of the magnetic body (surface charges). The exchange
length d is an intrinsic parameter of the material standing for the relative strength between
exchange and magnetostatic energy.
The setting of the following model is determined by our goal to prove the optimality of Néel

walls under 2—d variation. We consider the magnetic body as a thin infinitely extended cylinder:

Q=0 x(0,1)
Q' =(-1,1) x R c R%

Here, the thickness ¢ is very small so that the magnetization can be considered invariant in
the out-of-plane variable x3, i.e., m(z) = m(z’) and the vertical component of m is strongly
penalized, i.e., mg(z’) = 0. Therefore, the admissible magnetizations are smooth 2-d unit-length
vector fields

m' = (my,my) : R — S!
that macroscopically act as an angle wall in /, i.e.,

m'(z') = < ml,oi — ) for £21 > 1, 22 € R, (22)
,00

where mj o € [0,1) is some fixed number and the prime always indicates an in-plane quantity,
for example, 2/ = (z1,22), * = (2/,23) € R3. With these assumptions, in order to write the
thin-film energy approximation Es4, we use the following ansatz (see [39, 41]): the equation (21)

is equivalent with

1 1
AlFu) = (;X(o,t) (563)) vi-m/,

where V'-m/ corresponds to the 2d divergence of m/. As t — 0, the RHS converges to a
distribution concentrated on the horizontal plane {x3 = 0} and we expect that u/t converges to
the solution U of the equation

AU =V'-m' H? {x3 = 0}. (23)

It explains our choice of considering stray fields h = (h1, ho, h3) : R® — R3 related to m’ by the

following variational formulation:
/ h-V(dr = / ¢V -m'da, V¢ e CP(R?). (24)
R3 R2

14



3. Optimality of the Néel wall (joint work with F. Otto)

To write the energy density of such a configuration, we suppose that
m’ and h are L—periodic in the infinite direction 5, (25)

where L is an arbitrary positive number. After a change of variable, the 2d energy functional
that we consider in the sequel is given by

E.(m',h) = 5/

V' - m/|? da’ +/ |h|? dx (26)
Rx[0,L)

Rx[0,L)xR
where
d2
Tt
is a small parameter and we are interested in the asymptotic behavior as € — 0. Remark that we

IS

replace the Dirichlet energy of m’ by a smaller quantity given by the L? norm of the divergence
of m’. The equation (24) implies that the minimal stray field energy represents the homogeneous

H~'/2 norm of V/-m/ and the minimal value is achieved for VU (where U is the solution of

(23)):
1

2 1/2 2
min / |h|*dx = —/ ‘ V|72V | da
hwith (24) JRx[0,L) xR 2 Jrx[o,L)

Now we shall informally explain how the principle of pole avoidance leads to the formation
of walls. For simplicity, we assume that the mesoscopic transition angle imposed by (22) on the
boundary 9€ is 180°, i.e., m' - v/ = 0 on 9. The boundary effects in the tangential direction
are excluded by our choice of €' which is infinite in zo—direction. The competition between the
exchange and magnetostatic energy will try to enforce the divergence-free condition for m/’, i.e.,

V'-m/ =0 in Q. Therefore, we arrive at
m/|=1 and Vm'=01in @, m' v/ =0 on 9. (27)

This mesoscopic thin-film description has been justified by DeSimone, Kohn, Miiller and
Otto in [41] using the I'—convergence method. We notice that the conditions in (27) are too
rigid for smooth magnetization m’. This can be seen by writing m’ = V/*4) with the help of a
“stream function” 1. Then (27) turns into a Dirichlet problem for the eikonal equation in :

V4 =11in @, ¢ =0 on Q. (28)

Using the characteristics method, it follows that there is no smooth solution of the equation
(28). On the other hand, there are many continuous solutions that satisfy the first condition
of (28) away from a set of vanishing Lebesgue measure. One of them is the “viscosity solution”

given by the distance function

(') = dist (27, 0)

that corresponds to the so-called Landau state for the magnetization m’ (see Figure 1). Hence,
the divergence-free equation in (27) has to be interpreted in the distribution sense and it is
expected to induce line-singularities for solutions m’. These ridges are an idealization of the
wall formation in thin-film elements at the mesoscopic level. At the microscopic level, they are

15
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Figure 1: Landau state in €/

replaced by smooth transition layers where the magnetization varies very quickly. A final remark
is that the normal component of m’ does not jump across these discontinuity lines (because of
(27)) and therefore, walls are determined by the angle between the mesoscopic levels in the
adjacent domains.

In the following we will concentrate on the Néel wall which is the favored wall type in very

thin films. It is characterized by a one-dimensional in-plane magnetization:

m' = (ma(x1), ma(x1)), (29)
that avoids surface charges, but leads to volume charges (because of (22)), i.e.,

dmq
/ o
Vi-m' = —dxl

The prototype is the 180° Néel wall which corresponds to the boundary condition (22) for

m ,00 — 0, i.(f.,
:l:l ! '

Let us now discuss the scaling of the energy of the prototypical Néel wall. For magnetizations
(29), the specific energy (26) reduces to

Eld /‘dml‘ d1+

We define the Néel wall as the 1d minimizer of (31) under the boundary constraint (30). The

Néel wall is a two length scale object: a small core (|z1| < weore) With fast varying rotation

1/2

2
dxq. 31
dxl ml‘ e ( )

and a logarithmically decaying tail (weore < |21] < 1). The finiteness of Q' in x1—direction in
our setting serves as the confining mechanism for the Néel wall tail. This two-scale structure
permits to the Néel wall to decrease the specific energy by a logarithmic factor.

in EYm)~ —— ife< 1
(23)1,1(%0) e (m') 2| Ine| he<d

the minimizer my with m4(0) = 1 is symmetric around 0 (weore ~ €) and satisfies

DL
|1
|In €]

mi(xq) for e < |zq| < 1.

16



3. Optimality of the Néel wall (joint work with F. Otto)

The stability of 180° Néel walls under arbitrary 2 — d modulation was proved by DeSimone,
Kniipfer and Otto in [39]:

min E.(m',h) ~ min _&oﬂjgzigﬁa for e < 1.
m’ with (8.8) m!=m/ (z1) with (8.8)

Our first result is a qualitative property of the optimal 1d transition layers: We prove that
asymptotically, the minimal energy can be assumed only by the straight walls. This property
holds for general boundary conditions (22). It is based on a compactness result for magnetiza-
tions {m.} with energies E. close to the minimal energy level: any accumulation limit m’ has

the singularities concentrated on a vertical line (see FIG. 2).

e

TN\
NN\ N

NN\
TN\ N

Figure 2: Paroi limite

Theorem 0.7 ([57]) Let mi o € [0,1) and L > 0 be given. For any § > 0 there exists g > 0
with the following property: given m' : R — S! and h : R? — R3 with

m’ and h are L—periodic in s, i.e., (25) holds,

m’ satisfies the boundary condition (22),

m and h' are related by (24),

|Ine|E.(m',h) < Lg(l —M1eo)? +e0, for some 0 < e < &g, (32)

then we have

/ |m' — m*| da’ <6, (33)
Rx[0,L)

where m* is a straight wall given by

m*(z1,z2) = < Z:LO; —— ) for £ a1 > a7, (34)
,00

for some z7 € [—1,1].

For that, we investigate the asymptotics as € — 0 of families of 2d magnetizations when
1
[Ine|
question of the Llloc—compactness of the magnetizations {m.}|o in the above energy regime, i.c.,

the energy E.(m/,h.) is placed in the regime O( ). One of the issues we discuss here is the
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whether the topological constraint |m.| = 1 passes to the limit. The difficulty arises from the
fact that in general the sequence of divergences {V’-m.} is not uniformly bounded in L}Oc. This
was one of the particularities used in the entropy methods for proving compactness results for
the Modica-Mortola type problems; we refer to the studies of Jin and Kohn [62], Ambrosio, De
Lellis and Mantegazza [10], DeSimone, Kohn, Miiller and Otto [40], Riviere and Serfaty [74],
Alouges, Riviere and Serfaty [8], Jabin, Otto and Perthame [60]. For our model, the entropy
method cannot be applied. Instead, the idea is to use a duality argument in the spirit of [39, 41]
based on an e-perturbation of a logarithmically failing Gagliardo-Nirenberg inequality together
with a dynamical system argument. Since the compactness result is a local issue, we state it in
the context of the unit ball B; C R? with no imposed boundary conditions:

Theorem 0.8 ([57]) Consider a sequence {ei}tren C (0,00) with e | 0. For k € N, let
mj, : B — S* and hy, : By — R3 be related by

/ hk-VCdx:/ my. - V'¢da’, V¢ € C°(By). (35)
By B,
Suppose that
limsup | In | <€k/ |V’ m)|? da’ +/ |h|? dx) < 0. (36)
k—o0 B By

Then {m} }rioo is relatively compact in L*(B}) and any accumulation point m' : B} — R?
satisfies
|m'| =1 a.e. in B and V'-m' =0 distributionally in B. (37)

In the case of 1d magnetizations, we are able to completely characterize the limit config-

1

e Concentrates on a finite number of limiting walls.

urations: every accumulation point in L
However, a sequence of magnetizations is in general not relatively compact in BV'.

We also discuss the case of zero-energy states, i.e., m’ is an accumulation point of sequences
{m_}. |0 such that the limit in (36) vanishes for some stray potentials {h.} (in the absence of any
boundary condition). The main tool is the principle of characteristics for the eikonal equation.
We show that every zero-energy state m’ is locally Lipschitz continuous and satisfies the principle
of characteristics:

*)

m' (zh + tm’ (2))L) = m/ () for every t € R where z, + tm/(z})* € B].
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Chapter 1

Lifting of BV functions with values
into 5!

Abstract

We show that for every u € BV(Q,S"), there exists a function ¢ € BV(Q,R) such that
u=¢" a.e. in Q and |¢|pv < 2Ju|pv. The constant 2 is optimal in dimension N > 1.
This chapter is written in collaboration with J. Davila; the original text is published in
C. R. Acad. Sci. Paris, Ser. I 337 (2003), 159-164 (cf. [37]).

1.1 Introduction

Let Q € RY be an open set and u : © — S' a measurable function. A lifting of u is a measurable
function ¢ : Q — R such that
u(z) = e'# (@)

for a.e. x € Q. If u has some regularity one may ask whether or not ¢ can be chosen with
some regularity as well. For example, if €2 is simply connected and w is continuous (respectively,
u € CF(Q,SY)), then it is well known that ¢ can be chosen to be continuous (respectively,
¢ € C*(Q,R)).

Regarding other function spaces there has been recently much research, specially motivated
by the study of the Ginzburg-Landau equation. The first result of this type in Sobolev spaces
was given by Béthuel and Zheng [19], and it asserts that if © is a bounded simply connected
domain in RV and v € WP(Q, S') with p > 2 then u = € for some p € WIP(Q,R). On the
other hand, if N > 2 and 1 < p < 2 then there are functions u € W1?(Q, S') which have no
lifting in WP, One example when N = 2 and 0 € Q is

Later Bourgain, Brezis and Mironescu [20] addressed the same question for general Sobolev
spaces W5P(£2,51),0 < s < coand 1 < p < oo. They gave a complete description, characterizing
in terms of NV, s and p all the cases where a lifting is always possible and the cases where there
is some u € W5P(Q, S!) without lifting in W*P.
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Chapter 1. Lifting of BV functions with values into S*

Results concerning other spaces include for example the work of Coifman and Meyer [35],
who showed among other things that if v : R — S! is BMO and |u|gyo < v (where v > 0
is a constant) then w has a lifting in BMO with a certain control of the BMO seminorm of
the lifting. Then Brezis and Nirenberg [31] extended this result for general domains € and also
showed that if u € VMO then ¢ can be chosen also in VMO.

We are concerned here with the case when v has bounded variation, and by this we mean
that u = (u1,u2) € L} (2, R?), |u(z)| = 1 for a.e. x € Q and its BV seminorm is finite, i.e.

loc

2 2
lu| gy = sup{/ Zukdivckdx : (G € CP(Q,RY), Z‘Ck‘Q <1lin Q} < 00,
Q=1

k=1

where the norm in R¥ is the Euclidean norm.

Remark 1.1 Throughout this chapter we will say that v € BV(Q,R™) if v € L}, (Q,R™)
and its standard BV seminorm |v|gy is finite. We adopt this convention, because in the case
of an open set ) of infinite Lebesgue measure, the standard definition of BV requires that

v € LY(Q,R™) which would not be true for a S'-valued BV function.

Our main result states the existence of a BV lifting with an optimal control of the BV

seminorm:

Theorem 1.1 Let u € BV(Q,SY). Then there exists a lifting o € BV N L>®(L,R) of u such
that

lplpy < 2|ulpy. (1.1)

The idea for the proof of Theorem 1.1 is to consider the argument type function L : S* — R
defined by

L(e?) =6 forevery —m<6<m. (1.2)

Then ¢ = L(u) is a lifting of u, in the sense that ¢?(*) = u(zx) for all z € Q. We would like to
have |¢|py < 2|u|py, but this is far from true. It may even happen that L(u) does not belong
to BV (classical results for composition of functions assert only that if f : S' — R is Lipschitz
then f(u) is BV). There is a way to remedy this situation. Indeed, observe that for fixed o € R

the function L(e*u) — « is also a lifting of u. We shall prove

Lemma 1.2 The function a — |L(e'®u)|py is measurable and
2m )
/ |L(e"*u)|pyv da < 47|u|gy . (1.3)
0

Remark 1.2 Inequality (1.3) can be viewed as a sort of co-area inequality. In particular it
implies that for a.e. a € R, L(e’®u) € BV. The constant 47 in (1.3) is sharp; see the examples
in Section 1.5. The proof of (1.3) is based on the chain rule for BV functions. A new proof of
(1.3) without using the chain rule was given by Merlet [69].
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1.1. Introduction

Corollary 1.3 Letu € BV (Q,S'). Then there exists a sequence uy € C*(2, SY)N BV (Q) such

that up, — u a.e. and in Llloc and

limsup [ug|pv < 2|ulpy.
k—o0

Remark 1.3 (1) If u belongs to the Sobolev space W11(Q, S') and 2 C R? is smooth, bounded
and simply connected, it was already known that u has a lifting ¢ € BV(Q,R) which satisfies
(1.1) (private communication of H. Brezis and P. Mironescu [29]). The idea is to apply the
density result of Béthuel and Zheng [19] to reduce the proof to the case where u is smooth
except at finitely many points. For such a function v one can construct a lifting whose jump set
is precisely the minimal connection between the singularities of u (with respect to their degree)
and the boundary of €2, a notion first introduced by Brezis, Coron and Lieb [27]. This lifting
satisfies condition (1.1). None of these tools are available for the case of a function of bounded
variation.

(2) The existence of a BV lifting for u € BV(£2, S1) (when € is a bounded simply connected
domain of RY) was first proved by Giaquinta, Modica and Soucek in [47], but the authors did
not find the optimal control of the BV seminorm of the lifting.

The control in Theorem 1.1 is optimal for any domain in RY, N > 1. In one-dimensional

domains, the best constant is /2. The result is stated as follows!:

Theorem 1.4 Let Q C RY be an open set.

(i) If N =1, the optimal constant is 5 : ifu € BV (2, S) then there exists a lifting ¢ € BV (), R)
of u such that
T
lelay < Slulpv; (1.4)
moreover, if there is a constant C > 0 such that any function v € BV (Q, SY) has a lifting
p € BV(Q,R) with the property

llev < Clulpy, (1.5)
then C' > 5;

(i) If N > 2, the constant 2 in (1.1) is optimal, i.e., if there is a constant C > 0 such that any
function u € BV (2, S') has a lifting ¢ € BV (2, R) with the property (1.5), then C > 2.

The outline of the chapter is the following: we start by some preliminaries about functions
of bounded variation. In Section 1.3 we prove Theorem 1.1. In Section 1.4, we show that 7 is
the optimal constant in (1.5) in one-dimensional case. Finally, in Sections 1.5 and 1.6 we prove

that 2 is the optimal constant for dimensions N > 1.

T added Theorem 1.4 in order to prove the optimality of the constant 2 for liftings in any domain. This result

does not appear in the published version of the paper [37].
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Chapter 1. Lifting of BV functions with values into S*

1.2 Preliminaries about the space BV

The material that we present next is standard and can be found in the book [11] (see also
[23, 42]). Let v € BV (Q2,R™). Its jump set S(v) is defined by the requirement that =z € Q\ S(v)
if and only if there exists 0(x) € R™ such that o(x) = ap-lim v(y), that is:

Yy—x

=0, Ve>0.

I LY (Br(z)N{y € Q : |u(y) — 0(z)| > e})
r—0 [,N(Br(m'))

It can be proved (see [11]) that the set S(v) is a countably H™~!-rectifiable Borel set, i.e.,

S(v) is o-finite with respect to the Hausdorff measure H”¥~! and there exist countably many
[e.e]

N — 1 dimensional C'-hypersurfaces {Sy}3°; such that HN*1<S(U) \ U Sk) = 0. Moreover,
k=1

for HN"t-a.e. x € S(v) there exist vT(z),v () € R™ and a unit vector v,(x) such that

lim v(y)dy =vT(z), lim v(y)dy = v (z), (1.6)
"0 B} (w00 (2)) TS By (@ v (@)

where

By (z,v(2)) = {y € B(z,7) : {y — z,vy(x)) > 0}
Br_(xvyv(x)) - {y € B(.%',T) : <y - xﬂ/v(x» < 0}'

The vector field v, : S(u) — SV~! is called the orientation of the jump set S(u). For a locally

bounded function v, (1.6) is equivalent with

ap-lim v(y) =v" (), ap-lim v(y) =v ().
y—x, (Yy—x,vy(x))>0 y—x, (Yy—x,vy(x))<0

(

The differential Dv is a matrix valued Radon measure which can be decomposed as
Dv = D% + D%v + D,

where D%v is defined as the absolutely continuous part of Dv with respect to the Lebesgue

measure, while DIy and D¢ are defined as
DIy = DvS(v), D% = (Dv— D%)_(Q\ S(v)).
Divy is called the jump part and D the Cantor part of Dv. It can be proved that
Div = (v —v7) @ v, HY1LS(v).
Let us consider now the precise representative v* :  — R™ of v, i.e.

lim ][ vdy if this limit exists
vi(x) = 0B () ]

0 otherwise
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1.2. Preliminaries about the space BV

Remark that if (1.6) holds for some x € € then

v (x) + v (2) ‘

o) =

More generally, liH(l) vdy exists for HV"la.e. x € Q; hence, v* specifies the values of
r—=Y.JBy(z)

the BV function v except on a HN~!-negligible set and the mollified functions v * p. pointwise
converge to v* in that domain. Since we only use the local behavior of BV functions and we
do not need the specific values in each point, henceforth we consider that v coincides with the
precise representative v* in the Llloc—class.

It is well known that if v € BV(Q,R™) and f : R™ — R is Lipschitz then f o v belongs to
BV, and Ambrosio and Dal Maso [9] proved a chain rule in this context. The following lemma
is a slight modification of this chain rule for u in BV with values in S (see Theorem 3.99 in

[11] for the case of scalar BV functions):

Lemma 1.5 Let Q C RY be an open set and u € BV(Q,S'). Let f : S* — R be a Lipschitz
function. Then v = fou belongs to BV(Q,R), f is differentiable at u(x) for (|D*u|+ |D¢u|)-a.e.
x and

Dv = fr(u)(D%+ D) + (f(ut) — f(u™))v KV 1S (w), (1.7)

where f; denotes the tangential derivative of f.

Proof. Let us consider a Lipschitz extension f of the function f to R? such that

0 if |z| < 4,
fly={rg) its<ll<2,
0 if |z| > 3.

Denote by F' and G the set of Lebesgue points of f; € (Lc’o(Sl))2 and Vf e (LC’O(RQ))2 in
St respectively in R2. Remark that H'(S'\ F) = 0, GNS! = F and fr=VfonF. Let
(pe) be the standard mollifiers in R?; for each ¢ > 0, consider the functions fo=fx* pe and
ve = f. ou. By the chain rule in BV (see Theorem 3.96, [11]), it results that v. € BV (X, R),
DuI(@) < |V ol 1< | Dul(©) and

Dve = Vfo(u) (D% + D) + (f-(u) = fo(u vy HY 1S (1), Ve > 0. (1.8)

Since v. — v in L} _(€2), it follows that v € BV (Q) and Dv. converge weakly* to Dv.
Remark that |D%|(u=1(S*\ F)) = |D|(u=1(S'\ F)) = 0 (see Proposition 3.92, [11]), so
that f is differentiable at u(z) for (|D%u| + |Dul)-a.e. z. Therefore the right hand side of (1.7)

makes sense and since Vf.(z) — V. f(z) for every z € G as ¢ — 0, we deduce that
Vf.(u) — Vf(u) |D%|+|DCl-a.e. in Q.

By the dominated convergence theorem, the conclusion follows passing to the limit as ¢ — 0 in
(1.8). O
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Chapter 1. Lifting of BV functions with values into S*

1.3 Control of a lifting in BV. Proof of Theorem 1.1

We start by proving Lemma 1.2 and as a consequence, we deduce the control of the BV seminorm

of a lifting of u.

Proof of Lemma 1.2. Let u € BV (£, S'). For the proof of this theorem we consider a sequence
of Lipschitz functions that approximate L (defined in (1.2)), and carry out the computations
with this approximation. For small € > 0, let L. : S' — R denote the following function

0 if0<f<m—e¢,
Le(e?) = ==(r—0) ifr—e<0<7+e,
0 — 27 ifm4+e <0 <2m.

Let a € R and define ¢, : S — R by
¢a,€(6i6) _ Le(ei(a-i-e)).

Then ¢, is Lipschitz and therefore ¢, (u) € BV. We use now the chain rule from Lemma 1.5

to compute the derivative of ¢ o(u):
Dgoe(u) = (q;a,a)T(u)(D“u + Du) + (¢a76(u+) — Qae(u))vy HN_lLS(u)

where ((50475)7 denotes the tangential derivative of ¢, and is given by

—

(Pae)r(e”) = (Le) ().
Hence,
Do e(u) = (EE)T(eiau)(Dau + DU) + (Pae(uh) — Pae(u™))vy HN LS (u).

Since the measures in the expression above are mutually singular, for the total variation of the

corresponding measures we have
|Doae(w)] < [(Le)r (¢u) [(|Du| + [ D°ul) + |$a,e(uh) = dae(u”)| HY 1S (u).

Integrating this total variation over {2 we get
ey < [ IEDCI D 41D+ [ falw®) = o] " (19
S(u

Observe that the map o — |¢q.(u)|py is lower semi-continuous because it is the supremum of

a family of continuous functions of «:

|pae(u)|By =  sup /Lg(emu) div g dx.
9€C5°,19|<1/Q

In particular o — |¢q c(u)|py is measurable. Integrating (1.9) with respect to a over [0, 27] we

21 2
/ (G ()| v dov < / / ((E2)r(ew)| d(\D| + |Du]) dor
0

[ /S 60l = b )

get
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1.3. Control of a lifting in BV . Proof of Theorem 1.1

Let us consider the first term on the right hand side above; by Fubini’s theorem

2 2
/ / |(L uw)| d(|D%| + | D u|) dae = / / u)| dad(|D%| + |Dul).

But an easy computation shows that for any fixed x

2
/0 [(Lo)r(e%u(x))| da = 4(r — €).
Therefore
2T
| [ IEo el aiptal + [Dul) do = a(x = )(D"ul(@) + [Dul(@). (110)

Regarding the term

/%/Su (Goe (") — ()| dHV 1da—/ /2ﬂ|¢ae — G| dadH V!

we see that we have to estimate
2
/ |L€(ez(a+91)) _ LE(BZ(Q+92))| da’
0

where 601, 05 € [0, 27] are fixed. Using the explicit formula for L. it is not hard to verify that if
’61 — (92’ < 7 then

2m
/ Lo (00 — L (40| oy = 27
0

< 8(m — &) sin(|0; — 62]/2).

— 6s](2m — |61 — 02))

Observe that if €1 = u*(x) and 2 = u~(z) with |, — 6] < 7, then |[ut(z) — u™(2)] =
2sin(|6; — 02|/2). Hence, for any fixed x € S(u) we obtain

21
/O (o (") — Goe(u”) | da < A — &) ut (z) — ™ (2)].

Therefore, integrating over S(u) we find

2
/ / |Pave(u™) = pae(u™) dHN " da < 4(m — 5)/ lut(z) —u (z)|dHN "t (1.11)
S(u)

S(u)

Combining (1.10) and (1.11) we establish that

2m
| 10wl da < 46x - olulr. (1.12)
0
To finish the proof note that o — |L(e’“u)|py is measurable with values in [0, cc], because

|L(e"“u)|py =  sup /L(emu) div g dz
9€C5 lgl<1/Q
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Chapter 1. Lifting of BV functions with values into S*

and for fixed g the map a — [, L(e"u) div g dx is measurable.
Also observe that for all except a countable set of @ € R we have LN ({y € Q : u(y) =
—e~%}) = 0, and for these values of a

L.(e"u) — L(e"“u) ae. in Qase — 0.
This implies that for a.e. «
|L(e"™u)|py < lim iglf |L.(e"u)|py.
E—

Hence, by Fatou’s lemma

2 ) 2m .
/ |L(e"“u)|py da < lim inf/ |Le(e"u)| gy da
0 0

e—0
< Anlu|pv
by (1.12). O
Proof of Theorem 1.1. Using Lemma 1.2, the mean value theorem yields that there exists aqg

such that
1 27

|L(e"u)|py < —

< |L(emu)|BV da < 2|ulpy.
27'(' 0

Therefore, ¢ = L(e'®u) — g is a lifting of u that satisfies (1.1). O
Remark 1.4 Recall the space of special functions with bounded variation
SBV(Q,R™) ={u e BV(Q,R™)| D4 =0 in Q}.

We say that u € SBV(Q,S!) if u € SBV(Q,R?) and |u(z)| = 1 for a.e. x € 2. The previous
proof for this case says that for each u € SBV (2, S1) there exists a lifting ¢ € SBV(Q,R) of u
such that (1.1) holds.

1.4 The constant 7/2 is optimal in 1d

In this section we prove that the optimal control for the BV seminorm of a lifting is 7/2 in

one-dimensional domains.

Proof of (i) in Theorem 1.4. Let ) C R be an interval and u € BV (Q, S'). We will construct
a lifting ¢ of u such that (1.4) holds. The derivative @ decomposes as

o= ()" + @)+ > (u(y+) — uly—))d,

y€S(u)

where S(u) denotes the jump set of u which is at most countable. For any y € S(u), we denote

dy(u) = Arg u(y+) where Arg w € (—m, 7] is the argument of the unit complex number w.
! u(y-)

Obviously,
0
dy ()] < S ulyt) — u(y-)l
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1.4. The constant 7/2 is optimal in 1d

Now consider ¢%, ¢, ¢/ the BV functions (unique up to constants) having as derivatives in 2
the finite Radon measures u A ()%, ¢ and Z dy(u)dy. Let
yeS(u)

¢ ="+ ¢+ ¢ € BV(QR).

By the chain rule, we have

(we=™®)=0 in Q. (1.13)
Indeed,
(e—'w) = —ie7% (pa + ¢°) + Z (e7telvt) e*iw(y*))(gy
yeS(u)
= —e %u ((0)* + (0)°) + Z (e~ iPlut) — e—iso(y—))(;y.
y€S(u)

Remark that the space BV (£,C) N L™ is an algebra. Differentiating the product ue~*, we
obtain

(ue-ie) = -W<@n“+«uf>—ue-Wa<@na+<uf>

+ Z Pt) — oy (y—) e*iv(y*))(;y
y€S(u)

=0.

Thus, up to a constant, ¢ is a lifting of u, i.e. u = € a.e. in Q. If we compute the total

variation of ¢, we conclude

Liel= [ aa@e+ian+ Y la

yeS(u)

s[5u>\+\ N+ D luly+) —uly-)

y€S(u)
<2 [
- ul.
<2/

It remains to prove that 7/2 is the best constant in (1.4). For simplicity of the writing, let
Q = (—1,1). Define u € BV (£, S!) as

1 if x € (—-1,0),

wle) = —1  ifxze(0,1).

Then |4](2) = 2. Let ¢ € BV(£2,R) be a lifting of u. We prove that

[w=3 [
ol > = wl.
Q 2 Ja
By the chain rule, it follows that

()7 + ()¢ = uA (@)% + (@)°) = 0
(9 = (p(0+) — p(0-))d0 + > (p(y+) — ly—))3, (1.14)

yeB
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Chapter 1. Lifting of BV functions with values into S*

where B C (2 is a finite set such that 0 ¢ B and ¢(y+) — ¢(y—) = —2may, oy € Z, for every
y € B. Obviously, |¢(0+) — ¢(0—)| > |do(u)| = 7. According to (1.14), we have

191 =10(0+) = 00+ 3 lotu+) — oty 2w = 3 [ il

yeB

1.5 Two examples in the disc

We give two examples of BV functions v defined in the unit disc in R? and taking values in S*
for which 2 is the minimal constant in (1.1) for every possible lifting ¢ in BV. The first example
is a WH! function (and therefore, it belongs also in SBV) and the second one is a purely Cantor
type function (by that, we mean that u € BV and D% = DJu = 0). Though, both functions
have the same topological defect at the origin that will generate a jump part of the lifting with
larger variation than the BV seminorm of wu.

The following result was already suggested in [22]:
Lemma 1.6 Let Q be the unit disc in R?. Define u: Q\ {0} — S!,
u(z) =—  for every x € Q\ {0}.

Let ¢ € BV(Q,R) be a lifting of u. Then |Dp|(2) > 47 = 2|u|py .

First Proof: We have that u € W'?(Q) for all p € [1,2) and [, [Vu| = 27. By the chain rule

for BV functions applied to u = ¢ we obtain
Du = iu(D% + D) + (e — e Vv, H'S ().

Since D = 0, we get that D% = 0 and then, D% = —iu Du which leads to |D%p|(2) = 27.
Because u has no jump, we have " — ¢” =0 and the size of the jump of ¢ is at least 2.
Now, it is sufficient to show that [D7ip|(Q2) > 27. Let g € C§°(€2, R). The radial derivative of g

is defined as ” »
gr(re?) — timg 20 — 9(re”)
T t—0 t ’

Also for BV functions (see [11]), there exists an unique measure called the radial derivative of
o and denoted by D, such that

[ e-da == [ ga(D.0). v e @)

Since D¢p = 0, we write
DT(,O = Dg(p + D;QO

For every r € (0,1), if S, = {z € R? : |z| = r} is the circle of radius r, then we denote by
o S — R the restriction of ¢ to S,.. Using the Characterization Theorem of BV functions
by sections and Theorem 3.108 in [11], it results that for a.e. r € (0,1), ¢, € BV(S,,R),

30



1.6. The constant 2 is optimal for N > 1

Dip= (£'(0,1)) ® DIy, (as product of measures) and the discontinuity set of ¢, is S(¢) N S;.
Remark that deg(u, S,) = 1 for every r € (0,1). Hence, for a.e. r € (0,1), ¢, will have a jump
on S, and the size of the jump is not less than 27. Finally,
1
DIgl(®) > |DiA@) = [ 1D7pil(S0)dr = 21,
0
]

Second proof: Take ¢, € Wht N C>®(Q,R) such that ¢, — ¢ a.e. on Q and [, |V, |dz —
|Dp|(Q) as n — 0. Set u, = en € WhHiNnC*>(Q, S1). As above, for every r € (0,1) we denote
by S, the circle of radius r. Up to a subsequence, for a.e. r € (0,1) we have u, — u a.e. in S,

and sup | Duy,|(S,) < co. For those r, since deg(u, S,) = 1, it follows by Lemma 18 in [22],
n

liminf/ \vun-rycmlz/ qu-Tde1+2w:/ \Vau| dH + 27
Sr S S

n—oo

(here 7 is the tangent vector in each point of S,). Therefore, by Fatou’s lemma,

1
|Dp|(R2) = liminf/ |Vuy| > / liminf [ |Vu,|dHdr > / |Vu| + 2.

The second example in the unit disc is the following;:

Lemma 1.7 Let Q be the unit disc in R? and let f : [0,1] — [0,1] be the standard Cantor
function. Define in polar coordinates the function u : Q\ {0} — S!,

u(r,0) = e (57 for every 6 € [0,2w) and r € (0,1).
Let ¢ € BV (Q,R) be a lifting of u. Then |Dp|(2) > 47 = 2|u|py .
Proof. It’s easy to see that u € BV (Q, S!) and |u|py = |D/(2) = 27. By the chain rule we
get that |D|(Q) = |Du|(2) and |D%p|(2) = |D%u|(2) = 0. Repeating the same argument as

before for the restrictions to the circles S,, we deduce that |D7p|(Q2) > 27 and the conclusion
follows. O

1.6 The constant 2 is optimal for N > 1

In this section we complete the proof of Theorem 1.4:

Proof of (i) in Theorem 1.4. First, we make the construction of a dipole in the disc
R = B(1,2) C R? (see also [22]): it is a function u. € WHL(R, S1), & > 0 is small, u. has two
topological singularities (called poles) in P = (0,0) € R? and N = (2,0) € R?, i.e., detVu, =
w(0p — dn). Moreover,

/ |Vue| de < 4w+ 2¢ (1.15)
R

and / |Voe|dz > 8m, for every lifting p. € BV(R,R). (1.16)
R
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Chapter 1. Lifting of BV functions with values into S*

Then we adapt this construction for every domain Q € RY, N > 1.
We distinguish two cases:
a) The case of the disc R = B(1,2) C R%. Let € > 0 be a small parameter. Set

Re ={(x1,22) € R : 0 <21 <2, |x2| < emin(z1,2 — x2)}.

Then H?(R.) = 2¢. We define the function woe: Re — R by

T
@075(.%'1,.%'2) =T (1 + 2 ) .

emin(x,2 — x2)

Now consider the function u, : R — S given by

eipo.e(z1,22) in Re,
u5($17$2): 1
) in R\ R..

We have that

[ ucldz = [ 190l da
R Re
1
= 47‘(‘/ V1+e2t2dt € (4, 4m + 2¢),
0

and hence, (1.15) holds. An easy computation shows that the jacobian of u. (in the sense of
distributions) is the dipole (P, N):

1 0 0
det(Vug) := §CUI‘1 (uE A a—Zi,ug A (9—ZZ> =7(dp — IN)-

Therefore, we expect that every lifting ¢. € BV(R,R) of u. has a jump of size 27 along a

connection between the poles P and N. By the chain rule, the total variation of the absolutely

/ | D%pe| :/ |Vue|de > 4r.
R R

In order to have (1.16), it is sufficient to show that

/ |Dip.| > 2n  and / | DI | > 2.
B(0,1) B(2,1)

By symmetry, we only prove the first inequality. As in the proofs of Lemma 1.6, the argument

continuous part of D, is

is based on the restriction ¢, . of ¢. on the circle S,, r € (0,1). We know that deg(u.,S,) =1
for every r € (0,1). Hence, for a.e. r € (0,1), ¢, will have a jump on S, and the size of the
jump is larger than 27. Since the discontinuity set of ¢, . is S(¢z) N Sy, it follows that

1
Dipcl(BO) = [ 1Digr|(8,) dr > 2.
0
Finally, (1.15) and (1.16) yield the conclusion by letting ¢ — 0.
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1.6. The constant 2 is optimal for N > 1

b) The general case of a domain @ C RY. Let ¢ > 0 and set D = R x (0,1)V=2 c RYN. By
translating and shrinking homotopically the cylinder D, we may suppose that D CC Q. Let u,
be the function in R constructed above. We write z = (21,2, ...,2N) = (21,22,2') € RYN. We
consider the function w. € BV (€2, S1) given by

Ue (21, 29) in D,

1 in Q\D.

we(x) =

We have that Dw. = D%, + D/w. where S(w.) C R. x 8([0, 1]N*2). Moreover,
/ |Dw,| = / dm'/ |Vue|dzy dee < 47 + 2¢,
Q (0,1)N~-2 Rx{z'}
|DIw.|(Q) < 2HN 1 (R. x 9([0,1]V72)) < 82(N —2).

Let v, € BV(Q,R) be a lifting of w.. As above, the chain rule leads to the total variation of
the absolutely continuous part of the lifting:

/\D“zpey :/ | D%, | < 41 + 2e.
Q Q

We want to show that [D74).|(Q2) > 47. For that, we notice that the restriction of ¥ to R x {x'}
is a BV lifting of u. for almost every 2’ € (0,1)N¥=2. Therefore, by (1.16), we deduce that

/ D] > / da’ / D] > 4.
Q (0,1)N-2 Rx{z'}

[ Do = 4+ [ = @2+o0) [ Dl

where o(e) — 0 as ¢ — 0. O

We conclude that

Remark 1.5 It would be interesting to know if for every domain Q@ € RY, N > 1, there exists
a non-constant function v € BV (£2, S1) such that

/ |Dyp| > 2/ |Dul, for any lifting ¢ € BV (Q,R) of w.
Q Q
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Chapter 2

Optimal lifting for BV (S!, S1)

Abstract

For each g € BV (S, S'), we solve the following variational problem
E(g) = inf{/ || : ¢ € BV(S',R),e'* =g ae. on Sl}
Sl

and we will deduce that E(g) < 2|g|Bv.
This chapter is published in Calc. Var. Partial Differential Equations 23 (2005), 83-96
(ctf. [52]).

2.1 Introduction

Let g € BV(S',S1), i.e. g € BV(SY,R?) and |g(y)| = 1 for a.e. y € S*. The aim of this chapter
is to compute the total variation of an optimal lifting BV of ¢

E(g) = imf{/s1 || : ¢ € BV(SY,R),e"” = g a.e. on Sl} (2.1)

(here “*” stands for the tangential derivative operator). It is easy to see that the above infimum
is achieved and it is equal to the relaxed energy

E.a(g) = inf{liminf /Sl \gn|dHY = g, € C(SY, 81, deggn =0, g, — g ae. on Sl}

n—oo

(see Remark 2.1).
In what follows, we will always identify g with its precise representative, which is a Borel

function such that (y+) + g(y—)
g(y) = %, vy € St

In order to state the main results, we need to introduce some notations. We decompose the

finite Radon measure g as
g=9)"+©@"+ @),
with (9)7 = Y (9(y+) — 9(y—))y.

y€S(9)
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Chapter 2.  Optimal lifting for BV (S!, S1)

Here, (§)%, (¢)¢ and (§)’ are the absolutely continuous part, the Cantor part and the jump part
of ¢ and the set (at most countable)

S(g) = {y e St g({y}) # 0}
is the set of jump points of g. For any y € S(g), let dy,(g) € (—m, 7]\ {0} be such that

9(y—)
thus, |dy(g)| = ds1(g(y+), g(y—)), where dg: is the geodesic distance on S'. We denote

P(g) = > dylg)

yeS(g)
L) = [ an (@ +@r)
m(g) = P(Q);‘TL(Q),

where ( “ ) A ( - uy g —uzpt1. Remark that the measure gA ((¢)*+(¢)¢) is well-defined
U2 2

since the measure (¢)* + (¢)¢ vanishes on most countable sets.
A preliminary result is the following:

Lemma 2.1 m(g) € Z, Vg € BV(S1,51).

The reason to introduce m(g) is the following: if y € S(g) and ¢ is a lifting BV of g, then
lo(y+) —e(y—)| > |dy(g)|. It turns out that m(g) is related to the number of times where the
above inequality is strict.

Set

Bo) = [ (1611+16r).
This quantity represents the total variation of the diffuse part of the derivative of g and plays
also the role of the total variation of the diffuse part of the derivative of a lifting of g.
If S(g) = 9, set E7(g) = |L(g)|; otherwise (i.e. S(g) # @), set
El(g) = min dy(g) — 2may|. 2.2
(9) o€l 9e8(9) GZS(:)’ y(9) yl (2.2)
#{y€eS(g): ay#£0}<oo Y71
Zyes(g) ay=m(g)
As we will see, E’(g) is the total variation of the jump part of an optimal lifting of g. The
analytic formula for £7(g) (when g has jumps) is given by:

Lemma 2.2 If S(g) # &, then

sgn(m(g))L(g) + 2 B‘élé?g) > dy(9)|  if m(g) #0
, —min(lm y€S(9)\B
El(g) = #B=min(m(@)#5(9)) o a, (9))=sgn(m(g)) .
> ldy(g)] if m(g) =0
y€S(g)

36



2.2.  Optimal lifting of g € BV (S!,Sh)

The above formula can be interpreted as follows: if sgn(m(g)) = 1, then the minimal value in
(2.2) is achieved by taking a, > 1 for the y’s with the largest positive jump dy(g).
Our first main result is

Theorem 2.3 For every g € BV (S, SY), we have
E(g) = E(9) + E/(9).

In the case where g is a continuous function of bounded variation, the expression of E(g) was
already proved by Bourgain-Brezis-Mironescu [22]. In the general case, our result can presumably
be proved using the theory of Cartesian Currents of Giaquinta-Modica-Soucek[47].

The next result yields an estimate of E(g) in terms of the BV-seminorm of ¢g. It is a
straightforward variant of Theorem 1.1 for BV(Q, S!) functions (where @ C RY is a bounded
open set):

Theorem 2.4 For every g € BV (S, SY), we have
B(g) <2 [ 1il (23
S1

The constant 2 in the above inequality is optimal (see the examples in Section 2.5). We present
two different proofs for Theorem 2.4. The first one relies on the explicit formula obtained in

Theorem 2.3, combined with the following trigonometrical inequality:

Lemma 2.5 Let «y be the unique solution on (0, F) of the equation

VAT ST
3 3

3sin (v = 1.345752051076...).

For p integer, let x), € [0, 5], Vk > 1 such that Zwk <pm+~. Then

k>1
sinxp > T — max Tp.
2 L PO
E>1 E>1 #B—pkeB

The second proof of Theorem 2.4 is a straightforward adaptation of the proof given in Chap-
ter 1; the idea is to use a special class of liftings of g. We discuss in Section 2.4 some properties
of this class. The striking fact is that, although the lifting obtained using the technique in The-
orem 1.1 is not optimal in general (i.e. this lifting is not a minimizer in (2.1) ), inequality (2.3)

is easier to prove using this lifting rather than using an optimal one.

2.2 Optimal lifting of ¢ € BV (5!, S1)

In this section we prove Lemma 2.1, Lemma 2.2 and Theorem 2.3; we also construct an optimal
lifting of ¢g. Finally, we present an estimate of E(g) in terms of a more natural BV -seminorm
l9| By g1, defined below.

First, following [30], let us make some remarks about F(g) and Fy¢(g):
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Chapter 2.  Optimal lifting for BV (S!, S1)

Remark 2.1 i) E(g) < oo and FEyq(g) < oo (the existence of a lifting BV for g is shown in the
proof of Lemma 2.1);
ii) The infimum (2.1) is achieved; indeed, let ¢, € BV (S!,R),e%" = g a.e. on S! be such
that
lim |éon] = E(g) < 0.
Sl

n—oo

By Poincaré’s inequality, there exists an universal constant C' > 0 such that

/|90n_][@n|dH1§C/ |onl, VR € N
51 51 st

(where ][ stands for the average). Therefore, by subtracting a suitable 27 integer multiple,
Sl

we may assume that (¢, )nen is bounded in BV (S!,R). Up to a further subsequence, we may
assume that ¢, — ¢ a.e. and L' for some ¢ € BV (S R). It follows that ¢ is a lifting of g on
S and

B(g) = im [ 1gal = [ 1012 Elo)
n—oo S1 S1
iii) B(g) = Fra(g). For” <" take g, € C*(S!, 81),¥n € Nsuch that deg g, = 0, g, — g a.e.

on S! and sup/ |gn|dH' < co. Then there exists ¢, € C*(S', R) such that e*¥" = g,,. Since
neNJ g1

/ |pnldHE = / |gn|dH?!, using the same argument as above, we may assume that o, — ¢
51 51 ‘
a.e. and L' for some ¢ € BV(S!,R). Therefore, ¢¥ = g a.e. on S! and

E(g)g/ 9| ghminf/ |gbn|dH1:liminf/ |Gn|dH".
g1 n—oo S1 n—oo g1

For ” >" consider a BV lifting ¢ of g and take an approximating sequence ¢, € C*°(S!,R)
such that ¢, — ¢ a.e. and |@[(S?) = lim / | |dHE. With g, = e¥n € C=(S', S1), we have
n—oo [g1

degg, =0, g, — g a.e. on S and

Era(g) < lim/ |gn|dH! = lim/ y¢nde1:/ |&|.
n—oo Sl n—oo Sl Sl

We next prove Lemmas 2.1 and 2.2:

Proof of Lemma 2.1. If (§)) = 0, i.e. S(g) = @, then g is continuous on S*. We claim
that m(g) = degg € Z. This is clear when g is smooth; the general case is obtained by
approximating g with a sequence (g,), C C*(S!, S1) such that g, — g uniformly and g, — ¢
weakly* as n — oo. Otherwise, let y; be a jump point of g on S'. Consider S'\ {y;} as an
interval and on that interval take %, ¢ ¢/ the BV functions (unique up to constants) having
as derivatives in S\ {y1} the finite Radon measures g A (§)%, g A (§)¢ and Z dy(9)dy.
yeS(9)\{y1}

Let ¢ = ¢* 4+ ¢ + gpj. As in (1.13), by the chain rule, we have
(ge=®) =0 on S\ {y1}

38



2.2.  Optimal lifting of g € BV (S!,Sh)

so that, up to a constant, ¢ is a lifting of g, i.e. ¢ = €9 a.e. on S'. Clearly, ¢ € BV(S',R),
oy1+) —e(y1—) = dy, (9) + 27, o € Z and

(e1+) = eW1=))8y, =g A +g A @)+ Y dy(g)dy + 2mady,.
y€S(9)

S n
v (psl\{yl}

Since / ¢ = 0 we conclude that P(g) + L(g) = —27« € 27Z. O
S1

Proof of Lemma 2.2. Suppose that m(g) > 0 (the case m(g) < 0 is analogous). We start by
noting that

ayezl,%ES(g) Z |dy(g) — 2may| ocyEZI7Igl/f€S(g) Z |dy(g) — 2may|. (2.4)
#{yeS(g)ay 20} <00 V<5 #yeS(9)ay£0y<o0 V50
2yes(g) w=m(9) 2yes(e) w=ml9)

lay —az|<1,¥y,2€5(g)

Indeed, it suffices to observe that, if dyi,ds € (=7, 7], a1, a9 € Z such that a3 — ag > 2, then
|d1 — 27TO(1| + |d2 — 27TO(2| > |d1 — 27‘(‘(0[1 — 1)| + |d2 — 27‘1’(0[2 + 1)| (25)

We distinguish in our analysis the following cases:
Case 1: m(g) > #S(g) > 0. Then, by (2.4), we have that o, > 1, Vy € S(g). It follows that
|dy(g) — 2moy| = 21y, — dy(g), Vy € S(g). Therefore,

E’(g) = 2mm(g) — P(9) = L(g) > 0.
The minimum is achieved in (2.2); consider, for example, the choice

(Qy)yes(g) = (1, . 1,m(g) — #S(g) + 1).

Case 2: 0 <m(g) < #S5(g). By (2.4), we must have o, € {0,1}, Yy € S(g). Therefore, the RHS
of (2.4) is equal to

inf Z |dy(g) — 2may| = L(g) +2 _inf Z dy(9);

ay€{0,1} BCS(g)
#{yGS(yg):ay;éO}<oo yeS(g) #B=m(g) yeS(9)\B
dy(g9)>0

Zyes(g) oy =m(g)

this follows by noting that the y’s for which a,, = 1 have to be the ones with the largest positive
jump dy(g). The infimum is achieved in (2.4). Indeed, set

S(g) ={y € S(g) : dy(g) > 0}.

If #5(g) > m(g), then choose B = {y1, o Um(g)} C S(g) such that dy, (g), oy, o (9) are the

biggest m(g) elements of the set {d,(g) : y € S(g)}. If #S(g) < m(g), then choose B C S(g)
such that #B = m(g) and S(g) C B. Then an optimal choice is

1 ifyeB
0 ifyeSg\B

Qy =
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Chapter 2.  Optimal lifting for BV (S!, S1)

Case 3: m(g) = 0. Here the RHS of (2.4) is equal to Z |dy(g)| and the infimum (2.4) is

yeS(9)
achieved for ay = 0,Vy € S(g). O

Proof of Theorem 2.3.
">" Let o € BV(S',R) be a lifting of g on S*, i.e. ¢ = ¢ a.e. on S'. Then, by the chain

rule,
(@) + (@) =g (9" +(9)°)
and (¢)' = Y (p(y+) — o(y=))dy + D _(2(b+) — @(b=))d.
yeS(9) beB
Here,
(i) B c S! is some finite set such that S(g) N B = &,

(ii) e(y+) — p(y—) = dy(g) — 2mey, with oy, € Z, Yy € S(g)

(ili) p(b+) — p(b—) = =27y, ap, € Z,Yb € B.
Clearly

#{y € S(g) : ay # 0} < 0.

L P
Since / o =0, we get Z Qy = Lig) + Plg) = m(g). We have
Sl

27
y€S(g9)UB
Y = [ (1001 +1611) + 3 1dylo)  2ma|+ 27 Y [l
s yeS(g) beB
If S(g) = @, then
BI(SY) = B(g) + 20 3 anl = B(9) + IL(9),
beB

which is the desired inequality. Otherwise, take y; € S(g) and observe that

21(SY = E(g)+ > ldy(g) — 2may| + |dy, (g) — 276y, |
y€S(9)\{v1}

where oy, = oy, + Z ap. Therefore, we conclude that
beB

E(g) > E(g) + E'(g).

"<” (The construction of an optimal lifting): If S(g) = &, then ¢ is continuous on
the simply connected set S'\ {1} and so there is a unique (up to 27Z constants) lifting ¢ €
BV (S*\ {1},R)NC" of g on S\ {1}. Moreover, ¢(1—) — ¢(1+) = L(g) and we conclude that

@1(S1) = E(g) + |L(g)l.
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2.2.  Optimal lifting of g € BV (S!,Sh)

Otherwise, take y; € S(g). By Lemma 2.2, we may take integers o, € Z,Vy € S(g) (all zero
except a finite number) such that Z ay = m(g) and (2.2) holds, i.e.
yeS(g)

Y ldy(g) - 2may| = EV(g).

y€S(9)

As in the proof of Lemma 2.1, construct a lifting ¢ € BV (S',R) of ¢ satisfying on S'\ {y;}

@) =9gn(9)°
Z (dy(g) - 27T0‘y)5y on S \ {y1}-

y€S(9)\{v1}

d (¢) =
and (] 51y 0y

Since / ¢ = 0, we find that @(y1+) — @(y1—) = dy, (9) — 2wy, which implies that |[(S?) =
~ Sl .
E(g) + E'(9)- m

Note that the optimal lifting is not unique modulo 27; indeed, if

1 if t € (0,7)

g(e") =
-1 ifte (m2m)
then
. 0 ifte (0,7 A 0 ifte (0,m
<P1(€Zt) — ( ) and Lpg(elt) _ ( )
—m  ift e (m2m) m ifte (m, 2m)

are optimal liftings and ; — @9 # const on S'.

Remark 2.2 As we have proved, E(g) depends on (dy(g))yes(s) where dy(g) is the unique

argument of the complex number Z 83 in (—m,m]. Consider now, for each y € S(g), an arbitrary

argument d; (g) of % such that Z |d,,(9)] < oo. It is easy to see that

y€S(g)
L(g) + d
m/(g) _ (g) ZyES(g) y(g) A
2w
Observe that if S(g) # @, then
EJ = min d — 2Ty,
W= i, 3 -2l

#{y€S(g):0y #0} <00
2 yes(g) w=m"(g)

The analytic formula for E7(g) in Lemma 2.2 still holds for the (d},(9))yes(y) and m/(g) provided
dy, € [-2m,27],Vy € S(g) and |d}(g) — d’.(g)| < 27, Vy,z € S(g). This is a consequence of the
fact that (2.5) holds if dy, ds € [—2m,27] and |d; — da| < 27.
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Chapter 2.  Optimal lifting for BV (S!, S1)

As an immediate consequence of Lemma 2.2 and Theorem 2.3, we have:
Corollary 2.6 For every g € BV (S!,S1),
E(g) < 2|g|py 51

ahere ol = [ (161 +160)1) + 3 doi(atu+).a(6-)

y€S(9)

Remark that |- |gy g1 is a seminorm equivalent to the standard BV -seminorm |- |py; in fact,
we have
T
lglsv <lglpy st < Slalsv, Vg € BV(S', 5%).

Therefore, Theorem 2.4 is an improvement of the above corollary.

2.3 First proof of Theorem 2.4

We start by stating some trigonometrical inequalities:

Lemma 2.7 Let n > p > 1 be two integers and let x;, € [0,5], k = 1,...,n, be such that

n
Zxk < pmw+~. Then
k=1

n n
E sinxg > E T — max E Tk
k=1 k=1 Bc{l,...n}

keB
#B=p

Proof. If n = p then the conclusion is straightforward. Suppose now that n > p. By symmetry,

we can assume that B = {z,_p41,...,2,} contains the biggest p terms among {z1,...,z,}. Set

z= min xg. It is sufficient to prove that
n—p+1<k<n
n—p
Z(sinxk — 1) + psinz > 0.
k=1

Define the smooth symmetric function

n—p
e . .
110, 5]" PR, f(x1,..,Tn_p) = Z(smxk — ) + psin z.
k=1
Then f is a concave function. We want to find the minimum of f over the convex compact

polyhedron
n—p

D ={(x1,...,xn—p) €10,2]"7P : Zxk <p(r—2z)+7}
k=1

Since f is concave, its minimum on D is achieved in one of the extremal points (i.e. corners)
of D. By a permutation of the coordinates, a corner (z1,...,2,—p) of D has the following form:
either

x; €{0,z},VE=1,...n—p
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2.8. First proof of Theorem 2.4

or S
xzp €{0,2},Vk=1,..,n—p—1 and z,,_p =y +p(m — 2) — Z T
k=1
In order to prove that f > 0 on these points of D, we have to check that: if k,p > 1 are two
integer numbers, I; = [0, pl;rjpv] N[0,%] and I = [kpf;?l, p;r:py] N[0, Z], then
(k+p)sinz —kz>0,Vz e [ (2.6)
and
(k+p)sinz —kz+sin(y+pr— (k+p)z) —pr — v+ (k+p)z >0, Vz € L. (2.7)

Indeed, remark that the two LHS of each inequality from above represent concave functions in
z and therefore, it is sufficient to show that they are positive on the extremities of the given
intervals I; and Is.

