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Abstract. We consider an asymptotic regime for two-dimensional ferromagnetic films
that is consistent with the formation of transition layers, called Néel walls. We first
establish compactness of S2-valued magnetizations in the energetic regime of Néel walls
and characterize the set of accumulation points. We then prove that Néel walls are
asymptotically the unique energy minimizing configurations. We finally study the cor-
responding dynamical issues, namely the compactness properties of the magnetizations
under the flow of the Landau-Lifshitz-Gilbert equation.

1. Introduction and main results

The purpose of this paper is to study an asymptotic regime for two-dimensional ferro-

magnetic thin films allowing for the occurrence and persistence of special transition layers

called Néel walls. We will prove compactness, optimality and energy concentration of Néel

walls, together with dynamical properties driven by the Landau-Lifschitz-Gilbert equation.

1.1. A two-dimensional model for thin-film micromagnetics. We will focus on the

following 2D model for thin ferromagnetic films. For that, let

Ω = R× T with T = R/Z,

be a two-dimensional horizontal section of a magnetic sample that is infinite in x1-direction

and periodic in x2-direction. The admissible magnetizations are vector fields

m = (m′,m3) : Ω → S
2, m′ = (m1,m2),

that are periodic in x2-direction (this condition is imposed in order to rule out lateral

surface charges) and connect two macroscopic directions forming an angle, i.e., for a fixed

m1,∞ ∈ [0, 1),

(1) m(x1, x2) =

{

m−∞ for x1 ≤ −1,

m+∞ for x1 ≥ 1,
where m±∞ =







m1,∞

±
√

1−m1,∞
2

0






.

We will consider the following micromagnetic energy approximation in a thin-film regime

that is written in the absence of crystalline anisotropy and external magnetic fields (see

e.g. [5], [14]):

(2) Eδ(m) =

ˆ

Ω

(

|∇m|2 + 1

ε2
m2

3

)

dx+
1

δ

ˆ

Ω×R

|h(m′)|2 dxdz,

2010 Mathematics Subject Classification. Primary 35K40; Secondary 35Q60, 35B36, 49Q20.
Key words and phrases. transition layers, compactness, micromagnetism, Neel wall, Landau-Lifshitz-

Gilbert equation.
1



2 RAPHAËL CÔTE, RADU IGNAT, AND EVELYNE MIOT

where δ > 0 and ε = ε(δ) > 0 are two small parameters. The first term in (2) is called the

exchange energy, while the other two terms stand for the stray field energy created by the

surface charges m3 at the top and bottom of the sample and by the volume charges ∇ ·m′

in the interior of the sample. More precisely, the stray-field h(m′) : Ω×R → R
3 generated

only by the volume charges is defined as the unique L2(Ω× R,R3)−gradient field

h(m′) = (∇,
∂

∂z
)U(m′)

that is x2-periodic and is determined by static Maxwell’s equation in the weak sense1: For

all ζ ∈ C∞
c (Ω× R),

ˆ

Ω×R

(∇,
∂

∂z
)U(m′) · (∇,

∂

∂z
)ζ dxdz =

ˆ

Ω
m′ · ∇ζ dx.(3)

Explicitly solving (3) by use2 of the Fourier transform F(·), the stray-field energy can be

equivalently expressed in terms of the homogeneous Ḣ−1/2−norm of ∇·m′ (see e.g. [10])3:
ˆ

Ω×R

|h(m′)|2 dxdz =
1

2

ˆ

R×2πZ

1

|ξ| |F(∇ ·m′)(ξ)|2 dξ =
1

2

ˆ

Ω
||∇|1/2H(m′)|2 dx,(4)

where

H(m′) = −∇(−∆)−1∇ ·m′, i.e., F(H(·))(ξ) = ξ ⊗ ξ

|ξ|2 , ξ ∈ R× 2πZ \ {(0, 0)},

so that the gradient of the energy Eδ(m) is given by

(5) ∇Eδ(m) = −2∆m+

(

1

δ
(−∆)1/2H(m′),

2m3

ε2

)

.

Here and in the following, we denote planar coordinates by x = (x1, x2), (x1, x2)
⊥ =

(−x2, x1), the vertical coordinate by z and furthermore, we write (∇, ∂
∂z ) = ( ∂

∂x1
, ∂
∂x2

, ∂
∂z )

and ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
.

In this model, we expect two types of singular patterns: Néel walls and vortices (so-called

Bloch lines in micromagnetic jargon). These patterns result from the competition between

the different contributions in the total energy Eδ(m) and the nonconvex constraint |m| = 1.

We explain these structures in the following and compare their respective energies (for more

details, see DeSimone, Kohn, Müller and Otto [6]).

Néel walls. The Néel wall is a dominant transition layer in thin ferromagnetic films. It is

characterized by a one-dimensional in-plane rotation connecting two directions (1) of the

magnetization. More precisely, it is a one-dimensional transition m = (m1,m2) : R → S
1

that minimizes the energy under the boundary constraint (1):

Eδ(m) =

ˆ

R

∣

∣

∣

∣

dm

dx1

∣

∣

∣

∣

2

dx1 +
1

2δ

ˆ

R

∣

∣

∣

∣

∣

∣

∣

∣

d

dx1

∣

∣

∣

∣

1/2

m1

∣

∣

∣

∣

2

dx1.

1In other words, h(m′) is the Helmholtz projection of the vector measure m′H2xΩ × {0} onto the
L2(Ω× R)-space of gradient fields.

2Given a function ζ : Ω → R which is 1-periodic in x2, we introduce the combination of Fourier
transformation in x1 and Fourier series in x2 by F(ζ)(ξ) = 1√

2π

´

Ω
e−iξ·xζ(x) dx where ξ ∈ R× 2πZ.

3One computes that F(U(m′)(·, z))(ξ) = − 1
2|ξ| e

−|ξ| |z|F(∇ ·m′)(ξ) for ξ 6= 0 and z ∈ R.
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It follows that the minimizer is a two length scale object: it has a small core with fast

varying rotation and two logarithmically decaying tails.4 As δ → 0, the scale of the

Néel core is given by |x1| . wcore = O(δ) (up to a logarithmic scale in δ) while the two

logarithmic decaying tails scale as wcore . |x1| . wtail = O(1). The energetic cost (by unit

length) of a Néel wall is given by

Eδ(Néel wall) =
π(1−m1,∞)2 + o(1)

2δ| log δ| as δ → 0,

(see e.g. [6], [8]).

Micromagnetic vortex. A vortex point corresponds in our model to a topological singu-

larity at the microscopic level where the magnetization points out-of-plane. The prototype

of a vortex configuration is given by a vector field m : B2 → S
2 defined in a unit disk

Ω = B2 of a thin film that satisfies:

∇ ·m′ = 0 in B2 and m′(x) = x⊥ on ∂B2

and minimizes the energy (2):5

Eδ(m) =

ˆ

B2

|∇m|2 dx+
1

ε2

ˆ

B2

m2
3 dx.

Since the magnetization turns in-plane at the boundary of the disk B2 (so, deg(m′, ∂Ω) =

1), a localized region is created, that is the core of the vortex of size ε, where the magneti-

zation becomes indeed perpendicular to the horizontal plane. Remark that the energy Eδ

controls the Ginzburg-Landau energy, i.e.,

Eδ(m) ≥
ˆ

B2

eε(m
′) dx, with eε(m

′) = |∇m′|2 + 1

ε2
(1− |m′|2)2

since |∇(m′,m3)|2 ≥ |∇m′|2 and m2
3 ≥ m4

3 = (1−|m′|2)2. Due to the similarity with vortex

points in Ginzburg-Landau type functionals (see the seminal book of Bethuel, Brezis and

Hélein [3]), the energetic cost of a micromagnetic vortex is given by

Eδ(Vortex) = 2π| log ε|+O(1),

(see e.g. [9]).