For (2.6), let us denote

h(z) = (k+p)sinz — kz, Vz € I.
Case 1: I} = |0, %], i.e. p,::p“/ < 5. Then k > p+ 1. We have that 2(0) = 0 and it remains to
check that

pm 4y
h >0
(k:+p)_

If p=1and k =2 then h(%ﬂ) =0.If p=1and k > 3, then the inequality

3
sinz >z — — (2.8)
6
yields, for z = Z—H,
7T+7 Y (m+7
h >0
1) 2 1( k+1>

+
+

Otherwise, p > 2 and applying (2.8) for z = 5=t

T S pw+7< B (pw+7)2> >p7r+’y< B (m+v)2>

k+p’ — k+p 6(k+p) )~ k+p 6(2p+1)
Case 2: Iy = [0,5], i.e. K <p. Then h(§) =k+p—k§5>(2-5)k>0.
The proof of (2.7) follows the same lines. O
Remark 2.3 ~ is optimal for the above inequality (consider n = 3,p = 1,2; = 29 = 23 = WTM)

Proof of Lemma 2.5. We can assume that B = {x1,...,2,} contains the biggest p terms

among {xj : k> 1}. Let ¢ > 0. There exists n > p such that Zwk < e. By Lemma 2.7, we

k>n
know that

Zsmmk > Z Lk

k=p+1
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Chapter 2.  Optimal lifting for BV (S!, S1)

Therefore,
Zsmxk > ZSIDCUk > Zxk — €.
k>1 k>p
Letting now ¢ — 0, the conclusion follows. O

We now present:

Proof of Theorem 2.4. It suffices to prove that

2o < [ (1@1+101) +2 % latr) ~ o) (29)

y€S(9)

If S(g) = @, the conclusion follows using the inequality |L(g)| < / <\(g)“\+\(g)c\) If m(g) =0,
St

(2.9) is a consequence of the fact that |dy(g)| < g|g(y—|—) —g(y—)|,Vy € S(g). Suppose now that
S(g) # @ and m(g) # 0; assume that m(g) > 0 (the case m(g) < 0 is similar). As in the proof
of Lemma 2.2, consider

S(g) ={y € S(g) : dy(g) > 0}.

If #S(g) < m(g) then, by Lemma 2.2, E’(g) = |L(g)| and so (2.9) holds.
Otherwise, we have #S(g) > m(g) > 1. Rewrite P(g) 4+ L(g) = 27mm(g) as

S dy(g) = Y. ldy(9)l + L(g) = 2nm(g). (2.10)

yeS(g) y€S(9)\S(9)

Let B C S(g) consist of the largest m(g) elements of the set {d,(g) : y € S(g)}. For each
y € S(g), set z, = dy2(g) € [0, 5]. Then [g(y+) — g(y—)| = 2sinz,. We distinguish two cases:
Case 1:

> dy(9)l - Lig) < 2v.

yeS(9)\S(9)

By (2.10), Z dy(9) < 2mm(g) + 2v. By Lemma 2.5, we have

y€S(g)

S ody(e) < > lglyt) —gly-)l.

yeS(9)\B yeS(g)

Using Lemma 2.2, we find that

El(g)=Llg)+2 > dylg) <|Llg)+2 > lgly+) —g(y—)I-
yeS(9)\B yeS(9)
Case 2:
Z |dy(g)| — L(g) > 27, ie. Z dy(g) > 2mm(g) + 2v. (2.11)
y€S(9)\S(9) y€S(9)

The following two situations can occur:
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2.8. First proof of Theorem 2.4

i) There exists S; C S(g) such that B C S; and

2rm(g) < Y dy(g) < 2mm(g) + 2. (2.12)
YyEST

By (2.12), using Lemma 2.5, we infer that

> dy(9) <Y laly+) —aly-)l- (2.13)

yeS1\B yeST

With Sy = S(g) \ Sy, it follows from (2.10) and (2.12) that

ddyg) - D ldy(g)l + Lig) 0.

yeS2 yeS(9)\S(9)

By adding Z dy(g), we obtain
yEeSa

23 A +Lle)s Y. A9l <3 l9(y+) —gy-)l.  (214)

YES2 y€S2U(S(9)\S(9)) y€52U(S(9)\5(9))

Combining (2.13) and (2.14), we deduce

Elg)=Llg)+2 > dylg) <2 > lgly+) —gly-)l.

yeS(g)\B yeS(g)

ii) There exist S; C S(g) and § € S(g) \ Sy such that B € S; and

2mm(g) + 2y — dy( Z dy(g) < 2mm(g).
yeST

Set So = S(g) \ (S1U{7}). By (2.10), we have

STdylg)— D ldylg)l + Lig) < 2. (2.15)

yeS2 yeS(9)\S(9)

By adding Z dy(g) to (2.15), we find that

yE€Sa
23 ldy(9)l +L(g) < —2v+ > ldy(o)|
YE€S2 y€S2U(S(9)\S(9))
4 4
=—27+ g Z |dy(9)] — (; -1) Z |dy(9)]-
y€S2U(S(9)\S(9)) y€S2U(S(9)\S(9))

From (2.11), we get that

29+ L{g) < Y. ldy(9) < > |dy(9)]-

yeS(9\S(g) y€S2U(S(9)\S(9))
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Chapter 2.  Optimal lifting for BV (S!, S1)

Therefore,
4 4
2Y )+ L)< -29+— > ld(9l- (= -1 (27 + L)
vES> yES2U(S(9)\5(9))
4 8y
<— ) ld@l+ILel-— (2.16)
yES2U(S(9)\3(9))
8y
<2 ) o) — gl + L) - —
yESU(S(9)\5(9))

here, we have used the fact that |dy,(g)| < g|g(y+) —g(y—)|, Yy € S(g). On the other side,
Lemma 2.5 yields

Y dy(9) <D lgly+) —gly-)l- (2.17)
yeS1\B yeST
Remark also that
dg(9) < |9(g+) — g(g—)| + (7 — 2); (2.18)

this amounts to the inequality # < 2sin § + 7 — 2, Vo € [0, 7|. By combining (2.16), (2.17) and
(2.18), we obtain

El(g)=L{g)+2 ) dylg)+2 Y dylg)+2dy(g)
yE Sy yeS1\B
8y
< _
<IL@I+2 Y lgly+) = gly=)] +2(m —2) — =
y€S(g)
Since 2(7m — 2) — 8?7 < 0, the conclusion follows. O

2.4 Another proof of Theorem 2.4

In Chapter 1, we proved the estimate (2.3) for BV (£, S') functions, where  C RY is a bounded
open set. The idea was to consider the function f : S — R defined by

fe?) =60 for V-m<O<m,
and to show that for an appropriate a € R, the lifting
p = fleg) —
satisfies |p|py < 2|g|py. For that, one can repeat the same arguments and prove that
2m )
| 11€9) ~ alpyda < txlglavs (219)
0

the conclusion is now straightforward.
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2.5. Some examples

Remark 2.4 i) Set €(g) = {f(e’®g) — a : a € R}. Then €(g) need not be contained in BV.
Here is an example. Consider the step function g € BV (S!, S') defined by

1 1

2mwity __ i _
g(e " ) - elxk’ te (2_k’ F)a k= 152,-”

where z, = (—1)’“2_[%]71. It is easy to see that

f(e™g) = wlpy = |o1 + 27+ |wksr — 21 + (—1)F27] = 0.
k>1
ii) It follows from (2.19) that, for a.e. a € [0,27], f(e'“g) —a € BV (S, R); clearly, the same
holds for a.e. a € R.
iii) There exist some functions g € BV (S1,S') such that no lifting in € (g) is optimal. For

example, consider the step function g : S' — S! be defined as:

1 if te(0,1)
iz . 12
g(e™t) = ¢ if te(7,7)
¢ it te(232)
. Y
T te (5 k) k=3,..,13
So g has 2 jumps of length 7§ (with respect to dg1) and 12 jumps of length §. Then m(g) = 2

and
T

» T

E(g)=F(g9) = 12-1—1—2-(2%— 5)
Remark now that for every a € R, the cut {z € C : arg(z) =7 — a (mod 27)} of the function
z — f(e'z) — a will affect two jumps of g and at least one of them has the size 7 (with respect
to the geodesic distance dg1 on S'). Therefore,

+(2r - %) + (2 — g) > E(g).

™

(1o ™
— > —411-
F(e%9) ~alpy > 3+ 117

2.5 Some examples

We present some examples showing that the constant 2 in (2.3) is optimal (see also Brezis-
Mironescu-Ponce[30]).
1. Let g = Id : St — S'. Then g € BV(S!,S8Y) N C°. Remark that ()¢ = (§) = 0. Thus,
degg =1, E(g) = E/(9) = lglpv = 2m and so E(g) = 2|g|pv.
2. Let f:[0,1] — [0,1] be the standard Cantor function. Define g : S — S as
g(e?™t) = 2™ M i e [0, 1].

Clearly, g € BV(S', 81N CY% (9)* = (§)) = 0 and degg = 1. As above, E(g) = Ei(g) =
l9|pv = 27 and E(g) = 2|g|pv-

3. For each n > 2, take g,(e?™t) = 2™ /™ for % <t< %, k =0,1,....,n — 1. Then
gn € BV(S', SY) and (g,)* = (gn)¢ = 0. We have that E(g,) = 0, m(gn) = 1, B (g,) = 4r(1- 1)
and |g,|pv = 2nsin T. We deduce that

E(gn
lim (9)

= 2.
n—oo |gn | BV
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Chapter 3

The space BV(S?,S1): minimal
connection and optimal lifting

Abstract

We show that topological singularities of maps in BV (S?,S") can be detected by a special
distribution. As an application, we construct an optimal lifting and we compute its total
variation.
This chapter is published in Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 283-302
(ct. [53]).

3.1 Introduction

Let u € BV(S?,5Y), i.e. u= (u1,us) € LY(S?,R?), |u(z)| = 1 for a.e. x € S? and the derivative

of u (in the sense of the distributions) is a finite 2 x 2—matrix Radon measure

2 2

/ |Du| = sup {/ Zuk div ¢, dH? @ ¢ € C1(S?, R?), Z G (2)]? < 1,Vx € 52} < 00,

52 52 k=1 k=1
where the norm in R? is the Euclidean norm. Observe that the total variation of Du is inde-
pendent of the choice of the orthonormal frame (z,y) on S?; a frame (x,y) is always taken such
that (x,y,e) is direct, where e is the outward normal to the sphere S2.

We begin with the notion of minimal connection between point singularities of u. The concept
of a minimal connection associated to a function from R? into S? was originally introduced by
Brezis, Coron and Lieb [27]. Following the ideas in [27] and [38], Brezis, Mironescu and Ponce
[30] studied the topological singularities of functions g € W11(S2 S!). They show that the
distributional Jacobian of g describes the location and the topological charge of the singular set
of g. More precisely, let T'(g) € D'(S?,R) be the distribution on S? defined as

T(g) = 2det(v9) = _(g /\gx)y + (g /\gy)a‘;

then there exist two sequences of points (p), (ng) in S? such that

Z lpr —ni| < oo and T(g) = 2772(5pk — Ony )-
k k
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Chapter 3. The space BV (5%, SY): minimal connection and optimal lifting

Our aim is to extend these notions for functions u € BV (S?,S'). In this case, the difficulty of
the analysis of the singular set arises from the existence of more than one type of singularity:
besides the point singularities carrying a degree, the jump singularities of u should be taken into
account.

We start by introducing some notation. Write the finite Radon 2 x 2-matrix measure Du as
Du = D% + D + D'u,

where D%, D°u and D’u are the absolutely continuous part, the Cantor part and the jump part
of Du (see e.g. [11]). We recall that D7u can be written as

Diu= (u" —u") @ v, H' S(u),

where S(u) denotes the set of jump points of u; S(u) is a countably H!-rectifiable set on S?
oriented by the Borel map v, : S(u) — S!. The Borel functions u*,u~ : S(u) — S* are the
traces of u on the jump set S(u) with respect to the orientation v,,. Throughout the chapter we
identify u by its precise representative that is defined H'-a.e. on S2.

We now introduce the distribution T'(u) € D’(S%,R) as

(T(u),¢) = vig.(uA(DaquDcu))Jr/ plut,u") v, - VECAHY, V¢ € CH(S%R). (3.1)
52 S (w)

Here, VLC = (Cy, _Cm)’

b
( e ) A < @ n ) = (uAa,uNb) = (urag — ugay, uyby — ugby)

u9 as b2
b
where a = < ) and b = bl ) . The function p(-,-) : S' x S — [—x, 7] is the signed
a2 2
geodesic distance on S' defined as
Arg () if e
p(w1,w2) = 2 “2 ?é ; VW1,W2 € Sl

Arg(w1) — Arg(wo) if 2 =-1

where Arg (w) € (—m,7] stands for the argument of the unit complex number w € S'. T(u)
represents the distributional determinant of the absolutely continuous part and the Cantor part
of Du which is adjusted on S(u) by the tangential derivative of p(u™,u~). The second term in
the RHS of (3.1) is motivated by the study of BV (S, S1) functions (see Chapter 2): we defined
there a similar quantity that represents a pseudo-degree for BV (S, S!) functions.

Remark 3.1 i) The integrand in (3.1) is computed pointwise in any orthonormal frame (z,y)
and the corresponding quantity is frame-invariant.

ii) The 2-vector measure
= (1, p2) = u (D% + D) = (u N (D"ug + D), u A (D%y + Duy))
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3.1. Introduction

is well-defined since D®u + Dy vanishes on sets which are o-finite with respect to H!.

iii) Notice that the function p is antisymmetric, i.e.
p(wi1,ws) = —p(wa,wr), Ywi,ws € S*

and therefore, T'(u) does not depend of the choice of the orientation v, on the jump set S(u).
By Lemma 3.10 (see below), we obtain

(T(u),¢)| < |ulpy s1, V¢ € CHS?,R) with [V¢] <1

where |u|gy g1 = / <\D“u! + \Dcu\) +/ dgi(ut,u”)dH"' and dg: stands for the geodesic
52 (u)
distance on S'. Therefore, T'(u) is indeed a distribution (of order 1) on S2.
For a compact Riemannian manifold X with the induced distance d, let Z(X) be the set of
distributions that can be written as a countable sum of dipoles:

Z(X) = {A € [C' 0]+ 3px), (k) € X, Y d(pr, i) < 00 and A =27 Y (8, — 6y )} .
k k
Remark 3.2 i) In general, A € Z(X) is not a measure. In fact, it can be shown that A is a
measure if and only if A is a finite sum of dipoles (see Smets [85] and also Ponce [72]).
ii) A € Z(X) has always infinitely many representations as a sum of dipoles and these
representations need not be equivalent modulo a permutation of points. For example, a dipole

dp—0p, may be represented as §, —0p, +Z(5nk —0n,,.,) for any sequence (ny,);, rapidly converging
k>1
to n.

For each A € Z(X), the length of a minimal connection between the singularities is defined

as

[All = sup (A,().
¢eCl(X)
|V¢I<1

m
For example, when A = 27 Z(épk — 0p, ) is a finite sum of dipoles, Brezis, Coron and Lieb [27]

k=1
showed that
m
[All =27 Ufgg; kz_l d(Pr;> No(k))
where S,,, denotes the group of permutation of {1,2,...,m}. In general, for an arbitrary A €

Z(X), Bourgain, Brezis and Mironescu [22] proved the following characterization of the length
of a minimal connection:

|A|| = inf {QWZd(pk,nk) P A =21 (0p, = 0n,) and Y d(pr,m) < oo}. (3.2)
k k

(#0): () -

From (3.2), one can deduce that Z(X) is a complete metric space with respect to the distance
induced by || - || (see e.g. [72]).

Our first theorem states that T'(u) is a countable sum of dipoles. It is the extension to the
BV case of the result in [30] mentioned in the beginning.
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Chapter 3. The space BV (5%, SY): minimal connection and optimal lifting

Theorem 3.1 For every u € BV (S%,S1), we have T(u) € Z(5?), i.e. there exist (py), (i) in
S? such that

Z’Pk—nkl<oo and T (u —2712 (0py — Ony)
k

The proof relies on the fact that the derivative (in the sense of distributions) of the characteristic
function of a bounded measurable set in R can be written as a sum of differences between Dirac

masses:

Lemma 3.2 Let I CR bea compact interval and f : I — 277 be an integrable function. Define

/f £ dt, Ve € CUI).

Then af af
—ecZ( d ||—=—| = dt.
Tez) and |G = (1

The same property is valid for the distributional tangential derivative of an integrable function
taking values in 277 and defined on a C! 1-graph (see Remark 3.3). Since every countably

H!-rectifiable set S C S? can be covered H'-a.e. by a sequence of C'! 1-graphs, it makes sense
to define for every A € Z(S?) the set

S is a countably H!- rectifiable set in S?, v is an orientation on S,

A) = :
J(A) (f,5:v) f € L'(S,277Z) is such that / fv-VECdH! = (A, (), V¢ € C(S?)
S

We have the following reformulation of (3.2):

Lemma 3.3 For every A € Z(S?), we have
1
A= i [ 7
It is known that the infimum in (3.2) is not achieved in general (see [72]); the advantage of the
above formula is that the minimum is always attained. It means that the length of A represents
the minimal mass that an H!-integrable function with values into 27Z could carry between the
dipoles of A.
In the sequel we are concerned with the lifting of u € BV(S?,S1). We call BV lifting of u
every function ¢ € BV(S?,R) such that

u=¢e"% ae. on S

The existence of a BV lifting for functions v € BV (S?,S') was initially shown by Giaquinta,
Modica and Soucek [47]. Adapting the argument in Chapter 1, one can prove the existence of a
lifting o € BV N L>(S% R) such that

/IDﬂ§2/IDM; (3.3)
S2 S2

moreover, the constant 2 in (3.3) is the best constant (see Example 3.1 and Proposition 3.13
below).
We give the following characterization for a lifting of w:
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3.1. Introduction

Lemma 3.4 Let u € BV(S2%,S'). For every lifting ¢ € BV (S?,R) of u, there exists (f,S,v) €
J(T(u)) such that

Dy = u A (D% + D) + p(u™, u ), HILS (u) — frHILS. (3.4)

Conversely, for every triple (f,S,v) € J(T(u)) there exists a lifting ¢ € BV (S%,R) of u such
that (3.4) holds.

In this framework, it is natural to investigate the quantity

E(u) = inf {/ |Dy| : ¢ € BV(S§%R), ¢ = u a.e. on SQ}. (3.5)
S2
The infimum from above is achieved and it is equal to the relaxed energy
Eie1(u) = inf { ligninf/ |Vug| dH? : uy, € C°(S%,81), u, — u a.e. on 52} (3.6)
— 00 SQ

(see Remark 3.4). A lifting ¢ € BV(S2,R) of u is called optimal if

Bw) = [ 1Dgl.

An optimal lifting need not be unique (see Proposition 3.13). Remark also that for u €

BV(S5?%,S1), there could be no optimal BV lifting of u that belongs to L> (see Example 3.3).
Our aim is to compute the total variation F(u) of an optimal lifting and to construct an

optimal lifting. Theorem 3.5 establishes the formula for E(u) using the distribution 7'(u).

Theorem 3.5 For every u € BV(S?,S'), we have

E(u) = / (|D%u| + |Dul) + min /
g2 (f£,5v)eT(T'(w)) JSUS (u)

We refer the reader to [47] for related results in terms of cartesian currents.

frxs = plut " vy xsw | dH'. (3.7)

As a consequence of Theorem 3.5, we recover the result of Brezis, Mironescu and Ponce [30]
about the total variation of an optimal BV lifting for functions g € W11(S52,S1): the gap

Blo) ~ [ 1Valar?

is equal to the length of a minimal connection connecting the topological singularities of g.

Corollary 3.6 For every g € Wh1(52,S1), we have

Blo) = [ | IValdr? + 7).

From (3.7), we deduce an estimate for F(u) (which is a weaker form of inequality (3.3)):
Corollary 3.7 For every u € BV (5%, S1), we have

E(u) < 2Julpy s1.

o3



Chapter 3. The space BV (5%, SY): minimal connection and optimal lifting

In the spirit of [30], we have the following interpretation of | 7'(u)|| as a distance:

Theorem 3.8 For every u € BV (S?,S'), we have

u A (D% + D) + p(ut, u™ v, HLLS (u) — Dp|. (3.8)

7] = _win, |
$EBV(52R) J g2
Moreover, there is at least one minimizer » € BV(S?,R) of (3.8) that is a lifting of u.

Remark that in general, ||T'(u)|| is not the distance of the measure
u A (D% + D) + p(u™, u™ vy, H'LS(u)
to the class of gradient maps. In Example 3.4, we construct a function v € BV/(S?,S!) such

that
IT(w)| < inf /
PYeC>(S2,R) J g2

In Section 3.2, we present the proofs of Lemmas 3.2, 3.3 and 3.4, Theorems 3.1, 3.5 and

u A (D% + D) + p(u™,u™ v, H'LS(u) — Dyl

3.8 and Corollaries 3.6 and 3.7. Some examples and interesting properties of T'(u) are given
in Section 3.3. Among other things, we show that 7' : BV (5%, S) — Z(S?) is discontinuous
and we analyze some algebraic properties of T'(u). We also discuss the meaning of the point
singularities of T'(u) and about their location on S2.

All the results included here can be easily adapted for functions in BV (2, S!) where Q is a

more general simply connected Riemannian manifold of dimension 2.

3.2 Remarks and proofs of the main results

We start by proving Lemma 3.2:

Proof of Lemma 3.2. Firstly, let us suppose that f = 2wxya where A C [ is an open set.

Write A = U (a;,bj) as a countable reunion of disjoint intervals. It is clear that
JEN

(X4 ¢) = 3 (clay) — ), e € )

jEN

dxa
and %(bj —a;) = Hl(A). Thus 27TF € Z(I) and
J

d
H—fH =271 sup /XA ¢'dt =27 sup /XAwdt = 2rH (A).
dt cect(n)Jr vec(n) J1
I¢"1<1 ll<1
Moreover, let A C I be a Lebesgue measurable set and f = 27wy 4. Using the regularity of the
Lebesgue measure, there exists a decreasing sequence of open sets A C Apy1 C Ay C I, ke N

d d ¥
such that klim H'(A) = H'(A). Observe that E?’“ — % in [CY(I)]". Since Z(I) is a
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3.2.  Remarks and proofs of the main results
dxa

complete metric space, we conclude that QWW € Z(I) and H27r

general case of an integrable function f : I — 2nZ, write

2| = 2w (4). In the

f:27TZkXEk in L

)
keZ

(3.9)
d(k d(k
where E, = {z € I : f(x) = 2wk}. Notice that 27 ( d)iEk) € Z(I) and the series Z QW(T);E’“)
keZ
converges absolutely; indeed, we have

k‘
S e T EXE) o S et (1) = /Ifldt<oo
keZ

keZ
df
By (3.9), we conclude that — € Z

(I) and

peC (1) J1
[¢/1<1 [¥|<1

- "dt = s dt = dt.
1= s /Ifé sup /w /1 5l

O
Remark 3.3 The conclusion of Lemma 3.2 is also true for H!-integrable functions with values

in 277 that are defined on C'!' 1-graphs. For simplicity, we restrict to C! 1-graphs in S?, i.e. for
an orthonormal frame (z,y) on S?, we consider the set

= {(z,y) : é(z)

where ¢ is a C! function. Suppose ¢

[0,1] — T' is a parameterization of I and set 7(c(t))
/

t

’cg ;‘ the tangent unit vector to the curve I' at ¢(t), Vt € (
c

H!-integrable function on I'. Define

y}

,1). Let f : T' — 27Z be an

1
- [ recnCoefwar v e M)

By Lemma 3.2, we have

0
o ezm ma 1Z)= [

Before proving Lemma 3.4, we give the following result

()] dt.

Lemma 3.9 For every u € BV (S?,SY), we have

1
u A (D% + D) = —u(D + D)
i

and |u A (D% + D)| = |D%| + |Dul.
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Chapter 3. The space BV (5%, SY): minimal connection and optimal lifting

Proof. Write u = (u1,u2) = uj + tuy. We can consider the 2 x 2 matrix of real measures
Du as a 2-vector of complex measures, i.e. Du = Duj + i Dug. Since u? + u3 = 1, it results
D(u? 4+ u3) = 0. By the chain rule (see e.g. [11]), we obtain

uy (D% + Duy) + ug(D%ug + Dus) = 0,

i.e. the real part of the C2-measure u(D% + Du

~—

vanishes. Therefore,

u N (D% + D) = —u(D% + Du).

N

Hence, using the fact that the absolutely continuous part and the Cantor part of Du are mutually

singular, we conclude that

lu A (D% + Du)| = |u|(|D%| + |Du|) = |D%| 4+ |Dul.

Proof of Lemma 3.4. Let ¢ € BV(S% R) be a lifting of u. Write
Dy = D% + Dp + (¢ — ¢ ), H'LS ().
By the chain rule and Lemma 3.9, we obtain
D% + Dy = %E(Dau + D°u) = u A (D" + D<),

Since u = €% a.e. on S%, we have that S(u) C S(y) and by changing the orientation Vg, We may

assume
Vp = Uy
et =yt H'-ae. on S(u).
e =y~
Therefore,
ot —¢  =puT,u”) (mod 2r) Hl-a.e. on S(u)
and " —¢ =0 (mod 27r) H'-ae. on S(p)\ S(u).

Hence, there exists f, : S(p) — 277 a measurable function such that
Dy = u A (D% + D) + p(ut,u™ vy H'CS(u) — fov, H'CS(p). (3.10)
Observe that f, is an H!-integrable function since
Iplut u™)| = dgi(u*,u™) < St —u,

Since D¢ is a measure, we have
curl Dp = 0 in D,
i.e. for every ¢ € C1(S% R),
/ V(¢ Dy =0.
SQ
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3.2.  Remarks and proofs of the main results

By (3.10), it yields
(T'(u),C) = / fo V¢ v, dH!, V¢ € CH(S?)
S(e)

and therefore, (f,,S(p),v,) € T (T(u)).
Conversely, take (f,S,v) € J(T(u)). Without loss of generality, we may consider S = {f #
0}. Consider the finite Radon R2-valued measure

p=uA (D% + D) + p(u™, u vy, H'LS(u) — frHLS.

We check that curl u = 0 in D’(S?). Indeed, for every ¢ € C1(S?,R),
el ¢) = [ THCdp= ()¢~ [ 194 van! <o
S2 S

By the BV version of Poincare’s lemma, there exists ¢ € BV/(S% R) such that Dy = pu in
D'(S?,R?). Here, S U S(u) is the jump set of p. On the set S U S(u), we choose an orientation
v, such that v, = v, on S(u). We have

D% + D¢ = u A (D% + D) = 2u(D% + Du)

ot — ¢~ =put,u”) (mod 2r) H'-a.e. on S(u) -
ot —9~ =0 (mod 27) H'-ae. on S\ S(u)

‘We now show that
D(ue ) =0.

By the chain rule, we get
D(e™ %) = —ie” (D% + D) + (e_i“’+ —e ) @ v, HILS(u)
= —¢ u(D% + D) + (7" — e ) @ vy H'LS (u).

Remark that the space BV (S%,C) N L™ is an algebra. Differentiating the product ue™%, we

obtain
D(ue ) = 7 (D% + D) —u e Pu(D% + Du) + (u™ e Ty e ) @v, HILS (u) = 0.
Thus, up to an additive constant, ¢ is a BV lifting of u and (3.4) is fulfilled. O

Proof of Theorem 3.1. Let ¢ € BV(S? R) be a lifting of u. By Lemma 3.4, there exists
(f,S,v) € J(T(u)) such that (3.4) holds. Denote by 7 : S — S! the tangent vector in H'-a.e.
point of S such that (v, 7,e) is direct. By (3.4),

(T(u), ¢) :[valc-udﬂl

_ [ 9
_/SfaTdH

_ Z/I XSf%dHl, V¢ e CY(S?)

keN
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Chapter 3. The space BV (5%, SY): minimal connection and optimal lifting

where {I;}ren is a family of disjoint compact C' 1-graphs that covers H!-almost all of the
countably rectifiable set 5, i.e.

H <S\ U Ik> =0.
keN
According to Lemma 3.2 and Remark 3.3, we conclude T'(u) € Z(5?%) and ||T(u)| < / || dHL.
S
U

Before proving Theorem 3.5, let us make some remarks about E(u) and Eyq(u) for u €

BV (52, 8Y) (see also [30]):

Remark 3.4 i) E(u) < oo and Eye(u) < oo (the existence of a BV lifting of u was shown in
Chapter 1 and [47]);

ii) The infimum in (3.5) is achieved; indeed, let ¢ € BV(S? R), % = u a.e. on S?, be
such that

k—o0

lim |Dor| = E(u) < 0.
S2

By Poincaré’s inequality, there exists a universal constant C' > 0 such that

J.

(where ][ stands for the average). Therefore, by subtracting a suitable integer multiple of
S2

gpk—][ gpk‘dHQSC/ Dy, Vk € N
S2 S2

27, we may assume that (¢g)zey is bounded in BV (S? R). After passing to a subsequence if
necessary, we may assume that o, — ¢ a.e. and L' for some ¢ € BV(S? R). It follows that ¢
is a lifting of u on S? and

B(u) = lim / Dyl > / Dyl > E(u):
S2 S2

k—o0

iii) The infimum in (3.6) is also achieved; take u}* € C*°(S?%,S!) such that for each k € N,
u® — u a.e. on S? and / |Vu"|[dH? \, ap € R as m — oo
S2

and klim ar, = FEre(u). Subtracting a subsequence, we may assume that for each k € N,
—00

1 1
/ lup' — u|dH* < — and / |Vul'| dH? — ap, < —, Vm > 1.
52 k 52 k

Therefore, ullz — w in L' and

] |Vuf| dH? = Fre(u).

lim
k—oo Jg
iv) E(u) = E.q(u). For “<”; take up € C*°(S2%,S'),Vk € N such that uj, — u a.e. on S? and

sup/ |Vug| dH? < oo. Since S? is simply connected, there exists ¢, € C°°(S2,R) such that
keN J§2
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3.2.  Remarks and proofs of the main results

e'?k = uy,. Moreover, / \Vr| dH? = / |Vug|dH? Using the same argument as in ii), we
S2 S2

may assume that ¢ — ¢ a.e. and L' for some ¢ € BV (S? R). Therefore, ¢’¥ = u a.e. on 52

and

E(u) S/ | Dl Sliminf/ |Veor| dH? :liminf/ |Vug| dH?.
52 k—oo  Jg2 k—oo  Jg2
For “>”, consider a BV lifting ¢ of u and take an approximating sequence 5, € C>°(S? R) such
that ¢, — ¢ a.e. and |Dyp|(S?) = klim / V| dH?. With uy, = % € C°(S?,S1), we have
— 00 5’2

up — u a.e. on S? and

Eiq(u) < lim V| dH? = lim/ V| dH? :/ |De|.
k—oo Jg2 S2

k—oo Jg2

O

Proof of Theorem 3.5. For “<”, take (f,S,v) € J(T'(u)). By Lemma 3.4, there exists a lifting
¢ € BV(S%,R) of u such that (3.4) holds. It follows that

/ngor / (ID%| + | D¥ul) + /
SUS(u)

Let us prove now “>”. By Remark 3.4, there is an optimal BV lifting ¢ of u, i.e. E(u / |De|.
By Lemma 3.4, there exists (f,S,v) € J(T'(u)) such that (3.4) holds. It results that

/ngor / (ID%| + | D¥ul) + /
SUS(u)

From here, we also deduce that the minimum inside the RHS of (3.7) is achieved. O

frxs = p(ul w7 )X s | dH.

frxs = p(ul w7 )X | dH

Remark 3.5 (Construction of an optimal lifting) Take (f,S,v) € J(T'(u)) that achieves
the minimum

dH? . (3.11)

p(u™,u™ vy Xs ()

min /
(f:Sw)eT (T'(u)) SUS (u)
By Lemma 3.4, there exists a lifting ¢ € BV (S?,R) of u such that (3.4) holds. Then

/IDSDI / (ID%] + |D%ul) + /
SUS(u)

and therefore, ¢ is an optimal lifting of wu. O

dH' = E(u)

frxs — p(u™®, u” uxsw)

Proof of Lemma 3.3. For “<” it is easy to see that if (f,S,v) € J(A) then for every
¢ € CY(S?) with |V(¢| <1,

(¢ = [ foevicant < [ |iant

For “>”, we use characterization (3.2) of the distribution A € Z(S?). We denote by dg the

geodesic distance on S%. Let A = 27 Z(épk — 6n,,) Where (pg)ren, (nk)ren belong to S? such
k
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that stg (pk,ng) < oo. For every k € N, consider ng]\ok a geodesic arc on S? oriented from
k
ng to pg. Take v, the normal vector to nﬁ)k in the frame (z,y). Set § = Un;;]\ok Since
k

stg (pr,nx) < 00, there exist an orientation v : S — S on S and an H!'-integrable function

k
f S — 2nZ such that
frxs = ZQﬂVkX ~ in L'(S,R?). (3.12)

NgPk
k

Then

/ fr-VECaH =2r) [ v VECAH! =20 (Cpk) — (k) = (A, Q), V¢ € CH(SP).
S k k

NkPk

It follows that (f,S,v) € J(A) and by (3.12),
/ [F1AHY < " 2mdge (ng, pr)-
o k

Minimizing after all suitable pairs (pg, ng)ken, it follows

|Al inf /S|f|dH1. (3.13)

T (LSw)eT(A)

We now show that the infimum in (3.13) is indeed achieved. By a dipole construction (see [22],
Lemma 16), there exists u € W11(S2, S) such that A = T'(u). We choose (fx, Sk, Vi) € J(T(u))
such that

T ()| =lim [ [fx] dH.
k Js,
By Lemma 3.4, we construct a lifting ¢ € BV(S?,R) of u such that
Dgy, = u A (D% + D) + p(u™, u™ vy HYLS (u) — fr vp HELS).
Remark that

[ bl < [ (0t Do)+ [ fotatiu)jant + [ nda
52 S2 S(u) Sk

Subtracting a suitable number in 27Z, we may assume that (¢x)x is a bounded sequence in
BV(S% R). Up to a subsequence, we find ¢ € BV (S? R) such that

op — ¢ a.e. in S% and Dy, = Dy in the measure sense.
Therefore, ¢ is a BV lifting of u and by Lemma 3.4, there exists (f,S,v) € J(T(u)) such that
Dy = u A (D% + D) + p(u™, u™ vy HILS(u) — fr HILS.
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3.2.  Remarks and proofs of the main results

We conclude

/ |f|dH = / ‘u A (D% + Du) + p(u™, u™ ) ry  H LS (u) — D(p‘
S S2

< lim inf/
k 52
= lim | i dH!

Sk
=T (w)]]- O

u A (D% + D) + p(u™,u™ v, H'LS (u) — Dgok‘

Proof of Theorem 3.8. Let ¢ € BV(S% R) and ¢ € C'!(S?) be such that |V¢| < 1. Then

J.

By taking the supremum over ¢, we obtain

J-

We now show that there is a lifting ¢ € BV(S% R) of u such that the minimum in (3.8) is
achieved. By Lemma 3.3, choose (f,S,v) € J(T(u)) such that

u A (D% + D) + p(u™, u™ ), H'LS(u) — Dy| > (T(u), ) — . Dy - V¢ = (T(u), Q).

u A (D% + D) + p(u™, u” v, HLLS (u) — DT/J‘ > |7 (w)].

17w = [ \rian
S
Using Lemma 3.4, we construct a lifting ¢ € BV (8%, R) such that (3.4) holds. Thus,
T @) = / F|dH = / [ A (D% D) + pl® i HS () — Dig|
S 52

O

Proof of Corollary 3.6. The result is a straightforward consequence of Theorem 3.5 and
Lemma 3.3. O
In order to prove Corollary 3.7, we need the following estimation of ||7'(u)|| in terms of the

seminorm |u|gy gt:

Lemma 3.10 We have |T(u)|| < |u|gyg1, Yu € BV(S?,SY).

Proof. By Lemma 3.9, it results that for every ¢ € C*(S?) with |V(¢| < 1,

(T(w), ¢)| < /

un (D%t D)+ [ () dH!
SQ

S(u)

— / (ID| + |D%ul) + / dgn (u* 0™ ) dH';
S2 S (u)

therefore
1T ()| < [ulpysr-
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Proof of Corollary 3.7. By Theorem 3.5, Lemmas 3.3 and 3.10, we conclude that

Emh;/UD%rHDmD+/“|mwhwwdH1 min /W|m#
52

S(u) (£,5v)eT(T(u))

= |ulgvsr + |T(w)||
< 2[ulgygt.

Let |u|gy :/ |Du| = / (|ID%u| + | D ul) +/ lu™ —u~| dH'; we deduce that
52 52 S(u)

T
|u|BV < |u|BV51 < §|U|Bv,vu S BV(SQ,SI).

Therefore, Corollary 3.7 is a weaker estimate of E(u) than inequality (3.3) obtained in Chapter 1.

3.3 Some other properties of the distribution T

We start by observing that 7' : BV (5%, S1) — D/(S?,R) is not continuous, i.e. there exists a
sequence of functions uy, € BV (S?,S') such that uj, — u strongly in BV(52,S') and T (uy,) -
T(u) in D'(S?%,R). The reason for that is the discontinuity of the function p that enters in the
definition of T'.

Proposition 3.11 The map T : BV (S?,S8') — D'(S?,R) is discontinuous.
Proof. Write
5% = {(cos@sina,sinfsina, cosa) : a € [0,x], 8 € (0,2x]}.

In the spherical coordinates («, 0) € [0, 7] x [0,27], consider the BV functions ¢ and u defined

as
—26 if 0 €(0,5), ac(0,7%)
— if 0 (Z,30), ac (0,2 ,
oo, 8) = " 1 (g 2), @€ 0.3) and u=¢e"?. (3.14)
2(0 —2m) if0 e (5,27), ac(0,5)
0 if 0 € (0,27), a € (5, m)

We have that the jump set of u and ¢ is concentrated on the equator {a = §} of the sphere 52,
ie.
T
S(p) = S(u) = o = 2}
On the equator we choose the orientation given by the normal vector @ oriented from the north
to the south; so (&, 5, €) is direct. We show that
T(u) =27n(5, — 6n) (3.15)

where n = (%, 2F) and p = (3, %) in the frame (o, 6). Indeed, we remark that

pr =T =plut uT) +2mx~ on S(u);
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3.3. Some other properties of the distribution T

by Lemma 3.4, we obtain
Do =u AVuH?+ plu™,u”)aH'LS(u) + 2w H ' Lnp

and it yields

(T, ¢) = —2r [ a-vhcamt = —2n [ Shant =2n(c(p) - (). ¥C € CH(S )
np p
Construct the approximation sequence ¢. € BV (S? R), e € (0,1) defined (in the spherical

coordinates) as

—26 if 0 € (0,5%), a € (0,5)
E (

(
po(00) = —T+e if 6 € (
(
(

20 —27m) iffe ,
0 if 0 € (0,27), a € (§,7)

and set uz = €'%s. An easy computation shows that w: — @ strongly in BV; therefore, u. — u

strongly in BV as € — 0. As before, we have

S(pe) = S(ue) = o= T} and oF — o = puf ,uz) on {a =T},

It follows that T'(u.) = 0 and we conclude
T(uz) - T(u) in D'(S% R).

U

As Brezis, Mironescu and Ponce proved in [30], if we restrict ourselves to W11(52%,S1), then
the map T‘Wl’l(SQ,Sl) : W82 81) — Z(S?) is continuous, i.e. if g,gr € WH1(S2,S1) such
that g, — g in Wh! then ||T(gr) —T(g)|| — 0 as k — oo. It is natural to ask if one could change
the antisymmetric function p in order that the corresponding map 7' become continuous. The

answer is negative:

Proposition 3.12 There is no antisymmetric function v : St x S* — R such that the map
T, : BV(S?,S') — Z(S?) given for every u € BV (S?,S') as

(T, (u),¢) = vig.(uA(Dau+Dcu))+/ y(uT,u") vy, - VECAHY, V¢ € CH(S%R)
52 S (w)

is well-defined and continuous.
Proof. By contradiction, suppose that there exists such a function . First we show that
Y(wr,wy) = Arg (wy) — Arg (wp)  (mod 27), Ywy,wy € St (3.16)

Indeed, fix wy,ws € St. Take f : [0,27] — R the linear function satisfying f(0) = Arg(w;) and
f(2m) = Arg (ws); define u € BV(S?,S!) as

u(e, 0) = 9 va e (0,7),0 € (0,2n).
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Chapter 3. The space BV (5%, SY): minimal connection and optimal lifting

Consider the lifting ¢ € BV (S? R) of u given by
o(0,0) = £(8), Ya € (0,7),0 € (0, 2r).

If wi # wa, the jump set of u and ¢ is concentrated on the meridian {# = 0} orientated

counterclockwise by the unit vector g. We have that
Do =uAVuH? + (Arg (w1) — Arg (w2))d H'L{6 = 0}.

Since curl Dy = 0 in D', it yields

/ u A Vu - V¢ dH? = —/ (Arg (w1) — Arg (w2))d - V¢ dH!
52 {o=0}

= (Arg (o) — Arg (w2) [ 2 a3

= (Arg (w2) — Arg (w1))(¢(p) — ((n)), V¢ € C1(S?)

where p = (0,0) and n = (m,0) (in the spherical coordinates) are the north and the south pole
of S%2. We obtain that

(Ty(w),¢) = [ V¢ (A Vu)dH2 + y(wr,ws) / §.viedn!
52 (6=0}
— (Arg (w2) — Arg (1) + 7 (w1,2))(C(p) — C(m)), VC € (52, ).

From the definition we know that T, (u) € Z(5?) and therefore, (3.16) holds. If wy = wy, by the
antisymmetry of -y, we have (w1, ws) = 0 and so, (3.16) is obvious.
Second we prove that the continuity of T, implies that v is continuous on S 1'% St Indeed,

let (w§)e and (w5): be two sequences in S* such that w§ — w; and w§ — ws. We want that
Y(wi, wh) = y(wi, wa). (3.17)

Take 3 € [0, 27) such that € is different from w; and wo. For each w € S denote by argg(w) €

(6 — 2w, ] the argument of w, i.e.
eiares(@) — (3.18)

As above, define f. : [0,27] — R as the linear function satisfying f.(0) = argg(wf) and f.(27) =
argg(ws) and consider u. € BV (S?,S') such that

ue(a, ) = el va e (0,7),0 € (0,2m).

It’s easy to check that u. — w strongly in BV, where u(a, 0) = e/ and f is the linear function
satisfying f(0) = argg(wi) and f(2m) = argg(wz). As before, we obtain

Ty (ue) = (argg(ws) — argg(wi) +v(wi, w3))(6p — on)
and T, (u) = (argg(w2) — argg(w1) + y(w1,w2))(6p — on).

Since T, and argg are continuous on BV (S?,51), respectively on ST\ {8}, we deduce that
(3.17) holds.
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3.3. Some other properties of the distribution T

Observe now that the function
(w1, w2) = (w1, w2) — Arg (w1) + Arg (w2)

is continuous on the connected set S'\ {—1} x S'\ {—1} and takes values in 27Z. Therefore,
there exists k € Z such that

Y(w1,ws) = Arg (w1) — Arg (wo) — 27k in ST\ {1} x S*\ {~1}.

In fact, k = 0 if one takes w; = wo. But Arg(-) is not a continuous map on S! which is a

contradiction with the continuity of v on S' x S*. O

The algebraic properties of T restricted to W1(S52,S1) (see [30], Lemma 1) do not hold in
general for BV (52, S!) functions.

Remark 3.6 a) There exists u € BV(S% S!) such that T(u) # —T(u). Indeed, take the
function u defined in (3.14). A similar computation gives us that T'(u) = 0 # —T'(u).

b) The relation T'(gh) = T(g) + T(h), Vg,h € WH(S2 S1) need not hold for BV (S? S!)
functions. As before, consider the function u in (3.14). Then T'(—u) = 0. Since T'(—1) = 0, we
conclude T'(—u) # T(u) + T(—1). O

In the following we discuss the nature of the singularities of the distribution T'(u). As it was
mentioned in the beginning, we deal with two types of singularity:

i) topological singularities carrying a degree which are created by the absolutely continuous part
and the Cantor part of the distributional determinant of wu;
ii) point singularities coming from the jump part of the derivative Du.

We give some examples in order to point out these two different kind of singularity. In
Example 3.1, T'(u) is a dipole made up by two vortices of degree 1 and —1; these two vortices
are generated by the absolutely continuous part of det(Vu) in a), respectively by the Cantor
part of the distributional Jacobian of u in b).

Example 3.1 a) Let us analyze the function g € WH1(82, 81,
g(a,0) = € Yo € (0,7),0 € [0,2n).

Denote p and n the north and respectively the south pole of the unit sphere. We consider the
lifting » € BV (5%, R) of u given by op(a,8) = 6 for every a € (0,7),0 € (0,27). Then the jump
set of ¢ is concentrated on the meridian {# = 0} oriented counterclockwise by the unit vector
g. We have

Dy =gAVgH? - 2ﬂ§H1L@.

Therefore, T'(g) = 2m(6, — 05). The two poles are the vortices of the function g.

b) The same situation may occur for some purely Cantor functions. Let us consider the
standard Cantor function f : [0,1] — [0,1]; f is a continuous, nondecreasing function with
f(0)=0, f(1) =1 and f'(z) =0 a.e. x € (0,1). Take v € BV(S?,S!) defined as

v(a,0) = 2™/ O/27) o e (0,7),0 € [0,2n).
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Chapter 3. The space BV (5%, SY): minimal connection and optimal lifting

The lifting ¢ € BV(S?,R) given by o(a,8) = 27 f(0/27) for every a € (0,7),0 € (0,27) has the

jump set concentrated on the meridian {# = 0} and
Dy =v A D% — 27757'(%@.
As before, we obtain that T'(v) = 2m(8, — &,) where p and n are the poles of S2.

Remark also that for the two functions constructed in Example 3.1, the constant 2 in in-

equality (3.3) is optimal and we have a specific structure for an optimal lifting:

Proposition 3.13 Let u € BV(S?%,S') be one of the two functions defined in Ezample 3.1.
Then for every lifting o € BV (S%,R) of u we have

| pel=z2 [ pul
S2 S2

Moreover, the set of all optimal liftings of u is given by
{argg(u) + 27k = B €[0,2m), k € Z}

where argg(w) € (B — 27, B stands for the argument of w € St (as in (3.18)).

Proof. First remark that

|Du| =272 and || T(u)|| = 2wdg2(n, p) = 2r°
SQ

where n and p are the two poles of S2.
Let ¢ € BV(S?,R) be a lifting of u. By Theorem 3.5 and Lemma 3.3, we obtain

/ Dyl > E(u) = / Du| + | T(u)]| = 4n> = 2 / Dul.
S2 S2 S2

Take now ¢ € BV(S% R) an optimal lifting of u. By Lemma 3.4, there exists (f,S,v) €
J (T (u)) that achieves the minimum in (3.11) and satisfies

Dy =u A Du— frH'WS.

That means

Dip=—fvH'S and / |f| = 27dg2(n,p). (3.19)
S

We may assume here that S = {f # 0}. For every a € (0,7) we denote L, the latitude on S?
corresponding to o and ¢, : L, — R the restriction of ¢ to L,. Using the Characterization
Theorem of BV functions by sections and Theorem 3.108 in [11], it results that for a.e. « € (0, 7),
Yo € BV (Ly;R) and the discontinuity set of ¢, is S N L,. Remark that deg(u; L,) = 1 for
every a € (0,7). Thus, for a.e. a € (0,7), ¢, will have at least one jump on L, and the length
of a jump is not less than 2. It yields H!(S) > 7 and |f| > 27 H! — a.e. on S. By (3.19), we
deduce that
If|=2r H' —ae. on S and H(S)=n.
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3.3. Some other properties of the distribution T

We know that

=g VAR = ¢(p) — ((n), V¢ € CH(S?).

By [44](Section 4.2.25), it results that S covers H!-almost all of a Lipschitz univalent path c
between the two poles. Since H!'(S) = dg2(n,p) we deduce that S is a geodesic arc on S2
between n and p and %I/ is the normal unit vector to the curve ¢. Take 5 € [0,27) such that
S = {6 = 3} in the spherical coordinates. We have that ¢ —argg(u) : S*\ 'S — 27Z is continuous
on the connected set S?\ S. Therefore, there exists k € Z such that

¢ = argg(u) + 27k

and the conclusion follows. O

The appearance of non-topological singularities in the writing of T'(u) for v € BV (52, S1)
was already seen in the example (3.14); there the distribution 7'(u) is a dipole even if the function
u does not have any vortex. One should notice that the dipole (3.15) is created on the jump set
of u by the discontinuity of the chosen argument Arg. In Remark 3.7, we will see that a dipole
could disappear if we change the choice of the argument.

Remark 3.7 Let 8 € [0,27). Define the antisymmetric function y5(-,-) : S x S' — [~7, 7] as

Arg (g) if e 1
argg(wi) —argg(we) if &L = —1

76(001,012) = , Ywi,we € St

Consider now the distribution T, (u) € D'(S?,R) given as in Proposition 3.12:

(T, (u),¢) = /52 vlg-(uA(Dau+Dcu))+/S( )w(uﬂu—)uu-vigdHl, V¢ e C1(S% R).

Observe that T, inherits the properties of T" given in Theorems 3.1, 3.5 and 3.8. However,
the structure of the singularities of T, (u) may be different from 7'(u). Indeed, consider u €

BV(52,S) the function constructed in (3.14). We saw that T'(u) = 27(6,—6,) where n = (5, 2X)

%, %) (in the spherical coordinates). The same computation gives us T, (u) = 0.

2°2
The difference between T'(u) and T_, (u) arises from the choice of the argument.

and p = (
An interesting phenomenon is observed in Example 3.2 where the two types of singularity
are mixed: some topological vortices may be located on the jump set of u.

Example 3.2 a) An example that points out the mixture of the two type of singularity is given
by functions with pseudo-vortices: define u € BV (S?,S') as

u(e, 0) = €%9/2 Yo e (0,7),0 € (0,27).
The jump set of u is the meridian {6 = 0}. We have

T(u) =2m(6p — 0p) and T,

(w) = 47(5, — 6,).
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The two poles p and n arise on the jump set of u and behave like some pseudo-vortices, i.e. after

a complete turn, the function u rotates 3/2 times around the poles (with different signs: ‘4’

)

around p and ‘-’ around n). According to the choice of the argument in the definition of 73,

the distribution 7', (u) will count once or twice the dipole.
b) A piecewise constant function u € BV (S?,S') may create a dipole for T'(u). Indeed, let
us define ¢ € BV (S?,R) as

0 if 6 € (0,27/3), a € (0,7)
o(a,0) = < 21/3  if 0 € (2r/3,47/3), a € (0, )
A /3 if 0 € (4w /3,27), o € (0, )

and set u = ¢?. The jump set of v and ¢ is the union of three meridians
S(u) = S(p) ={0 =0} U{0 =27/3} U{0 = 47/3}.

We have
ot — 7 = p(u",uT) = 2mx{9=0}-
We obtain T'(u) = 27(d, — 6,) where p and n are the two poles of the unit sphere. For every
B € [0,2m), T,, has the same behavior, i.e. T,,(u) = 27(5, — dn).
¢) Let u € BV(S?,S') be the function defined above in b) and take g the function constructed
in Example 3.1 a). Set w = gu € BV(52%,5'). We have S(w) = {§ = 0} U {0 = 27/3} U {0 =
47/3}. We show that T'(w) = 47(8, — 6,). Indeed, construct the lifting ¢» € BV (5% R) of w as

0 if 0 € (0,27/3), a € (0,7)
Y(a,0) =< 0+2r/3 ife (2n/3,47/3), a € (0,7) -
0 —2n/3 if 0 € (4n/3,27), a € (0,7)

Observe that
YT — 7 = p(w,wT) = 2mx =0} — 2TX {p—tr/3} OD S(w)
and conclude that T'(w) = 4m(6, — d,). So, the north pole p and the south pole n which are the

vortices of g remain singularities for the function w; they appear now on the jump part of w.

The same behavior happens to T, for every 3 € [0,27), i.e. Ty, (w) = 47(d, — 0p).

As we mentioned before, for every u € BV (5%, S!) there exists a bounded lifting » € BV N
L>®(S?,R) (see Chapter 1). The striking fact is that we can construct functions u € BV (S?, S!)
such that no optimal lifting belongs to L°°. We give such an example in the following:

Example 3.3 On the interval (0,27) we consider

1 1
p =1, nk=pk+4—kandpk+1=nk+2—k,W€21-

Suppose that this configuration of points lies on the equator {5} x [0, 27] (in the spherical coordi-

nates) of S? and we consider that each dipole (pg,nx) appears k times. Since Z kdg2(pg, ng) <
k>1
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o0, set
A =23 k(by, — 0n,) € Z(S?).
k>1

By [22] (Lemma 16),
T (Wh(s%,8h) = 2(5?).
Thus, take g € W11(S2%, S1) such that T'(g) = A. Using (3.2), it follows that

IT(g)ll = 27> kdge (pr, ni)-
k>1

Let ¢ € BV(S?,R) be an optimal lifting of g. Then there is a triple (f,S,v) € J(T(g)) such
that
Dy =gAVgH? — fvH'.S and / |f|dHE = ||T(9)]|. (3.20)
S

We may assume that S = {f # 0}.

We know that / fv- VAR =21 " k(C(pr) — (), V¢ € C(S?). For each k > 1, we
S k>1

1 1
— 8—k,nk + 8_k') Then

denote Vi, = (0,7) X (pk
[ v AR = 2k () ~ (), ¥ € CY(S?) with supp € Vi.
S
By (3.20), it follows that
/ |f1AH = 2mk dg2 (pr, ).
SNV
Using the same argument as in the proof of Proposition 3.13, we deduce that for each k£ € N,

S()NVe=SNVi=ngpr and |p* — | = |f| = 2kx H'-a.e. on nppp

where nﬁ)k is the geodesic arc connecting ny and pg. It yields that ¢ ¢ L*. So, every optimal
BYV lifting of g does not belong to L*°.

In the next example, we show that Theorem 3.8 fails if we minimize the energy in (3.8) just

over the class of gradient maps:

Example 3.4 Let u € BV(52%,8') be defined as
u(e, 0) = €3, Ya € (0,7),0 € (0,2m).

The jump set of u is the meridian {# = 0} orientated counterclockwise and p(u™,u~) = —27/3
on S(u). We have that T'(u) = 0. On the other hand, for every 1 € C°°(S%,R), we have

/ lu A VuH? + p(u™, u” vy HILS (1) — Vi H?|
S2
:/ |uAvu—v¢|dH2+/ lp(ut,u™)|dH!
52 S(u)

> / 2 /3dH! = 202/3 > | T(u)].
St
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Chapter 4

On the relation between minimizers

of a I'-limit energy and optimal
lifting in BV

Abstract

We study the minimizers of an energy functional which is obtained as the I'-limit of a
family of functionals depending on a small parameter ¢ > 0, associated with a function
u € BV(Q,S") and a positive parameter p. We find necessary and sufficient conditions on
p and the dimension under which these minimizers coincide with the optimal liftings of w,
for every u € BV (Q, S%).

This chapter is written in collaboration with A. Poliakovsky and it is published in Commun.
Contemp. Math. 9 (2007), pp. 447472 (cf. [58]).

4.1 Introduction

Let © C RY be a bounded domain and v € BV (9, S1), i.e., u = (u1,ug) € L' (Q,R?), Ju(z)| =1
for almost every x € €2 and the derivative of u (in the distributional sense) is a finite 2x N —matrix

Radon measure. The BV-seminorm of u is given by

2 2
/ |Du| = sup{/ Zuk div (. de : ¢ € CHQ,R?), Z ICr(x)]? < 1,Vz € Q} < 00,
Q Qk:l k=1

where | - | is the Euclidean norm in R?. A BV lifting of u is a function ¢ € BV (£, R) such that
u=e% ae. in Q.

The existence of a BV lifting for any v € BV (£, S') was first proved by Giaquinta, Modica and

Soucek [47]. In general, we may have that

min{/ |Dy| : ¢ € BV(Q,R), ¢ =u a.c. in Q} >/ | Dul.
Q Q
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The optimal control of a BV lifting was given in Chapter 1: there exists a lifting ¢ € BV N

L>(Q,R) such that
/|Dgp| <2/ Dul. (4.1)

The constant 2 in the inequality (4.1) is optimal for N > 2 (for example, consider

u(zr) = — (4.2)
]
in the unit disc in R?).
It is natural to investigate the quantity
E(u) = min {/ |Dy| : o € BV(Q,R), ¢ =u a.e. in Q} . (4.3)
Q

The case u € W1 was previously studied in [30] while the more general case u € BV was studied
in [47, 52, 53]. We shall say that a lifting ¢ € BV (Q,R) of u is optimal if E(u / | Dy, i.e.,

if  is a minimizer in (4.3). An optimal lifting of u always exists but in general it is not unique
(i.e., there might exist two optimal BV liftings ¢1 and @9 such that o1 — @9 is not identically
constant). For example, for the function u given in (4.2), every optimal lifting is an argument
function whose jump set is a radius of the unit disc, see [53]. The structure of an optimal lifting
of w is described in [47, 52, 53] using the notion of minimal connection between singularity sets
of dimension N — 2 of w.

A natural way to approximate liftings of « is to consider, for a fixed parameter 0 < p < +0o0,
the family of energy functionals {Fg(u’p ) }5>0 defined by

1 4
() = [ VP + 2 [u=ciop. Ve H@R), (1.4

Due to the penalizing term in (4.4), sequences of minimizers ¢, of Fg(u’p ) are expected to converge
to a lifting g of u as ¢ — 0. More precisely, Poliakovsky [70] proved that for p > 1 and for
bounded domains @ with Lipschitz boundary, any sequence of minimizers . € H'(2,R) of
Fg(u’p ), satisfying | fQ @-| < C, converges strongly in L! (up to a subsequence) to a lifting
wo € BV(Q,R) of u as € — 0 and ¢ is a minimizer of the I'~limit energy Féu’p) :LYQ,R) = R
given by

2/ P (et = ) dHNT!if @ is a BV lifting of u,
S(e)

F" (p) = (4.5)

+00 otherwise.

Here, S(ip) is the jump set of ¢ € BV(Q,R) and ¢, pT are the traces of ¢ on each of the sides
of the jump set and f®) : [0, +00) — R is the function defined by

0+t
@) = inf/ e — 1|P/2 ds, V6 > 0.
teR J;

Notice that Féu’p)(tp) < +oo0 for a BV lifting ¢ of u since f®) is an increasing Lipschitz function
(see Lemma 4.3). Due to the fact that the energies {Fg(u’p )}€>0 and Fo(u’p ) are invariant with
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respect to translations by 27k, k € Z, uniqueness of minimizers has a meaning up to additive
constants in 27Z.

The goal of this chapter is to study the question whether the minimizers of Fo(u’p ) are nec-
essarily optimal liftings of u, for any p. Surprisingly, this turns out to be the case (in general)
only in dimension one, while in dimension N > 2 this holds only for p = 4. Our main result is

the following:

Theorem 4.1 Let Q be a bounded domain in RN .

i) If N =1 then for every u € BV(Q,8) and p € (0,400), ¢ is a minimizer o FP) 4 and
(1) Y : p € (0, @ 0
only if ¢ is an optimal lifting of u ;

(ii) If N > 2 then only for p = 4 it is true that for every u € BV(Q,SY), any minimizer of
Féu’p) 18 an optimal lifting of .

We recall that for a function u in the smaller class W11 (€, S1), a lifting of u is optimal if and

only if it is a minimizer of Féu’p), for every p € (0,+00) (see Proposition 4.10).

The chapter is organized as follows. In Section 4.2 we recall some basic notions of BV spaces
that will be needed throughout this chapter. Section 4.3 is devoted to the one dimensional
case. In Section 4.4 we treat the case p = 4, which was already studied in [70]. In Section 4.5
we construct counterexamples needed for the proof of assertion (ii) of Theorem 4.1 in the case
0 < p < 4. For any domain 2 we construct a piecewise constant function v € BV (Q,S!)

depending on p such that Fo(u’p )

has a unique minimizer & (up to 277Z constants), u has a
unique optimal lifting (o (up to 27Z constants) and &y — (p is not a constant function. In Section
4.6, we deal with the general case p # 4. For any bounded domain G, we construct a family of
functions {Ut}te(,l /4,1/4) that contains elements U; with a unique optimal lifting whose energy
FéUt ) i strictly larger than the minimal energy min FO(Ut’p ), (In addition, for those functions
U, we will prove that FéUt ?) has a unique minimizer up to a 277 translation.)

For the sake of simplicity of notations we shall often suppress the dependence on u and p

when referring to the energies {Fg(u’p )} Fo(u’p ) and f@),

e>0’

4.2 Preliminaries about the space BV

In this section we present some known results on BV functions that can be found in the book
[11] by Ambrosio, Fusco and Pallara (see also Giusti [48] and Evans and Gariepy [42]). Let
v € BV(2,R™). A point = € Q is a point of approximate continuity of v if there exists v(x) € R™
such that o(z) = ap-lim v(y), that is:

Yy—x

I HN(Br(x) N{yeQ: |v(g)/) —o(x)| > 6}) _0, Veso0.

r—0 HN (Br (1’)

The complement of the set of points of approzimate continuity is denoted by S(v). It is known
(see [11]) that the set S(v) is a countably H™~!-rectifiable Borel set, i.e., S(v) is o-finite with
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respect to the Hausdorff measure HV~! and there exist countably many N — 1 dimensional C''-
o

hypersurfaces {S;}3° ; such that HV 1 (S(v) \ U Sk) = 0. Moreover, for HN¥"1l-a.e. z € S(v)
k=1

there exist v (x),v™ (z) € R™ and a unit vector v, (z) such that

ap-lim v(y) =vT(z) and ap-lim v(y) = v (). (4.6)
y—x, (Yy—,vy(2))>0 y—x, (Yy—z,vy(x))<0

In the sequel we shall refer to S(v) as the jump set of v, although (4.6) is valid only for HV!-a.c.
x € S(v). The vector field v, is called the orientation of the jump set S(v). Dv is a m x N
matrix valued Radon measure which can be decomposed as Dv = D% + DJv 4+ D, where D%
is the absolutely continuous part of Dv with respect to the Lebesgue measure, while D/v and
D¢ are defined by

D’y = DuvLS(v) and D = (Dv — D) (Q\ S(v)).
We shall call D/v and D the jump part and the Cantor part, respectively, of Dv. We have:
1. D% = Vo HY where Vv € L'(Q, R™*¥") is the approximate differential of v;
2. (D%)(B) = 0 for any Borel set B C Q which is o-finite with respect to H¥~1;
3. Div= (vt —v7)@uv, HN1LS(v).
Throughout this chapter we identify the function v with its precise representative v* : 2 — R™

given by

v =lim f o)y,

if this limit exists, and v*(z) = 0 otherwise. Note that v* specifies the values of v except on a
HN~Lnegligible set.

We also recall Vol'pert’s chain rule. Let €2 be a bounded domain and assume that v €
BV (Q,R™) and g € [C*(R™)]4 is a Lipschitz function. Then w = g o v belongs to BV (Q, R%)

and

Dw = Vg(v) VoH", D°w = Vg(v) D, D'w = [g(v") — g(v7)] @ v, KN 1LS(v).  (4.7)

4.3 The one-dimensional case

In this section we shall show that the optimal liftings of v coincide with the minimizers of Féu’p )
in the one-dimensional case, for every parameter p > 0 and any function u € BV (2, S!). The
proof uses the same method as in [52].

Proof of (i) in Theorem 4.1. Let € be an interval in R and let ¢ € BV(£,R) be a lifting of
u. By the chain rule (4.7), it follows that

(©)"+(9)° = uA((@)*+(@)°) and (@) = Y (plat)—p(a=))da+Y_(p(b+)—p(b=))3 (4.8)

aeS(u) beB
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where B C Q is a finite set such that S(u) N B = 0 and ¢(b+) — p(b—) = —27ay, ap € Z, for

every b € B. For any a € S(u), we denote d,(u) = Arg uga—i—; where Arg w € (—m,m] is the
u(a—

argument of the unit complex number w. Since f) is increasing and |p(a+) — @(a—)| > |d,(v)|

in S(u), it follows that

P (lp(at) = pla=)) = fP(|da(u)]) if a € S(u) and fP(jp(b+) - p(b-))) 2 0if be B (4.9)
with equality if and only if
lp(a+) — pla—)| = |da(u)| for a € S(u) and o« =0 for b € B. (4.10)

According to (4.8), we have

[ orisiom) = [ o on)

By [52], it follows that

B = [ (1@ + 1) + 3 ldafu

aeS(u)

i.e., ¢ is an optimal lifting if/ ()] Z |do(u)]. Therefore, by (4.9) and (4.10), we obtain
Q

a€S(u
that

min " =2 3" f®)(|dg (u))).

aeS(u)
(u,p)

Finally, we conclude that ¢ is a minimizer of I if and only if ¢ is an optimal lifting of . [J

4.4 The case p=14

In this section we shall recall the proof from [70] of the result that states that for p = 4

“P) coincide with those of the energy E(u) in (4.3) for every

minimizers of the I'-limit energy FO(
u € BV (£,8'). We also derive an asymptotic upper bound for the minimal energy of Fg(u’4) in

terms of the mass of the measure |Dul.

Proof of (ii) of Theorem 4.1 for p = 4. Let ¢ € BV(Q,R) be a lifting of u. Then
Jr —
L

5 ‘ HN~la.e. in S(u). A simple computation yields

lut —u”| =2|sin

Vo > 0.

0
FD(0) = 20 — 4] sin 1l
This implies that
Fg*(p) = / " — o7 [aHN T~ 4/ Jut —u”|dHY
S(9) S(u)
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On the other hand, the chain rule (4.7) yields that
D% =uAD" and D% =uA D (4.11)

and therefore, the total variation of the diffuse part of Dy is completely determined by Du, i.e.,
Dol = [ (D%ul+ 107, (412)

Hence, ¢ is a minimizer of Fo(u’4) if and only if ¢ is an optimal lifting of u. O
As a consequence, we deduce an estimate for the energy Fg(u’4) which relies on some results

from [37] and [70].

Corollary 4.2 Let Q be a bounded domain in RY with Lipschitz boundary and u € BV (Q, S1).
Then
min F4) < 4/ |Du| + o(1)
Q

where o(1) is a quantity that tends to 0 as € — 0.

Proof. By contradiction, assume that there exist a constant § > 0 and a sequence {ej}r>1

tending to 0 as k£ — oo, such that

Fi (o) 2 4 [ D] +5. (413)
Q
where ., € H'(,R) is a minimizer of FE(Z:A). Since the value of F{«;(: ’4)(@%) does not change

by adding a constant multiple of 27 to ¢, , we may assume that 0 < [, ¢., do < 2rHN ().
According to [70] it follows that, up to a subsequence,

po = po in L' and  lim F§9(pe,) = By (00).

where g is a BV lifting of u that minimizes the I'—limit energy Fo(u’4). Using (4.13), it follows
that
(u,4)
Fy 7 (po) >4 [ |Du|+ 9. (4.14)
Q

On the other hand, by assertion (i) of Theorem 4.1 in the case p = 4, we know that ¢ is

an optimal lifting and

Fo(uA)(%) = 4/

]Lpg—apa]dHNl—él/ \u+—u*\d'HN71.
S(¢o)

S(u)
By (4.1) we deduce that [, [Dyo| < 2 [, |Dul and therefore, it implies by (4.12),

F (0) < 4 /Q Dul

which contradicts (4.14). O

It would be interesting to have a direct proof of Corollary 4.2 which does not use the results
in [37] and [70]. That will lead to a new proof of the inequality (4.1).
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4.5 The case p € (0,4)

In this section we prove the case p < 4 of assertion (7i) of Theorem 4.1. We shall first construct,
for each 0 < p < 4, a piecewise constant function u € BV (R, S!) in a rectangle R C R? such
)

that no minimizer of Féu’p is an optimal lifting of u. Then, we shall adapt this example to the

case of an arbitrary bounded domain 2.

We start by two preliminary results about the function f®):

Lemma 4.3 Let 0 < p < co. The function f®) is an increasing Lipschitz continuous function.

Moreover,
0/2
/ e — 11"/ ds if 0 € [2rk, 2n(k + 1)], k even,
O S (419
/ " —1P/2ds  if 6 € [2nk, 2n(k + 1)], k odd.
—6/24m

Proof. In the sequel we shall write for short f instead of f). The function
seR - [e —1P/2 = 2p/2{sin§|p/2

is 2m-periodic, increasing on (0, 7) and symmetric with respect to 7. Hence, if 6 € [0, 27], then

6/2 B B
f(o) = / e’ — 1|P/2ds. In general, if 6 = 27k + 0 with 6 € [0,27] and k € N, we have
—0/2

f(0) = f(27k) + £(0) and (4.15) is now straightforward. In particular, we deduce that
f@2rk) =kf(2n), VkeNlN. (4.16)

From here, we conclude that almost everywhere in (0, +00), f is differentiable and 0 < f/ < or/2,
O

f(p)(g7T —0) — f(p)(g)

Lemma 4.4 Let0 < p < 4. Then the function € (0,7) — 7
ﬂ' —_—

18 1ncreasing.
Proof. It is sufficient to prove that the function g : (0,7) — R defined by
9(6) = F(2m ~0) = )~ (x—0)( £2n )+ '0))

is positive, where we denoted f = f®) as above. Indeed, by Lemma 4.3 we have for every
0 e (0,m),

q0)=(m—0)(f"(2r —0)— "(9)) = p2P/>74 (r — 0) sin g <cosp/22 Z — sin?/?72 Z)

Since p < 4 it follows that ¢’(f) < 0, V0 € (0,7); hence g is decreasing. Since Glim g(0) =0, we
—T
deduce that g must be positive on (0, 7). O
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Construction of a counter-example u when () is a rectangle. Let p € (0,4). We first

3
construct our function u in a certain rectangle R. Let 6; = ?ﬂ and 6 = ZF Thanks to
Lemma 4.4 we can choose Lg > L > 0 such that
-0 L @) (21 — 05) — £FP) (B

1770, L fO2r—6,) — f0(6)

Set also Lo = L3 and Ly = L3. We consider the rectangle

R:{(:c,y)e]R2 i —Lo < x < Ly, —L3<y<L1}.

A1<._L27 Ly) Z:{I A4.(L4, Ly)
Al Al
et . 444
R, |ay
-ag O () ® I/{4
I/{Q ai
A; aé. .Ag
F2 F3
Az(—Lm —Ls) Us A3(L4, —Ls)

Figure 4.1: The rectangle construction for p € (0,4)

Notice that the rectangle R depends on p by the choice of the edges; moreover, the choice
(4.17) is no longer possible for p > 4. In the rectangle R, we denote the vertices A} = (—Lg, L1),
Ay = (—Lo,—L3), Ag = (L4, —Ls3) and Ay = (L4, L1) and also the interior full triangles U}, =
A ApOAg_1 and the segments I'y = (OAg) for 1 < k < 4 where O = (0,0) is the origin and we
use the convention that Ag = Ay, see Figure 1.

Let @9 € BV(R,R) be the piecewise constant function defined by

% if 0 <z < Ly, 0<y< Ly,
5 _

oy =4 T la<a<0 0<y<Li
ooif —Ly<a<0, —Ly<y<0,
s if 0O<z<Liy —L3i<y<0

and set u = ¢¥° € BV (R, S1).
In Lemmas 4.5 and 4.6 below we shall prove that ¢q is the unique optimal lifting of u (up
)

to a 277 constant) and g is not a minimizer of Féu’p . Actually, we prove that the lifting
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1o € BV(R,R) of u defined as

% if 0<x< Ly, 0<y<Ly,
3 :
—=r if —Ly <z <O, 0<y<Ly,
7/)0(33,?/): Zﬁr
-3 if —Lo<x <0, —L3<y<O,
= if O<xz<Liy, —-Lz<y<0

is the unique minimizer of Fo(u’p ) (up to 27Z constants).
Lemma 4.5 The function ¢y is the unique optimal lifting of u (up to a 277 constant).

Proof. Let ¢ € BV(R,R) be a lifting of u. Then

4
|Dy| = (/ !Dtp!+/ lot — or \dH1>
/R ; U, e kT

where @Fk and ¢ are the traces of ¢ on I'y. Let us consider the one-dimensional sections

R = {(tx,ty) D (zy) € (97?,}, vt € (0,1)

where we denote the vertices of the rectangle R; by {A2}1 <h<dr By the characterization of BV

functions by sections (see Theorem 3.103 in [11]), the restriction ¢, = @‘Rt belongs to BV (R, R)
for almost any ¢t € (0,1). We define the following rescaled variation of ¢; on R; as

4
Op _
Ve, Re) = Z (Lk /R » ‘8—;‘ +\/Li+ L, ‘gofik(A’,;) - SDFI@(AI;C)‘> for a.e. t€(0,1)
k= t k

1
so that

1
/V(%,Rt)dtﬁ/ | Dyl
0 R

(here 7 is the tangent vector of straight lines). An easy computation yields

3 T 61 T
D =Jl1—+Lo— 4+ La— + Ls—.
/R\ ©o 14+ 24+ 35+45

In order to prove that ¢q is an optimal lifting, it is sufficient to prove that

3 6
VipnRy) > lew + ng + ng n L4% for a.e. t € (0,1). (4.18)

We shall use a method from [52]. Denoting the restriction of u to R by u; we have

= tlg,
for almost every ¢t € (0,1): u; = et ‘H! —a.e. in Ry and S(u) = {al, : 1 < k < 4} where

al, = ReNU N {x =0} for k € {1,3} and a}, = Ry NU N {y = 0} for k € {2,4}. The chain rule

(4.7) leads to
Do\ oug \“ o\ Our\“ _
(E) = Ut VAN (E) =0 and <a—7_> = Ut A (E) = 0,
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hence, '
Do _ o1\’ . )6 (b b—)\§
a9 \ar ) = Z (pr(at) — pi(a— +Z @i (b+) — @i (b—))db.
a€S(ut) beB

Here, the Lipschitz curve R; is considered oriented counterclockwise and the traces of ; are
taken with respect to this orientation. We have that

1. B C R is a finite set such that S(u;) N B = 0 and ¢ (b+) — ¢t (b—) = —2may, where oy, €
Z,Nb € B;

2. pi(a+) — pr(a—) = Arg % — 21, with ay € Z,Va € S(uy).

Therefore, setting Ly = L1, it follows that

4

V((pt,Rt):Z< Z Lk|§0t a+ ‘+\/L2+Li+1‘(prk Ak @Fk(At)‘>

k=1 "ae(S(ut)uB)Nit

(4.19)
0
Since ot _ 0, we get
Re 37’
> Z Arg = 3 (4.20)
aGS(ut)UB aES (ut)
Obviously,
ug(al+
(pe(alt) — pelal) > | Arg ;E;_; LVI<k<d
t\ag,

By (4.19), the inequality (4.18) will follow from the surplus of the variation induced by the
condition (4.20), i.e

u(aj+) ‘
ug(al—)"
Indeed, suppose that there is b € B such that ap # 0. If b € Uy, for some 1 < k < 4 then by
(4.17),

4
27
V(g Re) > Ls— + > Li| Arg (4.21)
k=1

2
Li|pi(b+) — @i (b—)| > 2wLy, > L3E'

Ifb= AZ for some 1 < k < 4, then

- 2m
P L Lo, (D) — ep (A = 2m\ LR + LRy > Ly

(here we used the fact that the traces of ¢y on I'y coincide with goljfk(A';) for a.e. t € (0,1)).
Otherwise, according to (4.20), there exists a, # 0 for some a = a}, and by (4.17), we easily
check that

(ak+) ‘
ur(ag,—)

with equality if and only if k = 3. Therefore, (4.21) holds, i.e., ¢ is an optimal lifting of w.

Li|pi(aj+) — er(aj,—)] >L3 E "I | Arg
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It remains to prove the uniqueness of the optimal lifting ¢o (up to a 27Z constant). Let ¢
be an optimal lifting. From above, we deduce that the restriction ¢; on R; satisfies for almost
t € (0,1) that

0 if ke {1,2,4},

S(pt) = S(ug) and oy = (4.22)
t t )1 k=3

It follows that

/meME/) M*—wﬂdHlZ/ﬁ ot — ™| dH
R S(p) S(u)
1 4
>[5 melataiet) - ulai )t = [ Dol
0 k=1 R

Since ¢ is an optimal lifting, we deduce that S(¢) = S(u). By (4.11), we have D%p = D = 0.
It follows that ¢ is constant on each connected component of R \ S(u). By (4.22), we conclude

that ¢ — g is a constant function, for some constant in 27Z. 0

Lemma 4.6 The function g is the unique minimizer of Féu’p) (up to 277 constants).

Proof. We use the same argument and notations as in the proof of Lemma 4.5. Let ¢ €
BV(R,R) be a lifting of u. By (4.11), we have D% = D% = 0 and Dy = Dip = (pT —
0 ), HILS(p). We define for almost every t € (0,1) the following variation of ¢; on R:

4

Gm,mzz( S L (eat) — erla))
ac(S(

k=1 wug )UB)NU
o ST IR £ (o (A) - wrk(A}i)\)>

so that .
0

In order to prove that vy is a minimizer of Fo(u’p ), it is sufficient to verify that

_ R (o)

Glon Ry) > Llf(p)(%w) +L2f(p)(%)+L3f(p)(4§) +L4f(p)(%) 5

for a.e. t € (0,1).
(4.23)
Indeed, suppose that there is b € B such that a5 # 0. If b € Uy, for some 1 < k < 4 then by

(4.17) and Lemma 4.3,

5
Lif P (e(b+) = 2e(b=)]) + Laf P (i at+) = ilat o)) > LifP ()
and then, we use that

ut(a};—i-)
ut(ai—)

f@ﬂ%whd—%@%ﬁDZﬂmOA@ 0,2§k§4
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Ifb= A}tC for some 1 < k < 4, then
_ 5%
IR+ Ly Il (AL — er, (ADD) + Lif P (@i (af+) — @i(ai—))) > L1f(p)(z)-

Otherwise, according to (4.20), there exists a, # 0 for some a = a}. By Lemma 4.3, we notice
that the map 0 € (0,7) — P (2r —0) — fP)(#) is decreasing. Then, by (4.17), we casily check
that

Lef O (pu(al ) —pu(al—) ) + Lo (1 Arg “jg‘fﬁ; \) > Lf® (1 Arg “j%*i 1) 1170
U (Zl— U ak—

with equality if and only if k& = 1. Therefore, (4.23) holds and we also deduce that if ¢ is a
(u,p)

minimizer of F;"”, then for almost every ¢ € (0,1),

0 if2<k<A4,
S(pt) = S(ug) and g = (4.24)
’ 1 ifk=1

The uniqueness of the minimizer ¢ (up to 27Z constants) follows by (4.24) as in the proof of
Lemma 4.5. U

Proof of (ii) in Theorem 4.1 for p € (0,4). Let Q be an arbitrary bounded domain in
RN, for N > 2. Denote by D = (2R) x (—2,2)¥~2 ¢ R¥. By translating and shrinking
homotopically the rectangular parallelepiped D, we may suppose that D CC Q. Let u, g
and 1 be the functions in R constructed above and denote D; = R x (—1,1)V=2. We write

= (21,29,...,2N) = (21, 29,2") € RN. We define in ©,
u(zy, x2) in Dy,
w(z) =<1 in (D\Dy)nN{z >0},
-1 otherwise.

Consider the liftings

'wo(m1,w2) in D,
Co(z) =140 in (D\Dy)N{z >0},
T otherwise

and
(o (21, 22) in Dy,
£O($) =<0 in (D\Dl) N {.%'1 > 0},

—T otherwise.

We prove that (j is the unique optimal lifting of w and &j is the unique minimizer of Fo(w’p ), but

Co — &p is not constant since

€o in DN {561 > 0},
Co =

o+ 2w otherwise.
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4.6. Proof of (ii) in Theorem 4.1 for p # 4

Step 1. The function (p is the unique optimal lifting of w (up to a 277 constant).

Indeed, let ¢ € BV (€, R) be a lifting of w. Obviously, [¢* — (7| > dgi(wh,w™) = |¢ —
(| HN lae. in S(w) N (2\ D). The restriction of ¢ to R x {2/} is a BV lifting of u for
almost every x’ € (—1,1)V~2. Therefore, by Lemma 4.5, we obtain

[ 1p¢i= /Q\Dl ID¢| +/Dl D¢)

2/ |C+—C_|dHN_1+/ dac'/ (
S(w)N(Q\D1) (—=1,1)N-2 Rx{z'}

dgi (w,w) dHN L 4 9N 2 / D] = /Q DGl
R

({9—1'1’ 8.%'2

¢ ag)

>

/5 (w)N(\D1)

i.e., (p is an optimal lifting of w. Let now ¢ be an optimal lifting. From the above it follows that

/ |D¢| = / dgr(w, w™) dHN !
O\Dy S(w)N(Q\D1)

and for almost every 2’ € (—1,1)V =2, the restriction of ¢ to R x {2’} is an optimal lifting of ,

[ o= [ gl
Rx{z'} R

As in the proof of Lemma 4.5, it follows that ( — {y = 27m in Dy where m € Z. Since the size

ie.,

of the jump of ¢ must satisfy 0 < dg1(wt,w™) < 7 on 9D, we deduce that
(—(=2mm in Q.

Hence, (p is the unique optimal lifting of w (up to 27Z constants).

Step 2. The function &; is the unique minimizer of Fo(w’p ) (up to 27Z constants).

As in Step 1, using Lemma 4.6, we have that for every BV lifting ¢ of w,

F7(Q) /
2 S(O)N(Q\D)

> / FO(ICt — ¢l dHN!
S(w)N(Q\D1)

+ / da’ / SOt — ¢y ant
(—1,1)N=2 S(ON(Rx{z'})

| 79 (ds (7)) AN 2N () =
S(w)N(\DP1)

= fP¢t = ¢ drN +/ FO(¢t —¢ ) anrN !

S(O)NDy

Féw’p)@o)
2

)

i.e., & is a minimizer of Féw’p . The uniqueness of the minimizer follows by the same argument

as above. O

4.6 Proof of (ii) in Theorem 4.1 for p # 4

In this section we shall complete the proof of our main result in the general case p € (0,4) U
(4,+00). The strategy will be to construct a family of functions U = {Ui},c(_1 1) in BV (Q, Sh
4’4
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Chapter 4. On the relation between minimizers of a I'-limit energy and optimal lifting in BV

with the following property: for every p # 4, there exists a function Uy in the family I/ such that

Ut,p)

U has a unique optimal lifting (up to translations in 277Z) and the energy Fé of the optimal

)

lifting is larger than the minimal energy min FO(Ut’p . First of all, we make that construction in

the special case of the two-dimensional disc

Q:={2eC: |2] <2}.

Construction of the family U = {Ui},c(_1 1) in the disc © = B(0,2) C R2. For any
104 B

z € Q\ {0}, we denote the argument (z) € [0, 27), i.e., = ). Let t € (—1,1). We define

the set

Ap={zeQ: z=re"’ re(1,2), O<9<(z+t)lnr}

and we consider the function 6, : O — R given by

0;(2) := 0(2) + 2mx4,(2), VzeQ, (4.25)

where y 4, is the characteristic function associated to the set A;. Now let U; € BV (€, S') be
defined by )
Up(z) == €10 vz e Q. (4.26)

Set the liftings @14, 2+ € BV (Q,R) of Uy:

9 . 9_- 97 9 5 T
P1 = 1_06t = EH + ?XAt and o= —0; —2mx4, = —0 — —x4,- (4.27)

We will show that:

Figure 4.2: The construction for the general case p # 4

Lemma 4.7
(i) For anyt € (—i, 0), w1, is the unique optimal lifting of Uy (up to 2wZ additive constants);
(ii) For anyt € (0,3%), oy is the unique optimal lifting of Uy (up to 2nZ additive constants).
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4.6. Proof of (ii) in Theorem 4.1 for p # 4

The conclusion of Theorem 4.1 (in the case of the disc) will then follow from the next result:

Lemma 4.8

(i) For every 0 < p < 4 there exists a positive number p, € (0, %) such that for any t €

(—pp,0) we have that FéUt’p)(gol,t) > FO(Ut’p)(cpgi), i.e., the optimal lifting p1¢ of Uy is not

(Ut,p)

a minimizer of I . Moreover, pa; is the unique minimizer of Fé tp) (up to a 277

translation), for everyt € (—pp, pp).

(ii) For any p > 4 there exists p, € (0,1) such that FO(Ut’p)(cpgi) > FO(Ut’p)(cht), for each

' 7
t € (0,pp), i.e., the optimal lifting v2+ of Uy is not a minimizer of FO(Ut’p)

Ut,p

. Moreover, @14

is the unique minimizer of Fé ) (up to a 2wZ translation), for everyt € (—pp, pp)-

Before proving the above Lemmas, we shall introduce some notations (see Figure 2). Set
Pi={zeC:z=r,re(0,1)} and Q;:={zeC: z=r®4H)M" 1 c(12)} (4.28)
Then the jump set of Uy is given by
S(Ut) = P UQ:U{(0,0),(1,0)}; (4.29)
moreover, we have that
HYP) =1 and HYQ:) =+/1+ (3/4+1)2 (4.30)

We choose the orientation of the jump set S(U;) to be given by the unit normal vector vy, € S*
defined by
(0, 1) RS Pt,

I/Ut(z) = 1 , /
(el =D) - zeQu

where v, (r) = ve.1(r) + ie.2(r) == re®/AFDIMT Then for any 2 € S(U;) we consider the traces
9

UF(z) = oi50=)  and U7 () = ity (0(2)+2m) _ ei(%@(z)—%).

We start by giving a useful characterization of a general lifting ¢ € BV (Q,R) of U;. We can
choose the orientation of S(¢) to coincide with the orientation of S(U;) on S(¢) NS(U;). Then,

we have
ot(2) —p (2) = g +2mn(z), V2 € S(U;) and ¢t (2) — ¢ (2) = 27n(2), Vz € S(p) \ S(Uy),
where n : S(¢) — Z is an integrable function. We define the sets

Lo:={z€58(p): n(z) #0} and L. :={re(0,2): I0€R, re” € L,}. (4.31)
We next prove the following property:
Lemma 4.9 For any lifting ¢ € BV (Q,R) of Uz, we have HI(LZ,) =2.
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Proof. By contradiction, assume that Hl(L;) < 2. Then, there exists a compact set K C (0, 2)
such that H'(K) > 0 and L, N K = (). Consider a sequence of open sets Vi, CC (0,2) such that
K C Vi, cC (0,2) and N2, V& = K. Now take a sequence of functions oy, € C2((0,2),R) that
satisfy 0 < o, < 1, o(r) = 1 for any r € K and ox(r) = 0 for any r € (0,2) \ Vi. Define the

functions & € C%(Q,R) by
2
0k(z) :== / oy (t)dt.
\

z

For z = (z,y), we denote V18, := (=00, 0,0). Then we have
/ VL6,(2) d[Dy](z) = 0.
Q

Since U; = €'?, we obtain from the chain rule (4.7),

. 9  _
Dy = D% + Dip = D+ %m H'LS(Uy) + 27n(- )y HYLL,

10
Therefore, by (4.32) we infer

—275,(0) + 27 / n(2)VE64(2) - v (2) dH () = 0.

Le

(4.32)

(4.33)

Define the sets Wy, := {z € Q: |z| € V; \ K}, Vk > 1. Then by the construction of dj, we deduce

from (4.33),
9, (0) = /L . n(2)V=Eor(2) - vp(z) dH (2).

Since |V+6,| < 1, it follows that

s

O [ el @< [ e el <1

Using N2, Wy, = 0, we get that

k—o0

On the other hand, according to the definition of §z, we have

6,(0) = /02 o (t)dt > /Kldt = HY(K) >0,

Wi

which leads to a contradiction to (4.34). This completes the proof of Lemma 4.9.

We now present the proofs of Lemmas 4.7 and 4.8:

Proof of Lemma 4.7. The jump set of ¢1; and ypa; are

| D

(4.34)

S(@l,t) - S(Ut) - PtUQtU{(Ovo)v (170)} and S(‘PQ,t) = PtUQtURtU{(O7O)7 (170)}7 (4'35)

where Ry :={2 € C: z=r,r € (1,2)}. Moreover, the size of the jump is
_ I
|90ft(3) - 801,t(3)| =5 Vze B UQ:
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4.6. Proof of (ii) in Theorem 4.1 for p # 4

and
9% if ze€ Pt,
[034(2) = 9o () =% if z€Qy,
2T if ze€ Rt.

Therefore, by (4.30), it follows that
: 97 9
/ Dig| = + =T+ (3/4+ 1)
0 5 5
: 9
1D =+ T TH BT R + 2
Q

(4.36)

Hence, we have

/ Digy,| < / Diga,|, ¥t e (~1/4,0),
Q Q

/ Digys| > / Digny], Vit e (0,1/4), (4.37)
9] Q

/le%,ol:/leSDz,ol-
Q Q

Let now ¢ € BV(Q,R) be an arbitrary lifting of U;. From (4.11) it follows that / |D%| =
Q

/ |D*Uy| and / |Dp| = / |DUy| = 0. We choose an orientation of S(¢) that coincides with
Q Q Q
the orientation of S(U;) on S(p) N S(U). Put

2y =HY L, NP), yp:=H(L,NQr),
we = HU(S() \ ST) = H (Ly\ (P UQY), (4.39)

Yo

Zp =Wy + Ty + T G/A
where P, and @Q; are defined in (4.28) and L, is given in (4.31). Consider the following decom-
position of L{, (defined in (4.31)):
L, =A,UB,UD; ae. in (0,2),

where

AT :={re(0,1): 30 R, re" € L,N R},

Bl :={re(1,2): 30 €R, re’ € L, N Qy}, (4.39)

Dl :={re(0,2): 30€R, re’ € L, \ (P, UQy)}.
Note that A7, N B}, = (), but AL (resp. BZ;) and Df, are not necessarily disjoint. We have

HY(AL) =x, and H'(B) = \/Hé“;—Ht)Q

where the last equality follows by the construction of @Q;. It is clear then that

wy > HH(D}) > W (L) \ (A, U BY) = W (L) — 2 — ——

V14 @/4+1)2
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By Lemma 4.9 we have Hl(L;) = 2. Therefore,
Yo

V14 3/4+1)2

Wy > 2 — Ty — ie., z,>2. (4.40)

By (4.30), we deduce that

(Tipy Yooy 2p) € My i= {(2,y,2) ER?: 0< 2 <1, 0<y <1+ (3/4+1)2, 2>2}.  (4.41)
We define the function ®; : M; — R by

B C2r 2m(4/14+B/4+)?-5) o«
Pu(,y,2) = 2mz = Lo+ N e y+5(1+\/1—|—(3/4+t)2'>.

It is easy to check that for ¢ > 0 the unique minimum point of ®; on the set M; is achieved

at the point (1,0,2). Similarly, if ¢ < 0 then ®; attains its unique minimum on the set M; at
(z,y,2) = (L 1+ (3/4+1)%,2).
On the other hand, from (4.29) we infer

[ 1pielz [ ot -1+ [ ot -1+ [ ot — |
Q S(e\S(Ut) (LpNPr)U(LeNQt) (PUQ¢)\ Ly
> 2mw, + (27 = T) (@ + yp) + = (1+ V1 + GA+ 12 -2~y )
= ¥ 5 ¥ ¥ 5 ® ¥
= 4(Tp, Y, Zp).- (4.42)

Therefore,

/ D] > By, Y0 25) > 4(1, /11 (3/4 + D7, 2) = / Digwl, ifte (~1/4,0),
@ @ (4.43)

/ |DJQD| 2 (I)t(xépayép,zép) Z ‘I)t(l,o, 2) = / |ngp2,t|a ift € (0’1/4)
Q Q

We conclude that for ¢t € (—1/4,0), o1, is an optimal lifting of Uy while for ¢ € (0,1/4), @24 is
an optimal lifting of Uy.
It remains to prove the uniqueness of the optimal lifting of U;. Let ¢ be an arbitrary optimal

lifting of U;. Then all inequalities in (4.42) and (4.43) become equalities.

(i) In the case of t € (—1/4,0), we deduce that z, = 1, y, = /14 (3/4+ )2, w, = 0 (hence,
S(¢) = S(U)). Moreover, by (4.42),

9 :
ot —p | =— H'-ae in S(yp).

)
Since every lifting has the same diffuse part (see (4.11)), it follows that
D(p—¢14) =0 inQ.

Since € is connected, we conclude that ¢ — ;4 is constant in (2.
(ii) In the case t € (0,1/4) we obtain z, = 1, y, = 0, w, = 1. Moreover, by (4.42),

©

9 Hl-a.e. in S(p) N P,
|SD+ —p | = % Hla.e. in S(e) N Qy,
2r  Hl-ae. in S(p)\ (P UQy).
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4.6. Proof of (ii) in Theorem 4.1 for p # 4

Then, according to (4.11), it follows that
D(¢ — o) = 27 (WJ%HlLRt —vpH'C(S(p) \ S(Ut)))

We deduce that for every function 6 € C1(€2),

/ D — / V6 v, dH' = 6(1,0),
S(\S(Wr) O S(E\S(Us)

where 7, stands for the tangent vector to the H!-rectifiable set S(p) \ S(U;). Using the same
technique as in [53], since H' (S(¢)\S(Ur)) = dist ((0,1),99) = 1, we conclude that S(¢) \ S(Uy)
coincides with R; (which is the geodesic line between the point (0,1) and 02). Thus, D(p —
w2+) =01in Q, i.e., ¢ — o is constant in . This completes the proof of Lemma 4.7. O

Proof of Lemma 4.8. Let p > 0. By Lemma 4.3 we compute

97 /10
FUP) (014) = (1+/1+ (3/4+1)?) / 2le’ — 1|P/%ds
—97/10
97 /20
= 2p/2+3(1 + V14 (3/4+1)?) / sin?/? s ds
0
97/20 /2
= 9p/2+3 / sin?/? s ds + 2P/%73\ /1 4+ (3/4 + 1)2 / cosP/? s ds.
0 720

On the other hand,

_ w/10 )
FiVP gy ) = /O 4le’ —1P2ds + /1 + (3/4 + t)2/0 Ale’ — 1|P/2ds

—|—/ 4le'* — 1|P/2ds
0
97/20 /20 /2

:2p/2+3< / sinp/23d3+\/1+(3/4+t)2/sinp/23d8+/cosp/23ds>.
0 0 0

97/10

Therefore, we infer that

271)/273 (FO(Ut’p)(gplyt) — FéUhp) (902715)) -

w/2 /20
= (V1+3/4+1)2-1) /cosp/zsds—\/1+(3/4+t)2 / (cos?/? s + sin?/? s)ds
0 0

/20

/4
= (V1+3/4+1)2-1) / (cos?/? s +sin?/? s)ds — /1 + (3/4 + )2 / (cos?/? s + sin?/? s)ds
0 0
1 /4 ) )
= —/ (cosp/ 5 + sin?/ s)ds - <5( 14+ (3/4+t)2—1) —cp/1+ (3/4+t)2>, (4.44)
0
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where we denoted
5 fow/m ((:osp/2 s + sin?/? s)ds

Cp =
Y f0”/4 ((:osp/2 s + sin?/? s)ds

€ (0,5).

Since the function

s € (0, %) — (COSp/2 s + sin?/? s)
is increasing for 0 < p < 4 and decreasing for p > 4, it turns out that
o<1, Vpe(0,4) and cp>1, Vpe(4,00).
Therefore, by (4.44), for any p € (0,4) there exists 0 < p, < 1/4 such that
B ) > B oad)  VEE (=pppy). (4.45)
Similarly, for any p € (4, 00), there exists 0 < p, < 1/4 such that
E7 P (o10) < BT (000)  VEE (—ppopy). (4.46)

Now we prove that for any t € (—pp, pp), @2+ (resp. ¢14) is the unique minimizer of FO(Ut’p) if
p € (0,4) (resp. p > 4). Let ¢ € BV (€, R) be an arbitrary lifting of U;. We choose an orientation
on S(p) that coincides with the orientation of S(U;) on S(p) N S(Uy). In the following we use
the same notations as in the proof of Lemma 4.7 (see (4.38), (4.39) and (4.41)). We define the
function W; : M; — R by

Uy(z,y,2) 1 = fP2m)z — <f<p>(2ﬂ) +f(p>(%) B f””(%ﬂ))m

7'(' ) (27 0 m
(106D - LB () )+ 1) (14 VIT BT )

1+ (3/4+10)
— §0)(27)z — <f<p>(2ﬂ) n f<p>(%) _ f<p>(9§)>x
< (FéUt”’)(wl,t) - Fo(Uhp)((PZ,t)) + @ (g) <1 +/1+ (3/4+ t)?).

1+ (3/4+1)2

By (4.45) and (4.46), it can be easily checked that: if p € (0,4) and t € (—pp,pp) then the
unique minimal point of W, in the set M, is achieved in (1,0, 2), while if p > 4 and t € (—pp, pp)
then W, has also a unique minimal point in M; for (x,y, z) = (1, 1+ (3/4+1)2, 2). Using the
same argument as in the proof of Lemma 4.7, it follows that

U7
B ) /
2 ~ Jse)\sr)

L L (v
(PUQt)\ Lo
> [P @Ry, + £ (20 = T @p + o) + FP(F) (14 VIT+ BT 07 — 2~y )

= \Ilt(xlp’yipazip)' (447)

f(p)(lso+—90|)d7i1+/ FP (" — 7)) an!
(LoNPOU(LeNQr)
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4.6. Proof of (ii) in Theorem 4.1 for p # 4

Therefore, for every t € (—pp, pp),

FUP (0) > 20420,y 70) > 200(1, VT T B/ T 0%.2) = BV P (p1) i p> 4,
FO(Utvp)(SO) Z Q\Ilt(xSO’yw’ Zsp) Z 2\Ilt(170’ 2) — FO(Uhp)((PQﬂf) lfp S (07 4)
(4.48)

if p > 4, and po; is a minimizer
(Ut,p)
FO

It follows that for any ¢ € (—pp, pp), 1.+ is a minimizer of FO(Utvp)

of FO(Ut’p ) if p € (0,4). It remains to prove the uniqueness of the minimizer of
FéUtvp)

for any

t € (—pp,pp)- Let ¢ be a lifting of U; that minimizes the energy . Then all inequalities

in (4.47) and (4.48) become equalities. Next we distinguish two cases:

(i) In the case of p > 4 we deduce that z, = 1, y, = /1+ (3/4+1)%, w, = 0 (hence,
S(¢) = S(Uy)). Moreover, by Lemma 4.3 and (4.47),

—_ 9m :
ot — | = = H'-ae. in S(p).

Since every lifting has the same diffuse part (see (4.11)), it follows that
D(p—¢14) =0 inQ.

Since (2 is connected, we conclude that ¢ — ¢1; is constant in 2.

(1) In the case p € (0,4) we obtain that z, = 1, y, = 0, w, = 1. Moreover, by (4.47)

9 Hl-ae. in S(p) N P,
ot — | = T Hl-a.e. in S(p) N Qy,
ot Hi-ae. in S(p) \ (P UQy).

Then, by the same argument as in the end of the proof of Lemma 4.7, we conclude that ¢ — ¢ ;

is constant in €. O

In the following, we shall adapt our construction of the family ¢ to the general case of an

arbitrary domain G:

Proof of (ii) in Theorem 4.1. Assume that G is an arbitrary bounded domain in RY for
N > 2. We construct a family of functions U = {Ut}te(—1/4,1/4) in BV (G, S') that will have the
same behavior as the family U = {U; };c(—1/4,1/4), defined in (4.26) over the set Q = {(x1,22) €
R?: 22 + 22 < 4}. Let us introduce the sets

O = {(z1,79) € R*: z 423 < 16},
G =Qx(=1/2,1/2Y 2 cRY and Gy:= 0 x (-1, )2 c RV,
For t € (—1/4,1/4), set also
Hy = {(x1,22) € Q= (z1,22) = re, r € (1,4), 0<0 < (3/4+1)Inr},
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and define H, := H; x (—1,1)N=2 c RN, As before, by translating and shrinking homotopically
the set G, we may suppose that Gy C G. We write = (z1,22,...,25) = (21, 72,2') € RV,
Next we define the function U; € BV (G, S') by

Ut(ml,mg) S Gl,
U(z) =141 x € Hy\ Gy, (4.49)
-1 otherwise.

Recall the liftings 14,92+ € BV(Q,R) of U; defined in (4.27). Then, consider the liftings
4, P2 € BV(G,R) of U, given by

o1,4(x1,22) z € Gy, ©24(x1,2) x € Gy,
Dy 4(x) = Q27 ze Hy\ Gy, and $yy(x) :== <0 z e H\ Gy,
T otherwise T otherwise.
(4.50)

The jump part of these liftings enjoys the following property: for every 7 = 1,2, and every
€ (—1/4,1/4) we have

S(@;0)\G1 = S(U)\G1 and |®F,(2) =P}, (2)| = dg: (U} (), U; (x)) HN"-a.e. in §(®;,)\G1.

(4.51)
In the sequel we will prove that the analog results to those of Lemmas 4.7 and 4.8 hold for the
functions ®;;, j =1, 2.

Step 1. For j = 1,2, ®;; is the unique optimal lifting of U, (up to 277Z constants) if ¢ is between
0 and (—1)7/4.

Indeed, let ® : G — R be an arbitrary lifting of U; on G. First notice that by (4.12), we have

that
/ |D“<I>|+/ |DC<I>|:/ |D“Ut|+/ DT, = 0.
G\G1 a\G: G\G1 a\G:

Using Lemma 4.7 it follows that

/yucp\:/ \DtI)]—i—/ DD
G G\G1 G1
:/ \qﬁ—@deNlJr/ |DO|
S(®)\G1 Gy

S T 0d 00
> d UJF,U* d'HN_l—{— / dx’ / —
_/S(Ut)\c;1 s (U5 00) v ‘(6331 8562)‘

(—1/2,1/2)N— Qx{z'}

> [ @0 / Dyl = / D, 1, (4.52
SU\G1

i.e., ®;; is an optimal lifting of Uy if ¢ is between 0 and (—1)7/4. It remains to show the
uniqueness of the optimal lifting. For that, let ® be an arbitrary optimal lifting of U;. Then we
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must have equalities in (4.52) and therefore we obtain:

S(®)\G1 = S(U;)\G; and &% (2)—@ ()| = dSl(U;_(ﬂf),ﬁt_(ﬂf)) HNLae. in S(®;,)\G1,

(4.53)
and for almost every ' € (—1/2,1/2)V =2, the restriction of ® to Q x {2’} is an optimal lifting
of U;. Therefore, the jump set of ® satisfies:

S(®) NGy = S(pje) x (—=1/2,1/2)N2 = S(®;,) N G.

By (4.11), it follows that D(® — ®;;) = 0 in Gy \ S(®;,), i.e., & — ®;; is constant on all j
connected components of G1 \ S(®;;), j = 1,2. The optimality of ® does not allow any jumps
for ® — ®;;, on S(®;;) N Gy. Hence, by (4.53), we conclude that ® — ®;, is constant in G.
Step 2. For every p € (4,00) (resp. p € (0,4)), there exists p, € (0,1) such that for any
0<t<pp (resp. —pp, <t <0), we have

FUP (@9,) > BV (@1,)  (resp. FSUP(@1,) > BV (@) ),

)

i.e., the optimal lifting of U, is not a minimizer of FéUt’p for the above ranges of p and t.

Indeed, let us prove the claim for p > 4 (the other case follows using the same argument). Take
pp € (0,1/4) as given by Lemma 4.8. Then, by Step 1 and Lemma 4.8, we deduce that for

t e (0,pp),

0, _ - _ -
FL0) (@) = / FO (@, — o5 ,) dHV ! + / £ (05, — b, [)dH !
S(‘i’z’t)\Gﬁ GlﬂS(‘bQ’t)
_ / O (de (T Ty ) aHN / FO0t, — o )dH!
S(UH\G1 QNS(p2,t)
S P @O [, - ant
S(UH\G1 QNS(p1,t)
= RV (@),

As before, one can also obtain that for any t € (—pp, pp), P2+ (resp. Py ;) is the unique minimizer

of F{UP) if p € (0,4) (resp. p > 4). 0

We remark that for Wh! functions, the minimizers of the energy E(-) defined in (4.3) coincide
with those of Fé"p), for any p > 0:

Proposition 4.10 Let Q C RY be a bounded domain, 0 < p < oo and u € WH1(Q, S1). Then

u,p)

a lifting @ of u is a minimizer of FO( if and only if © is an optimal lifting of u.

Proof. Let ¢ € BV (€, R) be a lifting of u. Then
©" — ¢~ =0 (mod 27) in S(p).
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Chapter 4. On the relation between minimizers of a I'-limit energy and optimal lifting in BV

+ _ —
We denote n(z) = [ (m)Q (@) € N for HN¥"1l-ae. z € S(p). By (4.12), we have
7r

/\Dgp\ :/ \Vu]dw—i—?w/ n(x)dHN_l(x).
Q Q S(p)

According to (4.16), we deduce that

E ) = 2£00m) [ nia) @),

Therefore, ¢ is a minimizer of Fo(u’p ) if and only if it minimizes the energy E(u). 0
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Chapter 5

On an open problem about how to

recognize constant functions

Abstract

We find necessary and sufficient conditions for the function w in order that any measurable
function f : 2 — R which satisfies

[ [ () e <

is constant a.e. in 2. We also study what regularity on f should be assumed so that for
any function w which is continuous, w(0) = 0 and w(t) > 0 for every t > 0, if (5.1) holds,

then f is a constant.
The first part of this chapter is published in Houston J. Math. 31 (2005), 285-304 (cf.
[61]) and the second part is a work in progress in collaboration with R.-A. Todor.

5.1 Introduction

In this chapter, we investigate an open question posed by Brezis in [25]. The starting point is
the following result (see [21], [25]):

Theorem 5.1 (Bourgain, Brezis, Mironescu) Let 0 be a domain (i.e. a connected open set) in
RN, If f : Q — R is a measurable function which satisfies

//\f(w)—f(y)! dedy
A z—yl |z -y~ ’

Q

then fis a constant a.e. in Q. More generally, if p > 1 and

F(@) = F)PP dody
/é ey oy

Q

then the same conclusion holds.
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Chapter 5. On an open problem about how to recognize constant functions

The motivation comes from the theory of Ginzburg-Landau equation where the problem of
existence and uniqueness of lifting in Sobolev spaces is essential. More precisely, if Q ¢ RY is
an open set and u € W*P(Q, S1), is there a lifting ¢ € WP(,R) of u (i.e. u = € ae. in
Q)7 Is this lifting unique in W*P? (up to 27Z constants)? Here, 0 < s < 0o et 1 < p < co. The
answer to the question of existence of lifting was given by Bourgain, Brezis and Mironescu (see
[20]). The uniqueness of lifting holds if sp > 1 and is a direct consequence of Theorem 5.1 (see
Corollary 5.10). Another motivation comes from the degree theory for classes of discontinuous
maps: if the degree degh(-) remains constant along a homotopy hi(-) as ¢ varies in some
connected parameter space, then it is possible to define a degree. For the case of Sobolev maps,
we refer to the work of Brezis and Coron [26] and Brezis, Li, Mironescu and Nirenberg [28].

We denote
W={weCRL,Ry)|w(0) =0, w(t) >0,Vt>0}.

The following problem now arises:

Problem 1 Find a necessary and sufficient condition for w € W so that any measurable func-
tion f : Q — R which satisfies

é é o (L) gy <+ (5.2

is constant (a.e. in Q).

Observe that the restriction w € W is natural. Indeed, the continuity of w is needed to make
the left hand side of (5.2) well-defined. Also, w(0) = 0 (since for any constant function f, (5.2)
should hold) and w(t) > 0,V¢t > 0 (if w(t) = 0 for some t > 0, take N = 1 and f(x) = tz).
Henceforth it is assumed that w € W.

Three theorems are established concerning Problem 1. Theorem 5.2 gives a necessary condi-
tion and Theorems 5.3 and 5.4 provide sufficient conditions. The question whether the necessary

condition in Theorem 5.2 is also sufficient remains open.

Theorem 5.2 Let Q C RN be a bounded domain. Let w € W be such that any measurable
function f: Q — R that satisfies (5.2) is constant a.e. in Q. Then f+°° w(t dt = +o00.

Theorem 5.3 Let Q C RN be a domain, f:Q — R be a measurable function and w € W such
that lim infy_, 4 # > 0. If (5.2) holds, then f is constant a.e. in €.

Theorem 5.4 Let Q C RY be a domain, f : Q — R be a measurable function and w € W.
Define ¢ : (0, +00) — (0,+00), ¢(t) =t 'w(t) for all t > 0. Assume that w is a non-decreasing

function such that

T w(t) ¢(t)
/1 2 dt = +00 and Oiggt% < 400

If (5.2) holds, then f is constant a.e. in ).

96



5.1. Introduction

Open question 1 Is the condition eroo w(t) dt = 400 sufficient for Problem 1 (of course, under
the assumption w € W)?

In the second part of the chapter, we investigate the following problem:

Problem 2 What regularity on f should be assumed so that for any w € W, (5.2) imply f is a
constant?

The motivation is clear: if we don’t want any restriction on w € W, we need to impose an
additional condition on f in order that (5.2) yields f to be a constant. We establish the following
results for Problem 2. Theorem 5.5 says that the condition f € VVl})’cl(Q) guarantees that
Problem 2 has a positive answer. The other two theorems deal with the question raised by
reqularity) of f sufficient for Problem 27 The

answer is negative in general. In the end, we state another open question (related to the previous

Brezis in [25]: Is the continuity (or even the Co®

loc

one).

Theorem 5.5 Let  be a domain in RN and f € W21 Q). For any w € W, if (5.2) holds,

loc
then f is constant a.e in €.

Theorem 5.6 Let Q be the unit cube in RY i.e. Q= (0,1)N. For every 0 < a < 1, there is a
nonconstant a-Holder continuous function f : [0,1]Y +— R of bounded variation which satisfies

(5.2), for every bounded function w € W.

Theorem 5.7 Let Q = (0, 1)N. For every 0 < a < 1, there is a nonconstant a-Hélder continu-

ous function f:[0,1]Y +— R of bounded variation which satisfies

— O drd
[[ S e e
Q Q

Open question 2 Let w € W be such that eroo “® gt = +o00. Suppose f is continuous (or
even CO for some 0 < a < 1) and satisfies (5.2). Is f constant?

The outline of the chapter is the following: In Section 5.2, we prove the necessary condition
for Problem 1 stated in Theorem 5.2. In Section 5.3, we show the sufficient conditions for
Problem 1 announced in Theorems 5.3 and 5.4. In Section 5.3, we prove the Wh! case for
Problem 2. In Section 5.5 we present some remarkable properties concerning a generalized
Cantor set and Cantor function, results that we use in the proof of Theorems 5.6 and 5.7 in
Section 5.6. In Sections 5.7-5.9, we present some further results about Problem 1 that will
appear in [59]: first we prove a dimension reduction theorem, then we show that the necessary
condition in Theorem 5.2 prevents the function f to be a non-trivial indicator function in 2 and

also from being a Cantor function.
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Chapter 5. On an open problem about how to recognize constant functions

5.2 Necessary condition for Problem 1

In this section we prove Theorem 5.2 i.e., the condition

1

is necessary for Problem 1. Firstly, we present a preliminary result. It states that the above

condition is needed in order to prevent f from being a step function.