Regime. We will focus on an energetic regime allowing for Néel walls, but excluding

vortices. More precisely, we will assume that δ → 0 and ε = ε(δ) → 0 such that

(6)
1

δ| log δ| = o (| log ε|)

and we will consider families of magnetization {mδ}0<δ<1/2 satisfying the energy bound

(7) sup
δ→0

δ| log δ|Eδ(mδ) < +∞.

In particular, (6) implies that the size ε of the vortex core is exponentially smaller than

the size of the Néel wall core δ, i.e., ε = O(e
− 1

δ| log δ| ).

Compactness of Néel walls. We first show that the energetic regime (7) is indeed

favorable for the formation of Néel walls. We start by proving a compactness result for

4In our model, the tails are contained by the system thanks to the confining mechanism of steric
interaction with the sample edges placed at x1 = ±1.

5In our model, the parameter ε = ε(δ) > 0 is related to δ by the regime (6).
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S
2-magnetizations in the regime (6) and (7) that is reminiscent to the compactness results

of Ignat and Otto in [12] and [13].

Theorem 1. Let δ > 0 and ε(δ) > 0 satisfy the regime (6). Let mδ ∈ H1
loc(Ω,S

2) satisfy

(1) and (7). Then {mδ}δ→0 is relatively compact in L2
loc(Ω) and any limit m : Ω → S

2

satisfies the constraints (1) and

|m′| = 1, m3 = 0, ∇ ·m′ = 0 in D′(Ω).

The proof of compactness is based on an argument of approximating S
2-magnetizations by

S
1-valued magnetizations having the same level of energy (see Theorem 5). Such an ap-

proximation is possible due to our regime (6) and (7) that excludes existence of topological

point defects.

Optimality of the Néel wall. Our second result proves the optimality of the Néel wall,

namely that the Néel wall is the unique asymptotic minimizer of Eδ over S2-magnetizations

within the boundary condition (1). For every magnetization m : Ω → S
2, we associate the

energy density µδ(m) as a non-negative x2-periodic measure on Ω× R via

(8)

ˆ

Ω×R

ζ dµδ(m) :=
2

π
δ| log δ|

(
ˆ

Ω
ζ(x, 0)

(

|∇m|2+ 1

ε2
m2

3

)

dx+
1

δ

ˆ

Ω×R

ζ|h(m′)|2 dxdz
)

,

for every ζ = ζ(x, z) ∈ Cc(Ω × R). Recall that h(m′) denotes the x2-periodic stray-

field associated to m′ via (3). We now show that the straight walls (10) are the unique

minimizers of Eδ as δ → 0 in which case the energy density µδ is concentrated on a straight

line in x2-direction.

Theorem 2. Let δ > 0 and ε(δ) > 0 satisfy the regime (6). Let mδ ∈ H1
loc(Ω,S

2) satisfy

(1) and

(9) lim sup
δ→0

δ| log δ|Eδ(mδ) ≤
π

2
(1−m1,∞)2.

Then there exists a subsequence δn → 0 such that mδn → m∗ in L2
loc(Ω) where m∗ is a

straight wall given by

(10) m∗(x1, x2) =

{

m−∞ for x1 < x∗1,

m+∞ for x1 > x∗1,
for some x∗1 ∈ [−1, 1].

In this case we have the concentration of the measures defined at (8) on the jump line of

m∗:

µδn(mδn) ⇀ (1−m1,∞)2 H1x{x∗1} × T× {0} weakly ∗ in M(Ω× R).

The energy bound (9) is relevant for Néel walls (see e.g. [8]). The similar result in

the case of S
1-valued magnetizations was previously proved by Ignat and Otto in [12].

Theorem 2 represents the extension of that result to the case of S2-valued magnetizations.

An immediate consequence of Theorem 2 is the following lower bound of the energy Eδ

within the boundary conditions (1).

Corollary 1. Let δ > 0 and ε(δ) > 0 satisfy the regime (6). Let mδ ∈ H1
loc(Ω,S

2) satisfy

(1). Then

(11) lim inf
δ→0

δ| log δ|Eδ(mδ) ≥
π

2
(1−m1,∞)2.
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1.2. Dynamics. The Landau-Lifshitz-Gilbert equation. The dynamics in ferromag-

netism is governed by a torque balance which gives rise to a damped gyromagnetic pre-

cession of the magnetization around the effective field defined through the micromagnetic

energy. The resulting system is the Landau-Lifshitz-Gilbert (LLG) equations which is

neither a Hamiltonian system nor a gradient flow.

Let us present the setting of LLG equations. As the condition (1) is not preserved by the

LLG flow, we will impose the boundary conditions (1) at each time t ≥ 0, and look for

solutions of LLG equations in the space domain

x ∈ ω := (−1, 1) × T.

In order to define the micromagnetic energy and its gradient on ω, we introduce the func-

tional calculus derived from the Laplace operator on ω with Dirichlet boundary conditions.

More precisely, for f ∈ H−1(ω), we define g := (−∆)−1f as the solution of
{

−∆g = f in ω,

g(x1, x2) = 0 on ∂ω, i.e., for |x1| = 1, x2 ∈ T.
(12)

Then (−∆)−1 is a bounded operator H−1(ω) → H1
0 (ω) and a compact self-adjoint operator

L2(ω) → L2(ω). We can therefore construct a functional calculus based on it, and denote

as usual |∇|−2s :=
[

(−∆)−1
]s

for s = 1/2 and s = 1/4.

The dynamics of the state of the thin ferromagnetic sample is described by the time-

dependent magnetization

m = m(t, x) : [0,+∞) × ω → S
2,

that solves the following equation (see [7, 17]):

(LLG0) ∂tm+ αm× ∂tm+ βm×∇Ẽδ(m) = 0 on [0,∞) × ω.

Here, × denotes the cross product in R
3, while α > 0 is the Gilbert damping factor charac-

terizing the dissipation form of (LLG0) and β > 0 is the gyromagnetic ratio characterizing

the precession. The micromagnetic energy Ẽδ corresponding to the domain ω is defined

via (12):

(13) Ẽδ(m) =

ˆ

ω

(

|∇m|2 + 1

ε2
m2

3

)

dx+
1

2δ

ˆ

ω

∣

∣|∇|−1/2∇ ·m′
∣

∣

2
dx,

so that the gradient of the energy Ẽδ(m) is given as:

(14) ∇Ẽδ(m) = −2∆m+

(

1

δ
P(m′),

2m3

ε2

)

,

where we have introduced6 the operator P acting on m′ ∈ H1(ω,R2) via (12):

P(m′) := −∇|∇|−1∇ ·m′.

Observe that as in (4), we have
ˆ

ω

∣

∣|∇|−1/2P(m′)
∣

∣

2
dx =

ˆ

ω

∣

∣|∇|−1/2∇ ·m′
∣

∣

2
dx.

6Observe that our original nonlocal operator appearing in the energy gradient (5) can be written as
(−∆)1/2H(m′) = −∇|∇|−1∇ ·m′.
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Remark 1. i) We highlight that Theorems 1 and 2 remain valid in the context of the

micromagnetic energy Ẽδ on ω within the boundary conditions (1), i.e., m(x1, x2) =

m±∞ for x1 = ±1 and every x2 ∈ T.

ii) Note that for a map m : ω → S
2, one has Ẽδ(m) < ∞ if and only if m ∈ H1(ω).