Lemma 5.8 Let Q = (—1,1) x (0,1)V=! and w € W. Let f be the characteristic function of
the unit cube i.e. f = xy~. Then (5. 2) holds if and only if foo w(t dt < +00.

Proof: We denote = = (21,22, ...,2x) = (71,2') € RY and

=/ / (=) e

After a change of variable t = z1 — y; we get I = 2(I; + I2) where

1 t
/ / dx’ dy/ w( ) ~ dt
‘.’E'—y”Q—l-tQ (]m’—y’\2+t2)7

(0,1)N=1 (0,1)N—1

1 2 —
/ / dx’ dy/ w( > ! ~ dt.
|:C/—y'|2—|—752 (‘xz_y/’2+t2)3

(0 1)1\7 1 01 N-—-1
We remark that |I5| < ||w||L°°[0,1} and

1 H( ;)

n=ov [ /(m) Ty

N times

If N =1, then I} = fol (1) dx = [ WZ(Z) dz. If N > 2, after the change of variable z =
L for each x/, we get I; = 2V~ 1([3 + I) where

Vattla?

1 N
I3 = / w(z)zN 3 / H(l —Ti) X L)(z) dx’ dz
00 N
I, = / w(z)ZN 3 / H(l —x;)da’ dz.
' wl<d =
z'€l0,1]NV -1

Note that |I3] < [[w]|fec(o,1). Therefore it is sufficient to show that Iy < +oo if and only if
foo w(t)dt < +o0. For 0 <t < 1, define

N
Tn(t) = / H(l — ;) du.
z€[0,1]N =1
|z|<t
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5.8. Sufficient conditions for Problem 1

Then
N N
/ [J0 =) de <Tw(t) < / [0 = ) da
[Qﬁ}Ni:l [O,t]Nizl

so there is a constant cy = (ﬁ)N such that

ent < Tn(t) <tV for all t € (0,1).

This yields I, ~ floo WZ(QZ) dz. O

oo w( ) dt < +oo. Since () is bounded,

Q c (—r,r)V for some r > 0. For the 51mphClty, we suppose that 0 € . Take now the

Proof of Theorem 5.2: Assume the contrary i.e. f

characteristic function f = x(g)x(—r,)¥-1. By Lemma 5.8,

/ / <rw—§\(y)’>\xdff\/fv<+°°

(=r,r)N (=r,r)

Therefore (5.2) holds which contradicts the hypothesis that f is not constant on €. O

5.3 Sufficient conditions for Problem 1

In this section, the proofs of Theorem 5.3 and Theorem 5.4 are presented. We call mollifiers in
RN any family (pc)e>o of functions in L} (0, 00) satisfying the following properties
pe > 0 ae. in (0, +00),
[e.e]
/ pe)tN"Ldt =1 Ve >0,
0

lim/ peM)tN"Ldt =0 V5> 0.
1)

e—0

Recall the following result of Brezis (see e.g. [71] Proposition 1 and Lemma 4):

Theorem 5.9 (Brezis) Let @ C RY be a domain, (p.) be mollifiers in RN, f € L} () and

w e W be a convex function. If

ti [ [ (W) el — yl) ddy = 0
Q Q

then f is constant a.e. in Q.

First proof of Theorem 5.3: Since w € W we can construct a convex function v € W
such that @(t) < w(t),vt € [0,1] and &(t) = at 4+ b,Vt > 1 for some a,b > 0. The hypothesis

liminf; @ > 0 implies the existence of a constant ¢ > 0 such that w(t) > cw(t),Vt > 0.

Therefore
//JJ(\f(x)—f(y)!) dedy
|z —yl |z —y|V
Q Q
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Chapter 5. On an open problem about how to recognize constant functions

Consider the mollifiers in RY

= #fo<t<l1
t) = tN—e ! . 5.3
pe(t) {0 ifr>1 (5.3)

By the dominated convergence theorem,

iy [ [ (W) pel|i — yl) drdy = 0.
Q Q

If fe L}OC(Q), we conclude by Theorem 5.9. In the general case of a measurable function f, we

consider

flx) i [f(z) <n
falx) =< n if f(x)>n
-nif f(z) <
So fn € L .(Q), fn — f ae. in Q and

(@) = fu(w)] < |f(z) = fly)] Yo,y € Q.

Since @ is increasing, we get for all n > 1,

gg%// ('f" fT( )|>pa(\x—y!)dwdy=0-

This yields f, = ¢, et ¢, — f a.e. in Q. Thus f is constant a.e. U

We now present a second method? of proving Theorem 5.3 without making use of Theo-
rem 5.9:
Second proof of Theorem 5.3: By the same argument as above, we may assume that w is
convex and f € L>®(Q). Let zp € Q and r > 0 be such that B(xg,3r) C 2. We denote By =
B(zg,r) and By = B(zg,2r). Let (pn)nen be a sequence of mollifiers with supp p, C B(0, 1).
Set

fa=pnxf on Bs.

Then f, € C'(Bs) and f, — f a.e. on By. Using that w is an increasing convex function, it

follows by Jensen’s inequality

// (’fn !w—fT( )’> \xdfzy!N _// / )’f(m_fﬂz—i\(y_Z)‘dz !mdle!/]v
[[ [ (e

B2 B2 p(o,1

(y)!> dx dy
< . dz
—/p // ( FETTR Ar=
B(O,l) Bo—2z Bo—2z

- é é ? CMQ - 5\“”’) ‘jf%

2This part does not appear in the published version of the paper [51]
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5.8. Sufficient conditions for Problem 1

Write

[ (LR b [ [ i [t = o

B2 Bo B SN-1

and deduce that for a.e. x € By and for a.e. 0 € SV,

/rw <|fn(g; +to) — fn($)|> dt < 4+o00.
0 ! t

Since for % = 00, we get

t —
ligniglfw <|f"(x i Ut) fn(x”) =0, i.e. w(|Vfn(z)-0]) =0 for ae. z € By and o € SV 1
We conclude that f, is a constant on B;. Hence, f is constant. O

As consequence, we obtain the uniqueness of lifting in W*? for sp > 1:

Corollary 5.10 Let Q C RN be a connected open set, s > 0 and p > 1 such that sp > 1.
Consider v € WP(Q,SY). If o1, € WP(Q,R) are two liftings of u, then @1 — @3 is a
constant function.

Proof. Let f := ¢1 — o € WSP(Q,Z). Let B be an arbitrary ball in . Since W*P(B) is
1

embedded in W7"?(B), it is enough to prove the statement for s = %. Recall the Gagliardo

seminorm in WYPP (see 2] )

o[ [ s,
|f|W%”’(B>_/B/B o —giv

Since f takes values in Z, we have that |f(z) — f(y)| < |f(xz) — f(y)[P. Then

f(z) = f(y)] dudy
/B/B ey -y =

The conclusion follows from Theorem 5.3 for w(t) = t. O

Proof of Theorem 5.4: Since w is non-decreasing, using the same argument as in the first
proof of Theorem 5.3, it is sufficient to show that the conclusion holds for f € LjS (€2). Firstly,
assume that the function ¢ is non-increasing on (0, 400). Take an arbitrary ball B C Q. For
simplicity, we suppose that |f] < % a.e. in B. By these assumptions we get

/ é ) =1l (LY e

B
! 1 €

1 1 £ :
Lo(1) = if0<t<l1
t) =< ¢ ¢ Ve > 0.
pe(t) {0 ift>1 c

For each ¢ > 0, set

Consider the functions
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Chapter 5. On an open problem about how to recognize constant functions

Using the hypothesis that fo ( ) % = +00, we see that (p.) are mollifiers in RY. We also

notice that lim. g = - =0. By dominated convergence theorem we obtain

;%//Wpa(\x—y!)dwdy=0-
B B

Hence Theorem 5.9 implies f is constant a.e. in B and since €2 is connected, we conclude that
[ is constant a.e. in 2. We now consider the general case when ¢ := supg.s<¢ % < +00. Set

#(0) = @ and define

¢ : [0,400) = (0,400), ¢(t) = min ¢(s) V¢ > 0.
s€[0,t]

So ¢ is continuous and non-increasing on [0, +0c) an ) < ¢(t),Vt > 0. From here,

gt
44 rf@@:;(y)\&( |w—y| >xdf% oo

We also have that ¢(t) < c? ¢(t),Vt > 1 and thus fol ) (1
constant a.e. in (2. O

) % = +4o00. By the previous case, f is

5.4 The case of I/Vl})c1 functions

In this section, we show that for f € T/Vlicl(Q) (in particular for Lipschitz functions), the answer
to Problem 2 is positive. We will present two different approaches for solving this case.

Proof of Theorem 5.5: Let z9 € Q. Take r > 0 such that B = B(zg,2r) C Q and denote
B = B(wg,r). Then f € Wh(B)ie. f € LY(B) and Vf € (Ll(B))N. So it makes sense to
speak of f(z) and Vf(x) for a.e. * € B. Let o € SV~1. By Fubini’s theorem we find that for
a.e. x € B there is a small t, > 0 such that I, = {x + to |t € (~t,t,;)} C B and f € WhI(1,)

i.e., f is absolutely continuous on I,. Therefore for every ¢ € SV—1,

St to) — f(@)
t—0 t

— dzd t dt
[ o= 10y doiy _/dw / to [[u(Llttn =Sy
) |z —y| |l“— | t
B B
and by (5.2) deduce that for a.e. z € B and for a.e. 0 € SN71,

/Orw <|f(;,;+tat)—f(l“)|> % < +00.

S tto) = F@IY _,
() =

=Vf(z)-o forae x€B. (5.4)

Write

Using for % = 00, we get

lim inf w
t—0
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5.5. Some generalized Cantor sets and Cantor functions

w being continuous, by (5.4) one can find N linear independent directions (;)1<ij<n such that
w(|Vf(z)-0oi]) =0 for a.e. z € B and for every i € {1,..., N}. This implies Vf = 0 a.e. in B.
By the Poincaré-Wirtinger inequality, we have that

o

i.e. fis constant a.e. in B. Since xg was arbitrarly chosen and 2 is connected, we conclude that

<SCIVFlpp =0
LY(B)

f is constant a.e. in 2. O

Remark: One could prove this result using another method, as follows. Define @ : [0, +00) +—
[0,1], @(¢) = min(w(t), 1) for every ¢ > 0. Take an arbitrary ball B C 2. Then

é é o (LR e < e

Consider the mollifiers (5.3) in RY. By the dominated convergence theorem, we obtain

;g//a(%)mm—yn di dy = 0.
B B

On the other hand, one can show that for a bounded continuous function @ on [0,+00) and
f e Whi(B),

;g//@(Wﬁa(!m—yD dady= [ [ @(95@)-ol) dedo
B B

B §N-1

(see e.g. [71] Lemma 5). As before, this yields Vf = 0 a.e. in B for every ball B C Q; since
fe VVllg’cl(Q) and € is connected, f is constant a.e. in (2. O

5.5 Some generalized Cantor sets and Cantor functions

Let 0 < 8 < 1. We recall the definition of some general Cantor sets, called here S-Cantor sets,
all homeomorphic to the standard one and which can be obtained by deleting a sequence of
pairwise disjoint open intervals from the interior of the segment IO(O) = [0, 1], as follows (see [50]).
Firstly, remove the centered open interval from Iéo) which has length 8 = 3 - ‘Iéo)‘ i.e., delete
the interval Jél) = <%, #) and leave two segments Iél) = [O, #} and Ifl) = [#, 1]. The
second step consists in deleting the open subinterval of length (3 - ‘Iél)‘ =0- ‘Ifl)‘ = B% from
2
the center of each of the segments Iél) and Ifl), namely JSQ) = <%, #) and J1(2) = 1—J(§2);
thus, there remains 22 segments, denoted I, (2),I£2),I§2) and I?(,Q). We iterate this procedure; at

from each

the (n + 1) step, remove the centered open subinterval J,gnﬂ) of length ( - ‘I ,gn)

segment [ ,gn) = [algn), bén)] and leave the two segments

on (n+1) b(n+1)] and I(n'H) _

ok 2 Uog (nt1) b(n+1)] fork=0,1,...,2" — 1.

2%+1 [a2k+17 2k+1
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g

i 1 | |
0 I-p 1+p |

2 2
Je Je

o ——| e+
]éz) ]1(2) [2(2) 13(2)
— =

The limit set is the S-Cantor set, denoted by Cpz. It is a compact set, containing an
uncountable infinity of points; it has Lebesgue measure zero and it is nowhere dense (i.e. it has
no interior). We will give the specific form of Cz. In order to do that, let us consider o, and 9,
the length of the removed interval J,gn) and respectively, of the remaining segment [ ,gn) at the n
step. A simple computation yields

1-p

5n:< 2 ) s On = (-1 Vn21(here(50:1)-

Set €, = d,, + 05, Then one can deduce (see [50]) that

Cp = {Zak5k|ak6{0,1},k:0,1,--«}-

k=1

In fact, the binary decomposition

7 =0an + 20,1 +---+2n_1a1 = (al...an)g
gives ™ = i ey and p™ = ol 4 > ek
J J J
k=1 E>n+1
We define now the $-Cantor function, denoted here by f3 (see [36]). Set fg(0) = 0 and
fs(1) = 1. So fgs is specified at the endpoints of Iéo). Define fg(x) = % if z € clJél). Thus
fa(x) is the average of the values of fg at the endpoints of Iéo) when = belongs to the removed

interval Jél) and fg is specified at the endpoints of Iél) and Ifl). At the n + 1 step, define

)y _ (g™ n ) n n n
fs = M on the closure of each Jlg +1), the removed interval from I,g ) = [a}C ), blg )].
(n+1)

By that, fs is defined in every endpoint of I, and 12(;::) for k =0,1,...,2" — 1; then we
can iterate the process.

Suppose fg is not yet defined at x. At each n step, x is in the interior of exactly one of the
2" retained segments, say [an, by, of length 6,,. Moreover, b, = ay, + 5, f3(bn) = fa(an) + 27",

an < apg1 < bpyr < by and fz(an) < fglant1) < f8(bnt1) < f3(bn); then fg(x) is defined by
Jim fig(an) = fa(x) = lim_f5(bn).

Furthermore, fg is a continuous, nondecreasing map of [0,1] onto [0,1] (so fs is a function
of bounded variation on [0,1] ) and fj(z) = 0 for a.e. x € [0,1]. One can easily check that on
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5.5. Some generalized Cantor sets and Cantor functions

A|u

N|»—=

.Jsl—

the -Cantor set we have
[e.e] o0
f@ <Z aksk> = ZOqCQik.
k=1 k=1

We now show that each g-Cantor function is Holder continuous with Holder exponent equal

to the Hausdorff dimension of Cjg i.e. Hg = m (see also [46]).

Theorem 5.11 The (3-Cantor function is a-Hélder if and only if 0 < o < Hp.

Proof: Since Cy is nowhere dense and fg is continuous, it is sufficient to prove that for every
a < Hg, there exists [, > 0 such that

|fa(z) = fs(W)| < lalz —y|* Yo,y €[0,1\Cp. (5.5)

Take z < y,z,y € [0,1]\Cs i.e. x and y are in the interior of two removed intervals in the
~ n
construction of Cpg, say (b,a) and (b,a). Write a = ) agep, o € {0,1}, o, = 1 and a =
k=1
m ~
> vi€5:7 € 10,1}, vm = 1. Then b = a — 0y, b = @ — oy, If the two removed intervals coincide,
i=1

J:
then fg(x) = f3(y) and (5.5) is obvious. Otherwise, a < b. Take s > 1 such that o = ; for

j=1,...,s—1and o # 75 (we may consider a; =0,Vj >n). Thus v, =1, ag =0and s < m.

ol
< |
S

b x a
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If s < mn, we get
m ] n
foly) = fole) = 7277 = a2
j=1 k=1

m ) n
=274 Y 2+ Y (a2t

j:3+1 k=s+1

m n
y—xzb—a:Z%sj—am—Zakek
j=1 k=1

>0t Y 0+ Y (1= a)dk

Jj=s+1 k=s+1

(here we used €5 = 05+ 05 = 05+ €541+ - +&p + 0, ). Otherwise, s > n (since s # n) and we
have

Fay) = fale) = 277,
j=s
y—:ch;—a:Z%sj—amZ Z%ﬁj.
j=s j=s
So in both cases, we can write
M ‘ M
fay) = fa(x) = hj27 and y —x > hyd;
j=1 j=1

where M > 1,h; € {0,1,2},5 =1,..., M. We distinguish three cases:
Case 1: 0 < o < Hp. Set ¢ = Hg — o > 0. By Hélder’s inequality, we get

M ‘ M M a M e -«
D h27T =) h§OThTS < <Zhj5j> (Zhj(s;a)
Jj=1 Jj=1 Jj=1 j=1

Since h; € {0, 1,2}, we deduce

M _e e \J
S g <23 (357) = s <o
j=1

Jj=1

So [f(x) = f()] < lalz —y|.
Case 2: a = Hg ie. 0f = 277,Vj > 0. Take the smallest jo > 1 such that hj, # 0. Then

M
> ho? 23 59

J=Jo Jj=Jjo B - _
- s <= 2y 277 =4,
(Sws) % =
J=Jjo

106



5.0. Some counter-examples

Thus, (5.5) is satisfied.
Case 3: o > Hg. Take x = ¢, and y = 6,1 = > €;. Then

k>n
— 27" 2"
fly) = fl=) _ 2 i ool
ly — | 0n—1—&nl® o7
So, in this case, fg is not an a-Hélder continuous function. O

5.6 Some counter-examples

In this section, we present some counter-examples for Problem 2 in the case of regularity C%<.
We will assume that € is the unit cube in RY i.e. Q = (0, 1)V

Theorem 5.12 For every a € (0,1), there is a nonconstant a-Hélder function f : [0,1]Y — R
of bounded variation which satisfies (5.2), for all w € W with the property that w(t) < %,Vt > 0.

Proof: Let o € (0,1). Consider the unique § € (0,1) such that o = Hp.

Case 1: N = 1. Let f be the pg-Cantor function. Take an arbitrary w € W such that
w(t) < %,Vt > 0. Denote by J the (countable) set of all removed intervals in the construction
of the 5-Cantor set i.e.

J = {J("+1) n>0k=01,... 2" —1}.

I‘/ / ( \x—yr(y)‘>rim—dl§r

=S5 [ e (T

JET jeg

=22 // <|f |x—y|(y)|> ég”_di

JJjeg
J<J

We have

(we denote J = (b,a) < J = (b,a) if a < b). We want to prove that I < 4oco. Take two removed
(

)
~ ~ - n
intervals J = (b,a) and J = (b,a) such that J < J. Write a = Y ageg, o € {0,1}, oy = 1
k=1
m ~
and a = ) vjej, v € {0,1}, v =1 ; here b =a — 0y, b = @ — 0. Take r = f|; — f|; =
j=1

m ) n
S 7279 = 3 ax27F > 0. We use these notations in the rest of the chapter. Since
j=1 k=1

w(t) < 1.Vt >0 we get

[ ()t e [ f e = o = e
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The aim is to estimate

-1
Z fl5 = fls f|J
J,JeJ

Firstly, consider the interval J = (b, a) fix. Let J = (b, @) be a variable removed interval (in the
construction of Cs) such that J > J (i.e. a < a). Each time, we consider the first s step (in
the construction of Cz) when J and J do not belong anymore to the same remaining interval;
that means the biggest 1 < s < n such that a;j = for j =1,...,5s—1 (if oy # 71 then s = 1).
Notice that s <m, vs =1 and oy =vs <= s=n.

If s < mie. dist(J,.J) > &, then

f|J—Z%2 7 Zak2 > Z %5270

Jj=s+1

If we sum up over these J, we get:

) DY >
; ; fl r
Jeg, <J s=1 m=s+1 v;€{0,1},7s=ym=1

dist(J,J)>6m s+1<j<m—1

g 1
22 om D> m
s=1 m>s+1  ~ye{0,1}ym=1 », ;277
s+1<j<m—1 j=s+1

n 2m s—1 1
DM VL EED I
s=1 m>s+1 j=1 J
< Zn: Z 0m2™(m — s)
s=1 m>s+1
<nL

where L = > 0,2"m 6ﬁ > (1 =p5)"m < +oo.
m>1 m>1

Otherwise, s = m i.e. dist(J,.J) < 6,,. Thus s < n and

n n—1
r=fly—flr=27°- Z a2k = Z (1—ap)2 k42
k=s+1 k=s+1

We get

DL &
- - n—1

FeT i fly=flr =

dist(J,J)<0m k=s+1
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Finally, if we let J be variable in 7, we deduce

s<> ¥ an<nL+Z = (1_::)2_k+2_n>

n>1 a,€{0,1}
1<k<n-—1 k=s+1
n—1 1
_ n—1 n
=D non2" ML+ ) 02"y o Y, o
n>1 n>1 s=1 ape{01} 14+ > @2k
1<k<n-—1 k=1

n—1
< I? —i—Zan-Q”ZJSQS(n—s)
n>1 s=1
<212
(561) Vo €

) €[0,1]N. Take f(x) = f
g%frallt>0

) = (x1,29,..., 2N

Case 2: N > 2. We denote x = (71,
[0,1]V. So f € C%* N BV(Q). Choose any w € W with the property that w(t)

Firstly, remark that

/ / ( (ZD’) dz dy
m—w |z —y|V
(0,1)N (0,1)N
[ - ) :
—x;)dxry dy; dx
e ) ><
N
© 70 o VIz'? + v/ (|2 + (21 —91)?) 2
<2V 3 // / ( |fa(w1) — fa(y1)] > dxy dyy dx’
N
JJIET T f (01N VIZP + @ =9/ (|72 + (21— 11)?) 2
J<J
N|aN-2 Z tN=2
<2 ’S ‘ //dxldyl/ — dt.
Jje Jfﬁ“] fﬁ"] 0 (24 (1 —y1)2)¥
J<Jj

On the other hand, we have

N—2 N—1

rdt §2/ L <lnN+1n ! >
0 Yy1—n

N—-1
/0 (2 + (21— y1)2) T Y1 — a1+t

for every 0 < 21 < y; < 1. Therefore there is a constant ¢ = ¢(N) > 0 such that
L /] 1] 1 )
+ In — .

( 2 fﬁb 2 faly = fals dist(J,J)

JJeT fﬁ"] JJed
J<J J<J

We have already proved that the first sum converges; it remains to show that the second one
(b,a) be such that J < J; write

As before, fix J = (b,a) and let J =
109
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n m ~
= > aper, b=a—o,and a = ) g5, b =a— op. Set v = fg|; — fs]s. We have that
k=1 j=1

dist(J, j) =b—a. Using the same argument as in the case N = 1, we get

7] Om L
2: folj— MJtmt —X:EZ E: rl%

Jeg,j<J s=1 m2s+1 v;€{0,1},ym=1
dzst(J,J)Z(Sm s+1<j<m—1
n 2m=s—1 1 1
m
Y ey ad
s=1 m>s+1 7j=1
1
<nLln—
n 1151
where L = 3 6,2"m? < +o00. Since dist(.J, J) > min(d,, ), it results
m>1
7| = o 1
Z AT mdt <Z — - lné—.
jega<y PR @s s=1 Y (1—aqp)2k+2m "
dist(J,J)<8m k=s+1

Similarly, allowing J to be variable in J we conclude that:

Z 71171 In — ! = <2LL1ni
faly = fals dist(J,J) 5

We now prove Theorem 5.7:
Proof of Theorem 5.7: Let a € (0,1). Take 8 € (0,1) such that o = Hp.
Case 1: N = 1. Let f be the §-Cantor function. Choose an arbitrary # € (0,1) and set
w(t) =19, Vt > 0. Like in the previous proof, we want to show that

2 / / <|f |x—y|(y)|> ég”_di s

JJjeg
J<J

As before, consider the interval J = (b, a) fix. Let J = (b, &) be a variable removed interval such
that a < . Each time, we consider the first s step (in the construction of Cj3) when J and J do
not belong anymore to the same remaining interval. Let us denote p = % > 2 and we use the
~ n
same notations r = f|; — fl;, b=a —op, b=a—op, a = )Y aper, ap € {0,1}, o, = 1 and
k=1

a= Yi€iy Vi € {0, 1}, Ym = 1.

H <
1

ist(J,J) > 8, i.e. s < m, we distinguish two cases:
i) dz’st( J) > 6, ie. s <n. Here we have b —a > o, and r < 2751, We write:

ﬂlﬁ=//@<vﬂiJw>g?;

/ / 7)0nom dt dz - ro,0m
—a + ton 4 20,) 10 T (5 _ a)1+9'
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5.0. Some counter-examples

If we sum up over these J, we get:

= 1
Jeg, <] s=1 m>s+1  ~y;e{0,1}  ° s
dist(J,J)>max{8m,0n} s+1<j<m—1
n—1 m—s
1 2
caY gy 2 (2)
s=1 (27os) m>st1 NP
n—2 D <0
<end (5) 4
s=0
O(n—1)
-

where for ¢ > 0 we denote L, = ) <

mq
> < 400 and ¢ = ¢(3,0) is a constant that depends
m>0

BN

only on ( and 6.
i) dist(J,.J) < 6, i.e. s =mn. In this case,

1 0
E(J,j)g/ ] oo dt .
o (b—a+toy)lt?

~ m m m .
We have b—a= > ~vjej—om > >, 70 andr= 3  ~;277. From here, we obtain
j=n+1 j=n+1 j=n+1

~ P no
Z E(J,J)<cLyLi_gop <§>
JeJg,J>J
Sm<dist(J,J)<dn,

where ¢ = ¢(3,0) is a constant that depends only on 5 and 6. If we let J be variable in J, we
deduce

S O EUN) <50y S an(%’)"e

JJeT,J<J n>1 a,e{0,1}
dist(J,J)>6m 1<k<n—1
9 n(1—-0)
<c(5.0)) (—)
n>1 p
< +00.

Otherwise, dist(.J,J) < 6, i.e. s =m. Thus m < n,

n n—1
i)—a:&m— Z QR > Z (1—ozk)5k—|—5n

k=m+1 k=m+1
i - L b0, dz
r= Y (I—ap2 427" andE(J,J)g/ T
- 0 (b—a+zom)'*
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We get

n—1

O'm( S o(1—og)27F+ 2‘")9 dz

n—1 1
~4 k=m-+1
X Buhze Y [k
Jeg,J<J m=1 ( > (1= )k + o + zam>
dist(J,J)<0m k=m+1

Finally, if we let J be variable in J, we find

ST B(JJ) < e(B,0)LoMig
JJed,J<J
dist(J,J)<8m

n(1-0)
where My _g= > n <2) < 400.

P
n>1
Case 2: N > 2. Let f(z) = fa(x1),Vz € [0,1]V. As before, take § € (0,1) and set w(t) =

t? Wt > 0. Write

= [ [ () R

(0,1)N (0,1)N
< oN Z // / (’fﬁl(ﬂgl) fﬁ(yl)’2> dxzy dy; do’ _
ieq VIFP+ @ =y (122 + (21— y1)2)
J<J
N—-1 th2
<2VgNTE Y // dwldyl/ o7 dt
JieT 0 (12 + (z1 —y1)?) 2
J<J

(here we denote r = fg|;7 — fs]s). On the other hand, we have

/ N S 4/ 510 = 10
0 (2 + (1 —1y1)?) 2 0 (y1 — a1 +1t) (y1 — 1)
for every 0 < z1 < y; < 1. Therefore there is a constant ¢ = ¢(N) > 0 such that

| fa(x1) fﬁ(y1)|> dzydy;
[<an Z//< PR R R a— L

JJeJ
J<J

By Case 1, the conclusion follows. O

Theorem 5.6 is a consequence of the previous two ’counter-examples’; indeed, for some 0 <
0 < 1 a bounded function w satisfies w(t) < |lw||r - (1 +t¥) for every ¢ > 0.

5.7 Dimension reduction

The following result permits to reduce the proof of Problem 1 to one-dimensional domains?:

3This result is part of the forthcoming paper [59)]
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Theorem 5.13 Let w € W. Suppose that Problem 1 holds true for any interval in R, i.e., for
any interval Q C R, if f : Q — R is a measurable function with (5.2), then f is a constant.
Then Problem 1 holds true for any domain Q C RN, N > 1.

Proof. Let Q ¢ RY and zy € Q. Take r > 0 such that B = B(zq, (VN + 1)r) C Q. Denote the
balls B = B(zg,r) and B = B(z,VNr). Write

[[w(‘f(fiigy(y)‘),mdf?j/}v > / da/dgg/orw(’f(x""ti)_f(x)’)%.

sv-1 g

By (5.2), we deduce that for a.e. o € SV~1,

/dx/o”w(’f@“?—f@)’) & o
B

Therefore, one can find an orthonormal basis (0;)1<;<ny for which the above inequality holds.

For simplicity of the writing, we assume that o = 0 and o; are the cartesian directions in

RV ie., 0; = x; for every i = 1,...,N. Set the N—cube P = (—r,7)Y C B. Then for each

)N—l

1<i< N and for a.e. (x1,...,%i—1,%it1,...,2N) € (=1 7 , we have that

/r /rw<’f(1'17...7-%'i—171'i+t7.%'i+1,...7.%'N)—f(.%'l,...,xi,...,xjv)‘> dt dx; c oo
L t
—r J0O

Hence, by our assumption on one-dimensional domains, it follows that

x; € (=r,r) — f(x1,.. . 2., TN)
is constant a.e. in (—r,7). According to Lemma 2 in [28], we deduce that f is constant a.e. in
the cube P. 0
5.8 The case of an indicator function

In this section?, we prove that the condition
+o00 t
wew, / w(t) dt = 400 (5.6)
1 t?
prevents a measurable f : {2 — R satisfying

INE (wﬁ - §|(y)|> gy < o

from being the indicator function of a measurable subset A C  with A(A), \(C'A) > 0 (A denotes
the Lebesgue measure on 2 and CA := Q\ A) . Note that if w(t) = ¢, Vt € Ry (satisfying (5.6)),
the following result has been already proved, using a different approach, in [25]. Notice that in

Theorem 5.2, it was proved that the condition (5.6) is necessary to prevent f from being a step

function.

4This section is part of the forthcoming paper [59]
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Proposition 5.14 Let Q C RN be a domain in RN . Ifw satisfies (5.6) and A C  is measurable

such that . .
/ / w < > dzxdy < +o0, (5.7)
AJcA lz —yl) |z -yl

Proof. By the argument in Theorem 5.13, we may reduce the proof to the one-dimensional
case: let us assume that Q = (0,1) C R. Suppose that A(A),\(CA) > 0 and (5.7) holds. We
show that

then A\(A) € {0, 1}.

/1+<>0 % dt < 4o0. (5.8)

Let g € (0,1) be an arbitrary point of density of C'A. We recall that almost all points of a
measurable set are points of density (see [11, 86]), so that such an z exists due to A\(C'A) > 0,
and the corresponding density condition reads,
A _
lim MCAN [xg—t,zp + t])
t\.0 2t

=1. (5.9)
Let us introduce the notations
A~ ::Aﬁ(O,xO), AT ::Aﬁ(.%'o,l),

CA™ :=CAN(0,z09), CAT :=CAN (z0,1).

W.lo.g. we assume that A(A~) > 0, so that from (5.7) we deduce

1 1 +o00 1\ 1
+00 > /A_ /CA_ w (\95 — y\) P dxdy > /0 w (;) Zz/zAf(t) dt, (5.10)

where the measurable function 14— : Ry — [0, 1] is given by

PYa-(t) = M{zeA :(z+tecCA)V(x—teCA™)})
= MzredA z4+teCA }U{zeA :x—-teCA}) Vt>0. (5.11)

Obviously, ¥ 4-(0) = 0.
The main idea is to investigate the behavior of ¥4, at ¢ = 0. If we are able to show that

are done, since

14— vanishes at ¢t = 0 of order at most 1 (in the sense ¢ < 94— (t) on [0,¢] for some £ > 0) we
€ 1 _ +o0
/ w <—> dt " L/ / w(zs) ds.
0 t 1)e  $
We formulate therefore
Claim 1.

Y- vanishes at t = 0 of order at most 1, that is, there exist €4,ca > 0 such that
a-(t) > cat YVt e [0,e4].
To see this, let us introduce also the measurable function ¢4- : R — [0, 1] given by
da-(t) =AX{r e A" :x+teCA™}) VieR, (5.12)
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so that due to (5.11) we have,
max{¢g - (t), pa- (—t)} < ha-(t) < dpa-(t) + Pa-(—t) Vi eRy. (5.13)

Claim 1 follows from (5.13), if we show
Claim 2.
$a-|r, is continuous and vanishes at t = 0 of order at most 1, that is, there exist ea,cq > 0
such that
da-(t) > cat Vte[0,e4].

Note first that

dpa-(t) = MNzeA tz+teCA }H)=AN(Et+A)NCA") = /RlA (x)loa-(x +t)dx

v=—= / L W) lea-(t —y) dy = (1_4 * Tea-)(2),
R

so that ¢4 is positive and continuous (by the dominated convergence theorem), vanishing at
t=0.
Next note that

da-t)=AN(Et+A)NCAT) AM(E+AT)N(0,20)) = A((t+AT)NAT).

= da-1(t) + da-2(t) (5.14)
with
Pa-1(t) = A((t+ A7) N (0,20)) = A(A7)
Pa-o(t) = AMAT) = A(+AT)NA7).
The continuity of ¢4 1, ¢4 2 on R follows again by the dominated convergence theorem, but

more refined analysis of the behavior of ¢4 1, 4~ 2 at t = 0 is needed to prove Claim 2.

For ¢ 4~ | we write for any ¢ > 0, due to the invariance of the Lebesgue measure under translation,

da-1(t) = =A((zo — t,20) N A),

so that .
fim 2410 _ 0, (5.15)
t\0 t

since z is a point of density of C'A (see (5.9)).

As for ¢ 4- o, using the notation

A7 =(t+A)NA-C A,

we write
)\(A;rs):)\((t+s+A_)ﬂA_) > AMEt+A;)NAY)
= ME+A)NAT) =AM+ (A7 \4;)NnA")
> AMA;) = AA\AY)
(

I
>
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which ensures that the positive, continuous function ¢4- o : R — R, which satisfies
is subadditive,
Pa-p2(s+1t) < Pa-2(s) +da-o(t) Vs, teR. (5.17)

It is easy to see that this property and the continuity of ¢ 4- o imply a linear growth estimate
from above on ¢ 4- 5 in the neighbourhood of ¢ = +o0,

Ga-o(t) <ca-t VE>1,

but this is not really useful in our context.
We prove that in fact the subadditivity condition (5.17) ensures also a lower bound of this type
on ¢4- 5, in the neighbourhood of ¢ = 0. More precisely, we show that

Claim 3. Either ¢4- =0 on [0,00] or there exist e4,ca > 0 such that
ba-ao(t) >ca-t Vte[0,ea] (5.18)

Indeed, if the latter does not hold, we have that there exists a sequence (t,)nen, \, 0 such that

tn
n

da-(t) < Vn € Ny. (5.19)

Taking ¢ > 0 arbitrary, we have by continuity, subadditivity and (5.19),

(5.19)
ba-o(t) = Jlim ¢p- ({;J tn> < LiJ a2 (tn) < %,

n

for any n such that ¢, < t. Letting n — oo we obtain the desired conclusion, ¢4~ 5 = 0 on
[0, c0].

Note now that ¢4- o = 0 on [0, 00] immediately implies via (5.16) that A(A~) = 0, contra-
diction. Combining (5.18) and (5.15) we thus obtain the existence of €4, ca > 0 such that

da-(t) >ca-t Vte[0,ea] (5.20)
This concludes the proof of Claim 2 and, via (5.13), of Claim 1 and Proposition 5.14 too. [

Remark 5.1 The method we use to prove Proposition 5.14 is based on the control of the
behavior at t = 0 of

Rot— A(t+A)NCA) e Ry,

and allows therefore a similar treatment of a more general condition than (5.7),
[ [ 5@ = £l ke -y dody < +c.
AJCA
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5.9 The case of a Cantor function
In this section® we show that condition (5.6) prevents f from being a Cantor function.

Proposition 5.15 Ifw satisfies (5.6) and 0 < 3 < 1, then for the Cantor function fz:[0,1] —

[0,1] it holds:
|f6(ﬂf)—fﬁ(y)|> Lo
/m /[0,11w< |z —y| o — g Y = oo (5.21)

Proof. Let J,.J be two arbitrary, disjoint intervals removed in the construction of the Cantor set
Cjs. We assume w.lo.g. J < J (that is, J = (b,a),J = (b,a) with b < a < b < @) and we aim
next at estimating from below the integral

1= ()

Using the same substitution as in the case of an indicator function we write

1;5(fs) = /OOO w (%’) %%j(t) dt, (5.22)

where
ri=fli—flos ) = {z € Jrx+teJ}).

We now remark that, in contrast to the case of an indicator function, v ;7 vanishes in a neigh-
bourhood of t = 0. But, since J,J are intervals, we can write ;7 explicitly. To this end we

introduce the notations,
d;7:=b—a, m;j:= min{|J|, ||}, M,;:= max{|J|,|J|}, r:= T

Note that d, m, M, r depend on the intervals .J, J. For notational ease however we do not indicate
here and in the following this dependence using sub/superscripts.
With the substitution ¢ :=r/z, (5.22) becomes,

I;5(fs) = /OOO WS) 2, 5(r/z) dz,

so that
| fs() —fﬁ(y)|> dudy ]
/[0,1] /[071}w< |z —y] iz —y] JZ;IJJ(fﬁ)
_ [Cu)
- [ wme e
where

U(z) : , zﬁJ’j(x) =1, j(rz) Va € (0,00).

Returning now to the explicit form of 9,7, we have that 1,7 vanishes on [0,d], increases

_ Zj,j J’Jj(x)

linearly with slope 1 on [d, d+m], stays constant equal to m on [d+m, d+ M], decreases linearly

This section is part of the forthcoming paper [59]
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with slope —1 on [d + M,d + M + m]|, and stays equal to 0 afterwards. More formally we can
write for ¢ ;j (appearing in the definition of W),

0 0 <z< d/r
re—d d/r <z < (d+m)/r
VY 5(x) =< m (d+m)/r <z< (d+M)/r . (5.24)
m—(re —d— M) d+M)/r <z< (d+m-+M)/r
0 (d+m+M)/r <zx< 4o
The proof is concluded from (5.23) if we can show that
lim inf U (z) > 0. (5.25)

z\,0

The argument we present in the following for the proof of (5.25) is based on the self-similarity
of the Cantor set Cjg and of the corresponding Cantor function fz. More precisely, let us denote
by S(z) the numerator in the definition of ¥(z),

S(x) = 1, j(x) Vae[0,00).
JJ

Recall that Iél) =10,(1 — ﬁ)/Q],Jél) =((1-p0)/2,1+ ﬂ)/2),]§1) = [(1+ 08)/2,1] the three
intervals into which [0, 1] is divided in the first step of the construction of Cg, and split the sum
in the definition of S accordingly,

S = Z &LJ + Z &LJ + Z &I,j + Z TZJJ,j + Z JJJJ'

, J,J J,J J,J ,
J,fclél) (J:Jél))v(izjél)) .Iclél),iclg) JCI%I),fCI(()l) J,.iclgl)

Denoting by 51, ..., S5 the sums above, we remark that Sy, ..., S5 are all positive and S = S5,
so that

S(x) > 2S1(x) Vze0,00). (5.26)
But now a rescaling argument allows us to express S in terms of S itself. More precisely, the
stretching
1-p a_,% 2
0, ——| =1 t— ——te|0,1
[, 5 ] o 2t— 5t

gives a bijection between the intervals J C 10(1) and all intervals J C [0, 1] removed in the
construction of the Cantor set. Additionally, the explicit form (5.24) of " ;5.j allows us to write

for any pair J, J C Iél),

_ 1-43 -
3, 5(2) = Tﬁ¢¢B(J)7¢B(j)((1 ~B)2) Vr e [0,00). (5.27)

Indeed, let d,m, M,r and d',m’, M, 1" be the sets of parameters describing via (5.24) 1/;Jj and
T/NJ%(J%%(‘;) respectively. By stretching we have d’ = ﬁd, m = ﬁm, M = ﬁM, whereas
the definition of the Cantor function ensures 7’ = 2r. The scaling property (5.27) follows then
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using these relations in (5.24).
Summing (5.27) over J, JC Iél) we obtain,

Si(z) = #S((l —B)7'z) Vze|0,00). (5.28)

From (5.26) and (5.28) we obtain
S(z) > (1= p)S((1~B)"'z) Yz e[0,00),

which then ensures
U(z) > V(1 -p)"tz) Vae (0,0),
so that

U(x) > inf \\ Ve € (0,1),
@=  nf | W) vee 1)

and the conclusion follows due to the fact that ¥ satisfies the condition:

V(z) > cxg >0, for every compact K C (0,00). (5.29)

Indeed, let J := J(gl) be the first removed interval in the construction of the Cantor set and
J = J, be the closest removed interval at the right side of .J at the step n, n > 1 (see notations
in Section 5.5). We have that

dyj=o0n,7;5= on Myj = 9ns M;s; = o;1.
Now let z € K. Then there exists nx > 0 such that
TZJJ,Jn (x) =myy,, for every n > ng.
Therefore, (5.29) holds since

S g @) >C Y (1-8)" > Ck > 0.
n>ng

n>ng
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Part 11

Vortices in a 2d rotating
Bose-Einstein condensate
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Chapter 6

The critical velocity for vortex
existence in a two dimensional

rotating Bose-Einstein condensate

Abstract

We investigate a model corresponding to the experiments for a two dimensional rotating
Bose-Einstein condensate. It consists in minimizing a Gross-Pitaevskii functional defined in
R? under the unit mass constraint. We estimate the critical rotational speed €2y for vortex
existence in the bulk of the condensate and we give some fundamental energy estimates for
velocities close to 1.

This chapter is written in collaboration with V. Millot; the original text is published in
J. Funct. Anal. 233 (2006), 260-306 (cf. [55]) and some of these results were annouced in
C. R. Math. Acad. Sci. Paris 340 (2005), 571-576 (cf. [54]).

6.1 Introduction

The phenomenon of Bose-Einstein condensation has given rise to an intense research, both
experimentally and theoretically, since its first realization in alkali gases in 1995. One of the
most beautiful experiments was carried out by the ENS group and consisted in rotating the
trap holding the atoms [65, 66] (see also [1]). Since a Bose-Einstein condensate (BEC) is a
quantum gas, it can be described by a single complex-valued wave function (order parameter)
and it rotates as a superfluid: above a critical velocity, it rotates through the existence of
vortices, i.e., zeroes of the wave function around which there is a circulation of phase. In an
experiment where a harmonic trap strongly confines the atoms in the direction of the rotation
axis, the mathematical analysis becomes two-dimensional by the decoupling of the wave function
(see [33, 34, 79]). We restrict our study to this two-dimensional model used in [33, 34]. After
the nondimensionalization of the energy (see [4]), the wave function u. minimizes the Gross-

Pitaevskii energy

1 1 1 .
L. {5lwl2 + o V@l + gl — 0t G w)} de (6.1)
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Chapter 6. The critical velocity for vortex existence in a 2d rotating BEC

under the constraint

/RQ lul? =1, (6.2)

where € >0 is small and represents a ratio of two characteristic lengths and @ = Q(¢) >0 denotes
the rotational velocity. We consider here the harmonic trapping case, that is V(z) = |z]3 =
2?2 + A2x3 for a fixed parameter 0 < A < 1. In [34], the equilibrium configurations are studied
by looking for the minimizers in a reduced class of functions and some numerical simulations
are presented.

Our aim is to estimate the critical velocity above which the wave function has vortices,
and in Chapter 7 to analyze in more details the vortex patterns in the bulk of the condensate.
According to numerical and theoretical predictions (see [4, 34]), we expect to find the critical
speed in the regime Q = O(|In¢|) so that we restrict our study to this situation.

Due to the constraint (6.2), we may rewrite the energy in the equivalent form
1 1 _ .
F.(u) = /R? {§]Vu\2 + 1= [(\u!Q — a(an))2 —(a (x))2] —Qzt - (tu, Vu)} dx (6.3)

where a(z) = ag — |z|3 and ao is determined by [p. a*(z) = 1 so that ag = \/2A/m. Here a™
and a~ represent respectively the positive and the negative part of a. Then we consider the

wave function u. as a solution of the variational problem
Min {F.(u) : weH, |ul 2@y =1} where H={ue HY(R?%,C) : / |2|*|ul® < +o0}.
R2

In the limit ¢ — 0, the minimization of F. strongly forces |u.|? to be close to at which means
that the resulting density is asymptotically localized in the ellipsoidal region

D= {x eR? : a(z) > O} = {(.%'1,.%'2) eR?: 22+ A% < ao}-

We will also see that |u.| decays exponentially fast outside D. Actually, the domain D represents
the region occupied by the condensate and consequently, vortices will be sought inside D.

The main tools for studying vortices were developed by Béthuel, Brezis and Hélein [17]
for “Ginzburg-Landau type” problems. We also refer to Sandier [75] and Sandier and Serfaty
[76, 77, 78] for complementary techniques. In the case a(z) = 1 and for a disc in R?, Serfaty
proved the existence of local minimizers having vortices for different ranges of rotational velocity
(see [83]). In [4], Aftalion and Du follow the strategy in [83] for the study of global minimizers
of the Gross-Pitaevskii energy (6.3) where R? is replaced by D. In [3], Aftalion, Alama and
Bronsard analyze the global minimizers of (6.3) for potentials of different nature leading to an
annular region of confinement. We finally refer to [5, 6, 61] for mathematical studies on 3D
models.

We emphasize that we tackle here the problem which corresponds exactly to the physical
model. In particular, we minimize F. under the unit mass constraint and the admissible config-
urations are defined in the whole space R?. Several difficulties arise, especially in the proof of
the existence results and the construction of test functions. We point out that we do not assume
any implicit bound on the number of vortices. The singular and degenerate behavior of Vat
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near 9D induces a cost of order |Ing| in the energy and requires specific tools to detect vortices
in the boundary region. Therefore we shall restrict our analysis to vortices lying down in the

interior domain
D.={zeD: a(z) > v.|Ine[/?} (6.4)

where v, is a chosen parameter in the interval (1,2) (see Proposition 6.16).
We now start to describe our main results. We prove that

Q= @ |Ine| = M\lng\

ag V2A
is the asymptotic estimate as € — 0 of the critical angular speed for nucleation of vortices in D.
The critical angular velocity €21 coincides with the one found in [4, 34]. We observe that a very
stretched condensate, i.e., A < 1, yields a very large value of €21 and that the smallest €2y is
reached for A = 1/+/3 (and surprisingly not for the symmetric case, i.e., A = 1). For subcritical
QS

velocities, we will see that u. behaves as the “vortex-free” profile 7.e”*> where 7). is the positive

minimizer of
1

1 _
B.(w) = [ {5190P + 5 (P — a@))? - (@ @)7] o
R2 2 4e
under the constraint (6.2) and the phase S is given by

A2 -1

For rotational speeds larger than 21, we show the existence of vortices close to the origin. We
also give some fundamental energy estimates in the regime Q = Q1 +O(In | In¢|) which will allow

to study the precise vortex structure of u. in Chapter 7.

Theorem 6.1 Let u. be any minimizer of F. in H under the mass constraint (6.2).

(i) There exists a constant wi < 0 such that if Q@ < Q) + wiln|lne| with w; < wj then
luc| — Vat in L (R?\ D) as e — 0. Moreover,

loc
Fe(u:) = F: (ﬁeems) +o(1) (6.6)
and for any sequence €, — 0, there exists a subsequence (still denoted by €y,) and a € C

with || = 1 such that u., e ** — avat in HL (D) as n — +o0.

(ii) If there exists some constant 6 > 0 such that 1 + dIn|lne| < Q < O(|Ineg|), then u.
has at least one vorter x. € D such that dist (z%,0D) > C > 0 with C independent
of . If in addition, Q@ < Q1 + O(In|lne|), then x° remains close to the origin, i.e.,
[27] < O/ ne|/6).

(iii) Set v. = u./(N.e**) and assume that Q < Qi + wyIn|Ine| for some wy > 0. Then there
exist two positive constants My and Mo depending only on w1 such that

2
[ at@nvep+ S (0P - 17 < Mifne,

€

2
/ a@) Vool + S (0.~ 12 < Myln|nel,
D \{|z|a<2|Ine|~1/6} €
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Chapter 6. The critical velocity for vortex existence in a 2d rotating BEC

From the estimates in (7ii) in Theorem 6.1, we are going to determine in Chapter 7 the
number and the location of vortices in function of the angular speed €2 as ¢ — 0. More precisely,
we will compute the asymptotic expansion of the energy F.(u.) in order to estimate the critical
velocity €2y for having d vortices in the bulk and to exhibit the configuration of vortices by a
certain renormalized energy. We also mention that the techniques used in Chapter 7 will permit
to prove that the best constant in (i) in Theorem 6.1 is wj = 0. The proof will rely mostly on
the study of “bad discs” in [17].

Sketch of the proof. We now describe briefly the content of this chapter.
Section 2 is devoted to the study of the density profile 7.. We first introduce the real positive
minimizer 7. of F., i.e.,

E.(n.) =Min{E.(n) : n € H}. (6.7)

We show the existence and uniqueness of 7. (see Theorem 6.2) and we have that E.(7.) < C|ln¢]|
and 7. — Vat in L*(R*) N CL (D) as € — 0 (see Proposition 6.3). Then we prove that there
is a unique positive solution of the problem

Min {E.(n) : n e H, |nll22) =1} (6.8)

called 7)., which can be obtained from 7. by a change of scale (see Theorem 6.7). This relationship
yields an important estimate on the Lagrange multiplier k. associated to 7. : |k:| < O(|In¢g]),
as well as the asymptotic properties of 7. from those of 7. (see Proposition 6.8). In particular,
we have 7). — Va* in L®(R?) N CL (D) as & — 0.

In Section 3, we prove the existence of minimizers u. under the mass constraint (6.2) (see
Proposition 6.10) and some general results about their behavior: F.(u.) < C|Ine|?, u. decreases
exponentially quickly to 0 outside D, |[Vu.| < Cxe~! and |u.| < vaT in any compact K C D
(see Proposition 6.11). Using a method introduced by Lassoued and Mironescu [63], we show
that Fy(uc) splits into two independent pieces (see Lemma 6.12): the energy of the “vortex-free”

profile F.(7.¢**) and the reduced energy of v. = u, /(7.e**):
Fz—:(ue) = Fe(ﬁseiﬂs) + ‘7}5(2}5) + j;(ve) (6-9)
where
‘7:-6(7}6): ge(va) + 7%6(7)5)7 (6.10)
g o ﬁg v 2 ﬁ:;‘l 2 1 2 rfé _ Q ~2vJ_ . v 6.11
= (ve) = 2 E| Ve | +4_€2(|U6| -1, (ve) = AZ+1 o =V—a- (ive, Voe) ,  (6.11)
~ 1
Te(ve) = 5 / (Q2|VS|? - 20%2" - VS + k)2 (Ju-|* — 1). (6.12)
R2

The motivation of S is explained in [4]: S satisfies div (a™(VS—21)) = 0 in R? and corresponds
to the limit as ¢ — 0 of the phase (globally defined in R?) divided by €2, of any solution of
Min {Fg(u) cu=mneY ecH, n> O}. The existence of the global limiting phase S is new in this
type of variational problems related to the “Ginzburg-Landau” energy. We point out that the
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6.1. Introduction

anisotropy carried by the phase S, leads to a negative term of order Q2 for A € (0,1) in the
energy (see Remark 6.5):

V2(1 = A?)?
T 12y/m(1+ A2)A32

F. (7" = E.(7.) Q% +o(1).

We will prove that |7;(v.)| = O(e] Ine|?). Thus, we may focus on the reduced energy F.(v.). We
study the vortex structure of u. via the map v, applying the Ginzburg-Landau techniques to the
weighted energy &. (ve); the difficulty will arise in the region where 7. is small. We notice that
ve inherits from u, and 7., the following properties (see Proposition 6.13): &.(v.) < C|Ine|?,
V.| < Cge™! and |v.| < 1 in any compact K C D. Using 7.¢*° as a test function and (6.9),
we obtain in Proposition 6.14, a crucial upper bound of the reduced energy inside D.:

fe(vapa) < 0(1)- (6.13)

Motivated by the behavior 772 ~ a™ (see (6.98) and (6.99)), we will use in the sequel the energies
Fe, & and R. in the interior of D (see Notations below).

In Section 4, we compute a first lower bound of &.(v.) using a method due to Sandier and
Serfaty (see [76, 78]). We start with the construction of small disjoint balls { B(p;, 7;)};c;_ in the
domain D, (given by (6.4)): outside these balls |v.| is close to 1, so that v. carries a degree d;

on 0B(p;, ;) (see Proposition 6.16) and

55(?)5,'1)5) > 255(7)673(172‘7”)) 2/ ﬂ'za(pi)‘di’ Hne’;". (6'14)

i€l i€l

Then we prove an asymptotic expansion of the rotational energy outside the balls { B(p;, 7:) },c .

(see Proposition 6.17),

()

Re(ve, D\ Uier. Bi) = BV Z a*(pi) d;. (6.15)
i€l

The presence of a?(p;) is due to the harmonic type of the potential. In fact, for slightly more

general potentials a(z), we compute the solution £ of the problem (see [4])

div (évg) =—-2inD and &=0ondD (6.16)

and the rotational energy will exhibit the terms £(p;) in (6.15). For our harmonic potential a(x),

an easy computation leads to & = By (6.14) and (6.15), the first term in the lower

a2
2(A2+1) -
expansion of the energy is

ﬂZa(pi)QdiHlns\ —di§22§(pi)>. (6.17)

icl. a(pi)

For having a vortex ball B; with nonzero degree, {2 has to be larger than Q; = %\ Inel|, p;
maximizes £/a and d; is positive. Indeed, we obtain the subcritical case (i) in Theorem 6.1
matching (6.13) with (6.17). For velocities larger than {21, we use an improvement of the upper
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Chapter 6. The critical velocity for vortex existence in a 2d rotating BEC

estimate (6.13) using a test function having a single vortex at the origin. From here, we deduce
(#) in Theorem 6.1. We also prove that for © < ;4 O(In |Ine€]), the number of vortex balls with
nonzero degree is uniformly bounded in £ and they appear close to the origin (see Proposition
6.19). We conclude by the two fundamental energy estimates stated in (i) in Theorem 6.1.

Our analysis deals with vortices inside D. However, we believe that for © small (2 = O(1)),
the solution should not have any vortices in R?. For Q larger (Q ~ 1), vortices may exist in
the region where u, is small. The study of the vortex structure in the region where |u.| is small
requires the development of other tools than energy estimates.

We recall that the choice of the harmonic potential is motivated by the physical experiments.
For some other potentials a such that £/a has a unique maximum point at the origin, our method

can be applied and the critical speed is given by

a(0)
2£(0)

le |1Il€|.

If the set of maximum points of % is not finite (it can be a curve, see Remark 6.6), the techniques

are different and it will be the topic of a future work.