In this paper, we consider a more general form of the Landau-Lifshitz-Gilbert equation

including additional drift terms, which has been derived in a related setting in [22, 21] (see

also [15]):

(LLG) ∂tm+ αm× ∂tm+ βm×∇Ẽδ(m) + (v · ∇)m = m× (v · ∇)m on [0,+∞) × ω,

where v : [0,+∞)×ω → R
2 represents the direction of an applied spin-polarized current7.

Regime. We analyze the dynamics of the magnetization through (LLG) in the asymptotics

δ → 0, ε(δ) → 0 in the regime (6), while

(15) α = νε, β = λε,

where ν > 0 is kept fixed and

(16) λ(δ) = o
(

√

δ| log δ|
)

.

The dynamics of the magnetization for the equation (LLG0) has been derived by Capella,

Melcher and Otto [4] (see also Melcher [18]) in the asymptotics ε → 0 with fixed δ (see

[4, Theorem 1]). The more general equation (LLG) (in the absence of the non-local energy

term) was studied by Kurzke, Melcher and Moser in [15] where they derived rigorously

the motion law of point vortices in a different regime, namely ε → 0 and δ = +∞. We

highlight that in those papers, the parameter δ > 0 is kept fixed or large yielding a uniform

H1 bound via the energy; it is far beyond the grasp of (6). Therefore, in the analysis

developed below, we will have to deal with the loss of the uniform H1 bound; our strategy

relies on the fine qualitative behavior of the magnetization presented in Theorems 1 and 2

(that remain valid in the context of the micromagnetic energy Ẽδ on ω within the boundary

conditions (1)).

In the present paper we consider initial data with finite energy at δ > 0 fixed.8 We first have

to solve the corresponding Cauchy problem for (LLG) imposing the boundary conditions

(1) at each time t ≥ 0. Naturally, we understand that here the boundary condition (1)

reads as

m(t, x1, x2) = m±∞ for x1 = ±1, x2 ∈ T, t ≥ 0.

Moreover these solutions have finite energy for all time t ≥ 0. We insist on the fact that

the energy can possibly increase in time, unlike for (LLG0) which is dissipative.

Definition 1. We say that m is a global weak solution to (LLG) if

m ∈ L∞
loc([0,+∞),H1(ω,S2)) ∩ Ḣ1

loc([0,+∞), L2(ω)),(17)

and m solves the equation (LLG) in the distributional sense D′((0,+∞)× ω).

7By definition (v · ∇)m = v1∂1m+ v2∂2m.
8Recall that in the regime (7) the initial energy blows up in the limit δ → 0.
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Observe that the regularity assumption (17) of this definition allows to make all terms in

the (LLG) meaningful in the distributional sense: this gives its relevance to the definition.

Indeed, (17) first gives (due to Remark 1 ii)) that Ẽδ(m(t)) is finite for all t ≥ 0. Also,

∇Ẽδ(m) ∈ L∞
loc([0,+∞),H−1(ω)) since for ∇m(t) ∈ L2(ω) then ∆m(t) ∈ H−1(ω), while

P(m′(t)) ∈ L2(ω). From there, we infer that m × ∇Ẽδ(m) ∈ L∞
loc([0,+∞),H−1(ω)).

Indeed, by setting

〈m(t)×∆m(t), φ〉H−1(ω),H1
0 (ω)

:= −
2
∑

j=1

ˆ

ω
(m(t)× ∂jm(t)) · ∂jφdx

and by noticing that P(m′) and m3 belong to L∞
loc([0,+∞), L2(ω)), we get for 0 < ε ≤ δ

small (see (37)):

‖m(t)×∇Ẽδ(m(t))‖H−1(ω) ≤
C

ε
Ẽδ(m(t))1/2.

All the other terms in (LLG) belong to L2
loc([0,+∞) × ω).

We construct global weak solutions for (LLG) in the following theorem.

Theorem 3. Let δ ∈ (0, 1/2) be fixed, m0 ∈ H1(ω,S2) be an initial data and the spin

current v ∈ L∞([0,+∞) × ω,R2).

Then there exists a global weak solution m to (LLG) (in the sense of Definition 1), which

satisfies the boundary conditions

m(t = 0, ·) = m0 in ω,(18)

m(t, x1, x2) = m0(x1, x2) if x1 = ±1 and for every x2 ∈ T, t ≥ 0.(19)

Furthermore m satisfies the following energy bound: for all t ≥ 0,

(20) Ẽδ(m(t)) +
α

2β

ˆ t

0
‖∂tm(s)‖2L2(ω)ds ≤ Ẽδ(m

0) exp

(

4

αβ

ˆ t

0
‖v(s)‖2L∞(ω)ds

)

.

The proof of Theorem 3 takes its roots in [1] via a space discretization. To the best of our

knowledge however, there is no such result taking into account the non-local term in ∇Ẽδ

(see (14)). One needs to carry on the computations carefully, specially as it comes together

with the constraint of S2-valued maps. For the convenience of the reader we provide a full

proof in Section 5 below.

We next specify our set of assumptions for the dynamics in the asymptotics δ, ε(δ) → 0:

(A1) The initial data m0
δ ∈ H1(ω,S2) satisfy (1) and supδ→0 δ| log δ|Ẽδ(m

0
δ) < +∞.

(A2) The regime (6) holds as δ → 0 and the parameters α and β satisfy (15) and (16).

(A3) The spin-polarized current satisfies

(21) ‖vδ‖2L∞([0,+∞)×ω) ≤ αβ.

In particular, we have vδ → 0 in L∞([0,+∞)× ω).

Due to the energy estimate (20), the energetic regime in (A1) holds for all times t ≥
0 (with no uniformity in t though). In particular, Theorem 1 implies that for all t >

0, the magnetizations {mδ(t)}δ admit a subsequence converging in L2(ω) to a limiting

magnetization (m′(t), 0) as δ → 0. Our main result is that the subsequence does not

depend on t and that the limiting configuration is stationary.
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Theorem 4. Let {m0
δ}0<δ<1/2 be a family of initial data in H1(ω,S2). Suppose that the

assumptions (A1), (A2) and (A3) above are satisfied. Let {mδ}0<δ<1/2 denote any family

of global weak solutions to (LLG) satisfying (18), (19) and the energy estimate (20).

Then there exists a subsequence δn → 0 such that mδn(t) → m(t) in L2(ω) for all t ∈
[0,+∞) as n → ∞ where the accumulation point m = (m′, 0) ∈ C([0,+∞), L2(ω,S2))

satisfies

|m′(t)| = 1, ∇ ·m′(t) = 0 in D′(ω), ∀t ∈ [0,+∞).

Moreover, the limit m is stationary, i.e.,

∂tm
′ = 0 in D′([0,+∞)× ω).

In particular, it follows immediately from Theorems 2 and 4 (and Remark 1 i)) that for

well-prepared initial data the asymptotic magnetization is a static straight wall for all

t ≥ 0:

Corollary 2. Under the same assumptions as in Theorem 4, assume moreover that the

initial data are well-prepared:

lim sup
δ→0

δ| log δ|Ẽδ(m
0
δ) ≤

π

2
(1−m1,∞)2.

Let δn → 0 and let x∗1 ∈ [−1, 1] be such that m0
δn

→ m∗ in L2(ω), where m∗ is a straight

wall defined by (10). Then we have mδn(t) → m∗ in L2(ω) for all t ≥ 0.

The paper is organized as follows. In Sections 2 and 3, we focus on the stationary results

and prove Theorem 1 and Theorem 2. In Section 4, we prove Theorem 4, assuming Theorem

3, which is proved in Section 5. Finally, we prove in the Appendix a uniform estimate in

the context of the Ginzburg-Landau energy, which is needed in the proof of Theorem 1.

In all the following C will denote an absolute constant (independent of the parameters of

the system) which can possibly change from one line to another.

2. Approximation and compactness

This section is devoted to the proof of Theorem 1. A similar compactness result to The-

orem 1 has been already established by Ignat and Otto in [12, Theorem 4] for S
1-valued

magnetizations. In order to establish compactness for S
2-valued magnetizations we will

use an argument consisting in approximating S
2-valued maps by S

1-valued maps with

quantitative bounds given in terms of the energy, which is stated as follows.

Theorem 5. Let β ∈ (0, 1). Let δ > 0 and ε(δ) > 0 satisfy the regime (6), i.e.,

1

δ| log δ|| log ε| → 0 as δ → 0,

and let mδ = (m′
δ,m3,δ) ∈ H1

loc(Ω,S
2) satisfy (1) and (7). Then there exists Mδ ∈

H1
loc(Ω,S

1) that satisfies (1) such that

(22)

ˆ

Ω
|Mδ −m′

δ|2 dx ≤ Cε2βEδ(mδ) and

ˆ

Ω
|∇(Mδ −m′

δ)|2 dx ≤ CEδ(mδ)

and

(23)

ˆ

Ω×R

|h(Mδ)− h(m′
δ)|2 dxdz ≤ CεβEδ(mδ),
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and

(24) Eδ(Mδ) ≤ Eδ(mδ) (1 + o(1)) ,

where o(1) = O

(

(

1
δ| log δ|| log ε|

) 1
6
−
)

and 1
6− is any fixed positive number less than 1

6 . More-

over, for every full square T (x, r) centered at x of side of length 2r with εβ/r → 0 as δ → 0,

we have9

(25)

ˆ

T (x,r−2εβ)
|∇Mδ|2 dx ≤ (1 + o(1))

ˆ

T (x,r)

(

|∇m′
δ|2 +

1

ε2
m2

3,δ

)

dx.

Theorem 5 is reminiscent of the argument developed by Ignat and Otto [13] with a major

improvement given by (24), i.e., the approximating S
1-map Mδ has lower energy than the

S
2-map mδ (up to o(1) error).

Proof. To simplify notation, we will often omit the index δ in the following. We introduce

a Ginzburg-Landau type energy density:

(26) eε(m
′) = |∇m′|2 + 1

ε2
(1− |m′|2)2.

The approximation scheme is inspired by [13].

Step 1. Construction of a squared grid. For each shift t ∈ (0, εβ), we consider the set

Ht = {x = (x1, x2) ∈ R× (0, 1) : x2 ∈ (εβ , 1− εβ), x2 ≡ t (mod εβ)}

and we repeat it 1-periodically in x2 to obtain a net of horizontal lines at a distance εβ in

Ω. By the mean value theorem, there exists t ∈ (0, εβ) such that
ˆ

Ht

eε(m
′) dH1 ≤ 1

εβ

ˆ

Ω
eε(m

′) dx.

If one repeats the above argument for the net of vertical lines at distance εβ in Ω, we get

a shift s ∈ (0, εβ) such that the net

Vs := {x ∈ Ω : x1 ∈ (−1 + εβ, 1− εβ), x1 ≡ s (mod εβ)}

satisfies
ˆ

Vs

eε(m
′) dH1 ≤ 1

εβ

ˆ

Ω
eε(m

′) dx.

Set Ṽs := Vs ∪ {(x1, x2) : x1 ∈ {±1}, x2 ∈ [0, 1)} and remark that
´

Vs
eε(m

′) dH1 =
´

Ṽs
eε(m

′) dH1 since m satisfies (1). Therefore, we obtain an x2-periodic squared grid

R = Ht ∪ Ṽs of size more than εβ such that

(27)

ˆ

R
eε(m

′) dH1 ≤ 2

εβ

ˆ

Ω
eε(m

′) dx ≤ 2Eδ(m)

εβ
≤ C

εβδ| log δ| .

Due to periodicity, one may assume that R includes the horizontal line R× {0}.

Step 2. Vanishing degree on the cells of the grid R. In order to approximate m′ in Ω by

S
1-valued vector fields, it is necessary for m′ to have zero degree on each cell of the grid

R. Let us prove this property. For that, let C be a full squared cell of R having all four

sides of the cell of length ∈ [εβ , 4εβ ]. We know that (27) holds (in particular, for eε on

C). Set κ :=
1

δ| log δ| = o (| log ε|). By Theorem 6 given in the Appendix, we deduce that

|m′| ≥ 1/2 on R and deg(m′, ∂C) = 0 for small ε > 0.

9In (25), o(1) is the same as in (24).



10 RAPHAËL CÔTE, RADU IGNAT, AND EVELYNE MIOT

Step 3. Construction of an approximating S
1-valued vector field M of m′. On each full

squared cell C of R of side of length of order εβ, we define u = uδ ∈ H1(C,R2) to be a

minimizer of

min

{
ˆ

C
eε(u) dx : u = m′ on ∂C

}

.

Putting together all the cells, u is now defined in the whole hull (R) (which is [−1, 1]× T)

and satisfies (1). Extend u by m± for ±x1 ≥ 1 so that u is defined now in Ω and is periodic

in x2. Moreover, by construction,
ˆ

Ω
eε(u) dx ≤

ˆ

Ω
eε(m

′) dx.

By Theorem 6 given in the Appendix, we have

η := sup
Ω

∣

∣|u|2 − 1
∣

∣ ≤ C

(

1

δ| log δ|| log ε|

)
1
6
−

= o(1).

In particular,

|u|2 ≥ 1− η in Ω.

Therefore we define M ∈ H1(Ω,S1) by

M :=
u

|u| in Ω.

So, M satisfies (1). We deduce that |∇u|2 ≥ |u|2|∇M |2 ≥ (1− η)|∇M |2 in Ω and

(1− η)

ˆ

Ω
|∇M |2 dx ≤

ˆ

Ω
|∇u|2 dx ≤

ˆ

Ω
eε(u) dx ≤

ˆ

Ω
eε(m

′) dx ≤ Eδ(m).(28)

We prove now (25) which a local version of (28). Using the above constructed grid, we

cover T (x, r − 2εβ) ∩ ([−1, 1] × T) by a subgrid ∪k∈KCk, with K finite, of full cells of R
such that ∪k∈KCk ⊂ T (x, r) ∩ ([−1, 1] × T). Therefore we have:

(1− η)

ˆ

T (x,r−2εβ)
|∇M |2 dx = (1− η)

ˆ

T (x,r−2εβ)∩([−1,1]×T)
|∇M |2 dx

≤ (1− η)

ˆ

∪k∈KCk

|∇M |2 dx ≤
ˆ

∪k∈KCk

|∇u|2 dx

≤
ˆ

∪k∈KCk

eε(u) dx ≤
ˆ

∪k∈KCk

eε(m
′) dx ≤

ˆ

T (x,r)
eε(m

′) dx.

The goal is now to prove that the S
1-valued vector field M approximates m′ in L2(Ω,R2)

and the Ḣ1-seminorm of M is comparable with the one of m′.

Step 4. Estimate ‖∇(M −m′)‖L2(Ω). Indeed, by (28), we have:

(1− η)

ˆ

Ω
|∇M |2 dx ≤ Eδ(m) and

ˆ

Ω
|∇m|2 dx ≤ Eδ(m).