Notations. Throughout the chapter, we denote by C a positive constant independent of € and
we use the subscript to point out a possible dependence on the argument. For = (21, 72) € R?,

we write

P = o) lla = TN and B = (o B ol < B)

and for A C R?,

LA = [ SRV + B bR, S )= [ alv o)
R a2 42 T 42 42 ’
R.(v, A) = ¢ / 2Via - (iv,Vv), R.(v,A) = L/ aVta - (iv, Vo)
€ 9 1+A2 A £ 9 Y &€ 9 1+A2 A Y Y
]:'g(v,.A) = gg(v,A) + 7~€€(v,.»4) , Fe(v,A) =E-(v, A) + Re(v, A). (6.18)

We do not write the dependence on A when A = R2.

6.2 Analysis of the density profiles

In this section, we establish some preliminary results on 7. and 7. defined respectively by (6.7)
and (6.8). We will show that the shapes of 7. and 7). are similar.
We notice that the space H in which we perform the minimization, is exactly the set of

finiteness for E.. In the sequel, we endow H with the scalar product
(u,v)p = / Vu-Vu+ (14 |z*)(u-v) for u,v € H;
RQ
obviously, (H, (-,-)x) is a Hilbert space.
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6.2.1 The free profile

We start by proving the existence and uniqueness for small € of 7. defined as the real positive

solution of (6.7). Hence 7. has to satisfy the associated Euler-Lagrange equation

2 2 . 2
e“An. + (a(z) — =0 in R"®,

ne + (a(z) — nZ)ne (6.19)
n. >0 in R2.

We denote by A, the first eigenvalue of the elliptic operator —A + |x|?\ in R?, i.e.,

A = Inf {/R Vol + |2l - 6 €M, [6]12qe) = 1} :
We have the following result:

Theorem 6.2 If 0 < ¢ < %, there exists a unique classical solution n. of (6.19). Moreover,
e < Jag and 1. is the unique minimizer of E- in H up to a complex multiplier of modulus one.

If e > 5, then zero is the unique critical point of E. in 'H.

The method that we use for solving (6.19) involves several classical arguments generally used
for a bounded domain. The main difficulty here is due to the fact that the equation is posed
in the entire space R? without any condition at infinity. We start with the construction of the
minimal solution: we consider the solution 1y, of the same equation posed in a ball of large
radius R with homogeneous Dirichlet boundary condition and then we pass to the limit in R.
We prove the uniqueness by estimating the ratio between the constructed solution and any other
solution. A crucial point in the proof is an L*°-bound of any weak solution.

Before proving Theorem 6.2, we present the asymptotic properties of 7. as ¢ — 0. We show
that 7. decays exponentially fast outside D and that 72 tends uniformly to a™. The following

estimates will be essential at several steps of our analysis.

Proposition 6.3 For ¢ sufficiently small, we have
6.3.a) E-(n:) < Cllneg|,

6.3.b) 0<n.(z) <CePexp a(z) in R\ D,
4e2/3

6.3.c) 0<+/a(z) —n.(z) < Ce'/3\/a(z) for x € D with |z|s < \fag — /3,
63d) Hv/rIgHLOO(RQ) S Cé"il,

6.3.¢) |n. —vallcix) < Cre* for any compact subset K C D.

Remark 6.1 We observe that 6.3.a) in Proposition 6.3 implies

/ el + 20 () e + / (a(e) — |n.P)* < C|ne]. (6.20)
R2\D D
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Proof of Theorem 6.2. Step 1: Emistence for 0 < e < . For R > 0, we consider the equation

e? A + (a(z) —np)ne =0 in Bg,
nr >0 in Bp, (6.21)
ng =0 on 0Bg.

By a result of Brezis and Oswald (see [32]), we have the existence and uniqueness of weak
solutions of (6.21) if and only if the following first eigenvalue condition holds
a(z)|o|? .
ot { [ vop - DL 6 € BB N6l =1} <0, e
Br

82
X 2 2 Qa
wizemn =wi { [ vop+ EBEL o e misn) ol =1} <% 622)
R

where we denoted the elliptic operator L. = —A + li—lj‘ We claim that for R sufficiently
large, (6.22) is fulfilled. Indeed, let 1 be an eigenfunction of L. in R? associated to the first
eigenvalue (L., R?) with 9]l 2@2)y = 1 (the existence of ¢ is a direct consequence of the
compact embedding H — L?(R?) proved in Lemma 6.4). For any integer n > 1, set 1, (x) =
cn C <M) Y (x), where ¢ : R — R is the “cut-off” type function given by

n

1 ift <1,
C(t)y=q2—t ifte(1,2), (6.23)
0 ift>2

and the constant ¢, is chosen such that |1 z2®2) = 1. We easily check that

2 2
(9ol + ) = [ (190 + B ) = uize )

g2 n—+o00

M (Lo, Bop) < /

BQn

and we deduce that the sequence {1 (L, BR)}R>0 (which is decreasing in R) tends to i (L., R?)
as R — oo. Since

A (Le,R?) = ga
we conclude that there exists R. > 0 such that for every R > R., condition (6.22) is fulfilled
and equation (6.21) admits a unique weak solution 7y ..

By standard methods, it results that 7, is a smooth classical solution of (6.21). We notice
that, for any R. < R < R, Nie 1s a supersolution of (6.21) in Bg and thus ng . < nz. in Br by
the uniqueness of 7y .. By the maximum principle, we infer that 1. < \/ag in R2. For every
R > R, we extend 1. by 0 in R?\ Bg. Since the function R — n,.(z) is non-decreasing
for any x € R?, we may define for z € R?, n.(z) = REH—IOO Nre(z). It results that 7. satisfies
0 <n: <y/ag and

2An. + (a(x) —n¥)n. =0 in D'(R?). (6.24)

Since n. € L°°(R?), we derive by standard methods that 7. is a smooth classical solution of
(6.2).
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Step 2. L*>-bound for solutions of (6.19). The method we use in this step is due to Farina (see
[43]) and relies on a result of Brezis (see [24]). We present the proof for convenience. Let 7 be
any weak solution of (6.19) in L} (R?). We claim that

n<yap ae. in R

Indeed, if we consider w = 71 (n — \/ag), then w € L} (R?) and since 7 satisfies (6.19), we infer
that Aw € L (R?). By Kato’s inequality, we have

sgn’ (w)

A(w™) > sgn™ (w)Aw > (n? — ag)n = 6i2w+<ew +2y/ag)(ew + /ag) > (wh)*,

g3

Therefore wt € L} (R?) and w™ satisfies

~A(w) + (w")? <0 in D'(R?).

By Lemma 2 in [24], it leads to w™ < 0 a.e. in R? and thus w™ = 0.

Step 3. Uniqueness for 0 < e < 5. Let 7. be the solution constructed at Step 1 and let 7 be

any weak solution of (6.19) in L3 (R?). By the previous step, n € L°°(R?) and using standard

loc
arguments, we derive that 7 is smooth and defines a classical solution of (6.19). We observe that

n is a supersolution of (6.21) for every R > R.. Since 1y is extended by 0 outside Br, 1z <1
in R2. Passing to the limit in R, we get that 0 < 7. < 1 in R2. Hence the function p : R? — R
defined by p = 1. /n is smooth and takes values in (0, 1]. We easily check that p satisfies

4

div(?Vp) + L1 - p*)p=0 in R2 (6.25)

2
For every integer n > 1, we set (,(z) = ¢ (n~'|z]), where ¢ is given by (6.23). Multiplying
(6.25) by (1 — p)¢2 and integrating by parts, we derive

4
/ ("— p(L— pP(L+ ) + n2<5\vm2) —2 [ 1= 96 VG (6.26)
R2 g R2

Since p is bounded, the Cauchy-Schwarz inequality yields

/ (1= p)Ca(Vp- Vo) = / (L= p)ea(Vp- V)
R2

B2n\Bn

1/2 1/2
g(/ n2<1—p>2|v<n|2> (/ n2<5|v,o|2>
Bgn BQn\Bn
1/2
< 2/ 17l e e ( / n2<5\vm2> |
R2\B,,

Using (6.26) and the L>°-bound on 7 obtained in Step 2, we infer that

1/2
/ 1P GaIVpl? < 4y/mag (/ 772C5\Vp\2> : (6.27)
R2 R2\ By,
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It follows
167m02/ Gl Vpl? — / °|Vp|?
R2 n—-+00 R2

by monotone convergence. Since 7%|Vp|? € L'(R?), the right hand side in (6.27) tends to 0 as
n — +o0o and we finally deduce that [z 7?|Vp|?> = 0. Hence p is constant in R? and by (6.26),

we necessarily have p =1, i.e., n = ..

Step 4. End of the proof. The existence of a minimizer 1 of E. in H is standard. Since
E.(|1]) < E.(n) for any 1 € H, we infer that 7 := || is also a minimizer and therefore 7 satisfies

the equation
2A A AN A . 2
e*An+ (a(z) — =0 in R,
7+ (a(z) —77)7) (6.28)
f>0 in R2.

By the maximum principle, it follows that either 7 > 0 in R? or 7 = 0.

If 0 < e <, we claim that 7§ > 0. Indeed, for R > 0 sufficiently large, we consider the
unique solution 1y of (6.21). By [32], g is the unique non-negative minimizer of E.(-, Br)
in H}(Bg,R). Since 1. is extended by 0 outside Bg, we have

Ea(ﬁ) < E5(77R,5) = Ee(nR,a s BR) < E8(07 BR) = Ea(o)

which implies that 7 is not identically equal to 0. Then 7} solves (6.19) and by Step 3, we conclude
that |n| = 7 = n.. From the equality E.(|n|) = E-(n), we easily deduce that there exists a real
constant « such that n = |n]e’® = n.e'.

If e > %2, we prove that /) = 0. Multiplying (6.28) by 7, it results

N |33|3\ o 1oy ag .9 A/ 2
VA2 4 Az C e 90 <2 .
/Rg| ™+ g2 +€277 g2 Rgn ~ € Rzn

On the other hand,

192 |33|3\ ) 2 9 A o)
|V77| + 5 N > AI(LE,R ) n=- n.
R2 g R2 € JR2

It follows that fRQ f* =0, ie.,, n = 0. Thus, in this range of €, zero is the unique minimizer of
E..

Now it remains to show that zero is the unique critical point of E. when ¢ > 2. Indeed, let
7 be any critical point of E. in H, i.e., 7] satisfies the equation (6.24). Then

vt =% [ a@i - (6.29)

=2
Since zero is the global minimizer, we have that E.(77) > E.(0), so that
1
/ Vi’ + — | 7" —2a(2)i® > 0. (6.30)
R2 2e R2

Combining (6.29) and (6.30), we derive that [, 7* =0, i.e., 7 = 0. O
We recall the following classical result:
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Lemma 6.4 The embedding H — L?(R?,C) is compact.

Proof. Let u, — 0 weakly in H as n — oo. Extracting a subsequence if necessary, by the
Sobolev embedding theorem, we may assume that u,, — 0 strongly in LIQOC(]RQ). Obviously,
Jge [z[*|un|* < C. For any R > 0, we have

n—oo

R? limsup/ un|* < limsup/ |2 |un|* < C.
R2\Bpr n—oo JR2
Letting R — +o0o0 in this inequality, we conclude that u, — 0 strongly in L?(R?). O

Remark 6.2 We emphasize that from the proof of Theorem 6.2, it follows that any smooth
function n satisfying

—*An > (a(z) = [n]*)n  in R,

n>0 in R2,

verifies n > n. in R2.

Proof of Proposition 6.3. Proof of 6.3.a). We construct an explicit test function ¢ € H'(R?)
such that E.(¢) < C|lne|. Since 1. minimizes E., we deduce E.(n:) < E.(p) < C|lne|. The
function ¢ is defined as in [61]: let

Vs o if s> e?/3,
v(s) = s

—— otherwise
13

and set (z) = y(a™(x)) for x € R2. Tt results that

/R? V| < C|lne| and /RQ(CLJr —?)? < Ce? (6.31)

for a positive constant C' independent of e.

Proof of 6.3.b). We construct a supersolution 77 of (6.19) of the form:

a(x) if |z|p < Vag—0,

() = _‘x’“‘ijg_“% if ag =0 < [a[s <75, (6.32)

Bexp(—|z[3/20) otherwise,

where 0 > 0 will be determined later,

agp +\/Cb—o

T A= | 2

and 3, o are chosen such that 7 € C'(R?), i.e.,

a05
4(@0 — 5) ’

- 5
8= a0 ao(ao ) exp(r?/?a) and o =

2V
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A straightforward computation shows that for § = 4a(1]/352/3, 7] is a supersolution of (6.19) and

we also have
rs — \/% = 0(62/3), o= 0(62/3) and = 0(61/36a0/20).
By Remark 6.2, it results that 7. <7 in R? which leads to 6.5.b). Notice that we also obtain

ne(x) < a(z) for |z|an < Vag -9,

(6.33)
ne(z) < Ce'/?  for \ag — 0 < |z|p < Vao -

Proof of 6.3.c). The estimate 6.3.c) follows the ideas in Proposition 2.1 in [3]. Let xo € D be
such that
dist (g, D) > &'/3 (6.34)

2/3

and set o = min {a(y), y € B(zo, €*/?)}. We want to construct a subsolution in Bj(z¢). For

g = 61/3/\/6, we denote by @ the unique solution of

1
—Aw+ — (W’ —1)w =0 in By,

9
W >0 in By, (6.35)
w =0 on 0Bj.

From Proposition 2.1 in [14], we know that

1— 2
0<1-—w(x)<Cexp <—%>

Then we map @ to B(xzg,<?/3), namely

From (6.35) we derive

1 1

—Aw + —2(w2 —a(z))w < —Aw + —2(w2 —a)w=0 in B(zg,e¥?).

€ €

Since 7. > 0 on dB(zg,£%?), by the uniqueness of @, we deduce that
w<7n. in B(x0,52/3).
The decay estimate on w implies 0 < \/a —w(zg) < Cy/a exp <—2€%> < Cyacel/3. By (6.34),
we have
Va(zo) — va < Cy/axzg)e'/.

Then (6.33) yields

0 < a(:vo) _ 775(330) <V a(xO) - w(azo) _V a(:ﬂo) _ \/a + \/_ _ w(xO) < 051/3
T Va0 Valwo) Va(wo) Valw) —
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for a constant C independent of xg.

Proof of 6.5.d). Taking xg € R? arbitrarily, it suffices to show that |[Vn.| < Ce™!in B(zg,¢) with
a constant C' independent of xy. We define the re-scaled function ¢. : By(0) — R by ¢.(y) =
Ne(zo+ey). From estimates 6.3.b) and 6.9.c), we derive that |A¢:| = | (a(zo + ey) — ¢2) ¢c| < C
in By(0) for a constant C' independent of xy. By elliptic regularity, we deduce that for any
1 <p < o0, |Pellw2r(B,(0)) < Cp for a constant €}, independent of € and . Taking some p > 2,
it implies that ||V, (B, (0)) < C for a constant C' independent of ¢ and xg which yields the

result.

Proof of 6.3.¢). The idea of the proof is due to Shafrir [84]. First we prove that |V.| remains
bounded with respect to € in any compact set K C D. We choose some radii 0 < r < R < \/ag
such that K C B} C B& C D. We claim that

e —Va| < Cre® in B} (6.36)
Indeed, we infer from (6.19) that
—2A(Va —ne) + n-(n- + Va)(Va—n) = —e2A(Va) = O(*) in By,

By estimate 6.3.c), we have |\/a—n.| < @ in B for € small. Thus 7:(n. ++/a) > Ar > 0 in B
for some positive constant Ar which only depends on R. Then (6.36) follows from Lemma 6.5
below (which is a slight modification of Lemma 2 in [16]).

Lemma 6.5 Assume that A >0 and 0 < r < R. Let we be a smooth function satisfying

—2Aw. + Aw. < B2 in B}‘%,
we <1 on (9B1/%,

for some constant B € R. Then w. < Ce? in B» with C = C(R,r, A, B).

Proof of 6.5.¢) completed. By (6.19) and (6.36), we deduce that 7. is uniformly bounded in
W2P(BM) for any 1 < p < co. In particular, it implies

Vel Loe () < Cke - (6.37)

We repeat the above argument with the functions z. = gzg and zp = %‘3{5, j = 1,2. Obviously,
J J

we can assume that (6.36) and (6.37) hold in B%. Using (6.36), we easily check that

—e?A(ze — 20) + (372 — a) (2. — 20) = O(£?).

By (6.37), we can apply Lemma 6.5 which yields the announced result. O
We now state a result that we will require in Section 2.2. We follow here a technique
introduced by Struwe (see [87]).
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Lemma 6.6 Let I : (0,00) — Ry defined by
I(e) =Min{E.(n) : n € H}. (6.38)

Then I(-) is locally Lipschitz continuous and non-increasing in (0,00). Moreover,

|In ]
5

|I'(e)| < C( + 1) for almost every e € (0, 00). (6.39)

Proof. For every ¢ > %2, we know by Theorem 6.19 that () = E.(0) = 5% and |I'(g)] = 6%
Hence it remains to prove that the conclusion holds for 0 < ¢ < % + 1. By convention, we set
ne = 0 if ¢ > 5. Naturally, we have

I(e) = E-(n:) < E.(0) = 592 for everye > 0. (6.40)

N

If € is small, we infer from 6.5.5) in Proposition 6.3 that we can find some radius R > 3~ such
that

/R?\B 1| + 207 (@) |n-|* < Ce. (6.41)
R

Using (6.40), we deduce that (6.41) holds for 0 < & < 42 4-1. Let us now fix some ¢ € (0, 52 +1)
and 0 < h < 1. We have

Eeyin(Meg+n) = 1(e0 + 1) < Eegin(Neg—n) < Eeog—n(Neo—n) = 1(€0 — h) < Ecy—p(Meg+h)-
Hence, I is a non-increasing function and
Eeo—n(Meg—h) = Eegyn(Neg—n) < I(0 — h) = I(eo + h) < Eeq n(Neg+n) — Eegrn(Neotn)-

By (6.41), it leads to

ot Ol s it ([ @)~ b - @)~
and
I(eg +h)—I(eg — h) —&o _
- 2h : = 2(g0 + h)*(e0 — h)? /BR (a(x) - Meo-al")" = (@ (CU))Q] (0:49)

which proves with (6.40) that I(-) is locally Lipschitz continuous in (0, % + 1). Therefore I(-) is
differentiable almost everywhere in (0, 52 + 1). We easily check using standard arguments that
Neg—h — Neo a0 Teg 1, — 7, in LA(BR) as h — 0. Assuming that g is a point of differentiability
of I(-), we obtain letting h — 0 in (6.42) and (6.43),

I'(eo) = %/B [(a(2) = 1,%)? = (a™ (2))?] + O(1). (6.44)
Then we deduce (6.39) combining (6.20) and (6.44). O
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6.2.2 The profile under the mass constraint

In this section, we study the minimization problem (6.8). The motivation is to define the
“vortex-free” profile
7 e’4 (6.45)

and to construct admissible test functions for the model. Existence and uniqueness results for
general potentials a are also presented in [64]. Our contribution consists in proving the identity
(6.47) between 7. and 7.. By this formula, we obtain a precise information about the asymptotic
behavior of the profile 7.

Theorem 6.7 For every ¢ > 0, problem (6.8) admits a unique solution 7. up to a complex

multiplier of modulus one. Moreover, there exists k. € R such that

_ 1 =9y~ .
—Af)e = E_Q(a(x) - ’775‘2)775 + kenje in R? (6'46)

and 1 is characterized by

/ )
o) = YOS ( Vo ) with £=—" (0,2 (6.47)
Vao Vag + k.2 ag + k.2 A
In addition, for small e > 0,
|ke| < Cllne] (6.48)
and
|E-(71.) — Ec(ne)| < Ce?|Inel?. (6.49)

Identity (6.47) gives us automatically the asymptotic properties of 7. from those of 7. by a

change of scale and hence we obtain the analogue of Proposition 6.3 for 7.:

Proposition 6.8 For ¢ sufficiently small, we have

6.8.a) E-(n:) < Cllneg|,

6.8.b) 0<.(z) < Ce'Pexp <Z(Tx/?3> for |z|a > Jag + €,
€

6.8.c) |Va(x)—i(z)| < Cel/3\/a(z) for x € D with |z|s < \/ag — 2e'/3,
6.8.d) || V1| poomey < Ce™l,

6.8.¢) |7 —vallcrxy < Cre?[Ine| for any compact subset K C D.

Remark 6.3 We observe that 6.8.a) in Proposition 6.8 implies for small € > 0,
Lottt 20 @l + [ (afe) = PR < 02 hnel (6.50)
R2\D D

137
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Proof of Theorem 6.7. Step 1: FExistence. Let (n,)neny be a minimizing sequence for (6.8).
Extracting a subsequence if necessary, by Lemma 6.4, we may assume that n, — 7. weakly in
H and strongly in L?(R?) as n — co. Then we derive from (6.2) that ||7.||;2g2) = 1. We easily
check that F; is lower semi-continuous on ‘H with respect to the weak H-topology and therefore
E.(7:) < liminf, o E-(1y), i.e., 7. is a minimizer of (6.8). Since E.(|:|) = E-(7), we infer
that 7. = |fj-|e’® for some constant . Hence we may assume that 7. > 0 in R2.

Step 2: Proof of (6.47). Let 7e be a solution of (6.8). As in Step I, we may assume that 7. > 0.
Since 7). is a minimizer of E. under the constraint ||7j.||;2(r2) = 1, there exists k. € R such that
7. satisfies (6.46) and we necessarily have 7. > 0 in R? by the maximum principle. We rewrite

equation (6.46) as

_ 1 o .
—Ade = 5 (ac(@) = 7). in R, (6.51)
with
as(z) = ag + ko — |z]3. (6.52)

Multiplying (6.51) by 7., integrating by parts and using that [p, |7|? = 1, we obtain that

ag + kee? _ z|3 1. A
wrke _ [ val+ R ap s S e ry =2
€ R2 € € €
and therefore, & = aoi(;ieQ (0, QTO) Setting
o _ Nag+ ke?x
D.(z) = Va0 e 0T Re” oy, (6.53)
vag + kee \/ao
a straightforward computation shows that
—& A0, = (a(z) — [9:[*)9. in R?,
Y. >0 in R2.
By Theorem 6.2, it leads to

Combining this identity with (6.53) we obtain (6.47).

Step 3: Uniqueness. Let 7. be another solution of (6.8). As for 7., we may assume that 7. is a
real positive function. Let k. be the Lagrange multiplier associated to 7., i.e., 7). satisfies
VS VR
Ne = -2 (a(z) — |9|")Ne + kenje in R

By Step 2, the solution 7). is characterized by

. Vag + k.2 Vao x ) ) age ag
fle(x) = Me( —) with é=———¢€(0,+).
) vao “Vag + kee? ag + kg2 A

Hence it suffices to prove that k. = k.. We proceed by contradiction. Assume for instance that
k. < 1%5. Then 7). satisfies

) 1 20 L.
—Afe > 6—2(a($) - |776|2)77€ + kefje  in R (6'55)
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‘We consider the function

3 (@ Vao ) (\/ao—i-kEeQx
€

N ), (6.56)

which satisfies by (6.55),

—E2A0. > (a(z) = [0:|*)d.  in R?,
J. >0 in R2.
Therefore 1), is a supersolution of (6.19) with & instead of e. By Remark 6.2 we infer that 9. > 7:

in R?. By (6.47) and (6.56), it leads to 7). > 7. in R?. Since ||7)[| 22y = |17l 2r2) = 1, we
conclude that 7. = 7. and hence k. = l%g, contradiction.

Step 4: Energy bound for small € > 0. We now prove that for small € > 0,
E.() < C|ine]. (6.57)

Let ¢ be the test function constructed in the proof of 6.3.a) in Proposition 6.3. Setting ¢ =
HQDHZQI(RQ)QD, it suffices to check that E.(¢) < C|Ine| by the minimizing property of 7.. First
we show that [|¢]| 2re) remains close to 1 as € — 0. Since [p,a®™ = 1, we have [, lo|? =
14 [5(l¢|> — at(x)) and by (6.31),

1/2
Ll =at@l<c([oef-at@p)  <ce
D D
Hence HSDH%z(Rz) =14 O(e). Then we derive from (6.31),

/ |V¢I2=\|90HL3(R2)/ |w|2g/ IVg|? + Ce|lne| < C|Ine|
R2 R2 R2

and

1 sy L 272 2(1 - ”(‘O”ZQQ(RQ)) 2v) 12
5 [ (@) = PP =5 [ (@)~ o)+ ——2E [ (afa) - 0PIl
Ol [
1/2
§C+C<6—2/D(a— |¢|2)2> <c.

Therefore E.(¢) < C|Ilne| and (6.57) holds.

Step 5: First bound on the Lagrange multiplier for small € > 0. Let 7. be the positive solution
of (6.8) and let k. € R be such that 7. satisfies (6.46). Multiplying (6.46) by 7., integrating by
parts and using that [5, |7.|* = 1, we obtain that

- 1 - .
b — / Vit~ / (72 — a(@)) 7. (6.58)
R2 I R2
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From (6.57) we derive

- i/ ~ 2 ~ 2
' VR [ @)

< C|lne]

and

i /D (1 — a() |72

c2

<5 [0l - a@)+ 5 [ a@llil - afe)

C 1/2
< C|lne| + = </ (|7:)* — a(m))2> < Ce el
D

Hence, by (6.58), we have
ke| < Ce|InelY/2. (6.59)

Step 6: Proof of (6.48). We define the functional E, : H — R by

~ 1 1 _
Baw) =5 [ 19uP+ 5 [ (@) = WP = (o @) (6.60)
R2 9 R2
where a.(z) is given by (6.52). Then, by (6.47), we get
- ag + kee? ap + kee? .
E.(il-) = =———— Ez(ne) = ———I(&). (6.61)
ag ag
Since ||7e|z2(r2) = 1, we have
= _ k 1
Bi) = Bi) ~ 5 + 45 [ (@ (@) = (@ @) (6.62)
R2
ke 1
> _ & . + 2 (. + 2. )
> 1) - 5 + 15 [ (@ @) - (0" @) (6.63)

Using the fact that [z, a® = 1, a simple computation leads to

ke 1 N2 4+ e magkle?  wk3et
ey - — = . .64
=+ g @) (0 @) = T T (6.64
Combining (6.61), (6.63) and (6.64), we infer that
Tagk2e? _ |ko|e? . w|ko|3e?
<|I(e)—-1 1 .
e <@ - 1)+ Bl e + T (6.65)
For small € > 0, we obtain using (6.39), (6.59) and 6.3.a) in Proposition 6.3,
[1(6) — I(e)] < Ce Yineg||g —¢] < Olk|e?|Ine] (6.66)

and

|ke|€? I 7|k |3e?

(€) < Clke|e?| Inel, < Clke|e?| Ine].
Inserting this estimates in (6.65), we deduce that |k.| < C|Ine].

Step 7: Proof of (6.49). From (6.48), (6.61), (6.66) and 6.3.a) in Proposition 6.3, we derive
that F.(7.) = E.(n.) 4+ O(£%|In€|?). On the other hand, (6.48), (6.62) and (6.64) yield E.(7.) =
E.(7) + O(e?|Ingl?) and (6.49) follows. O
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6.3. Minimizing F. under the mass constraint

6.3 Minimizing F. under the mass constraint

Our aim in this section is to make a first description of minimizers u. of F. under the mass
constraint. We prove the existence of u. and some asymptotic properties of u. (in particular,
we show that |uc| is concentrated in D). We also present some tools that we will require in the
sequel, in particular the splitting of energy (6.9).

6.3.1 Existence and first properties of minimizers

First, we seek minimizers u. of F. under the constraint [uc||z2(g2y = 1. We perform the mini-

mization in H and we shall see that F; is well defined on H:

Lemma 6.9 For any u € H, 0 >0 and R > \/ag, we have

02 R? B
: ”/RQ Ny vy~ /R (a(@) = [ul*)? = (™ (2))] + Cro 2

In particular, the functional F. is well defined on H.

'Q/RQ zt - (iu, Vu)

Proposition 6.10 Assume that Q < Ae~'. Then there exists at least one minimizer ue of F

in {u€H : ullL2@2) = 1}. Moreover, u. is smooth and there ewists {- € R such that u.
satisfies
, 1 :
—Au, +2iQzt - Vu, = 6—2(a(az) — |uePue + leus  in R (6.67)

We emphasize that the result is stated for an angular velocity € strictly less than A/e but
we only consider in this chapter the case of an rotational speed €2 at most of order |In¢|, i.e.,

Q < wo|lnel (6.68)

for some positive constant wy.
Before proving Lemma 6.9 and Proposition 6.10, we present some basic properties of any
minimizer u.. We point out that the exponential decay of |u.| outside the domain D (see 6.11.c)

in Proposition 6.11) shows that almost all the mass of u. is concentrated in D.

Proposition 6.11 Assume that (6.68) holds for some wy > 0. For ¢ sufficiently small, we have

6.11.a) FE.(uc) < C,,|lnel?,

6.11.b) |6.| < CpoeInel,

6.11.c) |uc(z)| < Cuye'/?|Ine|'/? exp (Z%l) for x € R?2\ D with |z|pn > v/ ag + 2c1/3,
£

6.11.d) |uc(x)| < Va(x) + |le|e® + 2Q2|2 2 for x € D with |z|s < fag — /5,
6.11.¢) |us| < /ag+ Cyyellne| in R2,

6.11.f) [[Vue|lpoo (k) < Cug i e~ for any compact set K C R?.
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Remark 6.4 We observe that 6.11.a) in Proposition 6.11 implies
[ (et + 20 @) + [ (el - a(w)? < Cuy 2| ne (6.69)
R2\D D
Proof of Lemma 6.9. Let u € H and o € (0,1). We have

QQ
Q/ - - (i, Vu) §402/ \Vu]2+§22/ 22 uf? §402/ \Vu]2+—/ 122 [ul2.
R2 R2 ]R2 R2 A2 ]R2

For R > \/ag, we easily check that |z|% < —RQR_QQO a(x) whenever |z|p > R. Then we derive

4o

O’R? 02
< 452 2 / 9 2 _/ 21,12
<0% [ IV g oy 20N 5 [l
(6.70)

4o

Q/ at - (iu, Vu)
R2

Now we notice that

R2 a a R2

20,12 2 0 21,12 0 2
P v —2alx _ T

/A| |A|u| 2(R2 0)/ ( )|u| R2 0/g| |A|u| —|—R2 0/%|u|

3 3
R? / 9 R? / 4 mRa
< ——— —2a(x)|u|” + ————— U+ V-
2(R2 — ao) B% ( )’ ‘ 2(R2 — ao) B% ’ ‘ 2A(R2 — ao)
Inserting this estimate in (6.70), we obtain
o[ ot uvn|so [ vul e gt [ - W - @)
R2 ’ - R2 8A20'(R2 - (ZO) R2
TO2R1q2
+ - @@
8A30'(R2 — ao)
and the proof is complete. O

Proof of Proposition 6.10. Since Q < Ae™!, we can find 0 < § < 1 such that Q < §Ae~!. Taking

in Lemma 6.9,

241 2(1 + 6%)ag
o=— and R = T—5
we infer that for any u € H,
1 -6
I E.(u) — Cs Q% < F.(u) <2 E.(u) + Cs Q2. (6.71)

We easily check that FE. is coercive in H (i.e., there exists a positive constant C' such that
E.(u) > C(||ull3, = 1) for any u € H) and by (6.71), F. is coercive, too. Let (un)nen C H be
a minimizing sequence of Fy in {u €M flullpemey = 1}. From the coerciveness of F., we get

that (u,)nen is bounded in ‘H and therefore, there exists u. € H such that up to a subsequence,

U, — ue weakly in H and w, — u. in Li (R?). (6.72)

loc

By Lemma 6.4, it results that u, — u. in L?(R?) and consequently, [Juc||2r2) = 1. We write
for u € H,

=3 [

1

+ JE—
4% Jia- (@)<02e?(al?)

2 1 1
V — Q| + — [—u‘l—i— a”(z) — 202z |?) |ul?
( [+ 57 g |31 (7@ = 0%

(a(z) = [ul*)? = (a™())* — 20%]a]* [ul] .
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We observe that the functional

2 1 1
(V- mxl)u( + = Jul* + (0™ (x) — 20%[a]?) |uf?

1
ueH— -
227 J{a(0)20220a12} [2

2 Jpe

is convex continuous on H for the strong topology. Then from (6.72), it follows that Fy(u.) <
liminf,, .~ F:(uy). Hence u. minimizes F; in {u €H : |ullpemey = 1} and by the Lagrange
multiplier rule, there exists {. € R such that (6.67) holds. By standard elliptic regularity, we
deduce that u. is smooth in R2. ]
Proof of Proposition 6.11. Proof of 6.11.a). Let 7. be the positive real minimizer of E. under
the constraint |7 [|z2(g2)y = 1. Since 7. is real valued, we have (i, Vi7j:) = 0 and we derive from

(6.57),

F.(us) < F.(:) = E-(7:) < C|Ine|. (6.73)
By (6.71) (with § = %), we infer that for € small enough,
1
3 E.(us) — CQ? < F.(u.). (6.74)

Combining (6.68), (6.73) and (6.74), we obtain 6.11.a).

Proof of 6.11.b). Multiplying equation (6.67) by u. and using [p |uc[* = 1, we infer that
. 1
(= / |Vue|? — QQ/ b (tue, Vue) + —2/ (Jue|? — a(x))|ue|?. (6.75)
R2 R2 g R2

From 6.11.a) and Lemma 6.9, we derive

. 1
/ \Vue|? — QQ/ zt - (e, Vus) + — / (Jue|® = a(2))|uc|?| < Cuy|Inel? (6.76)
R2 R2 €% JR2\D

and arguing as in the proof of (6.59), we obtain by (6.69),

1 2 2
/D (Juel? - a())ue]

2 < Cupenegl. (6.77)

Using (6.75), (6.76) and (6.77), we conclude that (.| < C,,e!|Ineg].

Proof of 6.11.c). We argue as in [3], Proposition 2.5. Setting U. := |u.|?, we deduce from
equation (6.67),

1 1
5 AU, = |Vue? =202t - (iue, Vu,) — E—Q(a(w) —U)U. — (.U,
and hence

2 .
AUz > 5 (Uz = (a(2) + *|te| +€*Q%af*)) U in R®. (6.78)

Let O. = {z € R\ D : a™ (2) > 2(?[(| 4+ £2Q?|z|?) }. From (6.78), we infer that

1 _ .
AU, > 2 (z)U: >0 in O, (6.79)
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and thus U, is subharmonic in ©. C R? \ D. Note that by (6.69),
/ U2 < O Ine?. (6.80)
R2\D

By 6.11.b), for € small enough we have 90, C {z € R? : |z]} < ao + #} Consider now for

= Vag + £1/3, the set =, = R? \ BA ={z € R?: |23 > ap+¢c/?} C O.. Then for ¢ small
and any g € 2., we have B(zo, S5~ ) C O.. We infer from the subharmonicity of U, in O, and
(6.80),

1/2

4 C -

0<Uslao) < ne2/3 /B( 0,23 Ve s el/3 </B( 20,242 Uf) < Gy P|ne| for ag € Ee,
0,55 »

with a constant C  independent of zg. Hence we conclude that U. — 0 locally uniformly in
R2\ D as e — 0. It also follows that u. € L°°(R?) and then U. € H'(R?). By (6.79), U. is a
subsolution of

—e?Aw+a (x)w =0 in =,

(6.81)
w = CZ, e2/3|In¢| on 0=;.

We easily check that for € small enough,

ag +et/? — |$|3\>

Vout () = 0:)062/3| Ine|exp < 7

is a supersolution of (6.81). Therefore

2
ag — |
Us(x) = uc(z)* < vous(z) < 05052/3‘ Ine|exp <$> for |z|3 > ag + 2¢'/3.

Proof of 6.11.d) and 6.11.e). We set 7. = \/ag — /8 (recall that 7. = \/ag + 1/3). We define
in Bﬂ‘g , the function

- . .
a(x) + [le]e” + Az |z[7 if |z|a <7,
inz) = £20)? 2
ap— (1 — ?)7}(2]36\/\—775)—1—]65]5 if 7. <|xfp <re.

We easily verify that for e sufficiently small, v;, satisfies

—2Avy, > 2 (a(x) + |le|e? + £2Q?|x|? — vin) Vi, In BAE ( )
6.82
Vin(z) > C;Oez/3| Ine| on B}
and
vin(2) > a(x) + |l:|e? + 2Q?|z|> > 0 in B2.

Setting V. = U. — vin, we deduce from (6.78) and (6.82),

—2AV. +b(z)V. <0 in B2,

V. <0 on (9B,/,\E,
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with

b(x) = 2(U: + vin — (a(@) + [le|e® + £2Q%[z[*)) >0 in BY.
Hence V. < 0 which gives us 6.11.d). Then estimate 6.11.¢) directly follows from the construction
of viy and vyt and from 6.11.0).

Proof of 6.11.f). Without loss of generality, we may assume that K = Br with R > 0. Consider
the re-scaled function 4. (x) = u.(ex) defined for € Bs, p.—1. From (6.67), we obtain

—Ad. = (a(ex) — |a:*) . — 2iQe®xr - Vi 4+ £e®t. in By ipe-1.

Taking an arbitrary xg € Bg.-1, it suffices to prove that exists a constant Cr > 0 independent
of x¢ and e such that
IViie || oo (B(xo,1)) < Cuvo,R- (6.83)

By 6.11.c), we know that a(z)u. is uniformly bounded in R2. Using 6.11.a), 6.11.b) and 6.11.¢),

we derive that

AT | L2 (B o3y < C(Il(al@) + Leg? — Jue?)ue| oo 2y + Q2|2 - Vit £2(B(20.,3)))
C

<
S WO(]‘ + QEH'%.L : VUEHL2(BR+1)) S CWOvR'

Since ||t || oo (B(xo,3)) < Cuo by 6.11.¢), it follows that ||tc|g2(B(z,2)) < Cuo,r- From Sobolev

and it follows || Adic||z4(p(ry2)) < Cun k(1 + Q2| Viie| a(Bzg,2) < Cuo.r- It finally yields
e llw24(B(zo,1)) < Cuwo,r Which implies (6.83) by Sobolev imbedding. O

imbedding, we deduce that |[Vic|[11(B(z,2)) < Cup,r- We now repeat the above argument

6.3.2 Splitting the energy

In this section, we prove the splitting of the energy (6.9). The splitting technique has been
introduced by Lassoued and Mironescu in [63]. The goal is to decouple the energy F.(u) into
two independent parts: the energy of the “vortex-free” profile 7.¢** and the reduced energy of

u/(.e"*¥) where the function S is defined in (6.5). For £ > 0, we introduce the class
. {ve HL (R0 [ TP+t~ P < oo
We have the following result (valid for any rotational speed 2):
Lemma 6.12 Let u € H and € > 0. Then v = u/ (") is well defined, belongs to G. and
Fx(u) = Fo(7:¢"%) + F(v) + Te(v) (6.84)
where the functionals F. and Tz are defined in (6.10) and (6.12).

Before proving Lemma 6.12, we are going to translate some of the properties of the map w,
to u./(7-€**). To this aim, we define the subclass G. C G. by

G.={veg. : v eH and ||fv]r2me) =1}
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Proposition 6.13 Assume that (6.68) holds for some wg > 0. Let u. be a minimizer of F.
in{ueH: lull2@2) = 1}. Then ve = u./(7€**) minimizes the functional Fo+1T. inG..
Moreover, for e > 0 sufficiently small, we have

6.13.a) E.(v.) < Cyp|lnel?,
6.13.0) "j;(va)‘ < Cupellnel?,
6.13.c) |v.(x)| <1+ Cuye'l? forz e D with ||y < Vao — /8,

6.13.d) |[Vvel|poo (k) < Cupg i e~ for any compact subset K C D.

Proof of Lemma 6.12: Step 1. For u € H, we set © = u/ij. € HL (R?). We want to prove that

v € G, and
k.

B.u) = Buli) +E0) + % [ (o - ). (6.55)

We consider the sequence (un)neny C H defined by up(2) = ¢ (n™!x|) u(x) where ¢ is the “cut-
off” type function defined in (6.23). We easily check that u, — w a.e. and Vu, — Vu a.e. in
R?. Setting 0, = Up /7, then we have ¥, — © a.e. and V0, — V0 a.e. in R2. Since u,, has a

compact support, we get that v, € G, for any n € N. We have
|Vun|2 = |Vﬁ€|2 + 773|V5n|2 + (|1~)n|2 - 1)|Vﬁ5|2 + Vi) - v(|1~)n|2 - 1),

and therefore,

N B . : -
Ez—:(un) = Ee(ng) + 5 /[R2 (77§|V’Un|2 + 277_;2(|,Un|2 _ 1)2)

1 . ~ o . 1. ]
+ 92 /]R? ((’UHP - 1)’V?75!2 + eV - v(’UnP -1+ gﬁgﬂvn‘Q — 1)(77? - a(x)))

As in [63], the main idea is to multiply the equation (6.46) by 7. (|7,|> — 1) and then to integrate
by parts. It leads to

)
L0 = 0192 + 2,979 50 = 1) + B2 = 062 - oo} = ke [ a2 1)

and we conclude that for every n € N,

_ 5 - k 9/~
Bulun) = Bu() + &oa) + 5 [ (1P - 1)
R
Now we observe that
lun| < |u| and |Vuy,| < |Vu|+ |u| ae. in R? (6.86)

and by the dominated convergence theorem, it results that F.(u,) — E-(u) and

k 91 k N k N k 91
T [P0 =% [ GuP-i)— % [ (- = [ 2 -,
]RQ RQ RQ ]RQ
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6.3. Minimizing F. under the mass constraint

Applying Fatou’s lemma, we obtain

5 ) 5 ) . k .
E(0) < lim &(v,) = lim {Ee(un)—Ee(ne)——e/ (|un|2—77§)}
n—+00 n—-+o00 2 Jgr2
. k 91~
— B~ B1) ~ 5 [ (5P - 1) < oo,
RQ

and we conclude that v € G.. Since |0,||VA:| < |Vu| + 7.|V?|, we infer from (6.86) that
2| Vin|? < C(|Vul? + |u)?> + 72|Vo|?) and 72(|9,]% — 1)? < 2(Ju[* +72). By the dominated
convergence theorem, we finally get that

E.0) = lim_&(5,) = Bulw) — Bl — [ 72(oP - 1),

n—-+00 2
Step 2. Consider now @ = u/e**®. Then @ € H and we have the decomposition

Q 0?

F.(u) = E.() + T2 Jis Vta - (it, Vi) + - /RQ (IVS|? — 22+ - VS)|al>. (6.87)

Indeed, we use that

2Q)
1+ A2

\Vul? — 2Qz - (iu, Vu) = |[Va|> + Vta- (i, Vi) + QZ(|VS|2 — 2zt VS)|22|2 a.e. in R%,
Since |VS| < C|z|, [Va| < C|z|, we infer that (6.87) holds.

Step 3. We show that (6.84) takes place. Let u € H. Set @ = u/e* and v = /7. By Step 1
and Step 2, it results that @ € H and v € G.. By (6.85), we have

_ _ = k _
Bu() = Bulii) +E0) + 5 [ (ol = ). (6.59)
Since V+a - (i1, Vi) = 72V+a - (iv, Vo) and |a|? = 72|v|? a.e. in R?, we infer from (6.87) and

(6.88) that
2

Fe(u) = Ex () + £2(v) + Re(v) *7/]1@ (Ivsp —2xl-VS)n3|v|2+5/RQ 7z (Jv]” = 1). (6.89)

On the other hand, (6.87) yields

L - 02 ~
FL(1.e) = B + 5 [ (98P - 20 V)i (6.90)
R
and the conclusion follows combining (6.89) and (6.90). O

Remark 6.5 The energy of the “vortex-free” profile is given by

mad(1 — A?)?

FL(7-e"*) = B.(7.) — 24(1 + A2)A3

0% 4 0o(1). (6.91)

It directly follows from (6.90) and Proposition 6.8.
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Proof of Proposition 6.13. The minimizing property of v, follows directly from Proposition 6.10

and Lemma 6.12.

Proof of 6.13.a) and 6.13.b). Since u. minimizes F; in {u € H : ||ul| 22) = 1}, we have using
Lemma 6.12,

and it yields
ga(ve) < ’ﬁa(ve)’ + ‘j-a(ve)‘ (6.92)

Arguing as in the proof of Lemma 6.9 with ¢ = 1/4 and R = y/2ap, we infer from 6.11.¢) in
Proposition 6.11 and (6.69),

5 1 9 2 402 20, |2
‘Rs(ve) <7 o 7z | Ve | +m o || e
<< | BN+ s 20" (@)|ue” + 753 |ue |
4 Jr2 © (A2 +1)? R2\BY (A% + 1) B
1 -
< 555(%) + O, Ingl?. (6.93)

We obtain from (6.48), (6.50) and (6.69) that

~ 1
|72 (ve)] = \5 /2 (V|2 — 20% - VS + k) ([ue)? — )|
R
1/2
< Cup|IneP [ [, 2@l + ( [ =+ G- a+>2) ]

R2\BA BA

<Chpellnel?. (6.94)

According to (6.92), (6.93) and (6.94), we conclude that & (v.) < C,|Inel?.

Proof of 6.13.c). From 6.8.c¢) in Proposition 6.8, 6.11.b) and 6.11.d), we infer that

712 + 2202122
’1)5(1')’ _ |ue ()] < \/a(x)—i—\ 8‘8 t+e ’1" < 1+Cw051/3 for r € BA —_ /e

() = (1—Cel/3)/a(x) vao

Proof of 6.13.d). Let K C B% be any compact set. We denote o, = v, = % By

6.8.c) in Proposition 6.8, we know that there exists Cx > 0 independent of £ such that 7. >
(1—Ce'¥)a > Ck in K. Since Vi, = 7. 'Vu. — (72 2Vi.)u, using Proposition 6.8 and
Proposition 6.11, it follows ||V.| 1o 5y < Cup,xe™'. Hence we deduce (using 6.13.¢)) that

Vel oo () < Ve poo () + Q00 V S| poo (i) < Cup e

and the proof is complete. ]
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6.3. Minimizing F. under the mass constraint

6.3.3 Splitting the domain

The main goal in this section is to show that we can excise the region of R? where the density
|ue| is very small (which corresponds to the exterior of D) without modifying the relevant part

in the energy.

Proposition 6.14 Assume that (6.68) holds. For small e >0 and v € [1,2], we set DY = {x €
R? : a(z) > I/|1D€|_3/2}. We have

]:"E(UE,DE") < Clyp| lne|71.

Proof. Since ue minimizes F. on {u € H : |[ul[p2g2) = 1}, we have for ¢ sufficiently small that

F.(u;) < Fr (ﬁeems). Then Lemma 6.12 yields fe(ve) + 7:(v:) < 0 and we derive from 6.13.b)
in Proposition 6.13,
Fe(ve) < Copellnel. (6.95)

We now set NV = R?\ D?. From the previous inequality, it suffices to prove that
Fe(ve,N¥) > =Cop|Ing|™? (6.96)

for a constant C,, > 0 independent of ¢ and v. Arguing as in the proof of Lemma 6.9 with
o =1/4 and R = \/2a¢, we infer from (6.69),

5 N o 2 40° 2012
[Retwe )| <7 | V0 + g lefRed
< 775|VU5| + 212 2a (CE)|U€| + 2\2 |u€|
4 I (1+A2) R2\BY, (1+A2) B \DY

1 . Rap N2
gz/ n?\vvay%(lfw/A lue|? + Cye?| Inelh.
NE BM\D

5

By (6.69), we may also estimate

[t
BA _\Dv BA

v v\ B \D: Yoo \DE
1/2 12 )
SC(/A L fuel?) +C</A (fuel? — a(@))?) " + Ozl
B a5 \Pyao B a5 \D¥

<Cu(|lne|™ 4+ ¢|Ineg|).
Then it follows that
‘7%5(@57/\/!)‘ <

which leads to (6.96). O
For some technical reasons, it will be easier to deal with a™ instead of 72 in the energies. To

E(ve, NV) + Co | Ing] 71 (6.97)

DO =

replace 772 by a™, we shall prove that the energy estimates inside DY remain unchanged.
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Proposition 6.15 Assume that (6.68) holds for some wg > 0. We have
E-(ve, DY) < CuylInel* and Fe(v.,DY) < Coyllng|™?

where & and F. are defined in (6.18).

Proof. From 6.8.c) in Proposition 6.8, we infer that

2 2 _ x4
¢ j2775 < /3 and ‘ ¢ ~_477€ < e/
Nz |lLeo(Dy) "l Le=(Dy)
and then 6.13.a) in Proposition 6.13 yields
E(ve, DY) — E(ve, DY)| < CeBE (v, DY) < Clpe'/?|Inel?. (6.98)

Using 6.11.a) and 6.11.e) in Proposition 6.11, we derive

Ra(veaDeI/) - 7%6(”677)?)

2

< Q/ O ] [Vue] < O3B, (e, DY)V2 < Cloge /3| Ine.
Dv Nz

Therefore, it follows that

Fe(ve, DY) — Fo(ve, DY)| < Cuoe?|Inel?. (6.99)

Then the conclusion comes immediately from 6.13.a) in Proposition 6.13 and Proposition 6.14.
O

6.4 Energy and degree estimates

This section is devoted to the proof of Theorem 6.1. The method we use is inspired from [76, 78]

and provides some information about the location and the number of vortices inside D.

6.4.1 Construction of vortex balls and expansion of the rotation energy

We start with the construction of vortex balls by a method due to Sandier [75] and Sandier and

Serfaty [77]; it permits to localize the vorticity set of v..

Proposition 6.16 Assume that (6.68) holds for some wy > 0. Then there exists a positive
constant Ky, such that for e sufficiently small, there exist v € (1,2) and a finite collection of

disjoint balls {Bi}z‘el = {B(pi,ri)}l.el satisfying the conditions:

(i) for everyi€ I.,B; CC D. = {x eR? : a(z) > V€|lne|73/2},
(ii) {x €D: : |ve(x)| <1—|ne| ™} C User B,

(iii) Y i < |ne[77,

1€l

) 1
(iv) 5/3 a(a:)|Vv€|2 > wa(pl-)|di|(|lne| — Ko, ln|lne|),

i

where d; = deg (i aBZ-) for every i € I..

|v€|’
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Proof. According to the technique presented in [75] and [77], we construct as in [3] (using
Proposition 6.15 with v = 1) a finite collection of disjoint balls {Bi}iefg = {B(pi’”)}z‘el} such
that

{zeD:alz)> IIne| =32 and |ve ()| <1 — |Ine|™°} c U

iei.Bis

(i) is fulfilled and
) v 0.2 Vd: _ e
5 |(V — iQa")ve|* > ma(pi)|di| (| Ine| — Kuy In|Ine|)  for each i € I..
B;
By (iii), we can find v, € (1,2) such that 0{z € D : a(z) > v:|Ine[~%/2} N Uiei. Bi = 0. By
cancelling the balls B; that are not included in {z € D : a(z) > v.|Ine|~3/2}, it remains a finite
collection {B;}, ¢, that satisfies (i), (i) and (ii1). Notice now that (iv) takes place since we

have

a\xr
0 [ L ppiup <02 [ jaPluf? < Cufine?
B; B;
a@)
7e

AT < ClplIn <€|27“Z

|Q/Bi a(z)zt - (ive, Vue)| < CQ/

i

(6.100)
(here we used Proposition 6.15). Hence these terms can be absorbed by Ky, In|Ine| (up to a
different constant ICy,, + 1). O

We are now in a position to compute an asymptotic expansion of the rotation energy accord-

ing to the center of each vortex ball B; and the associated degree d;:

Proposition 6.17 Assume that (6.68) holds for some wy > 0. For e sufficiently small, we have

—7Q2
Re(ve, De) T1tA2 Z (ps) — V2| Ine|™3) d; + o|lng|™®).
ZEIE

Proof. By Proposition 6.16, D, \ Ujer. B; C D, \ {|vs| < 1/2} whenever ¢ is small enough. For
x € D, such that |v.(z)| > 1/2, we set

v:(7)

ve ()]~
Since (v, V) = |ve|?(jwe, Vw,) in D: \ {|ve| < 1/2}, we have

we(x) =

Q .
Re (ve, De \ Uier. By) = T AZ /D S a(z)V+ta- (iw., Vw,)
€ i€le
Q 2 I
+ - 1)V . ,V . 6.101
1+ A2 /Dg\Uze[ g, Nl = DV 7a- (iwe, V) (6.101)

Then we estimate using Proposition 6.15,

< O (E(ve, D)) | Ve L2 (Dot ffun | <1/2))

/ a(z)(Jve]? = 1) Vta - (iw., V)
DE\U,E]EB

< Ce|lnel||Vwe |l L2\ foe|<1/2}) - (6.102)
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In D\ {|ve| < 1/2}, we have |Vw| < 2(|Voe| + |V]|ve||) < 4|Vue|. We deduce that
/ V. |? < 16/ |V |? < 16|lne|3/2/ a(z)| V> < C|Ine|7/? (6.103)
De\{|ve|<1/2} D. D,

and hence we obtain combining (6.101), (6.102) and (6.103),

Q

Re (ve,D: \ Uier. Bi) = T A2

/ a(z)Vta - (iw., Vw,) + O(e|Inel*). (6.104)
D:\Uier. Bi

Since (iw., Vw.) = w. A Vw. and a(z)V+ta = VP, (z) with

a*(z) — v Ing| ™3
2 )

Pe(z) = (6.105)

we derive that

/ a(z)Vta - (iwe, Vw,) = / VAP (z) - (we A V)
D:\Uier. B; De\Uier. Bi

== s Fe@) (ws A a(;f)

1€l

where 7 denotes the counterclockwise oriented unit tangent vector to dB;. The smoothness of
v implies the existence of a. € (3, %) such that 4 = {z € R? : |v.| < a.} is a smooth open set.
Then we set for i € I, U; = B; NU (notice that by Proposition 6.16, U; CC B; for small ¢).
Using (6.103), we derive

ow, dwe \ |
9B; P <w€ . or ) - ou; P (we " or )‘ -
<SC i [[Vwe |l 2D\ foe|<1/23)

<Cri|nel/*

/ VAP (z) - (we A V)
Bi\U;

and since |ve| < ae in U; and [Pe(z) — Pe(pi)| < 7il|VPellpoo(p), V2 € B(pi, i), it results from

Proposition 6.15,
[ o) =Pt (wen G2 ) | =a? | [ (Pt = Pt (00 )
/ui a(z)Vta - (iv., Vo)

<a?

+ 20@2

| o) = Petp)) der(vr)

7

<C (1 IVa Vel sy + 7i e |Va Vedl2agy)
<Cri|lne|"?.