Thus, the second estimate in (22) holds.

Step 5. Estimate ‖M −m′‖L2(Ω). By Poincaré’s inequality, we have for each full cell C of

R:

(29)

ˆ

C

∣

∣

∣

∣

M −
 

∂C
M

∣

∣

∣

∣

2

dx ≤ Cε2β
ˆ

C
|∇M |2 dx

and

(30)

ˆ

C

∣

∣

∣

∣

m′ −
 

∂C
m′

∣

∣

∣

∣

2

dx ≤ Cε2β
ˆ

C
|∇m′|2 dx.
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Writing m′ = ρv′ with ρ ≥ 1
2 on R (by Theorem 6 in Appendix), we have v′ = M on R

and by Jensen’s inequality, we also compute

ˆ

C

∣

∣

∣

∣

 

∂C
(M −m′)

∣

∣

∣

∣

2

dx =

ˆ

C

∣

∣

∣

∣

 

∂C
(v′ −m′)

∣

∣

∣

∣

2

dx = H2(C)
 

∂C
(1− ρ)2 dH1

≤ Cεβ
ˆ

∂C
(1− ρ2)2 dH1 ≤ Cεβ+2

ˆ

∂C
eε(m

′) dH1.(31)

Summing up (29), (30) and (31) over all the cells C of the grid R, by (27) and (28), we

obtain
ˆ

Ω
|M −m′|2 dx′ ≤ Cε2βEδ(m).

Step 6. Proof of (23). Let h(m′) = ∇U(m′) and h(M) = ∇U(M) be the unique minimal

stray fields given by (3). By uniqueness and linearity of the stray field, we deduce that

h(m′)− h(M) is the minimal stray field associated to m′ −M , i.e.,

h(m′)− h(M) = h(m′ −M).

Therefore, we have by interpolation:
ˆ

Ω×R

|h(M)− h(m′)|2 dxdz (4)
=

1

2

ˆ

Ω

∣

∣

∣
|∇|−1/2∇ · (M −m′)

∣

∣

∣

2
dx

≤ C

ˆ

Ω

∣

∣

∣ |∇|1/2(M −m′)
∣

∣

∣

2
dx

≤ C

(
ˆ

Ω
|M −m′|2 dx

)1/2(ˆ

Ω
|∇(M −m′)|2 dx

)1/2

(22)
≤ CεβEδ(m).

Step 7. End of the proof. It remains to prove (24). Indeed, by (28) and Step 6, we have:

Eδ(M) =

ˆ

Ω
|∇M |2 dx+

1

δ

ˆ

Ω×R

|h(M)|2 dxdz

≤ 1

1− η

ˆ

Ω
eε(m

′) dx+
1

δ

ˆ

Ω×R

|h(m′)|2 dxdz + C
(εβ

δ

)1/2
Eδ(m)

≤ (1 + Cη)Eδ(m)

because
(εβ

δ

)1/2 ≤ η by (6). �

Observe that Theorem 5 remains true in the context of the energy Ẽδ on the domain ω.

Proof of Theorem 1. It is a direct consequence of the approximation result in Theorem

5 and of the compactness result in [12] (see Theorem 4 in [12], and also Theorem 2 in

[13]). �

3. Optimality of the Néel wall

We present now the proof of Theorem 2. The similar result in the case of S
1-valued

magnetizations was proved by Ignat and Otto in [12] (see Theorem 1 in [12]). Theorem 2

represents the extension to the case of S2-valued magnetizations.
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Proof of Theorem 2. Let Mδ be the approximating S
1-map of mδ constructed in Theo-

rem 5. By (9) and (24), we deduce that

lim sup
δ→0

δ| log δ|Eδ(Mδ) ≤
π

2
(1−m1,∞)2.

Then Theorem 1 in [12] implies the existence of a sequence δ = δn and x∗1 ∈ [−1, 1] such

that

Mδ −m∗ → 0 in L2(Ω),

which by (22) entails mδ−m∗ → 0 in L2(Ω). Moreover, the x2-periodic uniformly bounded

sequence of measures µδ(Mδ) has the property that

µδ(Mδ) ⇀ µ0 ∗ -weakly in M(Ω × R),

where µ0 is a non-negative x2-periodic measure in Ω× R. Our first aim is to prove that

(32) µ0 = (1−m1,∞)2 H1x{x∗1} × T× {0}.

Indeed, let us define the function χ : Ω → R by

χ = ±1

2
if ± x1 ≥ ±x∗1.

Then, by Step 3 of the proof of Theorem 1 (and Remark 4) in [12], it follows that

1

4α

ˆ

Ω×R

ζ dµ0 =

ˆ

Ω
∇ζ ·m∗χdx+ (1− α)

ˆ

Ω
ζ|Dχ|

for every α ∈ (0, 1) and for every smooth test function ζ : R3 → R which is 1−periodic in

x2 with compact support in x1 and x3. Then we compute
ˆ

Ω
∇ζ ·m∗χdx = −m1,∞

ˆ 1

0
ζ(x∗1, x2, 0) dx2

so that by setting α :=
1−m1,∞

2
, we conclude that

ˆ

Ω×R

ζ dµ0 = 4α2

ˆ

{x∗
1}×[0,1)×{0}

ζ dH1,

i.e., µ0 = (1−m1,∞)2H1x{x∗1} × T× {0}.

It remains to show that µδ(mδ) ⇀ µ0 in M(Ω × R). Indeed, by (9), there exists a x2-

periodic nonnegative measure µ ∈ M(Ω× R) such that up to a subsequence,

(33) µδ(mδ) ⇀ µ weakly ∗ in M(Ω × R).

The aim is to show that

µ = µ0.

Indeed, let r > 0 and x = (x∗1, x2) ∈ Ω with x2 ∈ [0, 1). We consider an arbitrary smooth

nonnegative test function ζ : R3 → [0,+∞) that is x2-periodic with compact support in

x1 and x3 such that ζ ≡ 1 on T (x, r) × (−γ, γ) for some fixed γ > 0 (recall that T (x, r)

is the full closed square centered at x of side of length 2r). Within the notation (26), by

Theorem 5, we have for β = 1/2 and η =

(

1

δ| log δ|| log ε|

)
1
6
−

:

δ| log δ|
ˆ

T (x,r−2εβ)
|∇Mδ|2

(25)
≤ (1 + Cη)δ| log δ|

ˆ

Ω
eε(m

′
δ)ζ(x, 0) dx
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and

| log δ|
ˆ

T (x,r−2εβ)×(−γ,γ)
|h(Mδ)|2 dxdz ≤ | log δ|

ˆ

Ω×R

|h(Mδ)|2ζ(x, z) dxdz

(23)
≤ | log δ|

ˆ

Ω×R

|h(m′
δ)|2ζ(x, z) dxdz + ‖ζ‖L∞O(δεβ)1/2| log δ|Eδ(mδ).

Therefore, by (6), we obtain:

lim inf
δ→0

ˆ

T (x,r−2εβ)×(−γ,γ)
dµδ(Mδ) ≤ lim inf

δ→0

ˆ

Ω×R

ζ(x, z) dµδ(mδ)
(33)
=

ˆ

Ω×R

ζ(x, z) dµ.

On the other hand, by (32), one has

2r(1−m1,∞)2 = µ0(Ṫ (x, r)× {0}) ≤ lim inf
δ→0

ˆ

T (x,r−2εβ)×(−γ,γ)
dµδ(Mδ),

where Ṫ (x, r) is the interior of T (x, r). Thus, we conclude

2r(1−m1,∞)2 ≤
ˆ

Ω×R

ζ(x, z) dµ.

Taking infimum over all test functions ζ and then infimum over γ → 0, we deduce

2r(1−m1,∞)2 ≤ µ(T (x, r)× {0}).

Setting

Line := {x∗1} × T× {0} and µL := µ xLine,

we deduce that µL(S) ≥ (1−m1,∞)2H1(S) = µ0(S) for every (closed) segment S ⊂ Line;

therefore, µ0 ≤ µL ≤ µ as measures in M(Ω ×R). In particular,

µ0(Line) ≤ µL(Line) ≤ µ(Ω× R) ≤ lim inf
δ→0

ˆ

Ω×R

dµδ(mδ)
(9)
≤ µ0(Line),

thus,

µ = µL = µ0 in M(Ω× R).

Now (11) is straightforward. �

4. Asymptotics of the Landau-Lifschitz-Gilbert equation

We start now the study of the dynamics of the magnetization. We assume Theorem 3

holds and postpone its proof to the next Section; our goal here is to establish Theorem 4.

Let {m0
δ}0<δ<1/2 be a family of initial data as in Theorem 4 and let

mδ = (m′
δ,m3,δ) : [0,+∞)× ω → S

2

be any family of global weak solutions to (LLG) satisfying (18), (19) and the energy

estimate (20). Throughout this section we assume that (A1), (A2) and (A3) are satisfied.

Let us also recall the energy inequality, on which we will crucially rely:

(20) Ẽδ(mδ(t)) +
α

2β

ˆ t

0
‖∂tmδ(s)‖2L2(ω)ds ≤ Ẽδ(m

0
δ) exp

(

4

αβ

ˆ t

0
‖vδ(s)‖2L∞(ω)ds

)

.

In particular, it follows from (20) and the assumption (A3) on vδ that

(34) Ẽδ(mδ(t)) +
ν

2λ

ˆ t

0
‖∂tmδ(s)‖2L2(ω)ds ≤ Ẽδ(m

0
δ) exp (CT ) , 0 < t ≤ T,
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and therefore it follows from the energy bound (A1) on the initial data that

(35) ∀T > 0, sup
0<δ<1/2

δ| log δ|Ẽδ(mδ(T )) < +∞.

Also, we infer the following bound on the time derivative in L2
loc([0,+∞) × ω):

(36) ∀T > 0, ‖∂tmδ‖L2([0,T ],L2(ω)) ≤ C exp(CT )

√
λ

√

δ| log(δ)|
.

This is however not a uniform bound on λ/(δ| log(δ)|) as δ → 0 in the regime (16). Never-

theless, in the next proposition, we will establish a uniform bound of {∂tmδ} in the weaker

space L2
loc(H

−1):

Proposition 1. Under the assumptions of Theorem 4, we have for all T > 0:

‖∂tmδ‖L2([0,T ],H−1(ω)) ≤
C(T )

√

δ| log(δ)|

(

λ+
λε

δ
+ ε2

)

.

Proof. Let T > 0. By (LLG) we have on [0,+∞) × ω:

∂tmδ = −αmδ × ∂tmδ − βmδ ×∇Ẽδ(mδ)− (vδ · ∇)mδ +mδ × (vδ · ∇)mδ.

First, the inequality (36) yields

‖αmδ × ∂tmδ‖L2([0,T ],L2(ω)) ≤ C exp(CT )
ε
√
λ

√

δ| log(δ)|

≤ C exp(CT )

(

ε2
√

δ| log(δ)|
+

λ
√

δ| log(δ)|

)

.

Next, by (A3) we have

‖(vδ · ∇)mδ‖L2([0,T ],L2(ω)) + ‖mδ × (vδ · ∇)mδ‖L2([0,T ],L2(ω))

≤ C
√
T exp(CT )

ε
√
λ

√

δ| log(δ)|

≤ C
√
T exp(CT )

(

ε2
√

δ| log(δ)|
+

λ
√

δ| log(δ)|

)

.

Finally, recalling (14), we have

β
∥

∥

∥mδ(t)×∇Ẽδ(mδ)(t)
∥

∥

∥

H−1(ω)

≤ C

(

λε‖∇mδ(t)‖L2(ω) +
λε

δ
‖∇mδ(t)‖L2(ω) + λ

∥

∥

∥

∥

m3,δ(t)

ε

∥

∥

∥

∥

L2(ω)

)

(37)

≤ C exp(CT )
λ

√

δ| log(δ)|

(

1 +
ε

δ

)

.

Combining the previous estimates we obtain the estimate of the Proposition. �

We now prove Theorem 4:

Proof of Theorem 4. Let T > 0. By Proposition 1 and the assumptions (6) and (16) on

ε, δ and λ, the family {∂tmδ}0<δ<1/2 is bounded in L2([0, T ],H−1(ω)). On the other

hand, {mδ}0<δ<1/2 is bounded in L∞([0, T ], L2(ω)). Therefore by Aubin-Lions Lemma

(see e.g. Corollary 1 in [20]) it is relatively compact in C([0, T ],H−1(ω)). Thus by a
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diagonal argument there exists δn → 0 and m ∈ C([0,+∞),H−1(ω)) such that mδn → m

in C([0, T ],H−1(ω)) for all T > 0 as n → ∞.

On the other hand, let t ∈ [0,+∞). In view of the bound (35) we conclude from Theorem 1

that any subsequence of (mδn(t))n∈N is relatively compact in L2(ω). Since mδn(t) → m(t)

in H−1(ω) we infer that the full sequence mδn(t) → m(t) = (m′(t), 0) strongly in L2(ω) as

n → ∞, where |m′(t)| = 1, m3(t) = 0 almost everywhere and ∇ ·m′(t) = 0 in the sense of

distributions. In particular, t 7→ ‖m(t)‖L2(ω) = |ω|1/2 ∈ C([0,+∞),R).

Let us now prove that m ∈ C([0,+∞), L2(ω)). Indeed, consider a sequence of times tn ≥ 0

converging to t ≥ 0. As m ∈ C([0, T ],H−1(ω)) and m(tn) is bounded in L2(ω), we infer

that m(tn) ⇀ m(t) weakly in L2(ω). But we just saw that ‖m(tn)‖L2(ω) → ‖m(t)‖L2(ω),

so that in fact m(tn) → m(t) strongly in L2(ω). This is the desired continuity.

Finally, Proposition 1 and (16) imply that

∂tmδn → 0 = (∂tm
′, 0) in D′([0,+∞) × ω),

which concludes the proof. �

5. The Cauchy Problem for the Landau-Lischitz-Gilbert equation

In this section we handle the Cauchy problem for the Landau-Lifshitz-Gilbert equation in

the energy space.

Proof of Theorem 3. We use an approximation scheme by discretizing in space. We first

introduce some notation.

Notation and discrete calculus:

Let n ≥ 1 be an integer, h = 1/n and ωh = hZ2 ∩ ω. For a vector field mh : ωh → R
3, we

will always assume x2-periodicity in the following sense:

∀x1 ∈ hZ ∩ [−1, 1], e ∈ Z, mh(x1, 1 + eh) = mh(x1, eh).

We then define the differentiation operators as follows: for x = (x1, x2) ∈ ωh,

∂h
1m

h(x) =











1

2h
(mh(x1 + h, x2)−mh(x1 − h, x2)) if |x1| < 1,

± 1

2h
(mh(x1, x2)−mh(x1 ∓ h, x2)) if x1 = ±1,

∂h
2m

h(x) =
1

2h
(mh(x1, x2 + h)−mh(x1, x2 − h)).