Therefore we conclude by (4ii) in Proposition 6.16 that

—-Q ow _
Re (ve, De \ Uier. Bi) :mzpe(pi)/ we A 87’6 + o(|lne|™?)

icl. s
—27Q2 _
:mng(pi)di + o] Ine| 7).
1€l
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On the other hand, we infer from (6.100) and (%i¢) in Proposition 6.16 that

|Re(ve, Uicr. B )‘<C]ln€\ ZTZSCHH&" -8,
i€l

According to (6.105), the proof is completed. O

6.4.2 Asymptotic behavior for subcritical velocities. Proof of (i) in Theo-
rem 6.1

In this section, we prove (i) in Theorem 6.1. We will distinguish different types of vortex balls
through the partition I. = Ip U I, U I_ where

Ip={i el : d;>0and |p]s < lln&t\*l/G},

I ={i €l : d>0and |p]p > |lne|_1/6},

_={iel. : d; <0}
in order to improve the lower bound for F;(v., D.) (see (6.111)). In the sequel, we assume that

Q<O +wln|lne| (6.106)

for some constant w; € R. Therefore, if ¢ is small, we have 2 < 3 |ln | and we will use the

constant IC 3 given by Proposition 6.16. In fact, one can choose 1nstead of oo any other constant
ag

wp such that wg > 1+A . First, we show the following:
—(1+A%)K 5
Proposition 6.18 Assume that (6.106) holds with w; < w} = T“O Then for e suffi-
ciently small, we have ) ;; |d;| =0 and
lve] = 1 in Lis.(D) ase — 0. (6.107)
Moreover,
Fe(ve) =0(1) and E.(v.) = o(1). (6.108)

Proof. From Proposition 6.15 and Proposition 6.16, we get that

1 1
O(lne|™Y) > F(v., D) z—/ a(@)| Vo 2 + —5 aQ(x)(l— w22 (6.109)
2 DE\UZEIEB 4

+7) af pz|d|<|lne| K31n|lne|>+7?,(v€, .).

ZEIE

Combining Proposition 6.17 and (6.106), it results that

—maof2 — |Ine[~1/3)Q .
Re (e De) 2 T3 ; (pi)|ds| = = TR ;a(pi)\di]—i—o(\lns\ )
(3 0 i .
Taogwl
> —7 > alp)ldi||Ine| - A2 > alpi)|di|n|Inel (6.110)
i€ lgUl i€lp
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(here we used that

(ap — | Ine|~1/3)Q
1+ A2

1 1
< |lne| — a—0|lne|2/3 + %mmd < |Ine| — 2—ao|1ne|2/3

for € small). Then we deduce from (6.109) and (6.110) that for £ small enough,

! a*(2) ao
By \Y% 2 / 1— 2\2 K i1
2/Ds\uielgB¢a(x)’ vl p. 42 (= Joe)* = m( e + 2) D a(pildi|In|Ine]

i€lp
(6.111)
T T _ _
i Z a(pi)|ds|| Ine|?/® + 5 Z a(p)|di||Ine| + o(|Ine|™®) < Fu(ve, D2) < O(|Ine| ™).
1€14 el
Since {955 < —IC% and a(p;) > ao/2 for i € Iy, we derive from (6.111) that >, |di| =

o(|Ine|~'). Now since a(p;) > |Ing|™3/2 in D., we also obtain from (6.111) that Y icr ldi| =
O(|Ine|~1/6) and Yoicr ldi| = O(|Ine|~1/?). Hence > icr. |di| = 0 for e sufficiently small.
Coming back to (6.111), we infer that for any 0 < R < \/aq,

1

8_2 Bﬁ(l - |’U€|2)2 < % /DE CL2(CC)(1 — |U€|2)2 < 0(1) (6112)

22
Then the proof of (6.107) follows as in [16] using the estimate 6.13.d) in Proposition 6.13 on
[Voel.

Since » ;. |di| = 0, we derive from Proposition 6.17 that R.(ve,D:) = o(1). Using that
F:(ve, D) < o(1), we deduce that & (ve,D:) = o(1) and hence we have F.(v:,D;) = o(1). By
(6.98) and (6.99), it leads to

E.(v2,D.) = o(1) (6.113)

and F.(v.,D.) = o(1). Using (6.95) and (6.96), we get that
0(1) < Fe(ve, NI*) < =F(ve, De) + o(1) < o(1) (6.114)
and therefore F.(v.) = o(1). By (6.97), we have

ﬁa(vaaN;E) = ge(veaNgys) + ﬁa(vaé/E) > ge(vm,/\/gf) + 0(1)

DO =

and it results from (6.114) that & (v., N*s) = o(1). By (6.113), we conclude that & (v.) = o(1).
(]

Proof of (i) in Theorem 6.1. By 6.8.c¢) in Proposition 6.8 and (6.107), it follows that |u:| —
Vat in L2 (D). According to 6.11.c) in Proposition 6.11, it turns out that |u:| — VaT in
L (R*\ D). Moreover, by (6.108), for any sequence €, — 0 we can extract a subsequence
(still denoted (e,,)) such that v., — « in H} (D) for some constant o € S'. We obtain
that u., e ¥ — ava' in H. (D) by 6.8.¢) in Proposition 6.8. By Lemma 6.12, 6.13.b) in
Proposition 6.13 and (6.108), we conclude that (6.6) holds. O

loc
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6.4. Energy and degree estimates

6.4.3 Vortex existence near the critical velocity. Proof of (ii) in Theorem 6.1

We now prove (4i) in Theorem 6.1. We will use an appropriate test function in order to improve
the upper bound of the energy F;(u.).
Proof of (ii) in Theorem 6.1. Stepl: Construction of a test function. Assume that Q; +

d0ln|lne| < Q < wp|lne| for some positive constants ¢ and wp (thus, wy > %;H) We consider
the map v. defined by

€T .

— if [z| > €,

x

2~}s(x) = | |

Xz .
— otherwise
€

and we set . = 7.¢"*7,. We easily check that @, € H. Lemma 6.12 yields
F.(t:) = Fa(ﬁeems) + -7:-5(?75) + j-a(f)e)-

Then we estimate

~ 1
\zmﬂgiés

A straightforward computation (using Proposition 6.7) leads to

QYVS|2 — 2022t - VS + k|72 (1 — |0:]) = o(1).

Fu(v.) < _ff%[fz In|lne| + O(1)
and consequently
, mazs
F.(i.) < F.(7j.e*¥%) — - +0A2 In|Ine| +O(1). (6.115)
We now set @ = m_ e with m. = ||dec||f2r2) (so that [[ac||p2r2y = 1). Since [|7:]|2r2) = 1,

we have
2= [P =1 [ R =140
R2 Be
From this estimate, we easily check that
Fe(te) = F-(t:) + o(1). (6.116)

Step 2. By the minimizing property of u., we know that F.(u.) < F.(4.). In view of 6.13.b) in
Proposition 6.13, (6.115) and (6.116), it yields

~ ma3d
Fe(ve) < 1 —i—OAQ In|Ine| + O(1).
Using (6.96) and then (6.99), we derive that
ma3d
Fe(ve,D:) < 7 +0A2 In|lne| + O(1). (6.117)

On the other hand, by Proposition 6.17, we have

w
Re(ve,De) > — 1 Y d)diling] + o(1)
i€le,d; >0
TWo @ ™
> —1+OA2 Z a(p;)d;|Ing| — 5 Z a(p;)d;|Ine| + o(1)
iEIg,di>0 ielg\lg,di>0
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where we denoted
A% +1
2(4)0

faz{ielg sa(pi) >

Then, by Proposition 6.16, we deduce that

b

Fe(Ve, De) 2 Ec(ve, Vier. Bi) + Re(ve, De) > —Cyy Z a(pi) di|Ine| + o(1)
iel.,d;>0

for some constant C,, > 0. Therefore, by (6.117), it results that for small £ > 0,

Z d; > 0.

iel., d;>0

We conclude that there exists ig € I - such that d;, > 0, so that there exists at least one vortex
inside the bulk D which remains at a positive distance (independent of €) from 0D. If in addition,
(6.106) holds, we claim that u. has at least one vortex close to the origin. Indeed, by (6.111)
and (6.117), we obtain

ma3d

apgwi
_77(1 + A2 "’K%) Za(pz)|dl|ln|lng| < _1 0
i€ly

In|lne| +O(1)

which implies for e small enough that ), ; |d;| > C' > 0 for a constant C' independent of
e. Hence, for ¢ small, there exists a ball Bj, (jo € Iy) that carries a vortex z° with |2°| <
O(|Ing|~1/6). O
6.4.4 Energy estimates near the critical velocity. Proof of (i:i) in Theorem 6.1

In this section, we prove the energy estimates stated in (i) in Theorem 6.1 in the regime
(6.106). First, we shall prove that the number of vortex balls with nonzero degree lying in a

slightly smaller domain than D,, is bounded.

Proposition 6.19 Assume that (6.106) holds. Then

No:=>_|di| < Cl, (6.118)

i€lp

and setting B: = {x € R? : a(z) > |Ine|~Y/2}, we have for ¢ sufficiently small,

> i =o0. (6.119)

i€l Ul_ | p;EBe

Proof. Arguing as for (6.111), we derive that for € small enough,

Lo a@IVel + Y amldln=P + Y a@pldiine] <
D:\Uier. B;

1€l il

apwi 1
< C\HAQ +/c%| Ezla(pi)]dilln\lnal +O(|Ine|™)
1clo

< CoNoln|Ine| + O(|Ing|™h) (6.120)

156



6.4. Energy and degree estimates

for some positive constant Cp independent of . We set

L={iel :peB}, N.=)> |dl,
icl.

and

_={iel :peB}, N_=)> l|di.

iel_

Since a(p;) > |Ine|~1/2 for any i € I, UI_, we obtain from (6.120),

/ a(2)|Vo|? + Ny Ine|/® + N_|Ine|'/? < CoNoln|Ine| + O(|lne|™")  (6.121)
'DE\U,E]EB

which implies in particular that
N,
max{N,, N_} < 70 (6.122)

for e sufficiently small. We now show that Ny is uniformly bounded in e. Consider the sets
= [lmel % 0] and Jo={reZ : 0B} N (Uier, Bi) =0}

Notice that J. is a finite union of intervals verifying |Z. \ Jz| < |Ilne[~°. For r € J. and ¢
small, we have |v:| > 3 on B2 and therefore, we can define

D(r) = deg (, K 8BA>
E
By (6.122), we obtain that for small e,

|D(T)|:{ Z di{ZNo—N,Z% for any r € Js.

|pila<r

We have (using elliptic coordinates 1 = 7 cos 6, x5 = A~ !rsin 6)

21 1 21
/ a(z)|Voe|? > 3 / </ |Vv€|2rd9> dr > C —</ |ve A ‘%5\%2 d9> dr.
BI:/@\UZEIEB 4A 0 VA T 0 87’
2

. . ov ow ow, .
We set w, = ‘gz‘ in B/\\/Ta—0 \ Uijer.B;. Since |vz A 8—:\ = \05\2]11)5 A 87’6’ > 4\w5 a—:\ in
Bag \ Ujer. Bi, we infer that
0
/ a(z)|Voe |2 > c/ ( |w. A w5\2r2d9>dr
Bf/Ta—O\Uielg
D(r)? d
( >dr2(] DO s onz [0
Je T J- T
Notice now that
dr
/ / < el O[T\ T2 = of1)
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d
and since / T~ Cm |Ine| + O(1), we finally get that
. T

/BA S a(x)|Vu:|* > CyIn|Ine|NZ
@ iele D1

for some positive constant C independent of . From (6.121), we derive
(CiN§ — CoNo) In |Ine| < O(|Ine|™)

which implies that Ny is uniformly bounded in e. Then it follows by (6.121) that

In|lne|
|Ine|1/2

In|lne|
|Ine|1/6

N, <O( ) and N_ <O(

)
Therefore, N_ = N, = 0 for ¢ sufficiently small. O
Proof of (iii) in Theorem 6.1. From Proposition 6.17, (6.106) and (6.119), we infer that for ¢

small,

Ta 7§} _ -
Re(vD.) 2 T0r S alpoldi] - ol nel ™2 Y apolai] + ol nel )
icly ie L\ 1.
apgwi 2T 1/2 _5
z—w;a@i)rdi\(unawlw Infnel) =203 alpolé| el + off i )
1€10 1€14

We now inject this estimate in (6.109) to derive that )., a(p;)|di[|Ine] < CNoln|Ineg| + o(1)
and hence, by (6.118), > ;. a(p;)|di| Ing|'/2 = o(1). Tt yields

apw
Re(ve, De) = Re (ve, De \ Uier. Bi) + 0(1) > — Z a(pi)|di|(| Ine] + 1 : /i2
i€l

In|Inel) + o(1).

Since F.(ve, D) = E-(ve, De) + Re(ve, D) < O(JIng| 1), it follows

apgwi
gs(vsape) <7 Z a(p2)|dl|(| 1n‘€| + 11+ A2

i€l
< Cy, Nollne| +0(1) < C, | Inel.

In|Inel) + o(1) (6.123)

Set A. =D, \ Bé\l Ine|-1/6" Matching (iv) in Proposition 6.16 with (6.123), we finally obtain

56(7)57-/46) < 55(7)572)6 \ UiEIOBi) < 7T(

el zc%) > alpi)|di|In|Ine| + o(1)
i€l

< CypyNoln|lne| < C,, In|lng|

and the proof is complete. ]

Remark 6.6 For general potentmls a(x), the analysis becomes rather delicate when the set of
maximum points of the quotzent in D= {x €R? : a(x) > 0} is not finite. Recall that £ is the
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6.4. Energy and degree estimates

solution of the problem (6.16). An example is given by the following perturbation at the origin

of the harmonic potential 1 — |z|?:

1 .
a(x) _ W lf ’1" < 1,
2l it | > 1.

g

Here, the set of maximum points of the quotient % is a circle centered in the origin.

159



Chapter 6. The critical velocity for vortex existence in a 2d rotating BEC

160



Chapter 7

Energy expansion and vortex
location for a two-dimensional
rotating Bose-Einstein condensate

Abstract

We continue the analysis started in Chapter 6 on a model describing a two dimensional
rotating Bose-Einstein condensate. This model consists in minimizing under the unit mass
constraint, a Gross-Pitaevskii energy defined in R?. In this contribution, we estimate the
critical rotational speeds €24 for having exactly d vortices in the bulk of the condensate and
we determine their topological charge and their precise location. Our approach relies on
asymptotic energy expansion techniques developed by Serfaty [80, 81, 82] for the Ginzburg-
Landau energy of superconductivity in the high s limit.

This chapter is written in collaboration with V. Millot; the original text is published in
Rev. Math. Phys. 18 (2006), 119-162 (cf. [56]) and some of these results were announced
in C. R. Math. Acad. Sci. Paris 340 (2005), 571-576 (cf. [54]).

7.1 Introduction

As in Chapter 6, we consider here a two dimensional model describing a condensate placed in
a trap that strongly confines the atoms in the direction of the rotation axis. In the nondimen-

sionalized form, the wave function minimizes the Gross-Pitaevskii (GP) energy

F.(u) = /R2 {%|Vu|2 + é [(Jul* — a(z))? — (a (2))?] — Qat - (iu, Vu)} dx (7.1)

under the constraint

/R2 lul? =1 (7.2)

where € >0 is small and describes the ratio of two characteristic lengths and Q = Q(g) >0 is the
angular velocity. The function a(z) in (7.1) comes from the existence of a potential trapping the
atoms, and is normalized such that [z, a™(z) = 1. We will restrict our attention to the specific
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Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

case of a harmonic trapping, that is a(z) = ag — 2% — A%23 with ag = \/m for some constant
A € (0, 1], which corresponds to actual experiments (see [65, 66]).

Our goal is to compute an asymptotic expansion of the energy F.(u.) and to determine the
number and the location of vortices according to the value of the angular speed (¢) in the limit
¢ — 0. More precisely, we want to estimate the critical velocity €4 for which the dth vortex
becomes energetically favorable and to derive a reduced energy governing the location of the
vortices (the so-called “renormalized energy” by analogy with [17, 80, 81]).

We have started in Chapter 6 the analysis of minimizers u. of the functional F. under the
constraint (7.2) and we have already determined the critical rotational speed ©; = ﬁ(ITJ;\AQ)] Ineg|

of nucleation of the first vortex inside the domain
D={zeR’: a(z)>0}.

In the physical context, the set D represents the region occupied by the condensate since in
the limit & — 0, the minimization of F. forces |u.|?> to be close to the function a*(z) (F:(u.)
remaining small in front of 1/¢%). We proved that for subcritical velocities 2 < Q; — §1n|Ine|
with —d < w] < 0 for some constant w7, there is no vortices in the region D and u. behaves as

the vortez-free profile 7.€**S where the phase function S : R? — R is given by
A? -1

and 7). is the (unique) positive solution of the minimization problem

Min {E.(u) : u € H, ||ull 22y = 1} (7.4)
with
Bw) = [ 31Vl + 5[0l = o)) = (@ @)
and H={ue H(R*C) : / |z|*|ul* < oo}
RQ

In this contribution which constitutes the sequel of Chapter 6, we push forward the study
of minimizers u.. First, we prove the following estimate on the critical speed €24 for any integer

d > 1 in the asymptotic € — 0,

2 - )
= 1:01& (|lne|+ (d—1)In|lne|) = %(“Dd +(d—1)In|lngl).

Then we show that for velocities ranged between {2; and €241, any minimizer has exactly d

Qy

vortices of degree +1 inside D. Establishing an asymptotic expansion of F;(u:) as € — 0, we
derive the distribution of vortices within D as a minimizing configuration of the reduced energy
given by (7.5) below. We also improve the result stated in Chapter 6 for the nonexistence of
vortices in the subcritical case by showing that the best constant is w} = 0, that is subcritical
velocities go up to €1 — d1In|Ine| for any 6 > 0.

Our main theorem can be stated as follows:
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7.1. Introduction

Theorem 7.1 Let u. be any minimizer of . in H under the constraint (7.2) and let 0 < 6 < 1

be any small constant.

(i) If Q< Qy —dln|lne|, then for any Ry < \/ag, there exists eg = eo(Ro,d) > 0 such that
for any € < e, us is vortex free in Bﬁo = {x e R? : |z|3 =2+ A%3 < R%}, i.e., Us

does not vanish in B}/%O. In addition,
F(ue) = Fe(ie ZQS) +o(1).

(it) If Qq+dln|lne| < Q < Qyq —dIn|lne| for some integer d > 1, then for any Ro<./ao,
there exists €1 = €1(Ro,d,0) > 0 such that for any € < €1, u. has exactly d vortices

x7,...,25 of degree one in B}/%O. Moreover,
25| < CQ V% foranyj=1,....d, and |zt -5 > CQV? for any i # j

where C' > 0 denotes a constant independent of €. Setting T5 = \/ﬁﬂtj , the configuration

(29,...,25) tends to minimize as € — 0 the renormalized energy
Tay o
0
w(by,...,bg) = —mag »_In|b; — + T AT Z 1b; 3. (7.5)
1#] =1

In addition,

7Ta0d
1+ A2

yen;

Fu(e) = Fuliiee'™) =505 (0-00)+ 52 (& ~d) In | In <]+ Min, w(b) +Qua-+o(1) (7.6)

where Qq a is a constant depending only on d and A.

These results are in agreement with the study made by Castin and Dum [34] who have
looked for minimizers in a reduced class of functions. More precisely, we find the same critical
angular velocities ; as well as a distribution of vortices around the origin at a scale Q~1/2.
The minimizing configurations for the renormalized energy w(-) have been studied in the radial
case A = 1 by Gueron and Shafrir in [49]. They prove that for d < 6, regular polygons centered
at the origin and stars are local minimizers. For larger d, they numerically found minimizers
with a shape of concentric polygons and then triangular lattices as d increases. These figures
are exactly the ones observed in physical experiments (see [65, 66]).

Our approach, suggested in [4] by Aftalion and Du, strongly relies on techniques developed
by Serfaty [80, 81, 82] for the Ginzburg-Landau (GL) energy of superconductivity in the high
k limit. We point out that Serfaty has already applied the method to a simplified GP energy
(the study is made in a ball instead of R? with a(x) = 1 and the minimization is performed
without mass constraint) and has obtained in [83] a result analogue to Theorem 7.1 which
shows that the simple model captures the main features of the full model concerning vortices.
We emphasize once more that we treat here the exact physical model without any simplifying
assumptions. The outline of our proof follows Serfaty’s method but many technical difficulties
arise from the specificities of the problem such as the unit mass constraint or the degenerate
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behavior of the function a(z) near the boundary of D. As we shall see, a very delicate analysis
is required so that we prefer sometimes to write all the details even if some proofs follow closely
other authors. More precisely, we also make use of the following results on the GL functional
[7, 12, 13, 18, 63, 75, 77, 88|, starting from the pioneering work of Béthuel, Brezis and Hélein
[17]. We finally refer to Chapter 6 for additional references on mathematical studies of vortices
in BECs.

For the convenience, we recall now some results already established in Chapter 6. First, we
have proved the existence and smoothness of any minimizer u. of F. under the constraint (7.2)

in the regime

2
QS1+A

(\lnal + wy ln\lnd) (7.7)

for some constant w; € R, as well as some qualitative properties: E.(uc) < C|lnel?, |us| < Vat
in any compact K C D and |u.| decreases exponentially fast to 0 outside D. We have also showed
the existence and uniqueness of the positive minimizer 7. of E. under the mass constraint (7.2)
for every € > 0. Concerning the Lagrange multiplier k. € R associated to 7. and the qualitative
properties of 7., we have obtained:

k.| < C|lne], (7.8)

E.(7e) < C|lne| for € small and 7. — Vat in L®(R?) N CL (D) as e — 0. Using a splitting
technique introduced by Lassoued and Mironescu [63], we were able to decouple into two inde-

pendent parts the energy F(u) for any u € H . The first part corresponds to the energy of the

%25 and the second part to a reduced energy of v = u/(7j.e**)

vortex-free profile 7j.e , Le.,

n’]\]z

Fe(u) = Fo(ijee™®) + Fo(v) + Te(v) (7.9)

where the functionals F. and 7, are defined by

Fe(v)= E(v) + Re(v), (7.10)
al 773 2 77? 2 2 > Q =271 ;
E(v)= . E‘VU‘ + @(lvl -1, R:(v)= Tr A7 ). nzV-—a- (iv, Vo) , (7.11)
~ 1 -
T(v) = 5 /RQ (Q?|VS|? = 20%2" - VS + k. )iZ (Jv]* — 1). (7.12)

Since the function 7). does not vanish, the vortex structure of any minimizer u. can be studied
via the map

iQS)

Ve = uc/(7ee )

applying the Ginzburg-Landau techniques to the weighted energy gg(ve). It is intuitively clear
that difficulties will arise in the region where 7. is small and we will require the following
properties of v, inherited from u. and 7j: & (v.) < C|Ine|?, "j;(va)‘ < o(1), |Re(v:)] < ClInel?,
|Vo:| < Cget and |v-| < 1in any compact K C D. In the sequel, it will be more convenient to
replace in the different functionals the function 72 by its limit a*(z). We denote by F., £ and
R the corresponding functionals (see Notations below). In the regime (7.7), we have computed
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in Chapter 6 some fundamental bounds for the energy of v. in a domain slightly smaller than

D:

Fe(ve, De) < o(1), (7.13)
E(ve,De) < Cy |l Ingl, (7.14)
E-(ve, D\ {|z]a < 2|Ine|~Y6}) < C,,, In|Inel, (7.15)
where
D.={zeD: a(z) > v.|Ine[/?} (7.16)

and v is a chosen parameter in the interval (1,2) (see Proposition 6.16 in Chapter 6). These
estimates represent the starting point of our analysis here.

The plan of the chapter is as follows. In Section 2, we prove that the subset of D where |v.|
is smaller than 1/2 can be covered by a family of disjoint discs such that each radius vanishes
as € — 0, the cardinal of this family is uniformly bounded with respect to € and v, has a non
vanishing degree around each disc of the family. We will call such a collection of discs a fine
structure of vortices and a vorter one of these discs (identified with their center). In Section 3,
we establish various lower energy estimates namely inside a vortex and away from the vortices.
In Section 4, we prove Theorem 7.1 matching the lower energy estimates with upper estimates
coming from the construction of trial functions. These constructions are presented in Section 5
which can be read independently of the rest of the chapter. Finally, we prove in the Appendix,
an auxiliary result that we shall use in the proof of Theorem 7.1.

Notations. Throughout the chapter, we denote by C a positive constant independent of € and

we use the subscript to point out a possible dependence on the argument. For = (2, 22) € R?,

= TNl B (o € el < )

we write

and for A C R?,

Ewd = [ Lo e La-wpr, ewa = [ Lawirs Sa
= A2 4e2 T 42 4e?

5 _ D 9ol _ D Lo
Re(v, A) = A2 /An V=a- (iv,Vv), Re(v,A)= A2 /Aav a- (iv, Vo)
Fo(v,A) = E(v,A) + Re(v, A),  Fe(v, A) = E(v, A) + Re(v, A). (7.17)

We do not write the dependence on A when A = R?.

7.2 Fine structure of vortices

The main goal of this section is to construct a fine structure of vortices away from the boundary
of D. The analysis here follows the ideas in [17] and [18]. The main difficulty in our situation is
due to the presence in the energy of the weight function a(z) which vanishes on 9D and it does
not allow us to construct the structure up to the boundary because of the resulting degeneracy
in the energy estimates. Throughout this chapter, we assume that  satisfies (7.7), so that
(7.13), (7.14) and (7.15) hold. We will prove the following results for the map v. = u. /(7.€**%):
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Theorem 7.2 1) For any R € (@, Vag ) there exists er > 0 such that for any € < eg,
L oA\ pA
lve| > 3 in B\ Bag -
2

2) There exist some constants N € N, \g > 0 and €9 > 0 (which only depend on w) such that for

any € < €9, one can find a finite collection of points {x?} C B% such that Card(J.) < N
4

je€Je

and

1 =
lve| > 3 m B@ \ (UjeJEB(ﬂj;,Aoe)).

Remark 7.1 The statement of Theorem 7.2 also holds if the radius @ s replaced by an arbi-

trary v € (0, R) but then the constants in Theorem 7.2 depend on r. For the sake of simplicity,
— Vao
= 0.

we prefer to fix r

In the next proposition, we replace as in [80] the discs {B(25, Aog)}je . obtained in Theo-
rem 7.2 by slightly larger discs B(z5, p) (deleting some of the points 25 if necessary), in order to
get a precise information on the behavior of v. on 0B (:cj, p). The resulting family of discs will

represent the vortices of the map v, (and hence the vortices of u. also).

Proposition 7.3 Let 0 < 3 < u < 1 be given constants such that i := pNt! > 3 and let
{x?}jng be the collection of points given by 2) in Theorem 7.2. There exists 0 < €1 < g such
that for any € < 1, we can find J. C J. and p > 0 verifying

(i) A0€§€“§p§€ﬁ<sﬁ,
g T —a .
(it) [ve] 2 5 in Bym \ Uje s B(a5, p),

(i) |ve] > 1 — on 0B(x5,p) for every j € J:,

2
|Inel?

1 C ~
w [ v+ g —lep? < DO o ey e
0B(x5,p) 2e p

(v) |x§ —a5| = 8p for everyi,j € J. with i # j.
Moreover, for each j € J., we have

Dj :=deg <‘Z—;,8B(x§,p)> #0 and |D;|<C (7.18)

for a constant C' independent of .

Remark 7.2 We point out that for every j € J., the disc B(:c?,p) carries at least one zero of
ve since the degree D; # 0.
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7.2.  Fine structure of vortices

7.2.1 Some local estimates

We start with a fundamental lemma. It strongly relies on Pohozaev’s identity and it will play
a similar role as Theorem III.2 in [17]. In our situation, we only derive local estimates as in
[7, 18, 88]. Some of the arguments used in the proof are taken from [7, 18].

Lemma 7.4 For any 0 < R < \/ag and % < a < 1, there exists a positive constant Cr o such

that
1

2 (1- |v€|2)2 < CRa for any zo € B}/%.
B($07Ea)

Proof. Step 1. Set 1. = u.e **. We claim that
E.(u.,D.) < C|lneg| (7.19)
where D, is defined in (7.16). Indeed, since . = 7.v., we get that
Vit |* < C(Z|Vve|* + |ve*| Vit |?)

By Proposition 6.8 and Proposition 6.13 in Chapter 6, |v.| < C, 72 < Ca in D. and E.(7.) <

C|Ine| and consequently,

/ Vi < c(/ a(m)]Vv,g]Q—i—/ yva) < Clln]
e De D.

by (7.14). On the other hand, we also have

5 [ ) a2 < 5 [ o) - 2P+ ik - e

De e

gg( / (a(a) 72+ / )~ |v€|2>2) < C|lne]

and therefore (7.19) follows.
Step 2. We are going to show that one can find a constant Cg, > 0, independent of €, such
that for any xo € BJ, there is some rg € (%, %/2+1/3) satisfying

CR,a

E. (ﬁa,aB(woaro)) < .
To

We proceed by contradiction. Assume that for all M > 0, there is xp; € B% such that

M
, for any r € (e,e%/?H1/3), (7.20)

E. (e, 0B(xpr,7)) > o

Obviously, for e small, B(zys,e®/?t1/3) C D.. Integrating (7.20) for r € (e*,e%/21/3), we

derive that
a/24+1/3

© d
E- (it., D) zM/ &= M(a/2 —1/3)|1n¢]
e T
which contradicts Step 1 for M large enough.
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Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

Step 3. Fix xg € BI/% and let g € (g%, €a/2+1/3) be given by Step 2. We recall that any minimizer
ue of F. in {u €M, ||lull 2z = 1} satisfies
1
—Au, + 2iQat - Vu, = — (a(x) — luc|*)us + Loue  in R
€
where /. denotes the Lagrange multiplier. Therefore, we have

~Aiie = 5 (aro) — lil)iet 5 (a(x) — almo))itc + 2AVS ~ ) Vi (7.21)

+ (b + 2022 - VS — Q?|VS|?)i.  in Bz, 7).

As in the proof of the Pohozaev identity, we multiply (7.21) by (z — z¢) - Vi, and we integrate
by parts in B(xg,7o). We have

N N r N o |
/ —Adi - [(z — z0) - Viie] = 50/ Vi, |2 —ro/ 5 = (7.22)
B(xo,ro) 0B (z0,70) dB(xo,r0) v
and
1 9~ -
o) (a(xo) - |u€| )us : [(:C - xO) : vue] =
€% JB(xo,r0)
1 ~ 1242 70 ~ 232
N — a(xo) — |u - — a(xg) — |u 7.23
52 B(xm)( (zo) — |tc|”) 122 aB(mO,m)( (zo) — e (7.23)

(where v is the outer normal vector to 0B(xg,79)). From (7.21), (7.22) and (7.23) we derive
that

1 . . _ .
2 GG frse(vo [ walanet [ at) <l
x0,70 x0,7T0 0,70
+roe? / la() — aao)|liel|Vie] + Qo / Vi
B(zo,r0) B(zo,ro0)

+ (2 + | |)ro /

B(zo,r0)

|a€||va€|>.

Then we estimate each integral term in the right hand side of the previous inequality. By
Proposition 6.11 in Chapter 6, we have |(.| < Ce !|Ine| and || < C in R%. According to
(7.19), we obtain

/ (alao) — |@e?)? < O / [(alzo) — a(@))? + (alx) — |ie2)?]
OB(x0,r0) 0B (z0,r0)
<Ce? / (alx) — [iel?)? + Credet,
OB (x0,r0)

and
Qro/ \V&AQ < QroEe(a:,D:) < CREO‘/2+1/3]1115\2,
B(zo,r0)

and

roe=? / la(z) — a(wo)||iie||Vite] < Cre? / Vi
B(l‘o,T‘o) B

(wo,70)

<Cgr Tg 872[E€(ﬂ€?1)€)]1/2 <Cgr €%a71| lne|1/2,
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7.2.  Fine structure of vortices

and

_ _ _ _ o1
(Q2 + \&\)ro/ |a||Vi.| < Cre 1\ln€\r8 [Eg(ug,De)]l/2 < Cpre 3\lna]3/2

B(zo,r0)

(here we use that |a(x) — a(zg)| < Crro for any x € B(xg,79)). We finally get that
1 - -
5[ (alo) = 8P < Ot + o (@, 0B 0. ) )
€ JB(o,r0)

for some constant C'r, independent of €. By Step 2, we conclude that

1

2 " )(a(mo) — |uc*)? < Croa (7.24)
x0,e%

Since ||7: — \/a”cl(BI/%) < Cre?|Ine| by Proposition 6.8 in Chapter 6, we have

1 Cr
_ 1_U22S_/ 77]2_,&:22
2 [ b G lieP)
C _
<[ (o) - @l o)
B(l‘o,&‘o‘)
C _
< (a(xo) = ie[*)* + o(1) < Cra
B(l‘o,&‘o‘)
and we conclude with (7.24). O

The next result will allow us to define the notion of a bad disc as in [17].

Proposition 7.5 For any 0 < R < \/aqg, there exist two positive constants Ar and pr such

that if
1
-2

J

“R
> Ap andlg\/a_T

M | =~

/ (1—|vH)? < pur with xo € BY,
B(z0,2l)
then |ve| > 1/2 in B(xg,1).

Proof. In Proposition 6.13 in Chapter 6, we proved the existence of a constant C'r > 0 indepen-
dent of e such that

Cr .
‘V%‘ < ?R m Bi\/ﬁﬂe-

2

Then the result follows as in [17], Theorem III.3. O
Definition 7.6 For 0 < R < \/ag and = € BI/%, we say that B(z, Are) is a bad disc if

1
—2/ (1= |ve*)? > pg
€% JB(z,2)\ge)

Now we can give a local version of Theorem 7.2. We will see that Lemma 7.4 plays a crucial
role in the proof.
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Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

Proposition 7.7 For any 0 < R < /ag and % < a < 1, there exist positive constants Np q
and er,o such that for every ¢ < epqo and xg € B}/%, one can find x1,...,xN. € B(xg, ") with
N. < Npg,o verifying

1 - (63
vl =5 in Blwo,e™)\ (U, Blan, Are) )

Proof. We follow the ideas in [17], Chapter IV. Consider a family of discs { B(x;, Age) }, ¢ Such
that

zi € B(zo,e"), (7.25)
ARe ARe . .
B iy = NB Tj =y =0 fori+#j, (7.26)
B(zg,e%) C U B(x;, \gre).
ieF

Obviously, the discs { B(z;, 2Age) }
constant) and

s+ cannot intersect more that C' times (where C'is a universal

U B(@i,2Xre) € B(xo, &™)

1eF
with o/ = J(a+ %). We denote by F’ the set of indices i € F such that B(z;, Age) is a bad disc.
We derive from Definition 7.6 that

1 C
pnCardF) <S5 [ <G a-pr

i€F B(z;,2)ge) B(z,c2")
The conclusion now follows by Lemma 7.4 and Proposition 7.5. U

Remark 7.3 By the proof of Proposition 7.7, it follows that any family of discs {B(xi, )\Ra)}
satisfying (7.25) and (7.26) cannot contain more than Npg o bad discs.

sV

In the sequel, we will require the following crucial lemma to prove that vortices of degree
zero do not occur. This result has its source in [7, 18] and the proof is based on the construction
of a suitable test function. Hence the main difference and difficulty in our case come from the

mass constraint we have to take into account in the construction of test functions.

Lemma 7.8 Let D > 0, 0 < # < 1 and v > 1 be given constants such that v < 1. Let
0<R< . Jag and 0 < p < &° be such that p? > \re. We assume that for xo € B,

1 D
() [Voel? + 55 (1= Jue[?)? < —,
OB(z0,p) : 2¢2 : p

1
(it) |ve| = 5 on 9B (zo, p),

Ve

(iii) deg( (9B(x0,,0)> = 0.

|U€|,
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7.2.  Fine structure of vortices

Then we have .
[ve] = 5 in B(zo, p7).

Proof of Lemma 7.8. We are going to construct a comparison function as in [7] or [18] to obtain

the following estimate:

1
[ 19ul g1 PR < o (7.27)
B(wo,p) €
Since the degree of v, restricted to dB(xo, p) is zero, we may write on 0B (xo, p)
Ve = |vg e’
where ¢, is a smooth map from 9B(x, p) into R. Then we define 9. : R> — C by
0. = ¥ in B(zo, p)
Ve = Ve in RQ\B(CCOHO)

where 1. is the solution of
Ay =0 in B(zo,p)
w& — (b&‘ on aB(me)a

and x. has the form, written in polar coordinates centered at x,

X=(r,8) = (|v=(pe”)| = 1)E(r) + 1

and ¢ is a smooth function taking values in [0, 1] with small support near p with £(p) = 1. By
Proposition 6.13 in Chapter 6, we know that |v.(z)] < 1+ Ce'/3 for 2 € D with |z[y >
Vag — /8 and we deduce that 0 < y. < 14 Ce'/3. Arguing as in [16], proof of Theorem 2, we

may prove that

8 2
/ V|2 < Cp/ P < Cp/ Vo|? (7.28)
B(x0,p) 9B(zo,p) | OT 9B(z0.0)
and
1 1
/ IVxe|” + 5 (1 —x2)* < Cp/ Vel + 55 (1= [vel*)? + O(p). (7.29)
B(zo,p) € 9B(z0,p) €

From (7.28), (7.29) and assumption (i), we infer that

1
/ Ve + == (1= [0]*)* < C. (7.30)
B(z0.p) 2

T |
We set v. = m_

Q28

be with me = ||7cdz r2r2). Clearly, 7.5, € H and ||, || 2 (re) = 1.
Since u. = 7.€"* v, minimizes the functional F. under the constraint (7.2), we have F.(u.) <
F.(7.¢"*%,) and by (7.9), it yields

}—6(1)6) + j-e(ve) < ﬁa(ﬁa) + j-a(f)e)- (7.31)
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Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

We claim that
Fo(@) < Folie) + Cplnel? and [T (v.) — To(5.)] = O(p2| nef?). (7.32)
Indeed, we have already established in the proof of Proposition 6.13 in Chapter 6 that
E(ve) < Cllnel* and |Re(v:)| < C|lnel? (7.33)

so that, using (7.30), [|7cve || p2r2y = 1, 9 = ve in R?\ B(xo, p) and (7.33), we obtain

it [ RQiP-v+ [ R jp)
B(z0,p) B(wo,p)

=1+ O(pe|lne|). (7.34)

From (7.30), (7.33) and (7.34), we derive

/fﬁvﬁﬁznif/fﬁV@P=i/fﬂV%P+0@dmd% (7.35)
R2 R2 R2

and
7~25(6€) = mg27é5(®5) = ﬁg(ﬁg) + O(pe|In 5\3). (7.36)

Since u. remains bounded in R? and E.(u.) < C|Inel? by Proposition 6.13 in Chapter 6, we
infer from (7.33),

1 5 1 5 .
M-l = [ A1+
1 —m>?%)? .
U2 [
9 R2
<5 [ - P
= 52 R2 775 /UE

. 1/2 1/2
4 Cpline] 7/’ A o) / e
€% JR2\B(z0,p) R2\B(zo,p)

+ Cp?|Ingl?

2(1 —m2?)

S [ R0

62 RQU

<3 [0 i) + Colme? (7.37)

Finally, we obtain in the same way,

|7~::(U€) - i(6€)| < |j;(ve) - i(ﬁs)‘ + ‘i(@e) - ,j:-:(f}s)‘ (7.38)
2 2\ =2 _ m72 T 2\ =2 B 2
<cimeP( [ i nom? [ o)
< Cp?’|lnel’ (7.39)

From (7.35), (7.36), (7.37) and (7.38), we conclude that (7.32) holds.
Since 9. = v in R? \ B(wg, p), we get from (7.31) and (7.32) that

ﬁe(veaB(me)) S fz’;‘(@&‘aB(x07p)) + Cp’ IHE‘Q'
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7.2.  Fine structure of vortices

By (7.30), we have (‘:’5(@5, B(xg,p)) < C and therefore,

|Re (0, B(o, p))| < CQ /B( )\V@a\ < OVl 12(B(xo.)) = Olp|Inel). (7.40)
z0o,pP

Hence, ]:'5(275, B(xg,p)) < C and we conclude that
.735(’05,3(560,[))) < Cﬁ

As for (7.40), using (7.33) we easily derive that |R. (v, B(zo,p))| = O(p|Ine|?) and we finally
get that & (ve, B(xg, p)) < Cjs which clearly implies (7.27) since 72 — a*t uniformly as ¢ — 0
(see Proposition 6.8 in Chapter 6).

We deduce from (7.27) that

P 1
/ </ \va\Z + 202 (1-— ]v5]2)2> ds < CaR.
2p7 0B(x0,s) €

Since f;m Sllndﬁ > C,|Ine|'/2, we derive that for small  there exists so € [207, p] such that

1 Cs.r
Vo> + —(1 - |v})? < —25
/aB(:L'Q,SQ) } 262 c 50| In SO|1/2

Repeating the arguments used to prove (7.27), we find that

1 Csr
Voe|? + —(1 — [v?)? < —BE
/B(mo,so)’ E’ 262( ‘ 8‘ ) - HHSOP/Z

In particular, we have
1

- (1 - [ue2)? = 0(1)
e? B(wo,2p7) ’
and the conclusion follows by Proposition 7.5. U
We obtain as in [18] Proposition IV.3 the following result which gives us an estimate of the

contribution in the energy of any vortex. We reproduce here the proof for completeness.

Proposition 7.9 Let0 < R < \/ag and 3 < a < 1. Let 7y € BY and assume that |v.(zo)| < 5 .

Then there exists a positive constant Cr o (which only depends on R, o and wy) such that

/ Vo2 > Cpaollng|.
B(JI(),&‘O‘)

Proof. Let Ng o and z1,...,zN. € B(zg,e%) be as in Proposition 7.7. We set

al’2 —

bo =
3(NR,a + 1)

and for £ =0,...,3Ng + 2, we consider
oap = ? — kb, T = [, e+ and  Cj = B(xg,e™+1) \ Blxg, ).
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Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

Then there is some kg € {1,...,3Ngo + 1} such that
Chg (uj.V;IB(xj, )\Ra)> — 0. (7.41)

Indeed, since N. < Ng o and 2Age < |Z| for small e, the union of N, intervals of length 2Age
Ne
U (|:CZ — :C()| — ARE, |$Z — :CQ| + )\Re)
j=1

cannot intersect all the intervals Zj of disjoint interior, for 1 < k < 3Np, + 1. From (7.41) we
deduce that

1
lve(z)] > 5 for any x € Cg,.
Therefore, for every p € Iy,
dy, = deg (i aB(:vo,p)>
|ve |

is well defined and does not depend on p. We claim that
dy, # 0. (7.42)

By contradiction, we suppose that d, = 0. According to (7.14), it results that

1
[ I9ul =P < el

Vao+R
2

Using the same argument as in Step 2 of the proof of Lemma 7.4, there is a constant C o such

that
1 C
/ |V |? + (1 - lv%)? < B2 for some po € Liy,-
9B (z0,p0) 2e Po

QAkp—1
ako

According to Lemma 7.8 (with 8 = ag,4+1 and v = ), we should have |v. ()| > 1 which is

a contradiction.

By (7.42), we obtain for every p € Zy,,

1 Ov.
/83(10,p) |U€|2( : 67—)

(we use that |ve| > 3 in Cy,). Then Cauchy-Schwarz inequality yields

1
1§’dk0’:%

<C Vo]
0B(z0,p)

C
/ |VU€|2 > — for any p € Ik,
9B(wo,p) p

and the conclusion follows integrating on Zj,. O
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7.2.  Fine structure of vortices

7.2.2 Proofs of Theorem 7.2 and Proposition 7.3

The part 1) in Theorem 7.2 follows directly from Lemma 7.10 below.

Lemma 7.10 There exists a constant eg > 0 such that for any 0 < e < ep,

Proof. First, we fix some o € (2,1). We proceed by contradiction. Suppose that there is

3
some z9 € Bj\ B/\\/_(TO such that |vz(zo)] < 1/2. Then for any e sufficiently small, we have

5
B(zg,e%) € D\ {|z|s < 2|Ine|~1/6} and therefore, by (7.15), we get that

/ Vo |? < Cr & (ve, D\ {]z|a < 2|Ine|"Y0}) < Crln|lne|
B(IQ,EO‘)

which contradicts Proposition 7.9 for € small enough. U
Proof of 2) in Theorem 7.2. We fix some % < a < 1. As in the proof of Proposition 7.7, we

consider a finite family of points {z;};c s satisfying

xj < B/\\/_aio
2
A A
Bz, 2E)nB $j7£ =0 fori#j,
4 4
B{X/L—O C U B(xj,)\()&),
2 jeg
where \g := A oz (defined in Proposition 7.5 with R = @) and we denote by J. the set of

2
indices j € J such that B(z;, Age) contains at least one point y; verifying

ve(y;)] < % (7.43)

Obviously, B(z;, Aoe) is a bad disc for every j € J.. Applying Lemma 7.10 (with R = 3\2%), we

infer that there exists gy such that for any 0 < € < &,
B(zj,\oe) C Bl for any j € J.. (7.44)
T

Then it remains to prove that Card(J;) is bounded independently of . Using Proposition 7.9
(with R = @), we derive that for any j € J. and any point y; satisfying (7.43) in the ball
B (mj, )\08 ),

/ |V |? > / |Vve|? > Cy|Ine] (7.45)
B(xj,2e%) B(yj,e)

for some positive constant C,, which only depends on «. We set for ¢ small enough

W= | J B(x;,2e%) € B .
jede 3
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Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

We claim that there is a positive integer M, independent of € such that any y € W belongs to
at most M, balls in the collection {B(xz;,2e%)}je.. Indeed, for each y € W, consider the subset
K, C J. defined by

Ky={j€J. : ye B(x;,2")}.
We have for every j € K,,

%). (7.46)

Since the family of discs { B(z, Aog)}jeK, is a subcover of B(y, ') satisfying (7.25) and (7.26),
we conclude from Remark 7.3 that

/ 1
xj € B(y,2¢%) C B(y,e*) C B/\\/Ta—o with o = 5(04 +

Card(Ky) < M,
with Mo = Nyag , . From (7.45), we infer that
2 ’

/A ngy?z/ V| > Z/ V.| > CoCard(J.)|Ing|. (7.47)
B w B

/0 > jeg. ) B(z5,2e%)
o
On the other hand, we know by (7.14),
/ Vo |* < C/ (z)|Vv:|* < C|lne]| (7.48)
B/\\/_
-

for a constant C' independent of €. Matching (7.47) and (7.48), we conclude that Card(J;) is

uniformly bounded. 0
In the following, we will prove Proposition 7.3. We proceed exactly as in [80], using Theo-

rem 7.2 and an adaptation of Theorem V.1 in [7]. We will use Proposition 6.16 in Chapter 6,

that was shown by a method due to Sandier [75] and Sandier-Serfaty [77].

Proof of Proposition 7.3. By Theorem 7.2, we have for € small enough,

UjngB(m'j, )\QE) C B/\\/_a—o
3

From (i7) in Proposition 6.16 in Chapter 6, there exists a radius r. € (%, #] such that

B; N (9B,{\E =0 foreveryic I.. (7.49)

Hence we have
|v:] >1—|lng|™ on aBT{\E.

The existence of a subset .J. C .J. satisfying (i)-(v) can now be proved identically as Propo-
sition 3.2 in [80] and it remains to prove (7.18). From the proof of Theorem 7.2, we know

(by construction) that each disc B(x},\o€), k € J., contains at least one point y; such that

lve(yr)| < 3. Therefore each disc B(25.p), J € J., contains at least one of the y;’s with

|x§ — Y| < Aoe. Assume now that D; = 0. By Lemma 7.8 with v = p~ 2 it would lead to
lvel > £ in B(x5,p7) and then |v.(yx)| > 3 for  small enough, contradiction. We also find a

bound on the degrees D;:

1
1Dl = 5

1 v
/BB( (ve A 37_6) < ClIVeell 298z, Ve < C

z%,p) ’UEP

by (iv) in Proposition 7.3. O
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7.3.  Some lower energy estimates

7.3 Some lower energy estimates

In this section, we obtain various lower energy estimates for v. in terms of the vortex structure
defined in Section 7.2, Proposition 7.3. We start by proving a lower bound on the kinetic
energy away from the vortices which brings out the interaction between vortices. The method
that we use is based on the techniques developed in [7], [17] and [80, 81]. As in the previous
section, the main difficulty is due to the degenerate behavior near the boundary of D of the
function a(z) since the method involves in our case the operator —div(a~!V) which is not
uniformly elliptic in D. To avoid this problem, we shall establish our estimates in Bﬁ for an
arbitrary radius R € [\/ap/2,/ap ). The underlying idea here is to let R — /ag at the end of
the analysis. To emphasize the possible dependence on R in the “error term”, we will denote
by Ogr(1) (respectively or(1)) any quantity which remains uniformly bounded in ¢ for fixed R
(respectively any quantity which tends to 0 as e — 0 for fixed R). In the sequel, we will also
write J. = {1,...,n:}.

Proposition 7.11 For any R € [@, Vao), let ©, = B4\ Ui B(a5,p). We have

1 -
5/ a(@)|Ve|* > 7Y DF a(@5)|n p| + Wre((21, D1), - -, (a5, Dn.)) + Or(1)  (7.50)
0, =
where
Ne
Wre((5,D1), ..., (25, Dn)) = =7 Y DiDja(zf)In|af —a5| — 7Y D;¥p.(z

i#]
and Y. is the unique solution of

/1 - 1 .
e (G 70ne) = 2030 V() Ve s i

Upe=— ZD a(z5)In |z — 5] on OB4.

(7.51)

Moreover, if m — 0 ase — 0 for any i # j then the term Or(1) in (7.50) is in fact or(1).
i~ Y

Remark 7.4 We point out that the dependence on R in the interaction term Wg . only appears
in the function Wg .. Moreover, for Vg . to be well defined, 1/a(x) has to be bounded inside B}/%
so0 that we can not pass to the limit R — \/ag in (7.50) without an a priori deterioration of the
error term.

Proof of Proposition 7.11. We consider the solution @, of the linear problem

( 1
div<— V@p> =0 in 6,
a
®,=0 on 831’},,
P, = const. on 0B(x5,p),
10
/ —6——27TD for j=1,...,ng,
OB(a%,p) @ ov
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and ®p . the solution of

1 e
div(—V(I)R ) =2rY D;8,e in B3
PR ]Zl 7 f (7.52)

Or.=0 on aBﬁ

For z € ©,, we set w.(x) = ooy and

B ow. 109, ow, 109,
S = <_w€/\ Oz9 +a(9x1 » e 0z +a63:2 '
We easily check thatilivS =0in ©, and faB% S-v= fBB(Jri,p) S-v=0. By Lemma I.1 in [17],
there exists H € Cl(®p) such that S = V+H and hence we can write the Hodge-de Rham type
decomposition

1
w. A Vw, = =V, + VH.
a

Consequently,

1
/ a(x)|Vw€|2:/ —|vq>p|2+2/ qu>,)-VH+/ a(z)|VH|?
e, e, a(z) 0, O,

1
z/ —yvq>p\2+2/ V+ie, VH.
0, a(z) €]

P

We observe that the last term is in fact equal to zero since it is the integral of a Jacobian and
®, is constant on 0O ,. Hence

2 1 2
[ a@vu> [ o vae

p p

Since [Vve|? > |v:[*|Vw|? in ©,, we derive that

1
/ a(x)\Vva\QZ/ L Ve, P41 +om
o, O, a(z)

with 1
1
T = / (’%!2 -1) @) VP, > and Th = / (’%’2 -1) Vo, - VH.

p p

Arguing as in [7] (see Step 4 in the proof of Theorem 6), it turns out that 77 = or(1) and
Ty = or(1) and therefore

/ea(x)]va\ZZ/e ﬁ\v%mo}%u). (7.53)

On the other hand, integrating by parts we obtain

1 1 9% -
—— |V®,|* = — %, =2 D;®,(z
/@ a(x) ‘V P’ /8®p a(x) v P W; J P(Zj)

P
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for any point z; € 0B (m?, p). Since n. and each D; remain uniformly bounded in ¢ by Proposi-

tion 7.3, we may rewrite this equality as

1 e
/@ @) Vo[> = —27TZ Dj®r(z) + O([|Pre — ®pllr(o,))- (7.54)
p j=1

Using an adaptation of Lemma 1.4 in [17] (see e.g. [15], Lemma 3.5), we derive that

[Pre = PpllLec(o,) < Z ( Su?p Dpe — aBl(r:lvf,p) <I>RE> : (7.55)

To estimate the right-hand-side term in (7.55), we introduce for z € BA,
Vpe(r) =Pre(z ZD a(r5)In|z — 5.