Observe that ∂h
1 is the half sum of the usual operators ∂h

1+ and ∂h
1− vanishing at the

boundary x1 = 1 and x1 = −1 respectively. Also we define the discrete gradient and

laplacian: denoting (ê1, ê2) the canonical base of R2, we let

∇hmh =
2
∑

k=1

∂h
km

h ⊗ êk, ∆hmh =
2
∑

k=1

∂h
k∂

h
km

h.

We introduce the scalar product

〈mh, m̃h〉h = h2
∑

x∈ωh

mh(x) · m̃h(x)

and the L2
h-norm and Ḣ1

h-seminorm:

|mh|2L2
h
:= 〈mh,mh〉h, |mh|2

Ḣ1
h
:= 〈∇hmh,∇hmh〉h.
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Then we have the integration by parts formulas:

〈∂h
1m

h, m̃h〉h = −〈mh, ∂h
1 m̃

h〉h + h
∑

x∈ωh, x1=1

mh(x)m̃h(x)− h
∑

x∈ωh, x1=−1

mh(x)m̃h(x),

〈∂h
2m

h, m̃h〉h = −〈mh, ∂h
2 m̃

h〉h,

where we used the above boundary conditions and periodicity.

We now define the sampling and interpolating operators Sh and Ih. We discretize a map

m : ω → R
3 by defining Shm : ωh → R

3 as follows:

Shm(x) =











1

h2

ˆ

Ch
x

m(y)dy if x1 < 1,

m(x) if x1 = 1,

where Ch
x = {y ∈ ω | xk ≤ yk < xk + h, k = 1, 2}. We will also identify Shm with the

function ω → R
3 which is constant on each cell Ch

x for x ∈ ωh with value Shm(x). With

this convention, Shm is the orthogonal projection onto piecewise constant functions on

each cell Ch
x in L2(ω). Also we have |Shm|L2

h
= ‖Shm‖L2(ω), and

|Shm|L2
h
≤ ‖m‖L2(ω), |∇hShm|L2

h
≤ ‖∇m‖L2(ω), |Shm|L∞

h
≤ ‖m‖L∞(ω).(38)

We interpolate a discrete map mh : ωh → R
3 to Ihmh : ω → R

3 by a quadratic approxi-

mation as follows: if x ∈ Ch
y with y ∈ ωh, we set

Ihmh(x) = mh(y) +
2
∑

k=1

∂h+
k mh(y)(xk − yk) + ∂h+

1 ∂h+
2 mh(y)(x1 − y1)(x2 − y2),

where ∂h+
k mh(y) =







1

h
(mh(y + hêk)−mh(y)) if k = 2 or (k = 1 and y1 < 1),

0 if k = 1 and y1 = 1.

One can check that Ihmh ∈ H1(ω) is continuous (it is linear in each variable x1 and x2,

and coincide with mh at every point of ωh), quadratic on each cell Ch
y , and

|mh|L2
h
∼ ‖Ihmh‖L2(ω), |∇hmh|L2

h
∼ ‖∇Ihmh‖L2(ω), |mh|L∞

h
= ‖Ihmh‖L∞(ω)(39)

(we refer, for example, to [19]).

We discretize the non-local operator P so as to preserve the structure of a discrete form

of

ˆ

||∇|−1/2∇ · m′|2. For this, notice that |∇|−1 and |∇|−1/2 naturally act as compact

operators on L2(ω), and hence if mh : ωh → R
3, |∇|−1mh ∈ L2(ω) has a meaning. Also

observe that due to Dirichlet boundary conditions, d/dt commutes with (−∆)−1, and hence

with any operator of the functional calculus: in particular,

d

dt
|∇|−1m = |∇|−1 dm

dt
.

Therefore we define for mh : ωh → R
3 the discrete operator:

Phmh′ := −∇hSh(|∇|−1∇h ·mh′).

Then as ‖∇hShm‖L2
h
≤ C‖∇m‖L2(ω) we have

‖Phmh′‖L2
h
≤ C‖|∇|−1∇h ·mh′‖Ḣ1(ω) ≤ C‖∇h ·mh′‖L2(ω) ≤ C‖∇hmh′‖L2

h
.(40)

Step 1: Discretized solution and uniform energy estimate.
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Let

vh(t) := Shv(t) : ωh → R
3 and mh

0(x) :=
1

|Sh(m0)(x)|
Sh(m0)(x).

We consider the solution mh(t) : ωh → R
3 to the following discrete ODE system: for

x = (x1, x2) ∈ ωh such that |x1| < 1, then






























dmh

dt
+mh ×

(

α
dmh

dt
+ β

(

−2∆hmh +

(

1

δ
Ph(mh′),

2

ε2
mh

3

))

− (vh · ∇h)mh −mh × (vh · ∇h)mh

)

= 0

mh(0, x) = mh
0(x),

(41)

and at the boundary

mh(t,−1, x2) = mh
0(−1, x2), mh(t, 1, x2) = mh

0(1, x2).(42)

As the operator A(mh) : µ 7→ µ + αmh × µ is (linear and) invertible, this ODE takes the

form
dmh

dt
= A(mh)−1(Φ(mh)),

where

Φ(mh) = mh×
(

β

(

−2∆hmh +

(

1

δ
Ph(mh′),

2

ε2
mh

3

))

− (vh · ∇h)mh −mh × (vh · ∇h)mh

)

is C∞. Hence the Cauchy-Lipschitz theorem applies and guarantees the existence of a

maximal solution. Furthermore, we see that for all x ∈ ωh,

d

dt
|mh(t, x)|2 = 2

(

mh(t, x),
d

dt
mh(t, x)

)

=

(

mh(t, x),mh(t, x)×
(

α
d

dt
mh(t, x) + Φ(mh)(t, x)

))

= 0.

This shows that for all x ∈ ωh, |mh(t, x)| = 1 remains bounded, and hence mh is defined

for all times t ∈ R.

We now derive an energy inequality for mh. For this we take the L2
h scalar product of (41)

with mh × dmh

dt
. Recall that if a, b, c ∈ R

3, then (a× b)× c = (a · c)b− (a · b)c, hence

(c× a) · (c× b) = ((c× a)× c) · b) = (a · b)|c|2 − (c · a)(c · b)

so that for any m̃ ∈ R
3, and pointwise (t, x) ∈ [0,+∞)× ωh

(

mh(t, x)× dmh

dt
(t, x)

)

· (mh(t, x)× m̃) =
dmh

dt
(t, x) · m̃.

Hence we have the pointwise equalities for x ∈ ωh with |x1| < 1:

(

mh × dmh

dt

)

·
(

mh × α
dmh

dt

)

= α

∣

∣

∣

∣

dmh

dt

∣

∣

∣

∣

2

,

(

mh × dmh

dt

)

·
(

mh × 2(0, 0,mh
3 )

T
)

=
d

dt
|mh

3 |2.

If x ∈ ωh is on the boundary, that is |x1| = 1, then
dmh

dt
(0, x) = 0 due to (42), and the

previous identities also hold: we can therefore sum over x ∈ ωh. Now consider the term
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involving the discrete Laplacian. The discrete integration by parts yields no boundary

term due to dmh/dt; and of course d/dt commutes with ∇h. Therefore
〈

mh × dmh

dt
,mh × (−2∆hmh)

〉

h

= −2

〈

dmh

dt
,∆hmh

〉

h

= 2

〈

∇h dm
h

dt
,∇hmh

〉

h

=
d

dt

∥

∥

∥
∇hmh

∥

∥

∥

2

h
.

For the nonlocal term, |∇|−1/2 is a self adjoint operator on L2 due to the Dirichlet boundary

conditions: the integration by parts yields no boundary term either. More precisely, as

d/dt commutes with all space operators, we have
〈

dmh′

dt
,Phmh′

〉

h

= −
〈

∇hdm
h′

dt
, Sh|∇|−1∇h ·mh′

〉

h

=

ˆ

∇h dm
h′

dt
· (|∇|−1∇h ·mh′) = −

ˆ

(

|∇|−1/2∇h · dm
h′

dt

)

(|∇|−1/2∇h ·mh′)

= −1

2

d

dt
‖|∇|−1/2∇h ·mh′‖2L2 .

Thus we get

α

∥

∥

∥

∥

dmh

dt

∥

∥

∥

∥

2

L2
h

+ β
d

dt

(

‖∇hmh‖2L2
h
+

1

δ
‖|∇|−1/2(∇h ·mh′)‖2L2 +

1

ε2
‖mh

3‖2L2
h

)

=

〈

(vh · ∇h)mh +mh × (vh · ∇h)mh,
dmh

dt

〉

L2
h

.

Denote

Eh(mh) = ‖∇hmh‖2L2
h
+

1

2δ
‖|∇|−1/2(∇h ·mh′)‖2L2 +

1

ε2
‖mh

3‖2L2
h
.

Now we have
∣

∣

∣

∣

∣

〈

(vh · ∇h)mh +mh × (vh · ∇h)mh,
dmh

dt

〉

L2
h

∣

∣

∣

∣

∣

≤
√
2‖vh‖L∞

h
‖∇hmh‖L2

∥

∥

∥

∥

dmh

dt

∥

∥

∥

∥

L2
h

≤
√
2‖v‖L∞Eh(mh)1/2

∥

∥

∥

∥

dmh

dt

∥

∥

∥

∥

L2
h

≤ α

2

∥

∥

∥

∥

dmh

dt

∥

∥

∥

∥

2

L2
h

+
4

α
‖v‖2L∞Eh(mh).

Thus we obtained:

α

2β

∥

∥

∥

∥

dmh

dt

∥

∥

∥

∥

2

L2
h

+
d

dt
Eh(mh) ≤ 4

αβ
‖v‖2L∞Eh(mh).

By Gronwall’s inequality, we deduce

(43) Eh(mh(t)) +
α

2β

ˆ t

0

∥

∥

∥

∥

dmh

dt
(s)

∥

∥

∥

∥

2

L2
h

ds ≤ Eh(mh(0)) exp

(

4

αβ

ˆ t

0
‖v(s)‖2L∞ds

)

.

Step 2: Continuous limit of the discretized solution

Notice that ‖vh‖L∞ ≤ ‖v‖L∞ . Also, as m0 ∈ H1(ω), then mh(0) → m0 in H1(ω) and

Eh(mh(0)) → Ẽδ(m0).
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Fix T > 0. It follows from (43) and (39) that the sequence Ihmh is bounded in L∞([0, T ],H1(ω))

and in Ḣ1([0, T ], L2(ω)) (observe that ∂t(I
hmh) = Ih(dmh/dt)):

sup
h

(

sup
t∈[0,T ]

‖∇(Ihmh)(t)‖2L2(ω) +

ˆ T

0
‖∂t(Ihmh)(s)‖L2(ω)ds

)

< +∞.

As this is valid for all T ≥ 0, we can extract via a diagonal argument a weak limit

m ∈ L∞
loc([0,+∞),H1(ω))∩ Ḣ1

loc([0,+∞), L2(ω)) (up to a subsequence that we still denote

mh) in the following sense

Ihmh ∗
⇀ m ∗ -weakly in L∞

loc([0,+∞),H1(ω)),(44)

∂t(I
hmh) ⇀ ∂tm weakly in L2

loc([0,∞), L2(ω)),(45)

Ihmh → m a.e.(46)

By compact embedding, the following strong convergence also holds:

Ihmh → m strongly in L2
loc([0,+∞), L2(ω)).

Then it follows that for all t ≥ 0,

Ẽδ(m(t)) ≤ lim inf
h→0

Ẽδ(I
hmh(t)) = lim inf

h→0
Eh(mh(t))

≤ lim inf
h→0

Eh(mh(0)) exp

(

4

αβ

ˆ t

0
‖v(s)‖2L∞ds

)

≤ Ẽδ(m0) exp

(

4

αβ

ˆ t

0
‖v(s)‖2L∞ds

)

.

This is the energy dissipation inequality.

Observe that if ϕ is a test function, then ∇hϕ → ∇ϕ in L2 (strongly). Using (46), it

follows classically (cf [16, p. 224]) that

mh → m strongly in L2
loc([0,+∞), L2(ω)).

Therefore |m| = 1 a.e and

∇hmh ⇀ ∇m weakly in L2
loc([0,+∞, L2(ω)).

From there, arguing in the same way, it follows that

mh×∆hmh = ∇h ·(mh×∇hmh) ⇀ ∇·(m×∇m) = (m×∆m) weakly in D′((0,+∞)×ω).

Also notice that ∂t(I
hmh) = Ih

dmh

dt
. Hence

∂tm
h ⇀ ∂tm weakly in L2

loc([0,∞), L2(ω)).

We can now deduce the convergences of the other nonlinear terms in the distributional

sense:

mh × ∂tm
h ⇀ m× ∂tm weakly in D′((0,+∞) × ω),

mh × (v · ∇h)mh ⇀ m× (v · ∇)m weakly in D′((0,+∞)× ω),

and

mh × (mh × (v · ∇h)mh) = −(vh · ∇h)mh

⇀ −(v · ∇)m = m× (m× (v · ∇)m) weakly in D′((0,+∞)× ω).
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It remains to consider the nonlocal term. As ∇hmh ⇀ ∇m weakly in L2
loc([0,+∞), L2(ω)),

we have

|∇|−1∇h ·mh′ ⇀ |∇|−1∇ ·m′ weakly in L2
loc([0,∞),H1(ω)).

But from (38), and noticing that Shϕ → ϕ in H1 strongly for any test function ϕ and as

Sh is L2-self adjoint, we infer that

Sh|∇|−1∇h ·mh′ ⇀ |∇|−1∇ ·m′ weakly in L2
loc([0,∞),H1(ω)),

and similarly,

Ph(mh′) = −∇hSh(|∇|−1∇h·mh′) ⇀ −∇|∇|−1∇·m = P(m′) weakly in L2
loc([0,∞), L2(ω)).

Recalling that mh → m strongly in L2
loc([0,∞), L2(ω)), we deduce by weak-strong conver-

gence that

mh ×Hh(mh) ⇀ m×H(m) D′([0,∞) × ω).

This shows that m satisfies (LLG) on [0,∞) × ω in the sense of Definition 1. �

Appendix A. A uniform estimate

For ε > 0 small, we consider the full cell C = (0, εβ)2 ⊂ R
2 with ν (resp. τ) the unit outer

normal vector (resp. the tangent vector) at ∂C and a boundary data gε ∈ H1(∂C,R2) with

|gε| ≤ 1 on ∂C. We recall the definition of the Ginzburg-Landau energy density

eε(u) = |∇u|2 + 1

ε2
(1− |u|2)2 for u ∈ H1(C,R2).

Let uε ∈ H1(C,R2) be a minimizer of the variational problem

min

{
ˆ

C
eε(u) dx : u = gε on ∂C

}

.

In the spirit of