Since . solves (7.52), we deduce that Up . may be characterized as the solution of equation
(7.51). By elliptic regularity, we infer that ||\I’R,€||Wz,p(B}/$) < CRyp for any 1 < p < 2 (here we
used that {z5}72, C BA = by Theorem 7.2). In particular, Ug. is uniformly bounded with

respect to € in 0071/2(31%) and hence

sup Vp.— inf WUp.<Cgyp=or(l).
0B(x5,p) OB(x5,p)

Since |25 — 27| > 8p, we derive from (7.18),

sup <ZD@ lnm—x\> aBl(Izlvfp <ZDa lnx—x\>
J,

0B(x5,p)

n
€ D
<p ) aGe) sw |m' g'ﬂ
=1, i#] OB(x; g

< O(),

(respectively < o(1) if ﬁ — 0 as e — 0 for any ¢ # j). Coming back to (7.55), we obtain
i
that |Pre — ®yllz~@,) < Or(1) (respectively < op(1) if Ierﬁ\ — 0 as € — 0 for any i # j).
iy
Inserting this estimate in (7.54), we get that

/@ ﬁ Ve|* = —2m Z Dj ®re(z;) + Or(1) (7.56)

j*l

:—27TZD VR e(2)) 27TZDD(Z )In|z; — xj|
Jj=1 i#£]

+2w202 /I p| + Og(1)

(respectively +op(1) as e — 0). Since ¥ p . is uniformly bounded with respect to & in C%/2(B%),
we have [V e(zj) — Vre(25)] < Cry/p = or(1). Moreover, using (7.18) and |25 — x§| > 8p, we
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derive that

zi — xt
> " D;Dja(af)(In|z; — of| — In |25 — 2f])| < Z|Di||Dj|ln 14 21
i#] 1#] 1']»— (

Z#J
(respectively < o(1) as € — 0). Hence (7.56) yields
1
/ —— |V, [* = —QWZD Upe(25) —2m Y DiDja(af)In 2§ — a5
0, (2) j=1 i#]
+27TZD2 )In p| + Or(1)

(respectively +0pr(1) as € — 0). Combining this estimate with (7.53), we obtain the announced
result. O
Arguing as [80, 81], we estimate the contribution in the energy of each vortex which yields

the following lower bounds for & (v;):

Lemma 7.12 For any R € [@,\/%), we have

E(ve, Bp) > 7Y _ Dia(z5)|Inp|+ 7Y |Djla(a5)In g +Wge + Or(1) (7.57)
j=1 j=1
and .
- p
E(ve, BY) > wzl |Dj| a(25) In =+ O(1). (7.58)
]:

Proof. In view of Proposition 7.11, it suffices to show that
SE(UE7 B(x§7 P)) > W’Dj‘ a(xj) In “ + O(l) forj=1,...,n,
€

which is equivalent to

1 a(zt
5/ Vel + %(1 — |vel?)? > n|Dj| n? + O(1) forj=1,...,n. (7.59)
B(x5,p) € €

(we used that [a(z) — a(25)| < Cp for x € B(z5, p) and E-(ve, BY) < Cp|lng|). Setting

O(y) = ve(py +25) fory € B(0,1) and €= £ ,
py/a(5)
we infer from Proposition 7.3 that |0] > 1 — ﬁ on 0B(0,1),
1/ 2, 1 S22 _ P 2, al@j) 212
5 Vol + o5 (1 = [o[7)" = 5 Vo "+ == (1 = )" < C (7.60)
2 JaB(o,1) 2¢2 2 JoBasp) 2¢? :
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and

1/ 2, 1 1/ - a(5)
— Vo 1-—- Vv 1-
2 oy |V F TP =5 [ el S = o)

As in the proof of Lemma VI.1 in [7], (7.60) yields for € small enough,

1
—/ |Vo|? +
2 JBo,1)

and hence (7.59) holds. O

As in Proposition 6.17 in Chapter 6, we may compute an asymptotic expansion of R.(v., D)

1 . . p
5 (1= 8 = 7|D;| |Iné| +0(1) = 7|D;| ln £ + 0(1)

in terms of vortices which leads, in view of Lemma 7.12, to lower expansions of F_ (v, D;):

Lemma 7.13 For any R € [@, Vao ), we have

Za $) Dj + Wre + Og(1)

(7.61)

<(ve, D >7TZD2 |ln,0|—|—7TZ|D|a 5)In g

1+A2
7j=1

and

- (ve, D >7TZ|D|(I g 1+A22a ) D; +O(1). (7.62)

Proof. We consider the family of balls {B;};c;. given in Proposition 6.16 in Chapter 6. As in
the proof of Proposition 7.3, we can find r. € [R, (R + \/ag )/2] such that (7.49) holds. Setting

= {Z € I, |piln > r- and d; > O} and I, = {Z € I, |pila > r- and d; < O}, (7.63)

we have B; C Ds\EﬁE for any i € IEUIE. By Theorem 7.2, Proposition 7.3 and Proposition 6.16

in Chapter 6, we infer that for € small enough,

l\')IH

|ve| >

inEE::D€\< U BUUB j,p>

i€l fUl,

Arguing exactly as Proposition 6.17 in Chapter 6, we obtain that

Ne

Re(ve,E.) = 1+A2Z D~ Z: (a*(p;) — V2| Ine[~®)d; + op(1). (7.64)
ielhuly

We recall that we have showed in the proof of Proposition 6.17 in Chapter 6 that
Re(ve, Uie[gu[gBi) = 0(1).
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In the same way, we may prove that R (v, U2, B(25,p)) = o(1). From (iv) in Proposition 6.16
in Chapter 6 and (7.64), we deduce that

fe(UEaDE) Z€€(U€7DE\UZ€I+UI Z / ‘V?)g‘Q-i-R (Ua,s—ig)—i_OR(l)
ielfuly

> &.(ve, BY) — 1+A22a D+ Z a(pi)|di|(|Ine| — KoIn|Ine|)
ZGI Uly

T > (a’(pi) — V2| Ine|®)d; + or(1). (7.65)

Since p; ¢ Pﬁs for i € IE U Iy, we have a(p;) < ap and we deduce that for e small enough,
() _
7 Y a(p)ldil(|lnel = Koln|Inel) — o > (aP(pi) - V2| Ine[*)d; > 0
ielfuly i€l ful
which leads to
Fe(ve, De) > Ec(ve, BY) — = A2 Za £) D; + or(1). (7.66)

Combining (7.57) and (7.66), we obtain (7.61). Similarly, the inequality (7.66) applied with
R = \/ap/2, and (7.58) yield (7.62). O

7.4 Proof of Theorem 7.1

In this section, we are going to prove Theorem 7.1 in terms of the map v.. We start by showing
that vortices must be of degree one. This yields a fundamental improvement of the estimates
obtained in the previous section. Then we treat separately the points (i) and (i) of Theorem

7.1.

7.4.1 Vortices have degree one

Lemma 7.14 Whenever ¢ is small enough, Dj = +1 for j =1,...,n.

Proof. By Proposition 6.15 in Chapter 6, we have F.(v., D) < o(1). According to (7.62), it
yields

n

waos) = p T
T g |Dj|a(z TTiAl g a(z5)Dj < E \Dj]a(mi)lng—l_i_AQ E aQ(wi)Dj < O(1).
D;>0 j=1 j=1

From (7.7), we derive that

Ne

Z\Dj]a(wj)lng < Z Dja(z5)|Inel + o|Ing|).

j=1 D;>0
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Since p > e#, it leads to (we recall that D; # 0)

=) 3 IDsla(@) el < u S |Djla(a)| Ine| + of| Inel).

D;<0 D;>0

By Theorem 7.2, a(z5) > ap/2 and consequently,

C
3 \Dy<— 3" IDjl +o(1) <—“+o(1)
D;<0 " p=o "
Choosing p sufficiently small, it yields D; > 0 for j = 1,...,n. whenever ¢ is small enough.

Since [z5| < C and D; > 0, we may now assert that

—7 Y D;Dja(x§)In |2 — 25 > O(1)
i#]

and thus W\ﬁ > —m> % D \If\ﬁ _(z5) = O(1). Hence the inequality (7.61) (applied with
R = /ag/2) together with Fz(ve, D ) § o(1) leads us to

Ne

p iy
WZD2 |lnp|—|—7TZD a(x )1n6—1+A22a2(x§)Dj§0(1).
j=1 j=1

As previously, we derive from (7.7), Z?il(Djz — Dj)a(a5)|Inp| < o|Ing|). Since p < & and
a(z5) > ap/2, we conclude that

‘tl
()

Z < o(1)

which yields D; = 41 whenever ¢ is small enough. U

As a direct consequence of Lemma 7.14, we obtain the following improvement of Lemma 7.13:

Corollary 7.15 For any R € [@, Vao ), we have

Z “)|Ine| — f:a )+ Wre((25,+1), ..., (25, +1)) + Or(1).

Proof. Tt follows directly from (7.61) and Lemma 7.14 that for any R € [@, Vao ),

>w2 el - HAQZa )+ Wee (25, 4+1), ..., (25, +1)) + Or(1).

On the other hand, we have proved in the proofs of Proposition 6.14 and Proposition 6.15 in
Chapter 6, that |F.(ve,D.) — Fe(ve, D.)| = o(1) and F.(ve,R?\ D.) > o(1). Hence we have
Fe(ve) > Fe(ve, D) + 0(1) and the conclusion follows. O
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7.4.2 The subcritical case

We are now able to prove (i) in Theorem 7.1. Following the proof of Theorem 6.1 in Chapter 6,

it suffices to show Proposition 7.16 below.

Proposition 7.16 Assume that (7.7) holds with wy < 0. Then for e sufficiently small, we have
that

lvel| =1 in L35 (D) ase — 0. (7.67)
Moreover,
Fo(ve) =o0(1) and E.(v.) = o(1). (7.68)

Proof. We fix some ‘/_ < Ry < y/ag. In the proof of Proposition 6.14 in Chapter 6, we have
proved that F,(v.) < ( ) so that Corollary 7.15 applied with R = \ﬁ leads to

Ne

0 ne
WZ el — 17T_7_0A22 <7TZ a(z$)|Ing| — 1+AQZ

j=1
Since a(azj) > ap/2 and wy < 0, we deduce that

aO’wllneln\ln5\< wlz S)Inflnel < O(1)

and then n. < o(1) which implies that n. = 0 whenever ¢ is small enough. Using the notation
(7.63), we derive from (7.65) that

Q
c(0e,D2) > Y a(pi)|di|(|Ine| — Koln|Ine]) — 11A2 > (a*(pi) — V2| Ine|F)d;

el OUI Ro zeI UI

By Proposition 6.15 in Chapter 6, we have F.(vs,D;) < O(]In a]il). Since a(p;) < ag for
1€ IEO U IEO, we infer that exists ¢ > 0 independent of € such that

¢ Y alp)ldilllnel <7 Y a(pi)|di|(|Ine| — Koln|Ine])

i€l Ulg, i€l Ul
w2 5 ) " .
T1+A2 Z (a®(p;) — vZ|Ine| ™) d; < O(|Ine|™).
ZEI UIﬁ

Since a(z) > |Ineg|~%/2 in D., we finally obtain

S ldil < 0(me V),

iely Ulg
Hence It Ul |d;| = 0 for e sufficiently small and we conclude from (7.64),
0 ‘0
Re(ve, De \ Uz‘elgoufgo Bi) = o(1).
By the proof of Proposition 6.17 in Chapter 6, we also have R.(ve,U; .+ ;= Bi) = o(1) so that
Ro ™" Ro
Re(ve, De) = o(1). Consequently,
Ee(ve, De) = Fe(ve, De) + o(1) < o(1).

Then the rest of the proof follows as in Proposition 6.18 in Chapter 6. O
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7.4.3 The supercritical case

In this section, we will prove (ii) in Theorem 7.1. Writing

1+ A2

Q= (|lnel+w(e) In|nel), (7.69)

we assume that
(d=1)+0<w(e)<d-9§ (7.70)

for some integer d > 1 and some positive number § < 1 independent of . We start by proving

that, in this regime, v. has vortices whenever € is small enough:

Proposition 7.17 Assume that (7.70) holds. Then, for € sufficiently small, v. has exactly d
vortices of degree one, i.e. ne = d, and
~ mago

Fe(ve) = —mapdw(e) In|lne| + — 5 (d?> —d)In|Ine| + O(1). (7.71)

Proof. Step 1. We start by proving that n. > 1 for ¢ sufficiently small. By Theorem 7.21 in
Section 7.5 (with d = 1), there exists 4. € H such that ||tc||f2r2) = 1 and

F.(iic) < F.(7.€'") — rapw(e) In | Ine| + O(1).
By the minimizing property of u. and (7.9), we have
Fe(ue) = Fe(neems) + Folve) + To(ve) < Fe(ae)
and since |7(v.)| = o(1) (see Proposition 6.13 in Chapter 6), we deduce that

Fe(ve) < —mapw(e) In|lne| + O(1).

From here, it turns out by Corollary 7.15 applied with R = @ (recall that Wag _ > O(1)),
2 )

—magw(e)In |Ine| + O(1) > F.(v.) >”Z jlnel - 1+A2 Za

|~’56'|A
>7TZ ( e)In|Ine| + +JA2 +0(1)

> —7Taou)(e€)n8 In|lne| +O(1).

Hence n. > 1+ o(1) and the conclusion follows.

Step 2. Now we show that

Folve) > —magnew(e)ln|Ine| + %(ng —n2)In|Ine| + O(1). (7.72)
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In the case n. = 1, we have already proved the result in the previous step. Then we may assume
that ne > 2. Since ||V yag _[|oc = O(1), we get from Corollary 7.15 applied with R = @,
2 b

2 (ve) >7TZ <|ln6| Zlm — a5 ( )> +0(1)

Z#J
>7TZ g)ln|lne| — Zln xi — 5| + |x§|?\ +0(1) (7.73)
— 1+ A2
i#]

Since F.(v.) < o(1), we derive that
—Zln]w - 25|+ — i Z\xa\/\ < Cln|lne|.
14+ A2
i#j
On the other hand — 3, In|zf — 25[ > O(1) so that |x§|2 < C(In|lne])|lne[~! and hence

513
WZ < g)ln|lne| — Zln|x —x5|+1+JA2> = (7.74)

=1
i#]

Q
= —mapnew(e)In|lne| — wag Zln 2§ — 5] + 17T_7_0A2 Z |x5|A + o
i#]

Setting r = max; [z5|, we remark that

QA2r2 n?—n
—gln]m —m5]+1+A2 Z\ 5]/\ (n —na)ln2r+ A2 > = 5 “ln|lne[+O0O(1). (7.75)
i#j

Combining (7.73), (7.74) and (7.75), we obtain (7.72).

Step 3. We start by proving that n. > d. The case d = 1 is proved in Step 1 so that we may
assume that d > 2. By Theorem 7.21 in Section 7.5, there exists for € small enough, u. € ‘H
such that ||t.||z2g2) = 1 and

F.(ii) < Fo(i1¢') — magdw(e) In | Ine| + %(Cﬂ —d)In|lne| + O(1).

As in Step 1, F.(u.) < F.(u.) yields

yen)

F.(vs) < —mag dw(e) In|Ine| + — 5 (> —d)In|Ine| + O(1) (7.76)
Matching (7.72) with (7.76), we deduce that
2_ a2 —d
—w(E)n. + = 5 e < —w(e)d + S +o(l)
and it yields
d—n.)(d ~1
w(e)(d—ny) < ¢ ”5)(;’ ne= b L o), (7.77)
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If assume that n, < d — 1, it would lead to

d+n.—1

- <
(d=1)+5<—

+o(l) <d—1+o0(1)

which is impossible for ¢ small enough.
Assume now that n. > d + 1. As previously we infer that (7.77) holds and therefore

d—5>7d+n€_1

> 5 +o(1) > d+o(1)

which is also impossible for € small. Hence n. = d whenever ¢ is small enough which leads to
(7.71) by (7.72) and (7.76). O
By Proposition 7.17, we may now assume that v, has exactly d vortices. We move on a first

information on their location:
Lemma 7.18 We have
25| < Cllne|™"? forj=1,....d andif d>2, |z5— x| > Cllne|™2  fori+j.

Proof. Matching (7.71) with (7.73) and (7.74) and using that n. = d, we deduce that

d
maps)
—moZm [2f = 5l + T8 Z |25[% < mag(d® — d)In (|Ine[Y/?) + O(1).
7] J=1
Hence
Qa5

Z Zln(\/\lna |25 — 5 ) — <0(1)

J=1 i#]
and the conclusion follows. O

Since %ﬁ‘ = o(1) by Lemma 7.18, we may now improve the lower estimates obtained in
J

|J3i

Lemma 7.12 following the method in [80, 81], proof of Proposition 5.2.
Lemma 7.19 For any R € [@, Vao ), we have

7Ta0d

5(v€,BR >7Taoz Dnel +Wge(ai,...,z5) + In ag + apdyy + or(1)

where vy 1s an absolute constant.

Proof. Since z ;p = = = o(1) and D; = 1, Proposition 7.11 yields

/ (z)|Vve|? >7TZ Ol p| + Wre(27,...,25) +or(1) (7.78)

and it remains to estimate & (ve, B(x?, p)) for j =1,...,d. We proceed as follows. Since D; = 1,
we may write on 0B (:c?, p) in polar coordinates with center :c? ,

ve(2) = Jve ()] OO g € [0, 2]
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where 1; € H'([0,27],R) and ¢;(0) = 1p;(27) = 0. Then in each disc B(5,2p), we consider the
map 0. defined by
0.(2) if ¢ € Bt p),

2p=r ) (0)L=T
‘ +w’(0)pp> if z € B(5,2p) \ B(z5, p).

be(z) = . ; .
(52 + 222 o (a5 + pe)l) ! (005

Then 9. = exp (0 +1;(0)) on dB(x5,2p). Exactly as in the proof of Proposition 5.2 in [80, 81],
we prove that
€62, B(x5,20) \ B(a%, p) — ma(a5) 02| = o(1). (7.79)

Since |a(x) — a(z5)| = O(p) in B(z5,2p), we may write
) a(z5) PG A
E0BG52) = 528 [ e AP, s0)
B(x<,2p) 9

Now we shall recall a result in [17]. For € > 0, we consider

1 1
16 =Ming [ Va5
2 JB(o,1)

ueC

where

C= {u € HY(B(0,1),C), u(z) = L on 83(0,1)}.

|z|

Then we have
lim (I() + m1né) = . (7.81)
£—0

Since d.(z) = — xg‘ ei(0) on 0B(x5,2p), we obtain by scaling

= o=z

1 o al@g)
3 [ Ie e Sy
B(5,2p) € 2p, /
—rlm? 472+ %lna(x?) + v + o(1).
5
With (7.79) and (7.80), we derive that for j =1,...,d,

ma(x5)

E-(ve, B(a5,0)) = ma(af) n £ + T ma(5) + a5y + o(1)
> ma(x}) In +—1Hao+a070+0( )-
Combining this estimate with (7.78), we get the result. O

We are now able to give the asymptotic expansion of .7:"5(1)5) which will allow us to locate
precisely the vortices. This concludes the proof of Theorem 7.1.

Proposition 7.20 Setting icj = \/ﬁﬂtj forg=1,...,d, ase — 0 the ij ’s tend to minimize the

renormalized energy w : R** — R given by

yen;

d
w(by,...,bg) = —mag »_In|b; — HAQZW%.
j=1

i#j
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Moreover, we have

Fe(ve) = —mapdw(e) In|Ine| 4+ %(d2 —d)In|lne| + Min w(b) + Qa.a+o(1) (7.82)
beR

d2
where Qp g = 7TTao(d2 —d)In(14 A?) + 7agdInag — o

given by (7.118).

In ag + agdyo — magd?£(A) and L(A) is

Proof. From Lemma 7.19 and (7.66), we infer that for any R € [@, Vao ),
) 9, - maod
(ve, D Z Slnel — 72& (25) + Wgre + Tlna0+a0d70+03(1).
As in the proof of Corollary 7.15, this estimate implies
) > )| 1 W dod 1 d 1
- (ve) ”Z 5)ne| - HAQZa )+ Wh. + T Inag + agdyo + or(L).

7j=1

Expanding (2 and a(z5), we derive that

d 2
|5 ma, d
c(ve) >m Z < (e)In|Ine| + +jA/;> + Wre + 0 Inag + apdy + or(1)

and by Lemma 7.18, it yields

d
Fe(ve) > —mapdw(e) In|Ine| e A2 E Q\x‘f]A + Whge 0% Inag + apdyo + or(1). (7.83)
J=1

By Lemma 7.18, we also have

WRe:—WCLOZID|$ —$€|—7TZ\I’R€ +o(1). (7.84)
i#£]

Since D; =1 for all j, the function Vg . satisfies the equation

d

(1 1 R,

div <EV‘I’R,5> == Zl a(x3) V <E> -V (ln |z — x§|) in By,
d - (7.85)
Upe=—>Y a(@f) |z —af| on OB}.
j=1
We infer from Lemma 7.18 that for j =1,...,d,
1 -2 2 ,
a(x5)V <—> -V (In|z - x?!) = M + fl(z).

a a?(z)|z[?

where f¢ satisfies ||ngLp(Bg) = op(1) for any p € [1,2) and Hao In[z|—a(z5) In |z —z5] HCl(aBg) =
o(1). Letting W to be the solution of the equation
1 —2|z[3
div ( =VUg | = ——2- in BS
v (Gvon) = m ok

Up=—In|z| on OB,

(7.86)
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it follows by classical results that |V p . — aod\IfRHLoo(Bg) = op(1). Hence we obtain from (7.84),
lim {Wre(af,... 23) + mag > Infaf — 25|} = —mwagd® T R(0). (7.87)
i7]
Combining (7.83) and (7.87), we are led to

d
liiriiglf {]:'s(ve) + mapdw(e) In |Ine| 4+ magp Zln |zf — x5 — 17_‘:1?\2 ZQ|$§|?\} >
i3 =1

Tagd

> Inag + apdyy — 7Ta0d2\IJR(0).

Setting z5 = \/ﬁﬂtj, it yields
limiélf {.735(05)+7Ta0dw(5) In|lne| — %(d2 —d)In|lne| —w(z],... ,55‘2)} >
E—
mag
2
Since Wg(0) — £(A) as R — /ag by Lemma 7.23 in Appendix, we conclude that

2
> (d? — d)In(1 + A?) + magdIn ag — Wagd In ag 4 agdyy — magd>V g(0).

liminf{ Fo(ve) + maogw(e)dIn | Ing| — 7TTao(d2 —d)In|lne| —w(zg,... ,ifl)} >Qnra (7.88)

e—0

and hence

lim inf {.7:"5(1)5) + magw(e)dIn|Ine| — %(CP —d)In|In 6]} > Min w(b) + QA 4 (7.89)
beR

e—0
By Theorem 7.21 in Section 5, for any ¢’ > 0, there exists @. € H such that [[@||;2g2) = 1 and

%(cﬂ—d)ln]lng\} < Min w(b)+Qa.q+0

lim sup {Fg(ﬁe) — F.(7:€"*) + magd w(e) In | Ing| — n
beR

e—0
As in the proof of Proposition 7.17, F.(u.) < F.(u.) implies
lim sup {ﬁg(ve) + rapdw(e)In |Ine| — %(CF —d)ln| ln6|} < Min w(b) + Q-+ (7.90)
€

e—0

Matching (7.89) with (7.90), we conclude that

lin% {.735(05) + mapdw(e) In|Ing| — %(d2 —d)In| lng\} = Min w(b) + Qa4

g—> bERQd

since ¢’ is arbitrarily small. Coming back to (7.88), we are led to

Min w(b) + Qa ¢ — limsup w(zT,...,z5) > Qa4

e—0

and therefore lim w(z{,...,Z5) = Min w(b) which ends the proof. O
e—0 beR2d

Remark 7.5 In the case d = 1, the expansion of the energy takes the simpler form
Fe(ve) = —magw(e) In |Ing| + Qa1 + o(1)

and the renormalized energy w(-) reduces to w(b) = (wao|b|3)/(1 + A?). In particular, if x°
denotes the single vortez of v., we have VQz — 0 as € goes to 0.
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7.5 Upper bound of the energy

Here, we give the construction of the test functions used in the previous sections. The difficulties
are twofold: the mass constraint we have to take into account and the vanishing property of the
function a(x) on the boundary of D. Hence the classical methods can not be applied directly.
Concerning the mass constraint, we simply renormalize a suitable trial function. This procedure
requires a high precision in the energy estimates and an almost optimal choice of the preliminary
trial function. To overcome the degeneracy problem induced by the function a(x), we proceed
by upper approximation of a(x). In the sequel, we assume that (7.7) holds. Using notation
(7.69), the result can be stated as follows:

Theorem 7.21 Let d > 1 be an integer. For any 6 > 0, there exists (u:)e>0 C H verifying
|G|l 22y = 1 and

lim sup {Fe(ﬂe) — F.(7.e"*) + magw(e)dIn | Ine| — 71'TQO(dQ —d)In|ln €|} < Min w(b) +Qpq+9
e—0 beR

where the constant Qa4 is defined in Proposition 7.20.

As mentioned above, the proof of Theorem 7.21 is based on a first construction which is
given by the following proposition. Here, some of the main ingredients are taken from a previous
construction due to André and Shafrir [13].

Proposition 7.22 Let d > 1 be an integer. For any 6 > 0, there exists (0c)e>o such that
N0 € H and

limsup { Fe(0.) + magw(e)dIn |Ine| — 7T—ao(d2 —d)In|lne| y < Min w(b) + Qpq + 9.
e—0 2 peR2d '

Proof. Step 1. Let ¢ > 0 and k > 0 be two small parameters that we will choose later. We
consider the function a, : D — R given by

a(x) if |z|a < Vayg— o,
—2y/ay — o |z|p + 2a9 — o otherwise

It turns out that a, € C’l(ﬁ), ay > a and a, > Co? in D for some positive constant C. Since

a, does not vanish in D, we may define ®, : D — R the solution of the equation

1
div(—V®,) =2ndéy in D,
ao (7.91)

d, =0 on 9D.
By the results in Chap. I of [17], we may find a map v € C*(D \ {0}, S!) satisfying
1
vd A Vg = a—vi% in D\ {0}. (7.92)

(o
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Set O, =D\ B(0,k'Q~/2). By (7.91) and (7.92), we have for ¢ small enough,

1 109
[ aivwe= [ Lwap-- | 100,
Ok.e Onc o 9B(0,k—10-1/2) O ov

2 72
a’Od a\IIU 1
/<93(0,n—1§2—1/2) a ( ov |x|)( nlzf)  (7.93)

where W, (z) = (apd) '@, (z) — In|z|. Notice that ¥, € C1¥(D) for any 0 < o < 1, since it
satisfies the equation

div (aiV\I’U) = fo(z) in D,

(7.94)
U, = —In|z| on 9D
with
2z} ;
1 Towr  THlsvET
X o
fg(x):—V( )._2:
aq(x x -2 —
o(T)) |z WMA otherwise.
az(x)|z|?

From (7.93), we derive that

1 1
lim sup {5 / a|Vog|? — ragd? 1n(/£(21/2)} < lim {5/ (| V3| — magd? 1n(/£(21/2)}
®N75 @K,E

e—0 e—0

< —7mapd®¥,(0).

By Lemma 7.23 in Appendix, ¥,(0) — ¢(A) as ¢ — 0 where the constant ¢(A) is defined
in (7.118). Consequently, we may choose o small such that

e—0

1 0
lim sup {5/ a|Vug|? — ragd? ln(/iQI/2)} < —magd*((A) + 3 (7.95)
@K,E

In R?\ B(0,x~1Q71/2), we define

vi (x) if v € O,

= 7(V9OT) ity ¢ B2\ D,

AN

By Proposition 6.8 in Chapter 6, we have ||ﬁgHLoo(R2\DE) = o(1). Since v, does not depend on ¢
in R?\ D, and || = 1 in R? \ D., we derive that

lim E(02,R?\ D) = 0. (7.96)
E—

From Proposition 6.8 in Chapter 6, we also know that

a— i

72

< Cel/3 (7.97)
L (D.)
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and hence (7.95) remains valid if one replaces a by 72 in the left hand side. Since vg is S Lvalued,
we deduce that

lim sup {ég(@g, R2\ B(0, s 1Q72)) - magd? ln(nQI/Q)} < —magd?0(A) + g (7.98)

e—0

Step 2. We are going to extend . to B(0,x~1Q~1/2). As in [17], we may write in a neighborhood
of 0 (using polar coordinates),

vf (@) = exp(i(df + vo(2)))

where 1), is a smooth function in that neighborhood. Let (by,...,bs) € R?? be a minimizing
configuration for w(-), i.e.,

bi,...,bq) = Mi b 7.99

Wb, ba) = Mi, w() (7.99)

(note that we necesarily have b; # b; for i # j). We choose r sufficiently small such that
max |bj| < 1/4x and we set bg»a) = Q~1/2b;. Following the proof of Lemma 2.6 in [13], we write

d (6)
e H Ze — exp(i(dh + 6:(x))) for @ € A = BO,x~'Q7Y2)\ B(0, (26) ')

where ¢, is a smooth function satisfying |Ve.(z)| < Cy k2QY/2) and |¢. () — 15 (0)| = Cy K2 for
x € Ag .. We define in A, .,
0=(w) = exp(i(d6 + e(x)))

with
he(@) = (2= 2602 |z]) b (2) + (2600122 — 1)y (x).

As in [13], we get that (using (7.97))

s 1
lim sup {55(175, Ay,.) — magd® In 2} < lim sup {— / as|Vo.|? — magd? ln2} < C, k2. (7.100)
e—0 e—0 2 AK,E
Next we define 0. in =, . = B(0, (2/@)_19_1/2) \ U?ZlB(b§€), 2/{9_1/2) by
d ()
. —b;
% — Zwo(o) x J
Ue(z) =€ H @ nen
7j=1 ’1‘ J ‘

Once more as in [13], we have (using (7.97))

~ 1 1
limsup & (0, E ) < limsup 5/ as|Ve|? < mag(d? +d)In 2, ~ Tao Zln |b; — bj| + Cq K.

e—0 e—0 Bu,e itj
(7.101)
Finally, in each BJ(.a) = B(bg-e)7 260712, we set
. NEER
RN () Wt Y B
e () = o Ol (2591/2> (7.102)
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where W realizes

1
Min —/ |Vv|2—i—
2 JB0,1)

with

1 2Ky + bj
1- B(0,1 1
= (1= [vf)? Hl2f<y+b _b| on OB(0, )} (7.103)

R €
°T 2/45\/0,0 971/2.

As in the proof of Lemma 2.3 in [13], we derive

1 1
lim —/ | V! | 4 (1—|w3| )2 —m|Iné| » =0 + X (k)
e—0 2 B(Ol

where g is defined in (7.81) and X (k) denotes a quantity satisfying X (k) — 0 as k — 0. By

scaling, we obtain

™

. 1 . a N 2k ~1/2
lim {5/3@ |Vv€|2+2—€02(1— |6.|2)2 _ﬂ-lnf = §lnao—|-70—|—X(/<).
J

e—0
Notice that in B](.a)7

a0|y|%\

ao—(m) = a(m’) < ap — (’ lnz’-:‘ +wiln ’ ]ng‘)_l yeB(l}ﬁZ%) 1+ A2

and consequently,

1 2601/
limsup{i/ ao| Vo> + aoag(l_’ 0e|?)? —waoln%} <

e—0

maolb; |3

™a
<
- 14+ A2

70 + X (k).

Inag + apyo —

By (7.97), it yields

. 2kQ /2 b;|3
1ir;lj(1]lp {é’s(@e, B](E)) — mag In %} < %ao Inag + agyo — fi' XLA +X(k).  (7.104)

Combining (7.98), (7.100), (7.101) and (7.104), we conclude that for x small enough,

lim sup {55(195) — mapd| In 8’—%%(612 —d)In|ln 5\} < (7.105)

e—0

ma
S—?Taozln!bi—bj\— r Z’J\A+QAd+5
i#j

Step 3. Now it remains to estimate R. (). Cauchy-Schwartz inequality yields

1/2
IR (6., R2\ D.)| < CQ (/\ m%ﬁ) (&-(6., R\ D.))"*. (7.106)
R2\D.
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By Proposition 6.8 in Chapter 6, 2 fRQ\DE |z|?72 — 0 as ¢ — 0 and according to (7.96), it leads
to
lim |R<(0:) — Re(b:,De)| = 0. (7.107)
E—

By the results in Chap. IX in [17], for £ sufficiently small and each j = 1,...,d, there exists
exactly one disc DL ¢ B(0,1) with diam(D{) < C¢ such that |@Z] > 1/2 in B(0,1) \ D.. By
scaling, we infer that exist exactly d discs D}, ... ,Dg with DI C B](E) and diam(D?) < Ce such
that

—

[0 > 5 i D. \Uj_,Di.

We derive from (7.104) that

d
[Re(ee,UfaDD)] < 00 (6o B2 50
=1

e—0

and by (7.107), it leads to lim._o |7~25(®€) —Re(0e, De\u;l:ng)\ = 0. From (7.97), we infer that
lim |Re (b, D \ Uj_; DI) — Re(0e, D= \ Uj_, DI)| =0

and hence

lim |R.(9.) — Re(b,D- \ U, DI)| = 0. (7.108)

e—0

To compute R (0:,D \ szng), we proceed as in Proposition 6.17 in Chapter 6 (here we use
that £.(0.) < C|lne| by (7.105)). It yields

d
) . d ; () 20p@ ) —
i (Re(00 P\ U D) + T S =0
J:

since deg(d./|o:|,0D2) = +1 for j = 1,...,d. Expanding a (bge)) and €, we deduce from (7.108)
that

d
~ 2
lim <R€(®€) + magd | Ine| + magw(e)dn | ln6|> - I‘j& Z; Ib; 3. (7.109)
Combining (7.99), (7.105) and (7.109), we obtain the announced result. O
Proof of Theorem 7.21. We consider the map 0. given in Proposition 7.22 and we set
Ve = mg_lf)6 and @ = 7.¢"0.  with m. = 7= 0e | 2 (m2)-

We are going to prove that the map u. satisfies the required property. By Lemma 6.12 in
Chapter 6, we have

Fe (i) = F(ﬁeems) + ‘7:—8(68) + Ij—s(ﬁe)'
In view of Proposition 7.22, it suffices to prove that ‘fe(f)e) - fe(@€)| — 0 and 7.(0.) — 0 as

e — 0. We first estimate m.. Since |9.| =1 in R?\ U?ZlBj(E) and |7z 2(r2) = 1, we have

m? —/ 2 / |vs|2—1>—1+/ (0 — 1).
R2 ud_, B\

J= J
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Using Cauchy-Schwarz inequality, we derive from (7.102), (7.103) and Theorem III.2 in [17] that

1/2
[ oG-l <cmea ([ qar-1p) <cemd ™ mo
Ui, B; u;l:lBj

and thus
m? =1+ O(e|Ine|7/?). (7.111)

Using [0=| = 1 in R\ U?_, B\, [VS| < Clal, |k.| < C|Ine], (7.110) and (7.111), we derive that
| < ClmeP (lL-me? [ ey [ (- me?lof + (- 1))
R2 ud_, B\
< Ce|lnel?/2,

Now we may estimate using (7.105), (7.109) and (7.111),

/ |V * = m€2/ 72|V | :/ 2|Vo.)? + O(e| Ine|/?), (7.112)
R2 R2 R2
and
Re(:) = mz *Re(b:) = Re(0:) + O(e| Ine|"/?). (7.113)
We write
1 4 22 1 4 L1212 2(1_m5_2)/ -4 <2\ 12
B e A e ey AL L
J= J
1— m72 2 L
+-§———:;;é—?—-j/ Aot (7.114)
R2

We infer from (7.105) and (7.111) that

1— —2\2
L—%Ll/ﬁmxscmm*, (7.115)
9 R2
and from (7.110) and (7.111),
1 —m.?| 4512 12 -1
— 72| Ve | |1 — || | < C|lne|™. (7.116)
c i BJ

Combining (7.112), (7.113), (7.114), (7.115) and (7.116), we finally obtain that F.(v.) = F.(0.)+
o(1) and the proof is complete. O

7.6 Appendix

In this appendix, we prove that the functions ¥ and ¥, defined by (7.86) and respectively
(7.94) converge to the same limiting function as R — /ap and 0 — 0. The proof is based on
the construction of suitable barrier functions.
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Lemma 7.23 For any 0 < R < \/ag, respectively any o > 0, let Vg be the solution of equation
(7.86), respectively V, the solution of (7.94). Then Vgr — V¥, as R — \/ag, respectively
U, — U, as 0 — 0, in CL (D) where U, is the unique solution in C(D) of

1 2|z |3
aiv (Lvw,) = A g p
a a?(z)|x| (7.117)
U, = —In|z| on OD.
In particular,
li VUi(0) = lim ¥,(0) = ¥, (0) =: £(A). 7.118
i W(0) = Jim ¥, (0) = ¥.(0) = £(A) (7.118)

Proof. Step 1: Uniqueness of W,. Assume that (7.117) admits two solutions ¥! and ¥2 in
C°(D). Then the difference U! — U2 satisfies div(1 V(¥ — ¥2)) =0 in D and ¥} — ¥2 =0 on
dD. By elliptic regularity, we infer that Ul — W2 € C?(D)NCY(D). Hence it follows ¥l - ¥2 = (
by the classical maximum principle.

Step 2: Existence of V4. We set for y € D,

R
Yelo) = Wi S ) = () + (/v
where ( is the solution of
AC=0 in D,
(=—-Inly| on dD.

Since ¥ g solves (7.86), we deduce that Y is the unique solution of

—div L = /() in
‘ <aR<y>WR> a0y P (7.119)

Tr=0 on JD.

where ag(y) = a?/R? — |y|3 and

2
fly) = 2”5”? +2(y1, A%y2) - V().

We easily check that y — Kapg(y), respectively y — —Kapg(y), defines a supersolution, resp. a
subsolution, of (7.119) whenever the constant K satisfies K > || f| o (p)/(A%ag). Hence

’TR’ < CaR in D (7120)

for a constant C independent of R. By elliptic regularity, we deduce that YT remains bounded
in VV@’?(D) as R — /ag for any 1 < p < oco. Therefore, from any sequence R, — /ag, we
may extract a subsequence, still denoted by (R,), such that Tg, — T, in CL_ (D) where Y,

~div (5 VT,) = s .

We infer from (7.120) that |Y,(y)| < Ca(y) for any y € D and hence T, € C°(D) with T, |5p = 0.
Consequently, the function W, := T, 4 ¢ defines a solution of (7.117) which is continuous in D.

satisfies

197



Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

Step 3. By the uniqueness of ¥,, we have that Yp — ¥, — ( in CL (D) as R — /ay which
clearly implies W — WU, in CL (D) as R — \/ag. To prove that ¥, — ¥, in C} (D) as ¢ — 0,

we may proceed as in Step 2. Indeed, we may show as in Step 2, that |V, — (| < Ca, in D for

a constant C' independent of o. O
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Chapter 8

A compactness result in thin-film

micromagnetics and the optimality
of the Néel wall

Abstract

We study the asymptotics of a 2 — d thin-film approximation energy where a transition
angle is imposed on the admissible magnetizations. The goal is to show the optimality
of the 1 — d transition layers (the Néel walls) under 2 — d perturbations. For that, we
prove a compactness result for magnetizations in the energy regime corresponding to a
finite number of Néel walls. The accumulation points are 2 — d unit-valued divergence-free
vector fields. In the case of zero-energy states, we show locally Lipschitz continuity and
these limits classically satisfy the principle of characteristics. Then we conclude with the
optimality of the straight walls in the regime of the specific line energy of the Néel wall.
This chapter is written in collaboration with F. Otto and it is published in J. Eur. Math.
Soc. (JEMS) 10 (2008) (4), pp. 909-956 (cf. [57]).

8.1 Introduction

In this chapter we analyze a two-dimensional approximation of the micromagnetic energy of
a thin-film in the absence of external field and crystalline anisotropy. Following [39, 41], the
setting is determined by our goal to prove the optimality of Néel walls under 2—d variation. Let
V' = (—1,1) xR be the transversal section of a thin infinitely extended cylinder (see Figure 8.1).
The admissible magnetizations are smooth 2-d unit-length vector fields

m' = (my,ms) : R? — §*
that macroscopically act as an angle wall in Q' (see Figure 8.2), i.e.,

m/(z') = M,c0 for £21>1, 29 € R, (8.1)
+4/1— m17002
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where mj o € [0,1) is some fixed number and we use the shorthand notation 2’ = (z1,z2). Here
and in the sequel, the prime always indicates an in-plane quantity. For each magnetization m/
it corresponds a stray field h = (hy, ha, h3) : R® — R3 which is a 3D vector field related to m/
by the following variational formulation:

/h-VCdm:/ (V' -m/de!, V¢ e CR(R?) (8.2)
R3 R2

where we write z = (z',23) € R? and V’-m’ for the in-plane divergence of m’. Classically, this
is,

V-h=0 in R3\ (R? x {0}),

[h3] = —V-m’  in R? x {0},

where [h3] denotes the jump of the vertical component of h across the plane R? x {0}. The

Pl

1./ po R

£Y4

K

Figure 8.1: The infinite domain €’

magnetic field is uniquely determined by V’-m’ up to curl vector fields. The micromagnetic
model states that the experimentally observed ground state for the magnetization m’ and for
the magnetostatic potential of the stray field is the minimizer of the micromagnetic energy. In
order to assign the energy density for this configuration we assume that

m' and h are L—periodic in the infinite zo—direction, (8.3)

where L is an arbitrary positive number. In this chapter we focus on the following non-dimen-

sionalized energy functional:

E.(m',h) = 5/

V' - m/ |2 da’ +/ |h|? dx (8.4)
Rx[0,L)

Rx[0,L)xR

where € > 0 is a small length-scale. The first term in (8.4) plays the role of the exchange energy
and the energy of the stray field is called the magnetostatic energy. The stray field equation
yields that the minimal magnetostatic energy corresponds to the homogeneous H~/2-norm of

V’'-m/ and it is achieved for the curl-free stray field:

1 2
min / ythm:—/ ‘\V'\_l/QV'-m' dx’.
hwith (8.2) Jrx[0,L)xR 2 Rx[0,L)
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Figure 8.2: The admissible magnetization m’

Now we shall informally explain how the principle of pole avoidance leads to the formation
of walls. For simplicity, we assume that the mesoscopic transition angle imposed by (8.1) on the
boundary 9€ is 180°, i.e., m’ -/ = 0 on 9. The boundary effects in the tangential direction
are excluded by our choice of €’ which is infinite in zo—direction. The competition between the
exchange and magnetostatic energy will try to enforce the divergence-free condition for m’, i.e.,

V'-m/ =0 in Q. Therefore, we arrive at
Im/| =1 and V.m'=0in Q, m -/ =0 on 9. (8.5)

This mesoscopic thin-film description has been justified in [41] using the I'—convergence method.
We notice that the conditions in (8.5) are too rigid for smooth magnetization m’. This can be
seen by writing m’ = V't with the help of a “stream function” ¢». Then (8.5) turns out that v

is a solution of the Dirichlet problem for the eikonal equation:
V4t =1in @, =0 on 0. (8.6)

Using the characteristics method, it follows that there is no smooth solution of the equation
(8.6). On the other hand, there are many continuous solutions that satisfy the first condition
of (8.6) away from a set of vanishing Lebesgue measure. One of them is the “viscosity solution”

given by the distance function

P(x') = dist (2/,0Q")

that corresponds to the so-called Landau state for the magnetization m’ (see Figure 8.3). Hence,

Figure 8.3: Landau state in

the divergence-free equation in (8.5) has to be interpreted in the distribution sense and it is
expected to induce line-singularities for solutions m’. These ridges are an idealization of the
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wall formation in thin-film elements at the mesoscopic level. At the microscopic level, they are
replaced by smooth transition layers where the magnetization varies very quickly. A final remark
is that the normal component of m’ does not jump across these discontinuity lines (because of
(8.5)) and therefore, walls are determined by the angle between the mesoscopic levels in the
adjacent domains. In the following we will concentrate on the Néel wall which is the favored

Figure 8.4: Néel wall in a 3D cylinder

1117\

Figure 8.5: Charge distribution in core and tails for a Néel wall

wall type in very thin films (see Figure 8.4). It is characterized by a one-dimensional in-plane

magnetization:
m' = (my(z1), ma(21)), (8.7)
that avoids surface charges, but leads to volume charges (because of (8.1)), i.e.,

dm1
/ r_
V'i-m dml #0.

The prototype is the 180° Néel wall which corresponds to the boundary condition (8.1) for
mieco = O, i.e.,

m/(z1) = ( 11 ) for a7 > 1. (8.8)

Let us now discuss about the scaling of the energy of the prototypical Néel wall. For magneti-
zations (8.7), the specific energy (8.4) reduces to

d
Eald(m,) _ 8/]R ‘ dZLll‘ day + / “ 1/2m1

We define the Néel wall as the 1d minimizer of (8.9) under the boundary constraint (8.8). The
Néel wall is a two length scale object: a small core (|x1] < weore) With fast varying rotation

d.%'l. (8.9)

and a logarithmically decaying tail (weore < 21| < 1) (see Figure 8.5). The finiteness of
in z;—direction in our setting serves as the confining mechanism for the Néel wall tail. This
two-scale structure permits to the Néel wall to decrease the specific energy by a logarithmic
factor. The prediction of the logaritmic decay was formally proved by Riedel and Seeger [73]; a
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2
1=mj,

—‘l—mf,3

Figure 8.6: Qualitative behavior of the Néel wall

detailed mathematical discussion of their results was carried out by Garcia-Cervera [45]. Finally,
Melcher rigorously established in [67, 68] the exact logarithmic scaling for the 180° Néel wall
tails:

min  EX(m') ~

~ f 1
(8.7),(88) ° 2| In¢] ore<

and the minimizer m; with m;(0) = 1 is symmetric around 0 (weore ~ €) and satisfies

1

|z1]

|Inel

my(z1) ~ for e < |21 < 1
(see Figure 8.6).

The stability of 180° Néel walls under arbitrary 2 — d modulation was proved by DeSimone,
Kniipfer and Otto in [39]:

. . L
min E-(m/,h) ~ min E-(m/,h) ~ 2Tne] for e < 1.
m/ with (8.8) m/=m/(x1) with (8.8)

This means that asymptotically, the minimal energy FE. is assumed by a straight wall. More
precisely, the variations of the optimal 1d transition layer in xs—direction will not decrease the
leading order term in the energy.

Our first result is a qualitative property of the optimal 1d transition layers: We prove that
asymptotically, the minimal energy can be assumed only by the straight walls. This property
holds for general boundary conditions (8.1). It is based on a compactness result for magnetiza-
tions {m.} with energies E. close to the minimal energy level: any accumulation limit m’ has

the singularities concentrated on a vertical line (see Figure 8.7).
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A ard
TINONON N
NN N

NN\
TN\ N

Figure 8.7: Straight wall

Theorem 8.1 Let my o € [0,1) and L > 0 be given. For any § > 0 there exists g > 0 with the
following property: given m' : R? — S1 and h : R? — R3 with

m’ and h are L—periodic in 3, i.e., (8.3) holds,
m' satisfies the boundary condition (8.1),

m’ and h' are related by (8.2),

|Ine|E.(m', h) < Lg(l —M1eo)? +e0, for some 0 < e < g, (8.10)

then we have
/ |m' —m*|dx’ <6, (8.11)
Rx[0,L)

where m* is a straight wall given by

m
m*(z1,z2) = < iLO;_ml > ) for £ a1 > a7, (8.12)
,00

for some z} € [—1,1].

Remark: The estimate (8.11) holds in LP for any §, > 0 and 1 < p < oo.

Let us first discuss the compactness result for the case of 1d magnetizations. We are interested

in the asymptotics as ¢ — 0 of families of 1d magnetizations in the more general context of an
1

[Ine]

and the accumulation points in L} . concentrate on a finite number of walls (see Figure 8.8).

energy regime O( ). We show that such sequence of magnetizations is relatively compact in

1
Lloc
As a direct consequence, we obtain the optimality of the straight walls over 1d perturbations in

the asymptotic regime of the minimal energy.

Theorem 8.2 Let mj o € [0,1). Consider a sequence {ex }ren C (0,00) withey, | 0. Fork € N,
let mj, = (my, may) : R — S such that (8.1) holds and
d d
limsup|lnsk|<6k/ {M‘del—l—/ | — 1z
k—o0 R dzq R

mik
dxy ’

2
dx1> < 0. (8.13)
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Then {m/}.} is relatively compact in L}, (R). Moreover, any accumulation point m' : R — St of

the sequence {m}, }x100 in Li,, is of bounded variation and can be written as

2N

’ mi,co

m = ’ Loy 1,6
;((—1)"m>( 1,bn)

where —o00 = by < by < -+- < bay_1 < bay = 400 and b, € [-1,1] forn=1,...,2N — 1.

b, b, b;

—4 lfmlzvx

Figure 8.8: The mo component of a limit with three walls

One may ask whether the above sequences of 1d magnetizations are relatively compact in BV
since their limit has bounded variation. The answer is negative in general. For that, we construct

a family of 1d magnetlzatlons with the energy level in the regime O( ) such that the sequence

[Ine|

L } blows-up as k — oc:

of total variations of {
X1

Theorem 8.3 There exists a sequence {mj, : R — S} with the properties:

(8.1) holds for some m1 € [0,1),

lim /‘ 1k|dm1
k—oo

(8.13) holds for some {ek}ken with e — 0.

Now we investigate the asymptotics as ¢ — 0 of families of 2d magnetizations when the
energy E.(m.,h:) is placed in the regime O(“ne‘) One of the issues we discuss here is the
question of the LlOc—compactness of the magnetizations {m.}. o in the above energy regime,
i.e., whether the topological constraint |m.| = 1 passes to the limit. The difficulty arises from
the fact that in general the sequence of divergences {V’-m.} is not uniformly bounded in Ll .
(a counter-example is given in Theorem 8.3). This was one of the particularities used in the
entropy methods for proving compactness results for the Modica-Mortola type problems; we
refer to the studies of Jin and Kohn [62], Ambrosio, De Lellis and Mantegazza [10], DeSimone,
Kohn, Miiller and Otto [40], Riviere and Serfaty [74], Alouges, Riviere and Serfaty [8], Jabin,

Otto and Perthame [60]. For our model, the idea is to use a duality argument in the spirit of
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[39, 41] based on an e-perturbation of a logarithmically failing Gagliardo-Nirenberg inequality
(see Section 8.2). Since the compactness result is a local issue, we state it in the context of the

unit ball B; C R? with no imposed boundary conditions:

Theorem 8.4 Consider a sequence {ej tren C (0,00) with ey | 0. For k € N, let m), : B} — S*
and hy, : By — R3 be related by

/ hi - V(dr = my. - V'¢da’, V¢ € C°(By). (8.14)
B B!
Suppose that
limsup | In | <€k/ |V’ m)|? da’ +/ |h|? dx) < 0. (8.15)
k—oo Bl Bl

1
Then {m} }kioo is relatively compact in L*(B}) and any accumulation point m' : B} — R?
satisfies

|m/| =1 a.e. in By and V'-m' =0 distributionally in BY. (8.16)

We now focus on the behavior of the finite-energy states m/. As in (8.6), by (8.16), we
formally have that m’ = V'*¢ where ¢ satisfies the eikonal equation |V'¢| = 1. We discuss
the case of zero-energy states, i.e., m’ is an accumulation point of sequences {m.}. o such that
the limit in (8.15) vanishes for some stray potentials {h.} (in the absence of any boundary
condition). The main tool is the principle of characteristics for the eikonal equation. We show
that every zero-energy state m’ is locally Lipschitz continuous. The difference with respect to
the zero-energy states for the Ginzburg-Landau models treated in [60] consists in the avoidance

of vortices. Our result can be stated as follows:

Theorem 8.5 Consider a sequence {ej }ren C (0,00) with e | 0. For k € N, let m}, : B] — S!
and hy : By — R3 be related by (8.14). Suppose that

lim \lnak\<€k/ \v/.m;\2dx’+/ yhkﬁdx) =0. (8.17)
k—o0 B By

Then any accumulation point m' : B] — R? of {m] }x1eo in L*(BY) satisfies
a) m’ is locally Lipschitz in BY;
b) m' satisfies the principle of characteristics related to (8.16), i.e., for any x{, € B} we have
that
m/(xh + tm’ (x))F) = m/(xf) for any t € R with x}y + tm/(z})* € B]

(see Figure 8.9).

Remark In general, a function m’ satisfying a) and b) in Theorem 8.5 is not globally Lipschitz

in Bf; an example is given by

o —P\*
m/(z') = <m> for any 2’ € B,

for some P € dB] (P plays the role of a vortex on the boundary).
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Figure 8.9: Principle of characteristics

The outline of the chapter is as follows. In Section 8.2, we give some fundamental estimates
based on a duality argument and a logarithmically failing interpolation inequality. In Section 8.3,
we prove Theorem 8.4. In Section 8.4, we focus on the zero-energy states: we establish a list of
lemmas that lead to Theorem 8.5. In Section 8.5, we show the optimality of the straight walls in
Theorem 8.1 as an application of Theorems 8.4 and 8.5. In Section 8.6 we discuss the behavior
of 1d magnetizations by proving Theorems 8.2 and 8.3.

8.2 Some fundamental localized estimates

We present some inequalities in the spirit of [39, 41] that are to be used in the next sections.
The idea is the following: in order to have the compactness of magnetizations {m.}, we need

to control in some sense their divergences {o. = V’-m’}. Since the second term in the energy
L
[Ine]

on o.. By a duality argument, it is enough to study the rate of the failing Gagliardo-Nirenberg

corresponds to the homogeneous H~/2-norm of o, the energy regime O( ) induces a bound

type inequality:
2
ST s £ supl [ 9]’

It is known that this rate is logarithmically slow for an e—perturbation of the homogeneous
H'Y2—norm. The optimal prefactor of the logarithmical failure is 2 and was proved in [39].

This suggests the optimal leading term in the following localized estimates:
Proposition 8.6 Let h:R3 — R? and 0 : R? — R be related by
/ h-V{dxr = / oCdx', V(e CX(B) (8.18)
R3 R2

where o' = (w1, 22) € R? and x = (2/,23) € R3. Let x : R? — R be a bounded function of locally
bounded variation and n € C2°(R3) be such that

suppn C B; C R?. (8.19)
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Then there exists a universal constant C' > 0 such that for all € € (0,1],

4 1/2
[ ode| < (Zimelswid [ Ao [ eine ) (5.20)
R2 s R2 R2 R3
1/2
+ C'sup |n| <€/ o] dx'+/ |h|? dw)
R3 B B
« (suplol-+-sup vl ) (supld + [ 10'x1),
R3 R3 R2 B

where D' denotes the in-plane derivatives (01, 0s).

(8.21)

Proof. We introduce some notations:
e ( denotes a generic universal constant;

e ( :R3 — R denotes the harmonic extension of ¢ : R? — R, i.e.,

AC=0 in R3\ (R? x {0}),

((,x3)=¢ on R%

e (. : R? — R denotes the convolution of ¢ : R> — R with a universal kernel p, of the form

1 x!
pola') = Zm(5) where pr e CE(B). pr 20, [ pr(al)da’ =1
B/

1

It is sufficient to prove the estimate for y € VVli’cl N L>(R?); in the general case of a function

X € BVi,eNL*>®(R?), it will follow by a density argument, using a sequence {xs} C whtnLe (R?)

loc

such that x5 — x a.e. in B], sup |xs| < sup |x| and / |V xs| da’ — / |D'x| (hence, |D'xs| w
R2 R2 B B
|D’x| weakly* as measures in B}).

We rewrite the left-hand side of (8.20) of our estimate as follows:

/ n*xo da’ = / no (nx — (nx):) da’ + / no(nx)e dz’
R2 R2 R2

and by (8.18) (where suppn(nx). C B1),

/na(nx)adx’:/ h- ¥ (n(nx):) dz
R2 R3
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Hence, we obtain the estimate

1/2 , 1/2
‘ / P xo da'| < ( / o’ dw') < / X — (7x)e]| dz')
R2 R2 R2
_ 1/2 . 1/2

sl [ valds+ ([ e as) ([ 9G0P a)
R3 R3 R3 R3

(8.19) 5 1/2 o 1/2

< sup!n\</ o dw> </ nx = ()| dx) (8:22)
R3 B, R?

1/2
+Csup Vil -sup )2 ([ 1h ) (529
R3 R3 By

+ </RS 772|h|2dx>1/2</RS \v@{%)lﬂ. (8:24)

As we shall see, only the term (8.24) contributes to the leading order term (8.20). We first
address (8.22) and (8.23). For (8.23), we observe that by the maximum principle,

sup [(nx)e| < sup|(nx)e| < sup|nx| < sup|n|-sup |x|,
R3 R2 R2 R3 R2
so that (8.23) can indeed be absorbed into (8.21). For (8.22), we have
2
/ Inx — (nx)e|” da’ < (Supl(nx)s|+supl77xl)/ Inx = (nx)e| da’
R2 R2 R2 R2
< 2esup Inxl/ |V (nx)| da’
R2 R2
<2suplnx] [ (VX + I'n]) o
R2 R2
(8.19)
< Cesup|n|-sup x|
R3 R2

X <sup]n\/ |V'x|dz’ + sup |[Vn] -sup\x\).
R3 B R3 R2

Hence, (8.22) can be absorbed into (8.21). We now turn to (8.24). In order to have the desired

inequality, it is sufficient to prove that
TN |2 4 21w/ /
[V(nx)e|” dz < =[Ine| sup x| / n”|V'x| dx (8.25)
R3 ™ R2 R2
2
+ Clsuplal +sup Vol (sup il + [ [vxgar) 29
R3 R3 R2 B,
We appeal to the following identity

712 _i L ! A YR Wi
/RS Vo de = o /R B /R 6’ + 2') — o(a!) 2 da’ d, (8.27)
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which we apply to ¢ = (nx)e. Actually, (8.27) is easy to establish (see also [39]): first of all, by
homogeneity and isotropy, it results that for every & € R?,

1 1 . 1€'] 5112 1=
_ — 11 = iz 2d I _ 1— Zzl 2d /
o / |z’|3| = o Iz’l3| .

2 / 27 o) 1
/ 27r o]
’5‘/ / ’COSH, sin® s ds d

/ 2T 2
T cosapan [0 g = o, (8.28)

2

i 0 0 S

Then, it turns out in terms of the Fourier transform,
[, wekdz = [ (6P 1F@) P de
=2 [ 1P @R &
R R W I

/ / N2 / /
3= | 1ot + ) = o) el

i.e., (8.27) holds. We split the z’—integral on the right-hand side of (8.27) into three different

regions:

o /R2 |z’|3/ [(mx)e (2 +Z) (n )e(w/)|2dx/dz’

B2\ B |z’|3/ |(n)e (2" + 2") — (nx)e (2 ')|2dx'dz' (8.29)
/B/ ’21‘3/ [(nx)= (2’ + ) — (nx)<(2")|? da’ d2’ (8.30)
#om oy 8 J 04 0P (e

As we shall see, only (8.31) contributes to the leading order term (8.25). We first address (8.29)
and (8.30). We start with the term (8.29) corresponding to the long wave length (i.e., [2'| > 1).

Since

/ (0= + ') — () () de’ < 2 / 7). da’
R2 R2

9 , (8.19) 9 9
<2 [ |nx|"ds’ < Csup|n|®-sup|x|?,
R2 R3 R2

we obtain

1
3 o T o[ 0PO=E" 4 = (0=t

(8.32)

< Csupln? - sup [x /
R3 R2

’ ,‘ 2 sup x|,
RQ\Bi z R2
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i.e., (8.29) is absorbed by (8.26). We now tackle the short wave length term (8.30). We have
L 1m0ua" 4 = 0o e’ < 1P [ (97 e
< 1 Psup V00| [ (90| ds’
R2 R2
C /12 ! /
< —[Z%sup[nx| [ [Vi(nx)| de
9 R2 R2

and thus,

1 1
o /B B /R e’ +2) = (nx)e(2)|? da’ d2'
6 : (8.33)

|
< louplal +sup 9 (swp |+ [ jwga) L[
R3 R3 R2 B €JB. |2/

i.e., (8.30) can also be absorbed by (8.26).
We finally address the medium wave length term (8.31). We start by observing that

L 1m0u@+ 2 = 0o de’ < [ 10 +) = o)l da'
We consider the integrand, which we shall rewrite in form of
1
O+ ) — )P = (e’ + ) = x(@) [ 7P+ )9 + 1) - do
0
+ remainder.
To do so, we proceed as follows
1
)@ +) = () = [ Vo + 1) ds
0
1 1
= / n(z' +t2")\V'x (2’ +t2') - 2/ dt + / x(@' + 2" V'n(a' +t2') - 2 dt,
0 0
and thus,
1
0+ ) = )P = (' + ) = x(@) [ 7P+ )9+ ) de
0
1
+x(z' +2) / (' +2') — (@’ + t2"))n(a" + t2")\V'x (2" +t2') - 2 dt
0
1
— X(m')/ (n(2") —n(a’ +t2"))n(a" +t2" )V x(a' +t2') -2 dt
0
1 1
+ / n(z' +t2")\V'x(a' +t2) - 2 dt / x(@' +t2)Vin(a' +t2') - 2 dt
0 0
1 2
+ (/ x(@' + 2"V +t2) -2 dt> .
0
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This yields the estimate
1
[(nx) (2" +2') — (nx) (@) ” < 2sup le/ n* (2" +t2')|V'x (2’ +t) - /| dt
R 0
1
4302 sup x| sup |Vl [ e’ + )]V’ + )] di
R2 R3 0
1
+12Psup P sup [Vl [ V0! + 1) do
R2 R3 0
Integration in z’ gives
Lo + ) = @) P e
§2sup|x|/ nQIV’x-Z’Idfﬂ’+3|2'l28uplxl-suplvnl/ n|[V'x| da’
R2 R2 R2 R3 R2
+1 Psup| - sup| V| [ V']
R2 R3 R2
<2suply| [ PV
R2 ]R2
2
+ C|Z'|?(sup |n| + sup |Vn|)? (sup Ix| +/ Vx| dm’) )
R3 R3 R2 B

Integration in 2’ yields

1
/B,\B, W/RQ () (" + 2) = (nx) () |? da’ d2'
1 €

1

na |2

<2sup|x| [ n*(z) / IV'x(a") - 2| d2’ da (8.34)
R2 R2 B

2
dz'
+c<supmr+sup\vm>2(sup\x\+ / \V’x!dw'> [ o=
R3 R3 R2 B B{\B. 2]

Notice that for any v' € R?,
, rcosf
v .
rsin 6

1 2 1 1
/ [V - 2| de = / / —
B/\B. EdE o Je 13

27 1
1
= ]v'[/ \cos@]d@/ ;dr = 4|Ine||v'|.
0 €

rdr do

Hence (8.34) turns into
1 1 / / /N |2 / / 4 2 ! /
o = [ )@+ 20 = () (@) da’ d=" < —[Ine[sup x| [ 77 [V'x|dw
2m Jppge 171 Jre m R2 R?
, (8.35)
+CGuplal +sup (Tl (supbl + [ 9 )
R3 R3 R2 B
Combining identity (8.27) with the estimates (8.32), (8.33) and (8.35), we conclude that (8.25)
holds. O

By rescaling length in Proposition 8.6 from unity to some R > 0, we obtain:
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Corollary 8.7 Let R > 0 and z¢ = (z{,0) € R? x {0}. Consider h: R® - R? and 0 : R> - R
be related by

/ h-V({dr = / oCdx', V¢ e CX(B(zo, R)).

R3 R2

Let x : R? — R be a bounded function of locally bounded variation and n € C2°(R3) be such that
suppn C B(xg, R) C R, (8.36)

Then there ezists a universal constant C > 0 such that for all € € (0, R],

4 1/2
\ [ o] < (—|1ne| swpinl [ 1o [ ?72|h|2dfﬂ>
R2 ™ R2 R2 R3

1/2
+C(1+ +/|In R|)sup|n| (8/ |lo|? da’ + / |h|? dx> (8.37)
R3 Zo» ) B(x07R)

B'(z),R
1
. (p in| + Rsup |Vn|) (szup N+ [ ID'XI>-
R3 R3 R2 VR JB(z),R)

Proof. The change of variables x = R% + x¢ (and ¢ = R£) preserves (8.18) and turns (8.36)
into suppn C Bl, so that we may apply Proposition 8.6. It yields in the original variables:

4 e B B 1/2
S(—\ln—!sup\x\R R | nzrhﬁdw)
i R R2 R2 R3

1/2
—i—C’sup]n\(3 R_Q/ |o|? dw'—i—R_?’/ |h|? dx)
R3 R B/ (z),R) B(zo,R)

X (sup |n| + Rsup ]Vn\)(sup Ix| + Rl/ \D/XD,
RS R3 R? B/(z).R)

‘RQ / n*xo da’
RQ

that is,
4 1/2
[ roar] < (Zamel s m) swwid [ i [ inias )
R2 s R2 R2 R3
1/2
—i—Csup\n[(s/ |o|? dx'—i—/ |h|? dx)
R3 B’ (z(,R) B(zo,R)
< Gsuplal + Rsup (V) (R 2supl + &2 [ o).
R3 R3 R2 '(z),R)
The conclusion is now straightforward. O

If one drops the test function n and localizes the function x in Corollary 8.7, the following

result comes out:

Corollary 8.8 Letd, R > 0 and x¢ = (z{,0) € R?x{0}. Consider h: R®> — R3 ando : R? — R
be related by

/h-VCdaz:/ oCda’, V(e CP(B(xg, R+ d)).
R3 R2
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Let x : R2 = R be a bounded function of bounded variation such that
supp x C B'(z), R) C R%.

Then there exists a universal constant C > 0 such that for all e € (0, R + d],

4 1/2
‘ [ovoar| < (Gimelswpbd [ 105 [ jppar)
R2 Q R2 R2 B(zo,R+d)
1 d)? 1/2
LUt REdS <5/ \a\2dx/+/ \h!zdm>
d B/ (), R+d) B(xo,R+d)

< (suplhd + [ 104
R2 R2

Proof. Let n € C°(B(xg, R+ d)) be such that

C
n=11in B'(z(, R) x {0}, |n| <1 and |Vp| < i in B(zg, R+ d). (8.38)

We apply Corollary 8.7:

(8.38
/ n*yodz’
R2

) (4 1/2
< (Zmelswpl [ 10 P
™ R2 R2 B(xo,R+d)
1/2
+C(1+\/|ln(R+d)|)<s/ |0|2dx'+/ |h|2dx>
B'(x(, R+d) B(zo,R+d)
R+d 1
X (14+——)VR+d + / D' >,
( g )( Sﬂlg)!x! Vi ]R2’ X|

and the conclusion is straightforward. O

A periodic version of Proposition 8.6 is the following:

Corollary 8.9 Let L > 0 be a positive number. Consider h : R — R3 and o : R? — R be
related by

/h-V(daz:/ oCdx', V¢ e CP(R3).
R3 ]R2

Let x : R? — R be a bounded function of bounded variation in R x [0, L) and n € C*(R3) be
such that
suppn C (—2,2) x R x (—1,1). (8.39)

Assume that the functions
h,o,x and n are L — periodic in xo. (8.40)

Then there exists a universal constant C' > 0 such that for all € € (0, L],

4 1/2
‘/ nxo da'| < (—\hw! sup | x| n?|D'x| nzlh\de>
Rx[0,L) Q R2

Rx[0,L) Rx[0,L)xR

Eg 1/2
+ C'— sup || (8/ ]a!Qdﬂv'—i—/ |h|? dx) (8.41)
L? s Rx[0,L) Rx[0,L)xR

1
« (supln| + Lsup Nnu(ﬁ suphl +— [ !D'X\>,
R3 R3 R V'L Jrx[o,1)
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where L = max{2, L}.
Proof. Select a universal ( € C2>°(R) such that

SuppC - (_17 1)7 ‘C‘ < 17 ZCQ(wQ + k) = 17 va ceR
k€EZ

and set
~ x
n(x1,x2,23) = C(f)n(ﬂcl,w,ws), V(x1,z9,73) € R,

In view of (8.39) and (8.42) we have that
suppn C Bpr

for some radius
L<R<2L.

Hence, we may apply (8.37) to o, h and 7. Notice that because of (8.40) and (8.42),

/ ﬁQXde’:/ n2xadx/,
R2 Rx[0,L)
[wpas = [ 2Inf? da,
R3 Rx[0,L)xR

/ | D'x| = / n?|D'x|.
R2 Rx[0,L)

Furthermore, we have because of (8.40) and (8.44),

L
/ o o' < O o2 da,
B

" Rx[0,L)

L
/ |h|?de < C= |h|? dz,
Br L Jrxjo,0)xr

L
/ \D’XISC—/ |D'x.
B, L Jrx[o,r)

Finally, it follows from (8.42) and (8.43),
sup [77] < sup n|
R3 R3
e
sup [Vij| < = sup || + sup [V,
R3 R3 R3

Hence, (8.37) yields (8.41).

(8.42)

(8.43)

(8.44)

O

Remark: The conclusion of Corollary 8.9 holds true for a more general support of 7 than (8.39)
(for example, (—a,a) xR x (a,a) for every a > 0). The choice of the interval (—2,2) in (8.39) (as
support in 1 variable) is needed in the proof of Theorem 8.1 due to the choice of the boundary

data (8.1).

217



Chapter 8. A compactness result in thin-film micromagnetics and the optimality of the Néel wall

8.3 Compactness of the Néel wall

This section is devoted to the proof of the compactness result for magnetizations in the energy
regime O(|Tle\):

Proof of Theorem 8.4. Since |mj| = 1 in By, it results that the sequence {[[m}|~(p;)} is
bounded and therefore, there exists m’ € L>(Bj, R?) such that up to a subsequence,

my, “m! weakly® in L. (8.45)

In particular,
Im/|* <1 ae. in B]. (8.46)

In order to have the strong convergence in some LP with 1 < p < 0o, we need to show that
|m/| =1 a.e. in Bf. Indeed, that will imply ||m;€||L2(Bi) — ||m,||L2(Bg) and by the weak conver-
gence in L2, it will lead to the strong convergence in L? and then, in any other LP, 1 < p < oo.
We define the finite positive measures {ux} C M(Bj) as

pr(A') = |Ineg| | |? dx
Blﬂ(A’XR)

for every Borel set A C Bf. Then by (8.15), the family of positive measures {ux} is bounded
in M(B]) and hence, there exists a positive measure u € M(B]) such that

Lk w p weakly® in M(BY).

Let z{, € B} be a Lebesgue point of m’ and of vanishing H!-density of pu, i.e.,

B/ /
lim — / |m/(z) — m/(z()|d2’ =0 and limsup w =0 (8.47)
B’ (x{,r) r—0

(by Lebesgue decomposition theorem and Vitali covering lemma, almost every point in B] has
the above properties). We want to show that |m/(z()] = 1. As in [39], we identify a curved
center line of the transition layer: let X} be the orbit of the vector field mﬁf passing by x(, (see
Figure 8.10), i.e.,

Xp(t) = m}, " (X(t),
X%(0) = xp,.

The orbit X}, does not have cycles and it separates the ball B into a right side G}, (where m},
is the inner normal vector to 0G}.) and a left side B] \ G}.. We define

1 : /

= in G,
xk=4°, " (8.48)
3 in B \G).

Then x; € BVjoe(B}) with D'y, = mj, H'LX). Moreover, in the ball B'(z{,1 — |z{|) C B} we
have that for every r € (0,1 — |xp]),

/ ) |D'x1| = Hl({Xk € B'(zp,7)}) > 2r (8.49)
B (x(,r
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8.3. Compactness of the Néel wall

Figure 8.10: The orbit X}, of the vector field m;l passing by z{, in the ball B}

and the integration by parts yields

/ ol v dH! = / i Ve mil da + / D'l (8.50)
OB (x(,r) B (z(,r) "(xhor)

where x, denotes the interior trace of chl OB () and v is the unit outer normal vector on
OB’ (z(, ).
We proceed in three steps:

Step 1. The sequence {xi} is uniformly locally bounded in BV (B]) and any accumulation point
x of {xx} in LL.(B}) belongs to BVjo.(B|,{—3,3}). For that, it is enough to prove that {x;}
is bounded in BV (B’ (x(,r)) for any ball B'(z(,7 +d) C B} where r and d are arbitrary positive
numbers and z(, € Bj. We apply Corollary 8.8 in the ball B(zg,r + d) for the restriction of
Xk ) where x¢ = (z(,,0) € By:

(8.48) /9 , ) 1/2
< (Bimad [ i il dz )
™ B (z(,r) B(zo,r+d)

1/2
+9<sk/ |v/.m;|2dx'+/ |hk|2dm>
d B/ B

1

X <1+/ lD/Xkl>7
B/ (x{,r)

B’ (x

/ xkV' - mj da’
B! (zgr)

which implies by Young’s inequality,

/ Xk V' - my, da’
B! (zg,r)

(8.15) C
<9 |D"xx| + — px(B' (g, r + d))

D)

B/(i%ﬂ") 1) d\/|h’l—€k< /B/ mo,r

<@+ [ D+ B+ d) (.51)

>~ - k -~ Mk ; - .
dy/|Ineg|” JBr(a) ) 0 0 d+/|Ineg|

for some small 6 > 0. Here we wrote

(8.48)
[oowl=[ o+ [ pglant S [ phalean (s52)
B (x{,r) B’ (x{,r) OB’ (x(,T) B/ (x{,r)
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By (8.50), (8.51) and (8.52), we deduce that

C C

— 1 / 11
Xpmy - vdH > (1 -0 — ——) |D'xk| — < pr (B (zg, 7 + d))
\/8B’(a:6,7") d\/|lD€k| B (x{,r) 0

C
~ dy/Iney)|

)|D’Xk| < Cy and thus, up to a subsequence, there exists a function

(8.53)
(14 rm) — mor.

It results that fB'(x’ .
0’
X € BV(B'(z{,r),{—1,1}) such that

Xk — x in  LY(B'(zf,7)). (8.54)

Step 2. We show that |m/(xf)| = 1. We restrict the analysis in a ball B'(z(,2R) C Bj. To
this purpose, we apply (8.53) for every ball B(z{,r) where r € (0, R) and d = R: by (8.49), we
deduce that
C C C
— / 1 / /
XMy - vdH + —pup(B (g, 2R)) + ——=1+rm) +7ér > 2(1 -6 — ——=)r
/aB/(mg),r) R 4 0 R+/|Iney| R+/|Ingy|

Integrating for » € (0, R) and dividing by R?, it leads to

1 — 1 / Cﬂk(B/(x672R)) c c
— my-vde + — + 1+Rm)+76>1—-0 — ———.
R? /B’(xf),R) Xi Tk 0 R RQ\/‘IHEk’( ) R\/“IIE]C‘

We know that x; = xx £L2—a.e. in B'(z{, R) and for almost every R > 0, u(dB'(z(, R)) = 0.
Passing to the limit as k — oo, it follows from (8.45) and (8.54) that
C u(B'(z},2R))

/ o vda! + SEE 0 2R) g s (8.55)
B'(z}),R) ) R

1
R?
for a.e. R € (0, %ﬁ(’l) By (8.48) we notice that

1 / / / 1 1o 10 / 1o 1 / /
— xm -vdr < — m (x') —m'(xg)|dx’ + |m'(xp)| | =5 xv dx
R B'(z,R) 2R? B’(%vR)’ ) (o)l o) |R2 B! (z,R) |

1
and we estimate the modulus of the vector w = — / XV as
R b @)

# o ) = i ([ 07 [ )
w| = — x|v-— )dr' < — x1)" + x =1.
‘ ‘ R2 B/(z),R) ’w’ 2R2 Bﬁg( 1) Bﬁg( 1)

Letting now R — 0, we conclude by (8.47) and (8.55) that |m/(xf)] > 1 — (1 + )¢ for every
small ¢, and hence, by (8.46), |m/(z()| = 1.

Step 3.End of proof. Let now m’ be an accumulation point of the sequence {mj}. Since
|mj.| = 1, we deduce that |m’| = 1 a.e. in B{. By (8.15), we have that / \hi|?dz — 0 as

By
k — oo and therefore, (8.14) yields that

klingo . ¢V'mj dx’ =0,¥¢ € C(BY).
1

Thus, V'-m’ = 0 distributionally in Bj. O
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8.4 Zero-energy states

In order to prove Theorem 8.5, we proceed in several steps. A key ingredient to Theorem 8.5 is

the following additional property of limits m':

Lemma 8.10 Nezt to (8.16), any accumulation point m' : By — R? of {m/ }x1co in L' (B}) has
the following property: for all xj, € BY there exists x : B] — {—%, %} such that

V' (xm') = |D'x| distributionally in Bj, (8.56)

/ . |D'x| >2r,  forall 0 <r<1-—|zp). (8.57)
B’ (x{,

Proof of Lemma 8.10. Let z(, € B] be given. Let {xx} be defined in B} as in the proof of
Theorem 8.4 (see (8.48)). By Step 1 in the proof of Theorem 8.4, we know that the sequence

U

Hence, after passage to a subsequence, we may assume that there exists x : B} — {—%,% of

|D'Xk|} is bounded for all 0 < r < 1. (8.58)
koo

/
T

locally bounded variation such that
Xk — x in LY(BY}). (8.59)

It remains to argue that y satisfies (8.56) and (8.57). For a given ¢ € C2°(Bj), we shall establish
the following four statements:

),

WVl dat — / CID'xi] = 0, (8.60)
B,

/
1

—/ V'¢-mdx' — ¢|D'x| >0 if¢>0, (8.61)
B B
—/ V'¢-m/dx’ — / ¢|D'x| <0 if¢ >0, (8.62)
By By
| vl [ oy itczo (8.63)
B, B,

In order to establish (8.60), we will use again the identity based on the construction of yy, i.e.,

my, - D'x, = [D'xx[; namely,

- [ Vemds — [ dpal= [ CaVimide+
B By

¢l - D'xg — / ¢1D'xx|
B B

By

= | ¢ V' myda (8.64)
By
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The second ingredient is Corollary 8.8, applied for the function (yj in the ball B} and d =
dist (supp ¢, 0B1) > 0. Because of sup |xx| = %, we obtain

/Q(CXk)V' -m), da’
R

2
g<—|1nek|sup|<| / D'(Cxi)
T B,

1/2
|hk|2d:c)
1
+ ¢ € /
d\"" /g

1/2
V' - m)|? da’ + / |y |? dw)
1 By

(1 [ D).

1

|
B

1
Since |D'(Cxx)| < §|V'C| + ||| D xk|, by (8.58) we deduce that the sequence {/ |D'(ka)|}
B/
is bounded and by (8.17), it follows that 1

Cx Vemp, da’ — 0 as k — . (8.65)
By

Now (8.60) follows from (8.64) and (8.65). Statement (8.61) follows easily from (8.60). Indeed,
because of (8.59) and mj, — m’ in L'(B]), we have

J

on the other hand, the lower semicontinuity of |D’yy| under (8.59) implies

xxV'¢-mp dx’ — xV'¢-m!da'; (8.66)
By

1
/ ¢|D'x| < liminf/ C|D'xk| if¢>0in Bj.
B, k—oo /B!
Statement (8.62) is a general fact which follows from (8.16). Indeed, let {mj}sjo denote the

mollification of m’ by convolution. For any r < 1 and sufficiently small §, we then have in a

classical sense:

V'-mf =0 and |mj|*> <1 in B (8.67)
Therefore,
/ / / (8£7) / / r_ Y (8.67) D if
xV'(-msds’ = xV' - (¢my) ds’ = — ¢mgs-D'xy < ¢|D'x| if¢=>0.
B B} B B

Statement (8.63) is a straightforward consequence of the previous ones:

M{/CW%M@p—hm/ﬁmvfmﬁwﬂﬁm—/
k—o0 B, k—o0 B, B
it ¢ > 0.

We now argue that (8.56) and (8.57) are true. We start with (8.56). From (8.61) and (8.62),
we already know that

8.61),(8.62
VGl dr! S (i
1

/
1

—/ xV'¢-m! dw':/ ¢|D"x| for all ¢ € C2°(B}) with ¢ > 0. (8.68)
B B

1
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Since any ¢ € C2°(B}) can be approximated both in H'(B}) and C.(B}) by (s’s of the form
G =G5 =G with ¢, G5 € C(By), (8:69)
(8.68) implies (8.56). An approximation of the form (8.69) can be constructed as follows
G5 = 5(C),

where {¢5}510 C C*°(R) is an approximation of the identity with the following properties:
<Z55

Gs(t) = 0 for |t] <6, —>(t) — 1 for t #0,

dt —(t )‘ < 1 for all ¢.

We now address (8.57). Let 0 < r < 1 — |z{| be given. We will derive (8.57) from the corre-
sponding property of xj (see (8.49)) and (8.63). Let {ns}s,0 C C2°(B1) be an approximation of

the characteristic function 1 B/ (x),r) 1D the following sense
ns(x') =0 for 2’ ¢ B'(x(,7), ns(2’) = 1 for 2’ € B'(x(,r — §), 0 < ns(2’) < 1 for 2’ € B].

Then

(8.49)

/ D'y > / w10y 2 tim / w|Dxi| > liminf / Dl = o — 8.
B (x{,r) k—oo B’ (x(,,r—9)

]

The next lemma establishes that the x’s from Lemma 8.10 are minimal (perimeter minimiz-
ing). It is a well-known general fact that sets whose normal can be extended to a divergence-free

unit-length vector field are minimal.
Lemma 8.11 Let x: B} — {—%, %} have the property (8.56) for some m' : B} — St with
V'-m' =0 distributionally in Bj.

Then x is minimal in B} in the sense that for any function x : B} — {— 5 %} with supp(y —
X) CC Bj, we have
[D'x|(B1) < |D'X|(By).

Proof of Lemma 8.11 . Let 0 < r < 1 be such that supp(x — x) C B,.. Select an ( € C°(B})
with ¢ =1 in BJ. and ¢ > 0 in B}. Then we have
ID'XI(B) — ID'RI(B / D' - / (D%

(8.56)

xV'¢-mdx — / ¢|D'Y|
Bl

:—/ Weenld = [ (Dl
B B

The argument used to establish the inequality (8.62) in the proof of Lemma 8.10 also yields this
lemma (with y replaced by ). O

For convenience of the reader, the following lemma gives an elementary proof for the fact
that minimal sets in two dimensions are locally half-spaces.
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Lemma 8.12 Let x : B} — {—3,1} satisfy
X s minimal in B, (8.70)

/ |D'x| > 2r for all v € (0,1). (8.71)
B

Then x is the characteristic function of a centered half-space in B|  (see Figure 8.11), i.e.,
4
there exists v € S* such that

X = % fora'-v >0 L3-a.e. in Bl _x.
% else =%

Figure 8.11: The characteristic y in the ball B! »
4

Proof of Lemma 8.12. We start by arguing that
|D'x|(B}) < . (8.72)

Let 0 < r < 1 be arbitrary. We compare x to x4+, X— given by
~ in B’ ~ - in B
x else X else
By assumption (8.70), we obtain that
D) < win DT E)+ [ -l
By

DR+ [ -],

[N

where X, X~ and X denote the interior traces of X|aB" X*|aB/ and )ZJr{aB, respectively. In

view of the form of x¥_, x4, this turns into

. _ 1 _ 1
@) <mind [ gl [ e g
OB, oB!,

= min {71'7‘—|—/ X~ dHl,wr—/ X~ dHl}
o8B!, o8,

< 7r.
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8.4. Zero-energy states

From this, we deduce (8.72) by monotone convergence under r T 1. We now argue that there
exists an r € [1 — 7, 1) such that

/8 1Dl € {0.2) (8.73)

where faB' |Dgx | denotes the total variation of the trace x~ on 0B,. Indeed, we have

_ 1! _
ey [ ncizasg (oo

Hence, there exists 1 — 7 <7 < 1 such that
/ Do~ | < 4. (8.74)
oB!,

But since x~ € {—3, 1}, we have that Jop [Dox~| € {0,2,4,...}, so that (8.74) entails (8.73).
We now argue that there exists v € S such that

1 /

L forg oy >0

= { 2 forwoev> } H'-a.c. on OB, (8.75)
-5 else

where 7 is as in (8.73). Indeed, because of (8.73), there exist v € S! and a € R such that

Xo= else

% forz’ - v>a
1
2

} H'-a.e. on OB.. (8.76)

We compare y with x given by

i fora’-v>aanda € B,
X=4{ —% forz’-v<aanda € B,
X else.

Because of (8.76), the traces of X‘aB/ and ﬂaB' coincide. Hence we obtain by the assumption
(8.70),
|D'x|(B,) < [D'XI(B)). (8.77)

Because of assumption (8.71) this yields
2r <H'{2'-v=0a}NB),

which enforces a = 0 so that (8.76) turns into (8.75). We finally argue that
1 /
5 . 0
\ = { 2 rEove } L*ae. in B, (8.78)
-3 else

where v is as in (8.75). Indeed, (8.75) implies that

J

/
I/-DIX:/ y-x?xfd'l'ﬂ:%,
8B

/
T
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whereas (8.77) yields
|D'x|(BL) < H'({z -v=0}NB.) <2r

Hence we necessarily have
D'x =v|D'x| |D'x|-a.e. in B.

Since y € {—%, %}, this implies that

1 /
X = 51 fora’-v>a L%ae. in B,
5 else

for some o € R. Since its trace x~ is given by (8.75), x must indeed be of form (8.78). O

The next lemma establishes that the characteristic functions from Lemma 8.10 are locally

ordered.

Lemma 8.13 Let m' : B} — R? satisfy (8.16). Let xo: B} — {—%,1} have the properties:

e Yo is the characteristic function of a centered half-space, i.e., there exists vy € S' such

that
1 /
S . > 0
XOZ{ 5 for x’ - 1y } Z'nBi;

—% else
o o satisfies (8.56).
Let x : B} — {—%, %} have the properties:

e Y\ is the characteristic function of a half-space, i.e., there exist v € S' and a € R such that

1 /
= orx -v>a
X:{ 2 f } z'nBi;

1
2 else

o X satisfies (8.56).

Then x < xo in By _x or x> xo in B} _=x.
4 4

Proof of Lemma 8.13. We distinguish three cases.
Case 1: H'({z' - vy =0} N {2’ -v =a}) <1 and a < 0. In this case, we consider Y given by

1 fora’ -vg>0and 2’ - v >«
g:{ 2 0 in Bj
else

[N

(see Figure 8.12). We argue that
V'-(xm') = |D’x| distributionally in B, (8.79)
/ |D'x| > 2r for all r € (0,1). (8.80)
By

Indeed, (8.79) holds distributionally in
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8.4. Zero-energy states

Figure 8.12: The characteristics xo, x and x in the ball B]

e B N{z' 1y > 0}, since there Y = x, so that (8.79) follows from the property (8.56) of x;
e BiN{2' vy < 0}, since there ¥ = —1, so that (8.79) follows from (8.16);
e BiN{x'-v > a}, since there Y = xo, so that (8.79) follows from the property (8.56) of xo;
e BiN{z’ v < a}, since there ¥ = —3, so that (8.79) follows from (8.16).

Hence, (8.79) holds distributionally in B} \ ({’' - vp = 0} N {2’ - v = «}). By assumption,
{2/ vy = 0} N {2’ - v = a} consists of at most a single point. But (8.79) is oblivious to
sets of vanishing H!-measure. This establishes (8.79). (8.80) follows from the fact that 0 €
{2 vy > 0} N {2’ - v > a}), which is a consequence of our assumption o < 0. According to
Lemma 8.11, (8.16) and (8.79) imply that yx is minimal in Bj. According to Lemma 8.12, this
and (8.80) imply that x is the characteristic function of a centered half-space in Bi_%. Hence
{2/ vy >0} N{z' - v > a} is a centered half-space in B{_%. In view of o < 0, this yields

{x'-u0>0}ﬂ{x'-u>a}ﬂBL%:{x'-y0>0}ﬂBL%,

that is
' v>ain {2 v >0}NB]_x,
4

whence x > xo in B! .
4
Case 2: H'({z' - 19 =0} N{2'-v =a}) <1 and a > 0. In this case, we consider ¥ given by

. for 2’ -vg >0o0r 2’ -v >« ) ,
X = 1 in By
)

N[

else

and we argue as before to arrive at x < xo in B/ =x.
4

Case 3: H({z' -vg =0} N {2’ -v = a}) > 1. In this case, we necessarily have
a=0 and (vr=ryorv=—-u).
In the case of v = vy, we have xy = xg. The case of v = —vy cannot occur since then
xo+x=0 L%ae. in B
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so that (8.56) could yield
[D'xo| + |D'x| = V'-(xom') + V" (xm') = 0,
in particular, D'yo = 0 which is a contradiction. O
The next lemma establishes Lipschitz continuity of m’ locally in Bf. Because of translation

and scaling invariance, it suffices to prove the following:

Lemma 8.14 Let m' be as in Lemma 8.10. Let 0 and y' € B} be Lebesgue points of m’. Then

24/2
V2 51| for ally'eB’%

im’(y') —m(0)] < a-zp

(1=-3*
Proof of Lemma 8.14. Let xo and x denote the characteristic functions associated to 0 and

y’ respectively, according to Lemma 8.10. According to Lemmas 8.11 and 8.12, there exist vy,
v € S! such that

1 /
1 ¢ . 0
o=4 2 lorTonz in B, ., (8.81)
—% else 4
1 ! /
s  for (' —y')-v>0 . T
xz{ e V) }lnH@wl—?u—ww» (852
-5 else
Since 1(
1 T (1 —7%)
W< 507 < Tt
we have

T
4
so that both (8.81) and (8.82) hold in B}
2

By (1=~ |y/1) 2 B0, = DA~y = y') > By s,

(1-1)° Thus an application of Lemma 8.13 yields
4

. / . /
X < Xo 1n B%(l—%)Q or X2 Xoln B%(l_%)Q-
W.lLo.g. we consider only the first alternative, that is,
{2 vy <0} N Bi(liz)Q c{(@ —v) v <0}
2 4

Thus, v - vy > 0. We introduce the abbreviations

. T
= ==(1-=)%
=g
By elementary geometry (see Figure 8.13), this implies
v — vp|? < 26°. (8.83)

Indeed, if v = vy, then (8.83) is obvious. Otherwise, v # 1 and then the point of intersection
2" of the two lines respectively orthogonal to vy and v and passing through 0 and 3/, lies outside
the ball B]; denoting by 6 = Z(v, 1) € (0, 5] the angle between v and vy, it follows that
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m’(y’)

Figure 8.13: Geometry of characteristics

that is,
6 0 1
d >sinf = QSin§COS§ > v — I/Q’ﬁ.
Hence,
=l < Tl
v—1| < ——=|y'].
117
It remains to prove that (8.56) implies
v=m/(y) and 1vy=m/(0). (8.84)

W.lo.g. we establish vy = m/(0). Indeed, in the view of (8.81), (8.56) takes the form

L / m' - V'¢dx — 1 / m' - V'¢da = / CdHt, (8.85)
2 {z’-1p<0} 2 {z/-vo>0} {z’-1p=0}

for all ( € C°(B]_x). We now fix a (; € C°(B]_x) such that f{x,_yozo} ¢1dH' =1 and for
4 4
r < 1, consider ¢, € Cé’o(B;(lil)) given by
4

/

o) = 2%

Since

/ IV'¢| dx’ :/ |V'¢1| dx’
R2 R2

and 0 is a Lebesgue point of m/, we have

1 1
lim (— / m' V¢ da’ — = / m' - V'¢, dm')
r—0\ 2 {z’-1p<0} 2 {z’-1o>0}

=m/(0) - lim <1/ V¢ dx’ — l/ V'¢, dx/>
r—0 \ 2 {2’ -vp<0} 2 {z’-vo>0}

= (m'(0) - 1) lim ¢ dHE. (8.86)
r—0 {2’ -1o=0}
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Since

/ ¢ dH! :/ GLdH' =1,
{z’-1o=0} {z’-1p=0}
we obtain from (8.85) and (8.86), m/(0) - vy = 1, which implies (8.84) because of |m/(0)] = 1. O

The last lemma establishes the principle of characteristics for m’ in Bj. Because of translation

and scaling invariance and a continuity argument, it suffices to prove the following;:
Lemma 8.15 Let m’ be as in Lemma 8.10 and Lipschitz continuous. Then
m (tm/ (0)) = m/(0)  for all [t| <1 — Z (8.87)

Proof of Lemma 8.15. Let y be the characteristic function associated to 0 according to
Lemma 8.10. From Lemmas 8.11 and 8.12 we gather that there exists v € S* such that

% forz’ v >0 . ,
X = 1 in B _=.
-3 else 4

As in Lemma 8.14 we deduce from (8.56) and the continuity of m/':
m'=v on{z'-v=0}NB]_ x.
4

This is a reformulation of (8.87). O

8.5 Optimality of the straight walls

In this section, we prove Theorem 8.1:

Proof of Theorem 8.1. Let m/ : R? — S! and h : R?> — R? satisfy the hypothesis of
Theorem 8.1. Using the same argument as in the proof of Theorem 8.4 and because of (8.1),
there exists a set G’ C R? with the outer normal v/ such that

G’ is L—periodic in xs,
(1,+00) x RC G, (—00,—1) x R C R?*\ G’ (8.88)
m’ =1 on 0G’

(see Figure 8.14). This set was introduced in [39]. We consider the related characteristic function

=1 in R?\ &,

2
L= (8.89)
1 in G
Then (8.88) translates into
X is L—periodic in zo, (8.90)
1
X = :|:§ for +x1 > 1, (8.91)
/ n?xV'-m/ da’ = —/ V'(n?) - m/xda’ — / n*|D'x|, (8.92)
Rx[0,L) Rx[0,L) Rx[0,L)
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/

Ji,
X1

rarerd

/
/
/

Figure 8.14: Center line of the wall

where n € C®(R?) is a L—periodic function in x5 that satisfies (8.39). We also introduce the

energy density e as a non-negative measure on R3 via
2
/ Cde = —|lne|<6/ ¢V - |? da’ +/ C|h|2dx>, V¢ € C°(RY). (8.93)
R3 m R2 R3

Step 1. We have an a priori bound on L~} fo[O 1) |D'x| in terms of L~ e(R x [0,L) x R): for
any o € (0,1),

1
(1— oz)L_l/R o |D'x| < m1 oo + EL—le(]R x [0,L) x R) (8.94)
X1,

Ci4 1 1z 1 /
+——— (L 'e(Rx[0,L ><]R> <1+L—/ DX>,
I2 /]ln€‘< ( [ ) ) RX[O,L)| |

where L = max{2, L}. Indeed, with the above choices and notations, (8.41) turns into

(8.91) 1/2
‘/ xV' -m/dz'| < </ n? de / 772]D’X\>
Rx[0,L) Rx[0,L)xR Rx[0,L)

cL?
+ 73

1/2
sup |7| <| Ine|~te(R x [0, L) x R))
R3

< (sup | + Lsup [V} - (LW s | ID’X|>-
R3 R3 Rx[0,L)

Using (8.92) on the left-hand side and Young’s inequality on the first term of the right-hand
side yields for any « € (0,1),

1
(1- a)/ 7’| D'x| < —/ V'(n?) - m/xda’ + — i de
Rx[0,L) Rx[0,L) 4o Jrx[o,L)xR
CL3 1/2
+ 3 sup n| <\ Ine|"te(R x [0, L) x R)) (8.95)
R3

<Gsuplal + Lswp(9al) - (22 + 272 [ ).
R3 R3 Rx[0,L)

We select 77 : R? — R such that

n=mn(x1,23),n=1 on (—1,1) x R x {0},

(8.96)
suppn C (—2,2) x R x (=1,1), |n| <1, |[Vn| < C.
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We consider the terms in (8.95) one-by-one:

(8.91,8.96)
/ n*|D'x| = / D'y,
Rx[0,L) Rx[0,L)

(8.1,8.91,8.96) o n? M1 0o -1
— V'(n?) - m'x dx’ = — / . ’ — da2’
/RX[O,L) ) (—o0,—1)x[0,) \ 0 —/1 = my o2 2
(1,4+00)x[0,2) \ 0 V1—moo? 2

= Lmio, (8.97)

/ n’de < e(R x[0,L) x R).
Rx[0,L)xR
Using (8.96) to estimate the n—terms in (8.95), we then obtain

1
(1— a)/ |D'yx| < Lm0+ —e(R x[0,L) x R)
Rx[0,L) 4o

CL* 1
+——2 R x[0,L XR1/2<\/E+—/ D’X>.
TENITE (R x[0,L) xR) Ni# Rxm)l |

Dividing by L yields (8.94).

Step 2. Sketch of the proof of Theorem 8.1. We give an argument by contradiction. To
this purpose, we consider sequences {ej}ren C (0,00) with e | 0, {m], : R? — Sl}moo and
{h : R3 — ]R?’}moo that satisfy the first three hypothesis in Theorem 8.1 and

limsup L 'ex (R x [0, L) x R) < (1 — my )2, (8.98)

k—o0

which corresponds to (8.10) (here, ey, is the energy density (8.93) associated to mj and hg).
Because of periodicity of ey, (8.98) implies that the energy is locally bounded, so that we may
apply Theorem 8.4. Hence there exists a measurable m’ : R? — S with

mj —m' in L} (R?), (8.99)

after passage to a subsequence. Properties (8.1) and (8.3) are preserved under (8.99) while in
addition (see Theorem 8.4),

V' -m’ = 0 distributionally in R?.

Because of (8.1) and (8.3), (8.99) yields

/ |mj, —m’|dz’ — 0.
Rx[0,L)

We thus have to argue that m’ has the form (8.12). Because of periodicity of e, (8.98) implies

that exists a non-negative measure e on R? such that
er e weakly® in M(R), (8.100)
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after passage to a subsequence. Notice that (8.98) is preserved under (8.100):
L7'e(R x [0,L) x R) < (1 —my00)* (8.101)
We shall argue that there exists an z} € [—1, 1] such that
suppe N (—2,2) x R x (=1,1) C {z]} x R x {0}. (8.102)

We then apply Theorem 8.5 on balls in (-2, 27) xRx (—1,1) and (z7,2) xRx (—1, 1) respectively.
This yields that m’ is locally Lipschitz and satisfies the principle of characteristics in both
(—=2,27) x R x (=1,1) and (27,2) x R x (—1,1). In view of the form (8.1), this indeed implies
that m’ is of the form (8.12). Hence it suffices to show (8.102).

Step 3. Proof of (8.102). We first address the function xj defined as in (8.89) for m;. In
view of (8.94) (applied to xj and ex) and (8.98), we have

{Ll / \D’Xk\} is bounded. (8.103)
Rx[0,L) kToo
Because of periodicity (8.90), there exists a measurable function x : R — {—1 1} of locally
bounded variation such that
Xk — x in L} (R?). (8.104)

Notice that periodicity (8.90) and the boundary conditions (8.91) are preserved by (8.104). We
shall argue in Step 4 that x is of the form

1 *
X = :|:§ for + a1 > +a7, (8.105)

for some z7 € [—1,1]. Now we give the argument how (8.105) implies (8.102). For this we turn
back to (8.95). Again, because of the convergences (8.99), (8.100), (8.104) and the boundedness
expressed in (8.98) and (8.103), (8.95) (applied for xy, m), and ey) yields in the limit as k& — oo

1
(1-— a)/ n?|D'x| < —/ V'(n?) -m'xde’ + — n? de (8.106)
Rx[0,L) Rx[0,L) @ JRx[0,L)xR
for any n € C*°(R?) that is L— periodic in zo and satisfies (8.39). We choose
o — (1 - ml,oo).
2

In view of (8.106),
1
/ Cdh=— Cde—/ V'C-m'xdx'—(l—a)/ ¢|D'x|
Rx[0,L)xR 4o Jrx[0,0)xR Rx[0,L) Rx[0,L)
defines a non-negative distribution in (—2,2) x R x (—1,1) for functions ¢ : R* — R which are
L—periodic in x9 and satisfy (8.39). Because of (8.105), A simplifies to
1

/ A\ = —
Rx[0,L)xR 4o Jrx(0,0)xR
1

1
v / VI da’ — / ViCom'dd  (8.107)
(—o0,27)%[0,L) (x7,00)x[0,L)

—(1-a) ¢(x7, 22,0) dxs.
[0,L)

(de
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In fact, A\ is a non-negative measure: because of |m’| = 1 and the divergence-free property
(see (8.16)), we have

'l/ V/C-m'dx/—l/ V¢ -m'da
2 J(—o0,z7)x[0,L) 2 J(23,00)x[0,L)

Estimate (8.108) formally follows from integration by parts and can be rigorously established by

< / |C(x],x2,0)|dxs. (8.108)
[0,L)

approximating m’ with smooth m’’s while preserving |m/| < 1, V' - m’ = 0 and the periodicity
in z2. We now consider ¢ = 7? in (8.107) such that (8.39) holds and

n=mn(ry,x3),n=1o0n (-1,1) x R x {0}, [n] < 1.

Using the same arguments as in (8.97), we learn that (8.107) turns into

1
/ 0 d\ = — n?de + Lmi oo — L(1 — @).
Rx[0,L)xR 4o Jrx[o,L)xR
Since (8.101) implies that / n?de < e(R x [0,L) x R) < L(1 —my o)?, this yields
Rx[0,L)xR
2 1 2 _

N dN < L|—(1—mjc0)” +mie — (1 —a)|=0.

Rx[0,L)xR 4o

We let 7? converge monotonically to one in (—2,2) x R x (—1,1) and obtain A((—2,2) x [0, L) x
(=1,1)) < 0 and thus, A =0 in (—2,2) x [0, L) x (—1,1). Hence, (8.107) simplifies to
1

4o Jrx[o,L)xR

(de = (1 —a) /[OL) C(x7, 22,0) dxo

—l/ V/C-m'dx/—i—l/ V¢ -m'da
2 J(~oca7)x[0,L) 2 J(at,00)x[0,L)

(8.108)
< (1 —a)/ C(z7,22,0) dxo +/ |¢(z7, x2,0)| dz2,
[0,L) [0,L)

for every ¢ € C°°(R3) that is L—periodic in zo and satisfies (8.39). This implies (8.102) by
periodicity of e. Thus, it remains to prove (8.105).

Step 4. Proof of (8.105). We first notice that because of (8.98), (8.103) and the lower semi-
continuity of fo[QL) |D'xk| under (8.104), (8.94) (applied for xx and ey) yields in the limit as

k — o0,
1— 2
Lo [ o < my s L)
Rx[0,L) 4o
As before, the choice of a = (17@71“’) gives
Ll/R o |D'x| < 1. (8.109)
X10,

Now the boundary conditions (8.91) and the inequality (8.109) enforce the form (8.105). For

the convenience of the reader, we display this standard argument. Let p and v/ be the measure-
/

theoretic line measure |D'x| and normal X related to the function x of bounded variation.
[D'x|
X
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Both inherit the periodicity of x and are characterized by

—/ V' {xdz' = / v-Cdp (8.110)
Rx[0,L)

Rx[0,L)

for all ¢’ : R? — R? which are L—periodic in x5 and compactly supported in z;. Now we show

that (8.91) yields
/ vidpu=1L. (8.111)
Rx[0,L)

Indeed, (8.111) can be seen by selecting a function n = n(x1) with n = 1 for |z1] < 1 and
suppn C (—2,2) so that

2
/ vy dp = / 0y dp (6.110) —/ jix dx’
Rx[0,L) Rx[0,L) Rx[0,L) 4T1
—1dn? 1 dn?
:_/ —idxl—/ —idx/:L.
(—oo,—1)x[0,L) 2 dx1 (1,00)x[0,1) 2 dx1

Now (8.109) (i.e., / dp < L) and (8.111) combine to fo[o L)(l —v1)dp < 0. But since
Rx[0,L) ’

1
1—v; > 0 we must have 1 —v; =0 p—a.e., that is, v = < 0 ) pu—a.e. Hence (8.110) turns into

- / V' xda = / G dp. (8.112)
RX[O,L) RX[OvL)

Choosing ¢’ with ¢; = 0, we deduce that y has a representative with x = x(z1). In particular,

(8.112) then yields
2

- iXdﬂCl Z 0’
R dT1

for all n = n(x1) with compact support. Hence x has a representative with xy = x(z1) that is
monotone non-decreasing. Since x € {—%, %}, this yields (8.105). Now the proof of the theorem
is completed. O
Remark: One can improve (8.102) to suppe C {zj} x R x {0} using Corollary 8.9 for trial

functions n with support in (—a,a) X R X (—a,a), where a is arbitrarily large.

8.6 The case of 1d magnetizations

In the framework of Theorem 8.1, we focus here on 1d magnetizations m’ = (mq (1), ma(z1)).
As in [39], we consider the minimal stray field corresponding to m’ in the strip R x [0,1). For
that, let U € H}(R x (0,1) x R) be the unique 1—periodic function in zo—direction that satisfies

/ VU -V(dz = —/ ¢V -m/dx', Y¢eCXRx(0,1) x R). (8.113)
Rx(0,1)xR Rx(0,1)

(That is a direct application of the Lax-Milgram Theorem.) The function U is the unique
symmetric harmonic map in H¢ (R x (0,1) x R) with the trace of the normal derivative given by
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V' -m/, ie.,
AU =0 in Rx(0,1) x (R\ {0}),
{aang] V'-m on R x(0,1),

where [¢] denotes the jump of a quantity & across the plane R? x {0}. Then an elementary
computation yields that the stray field energy is given by the homogeneous H /2 norm of the
divergence of m/:

2

1
/ |VU|? dx = 5/ V[TV | da (8.114)
Rx(0,1)xR Rx(0,1)
Since m’ is one-dimensional, then
2 2
/ |v/|—1/2v/ !l de = i{l/Qm/ i,
Rx(0,1) dxq

and therefore, (8.114) explains the expression of the energy E14(m/) given in (8.9). Also observe
that the chosen stray field energy is minimal because for any h : R? — R3 that is 1—periodic in

x9 and satisfies (8.2) for V'-m/, we have

/ VU |? da < / |h|? d.
Rx(0,1)xR Rx(0,1)xR

We now present the proof of Theorems 8.2 and 8.3:

Proof of Theorem 8.2. We proceed in several steps:
Step 1. We show that

My —Miec — 0 in Ll(R) as k — oo.

Indeed, by (8.1) and (8.13), we deduce that
1 1 3
/ \mLk — m1700’2 dt = / \mLk — m17oo’2 dt = / / \mLk(t) — mLk(t + 8)‘2 dt ds
R
3 2
<9/ / e () ml’f(Hs)‘ dt ds
2
<9//| mlk()| dtds — 0 as k— o0

It — s|?

and the conclusion follows by (8.1).
Step 2. We locate the regions where my y, (and mg ) have large variations. For that, we choose

the intervals (a¥,b%), n = 1,..., Nj in the following way (see Figure 8.15): we set bk = —co and
we recursively define for n = 1,..., Ng, bk (b’fb 1, 1] to be the smallest number such that
gy (CD"TIT = my o2
my i (by) =

2
and respectively, af € [bF_,b%] be the biggest number such that

) (—1)"/1— ml,OOZ.

ma(ay) = 5
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Figure 8.15: The variations of mo

By (8.1), we have that

dm
—l<a) <t <af <bh <o <afy, <by, <1 and Np<- /‘ K
_ml

since

1 —my oo 1 dmag .\ /bﬁ dmz j 2 / dma g |2
J = dt] < — 10 dt < S
= af bk—k</ A e

We also notice that N is an odd integer (because of (8.1)),

1— 2
VoMo g any interval (af, bk) (8.115)

Ima k| < ns O

1 —mq o2
and (—1)”_1m2 B < Vo oo

5 < 5 n(bF b)) n=1,...,N. (8.116)

Step 3. We prove that the sequence { Ny} is bounded. The idea is to define a good step function
with 2V, jumps and to apply Corollary 8.9. Set

sgn(mq ) in (af,ck) for n=1,..., N,
Xk =
0 elsewhere,

where ¢k € [ak bF] is the smallest number such that mgx(ck) = 0. Since (8.115) implies that

n»-n
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my ;. does not change sign in (a¥, ck), we obtain:

d
/‘ Xk{—QNk

Ld
/ m1kdt Z/ sgn(my ) dt k at -
Cp—
= S (masl(eh) — bmnal(aby) = Ny (1 - YVEF )
—1

2

Now we apply Corollary 8.9 for the harmonic extension Uy of mj, given by (8.113) where we
choose L = 1 and for the test function n = n(xy,z3) : R* — [~1,1] withn = 1in (—1,1) x Rx {0}
and suppn C (=2,2) x R x (=1,1),

1k
‘/ dz’
Rx[0,1) 1

1/2
772|VUk|2d90>

4
<(Zmed [ oD
Q Rx[0,1) Rx[0,1)xR

dmlk 2 2 1/2
+C €k ‘ ‘ d + ‘VUk‘ dx
Rx[0,1) dT1 Rx[0,1) xR
X <1+/ !D'Xk!>7
Rx0,1)
that is,
Ly (8.114) d 1/2
[ et a] U< o (Ima g [ 152)
-1

1/2
£ <|lnsk|E1d(mk> <1+/|ka>.
\/an’:“k‘

Therefore, by (8.13) and (8.117), we deduce that N < C for some absolute constant C' > 0.
Step 4. We show that the sequence {may} is relatively compact in Llloc. We consider the step

function
Ny +1
U = Z (=1)" V1—m o0” Lk | bk)s
n=1

where bN 41 = +oo. Observe that

/|d¢k \/1_7nloo2

It follows by Step 3 that the sequence {1} } is bounded in BV, (R). Therefore, any accumulation
point ¥ : R — {&+/1 —my o2} of {1} in L}, is of bounded variation and has the form

2N
¢ = Z(_l)n \/ 1- mLooQ 1(bn—17bn)’
n=1
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where —oo = by < by < -+ < bay—1 < bay = 400 and b, € [-1,1] forn = 1,...,2N — 1.
Finally, by (8.116), we have that |¢y + mg ;| > 7W in R and therefore,

1 1
2
Y — Mok dt——/ Y —ma dtgi/ 1/12—m2 dt
/R’ ’ _1‘ ‘ /71_7”17 5 _1’ k 2,k’

— M) — m%k’ dt

2) 1
<——— [
\ 1-— 7/n17c>o2 —1

4 1
s——————/rmm—nmaa.
\/1 — mLOOQ —1

We conclude by Step 1 that up to a subsequence, mo ) — % — 0 in L'(R), i.e.,

my — ( ;nl’oo ) —0 in LYR)

as k — oo. O

Since the asymptotic limit of the sequence {m}} belongs to BV, one may ask whether the
sequence {m} } is bounded in BV. The answer is negative according to Theorem 8.3. The idea
is that m) may have small variations on a large number of intervals (that have not been taken

into account in the construction of the trial functions yy in the previous proof).

Proof of Theorem 8.3. For simplicity, we assume that m; ., = 0. Set § = el/4 w=¢e? and
1 = ¢|lne|. For small ¢ > 0, we consider the following sample in (—w,w):

) .
mlnﬁ if ’t’g\/w2—€2,

F=1, it te (—w,w)\ (—Ve? — 2,V —e2).

We define mj . as follows: we fill in the intervals (—1,—3) and (3,1) by at most 5~ samples of

length 2w where my . is given via f.. In the interval (—\/% —n2, \/% —n?), set

1 1
In

(V2 V22 )
Otherwise, we set mi. = 0. Hence, my . is an H'—function, [m;.| < §/2 in R\ (=3, 3) and
m1(0) = 1. We then define

mo(t) =44 /1 —mi _(t) if +t>0;

hence, ma . is an H'—function and (8.1) is satisfied. We compute the energy EX4( (my ., ma.)).
We have for ¢ < 1,

d w82 t2
/ |22 g < 9/ dt
(-1,-hud 1y dt w ), [Inel? (* +¢?)?

mLE(t)

e—1/2

C ER C y C
< dy < ———(1 — ) < .
‘dmd?é @”+U2y‘eWwP(+A) y) = iz

(8.118)
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d C
/ | 0L 2 g < .
(11 dt gllnel

2°2

Similarly, we compute that

Now we compute the homogeneous H'/2—norm of m1 . For that, we extend the function mq .
to the entire plane by

mye(t,s) =my (V2 +s?), Y(t,s) € R2.

According to the trace estimate in H'/2, it follows by the same argument as in (8.118),

J

|i1/2 . 2dt<1/ Vi o (t, s)|2 dt ds
dt ® _2 R2 AT

c (v 4 A SR S S ¢
< — t t < .
= w/o e @22 |1n77|2/0 @122 " g

Hence, |Ine|E(m.) < C where C' > 0 is a universal constant. On the other hand, we have

d d 5oov ot
/|&\dt2/ | Die gy © L a> Y s ase—
R dt (,1,,%)U(%,1) dt w|ln6| 0 (t + e ) 5/
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Abstract

In this dissertation, we first study the problem of lifting for functions u € BV (2, S!). We
prove the existence of a BV lifting with an optimal control on the total variation. Then we
compute the minimal variation of a lifting and construct an optimal lifting in the case of 2 €
{81, 8%}; if Q = S2, that relies on the study of topological singularities of u. We also show the
connection between optimal liftings and minimizers of a I'—limit energy.

In the second part, we study the vortex structure of a rotating Bose-Einstein condensate.
We estimate the critical rotational speeds €2 for having exactly d vortices inside the bulk of the
condensate and we determine their topological charge and their precise location.

Next we are interested in 1d transition layers which connect two opposite magnetisations (so
called Néel walls) in a thin-film sample in micromagnetism. We prove the optimality of the Néel
wall under 2d perturbations.

Keywords: BV functions, lifting, minimal connection, I'—limit energy, Bose-Einstein conden-

sate, vortices, renormalized energy, micromagnetism, Néel wall.






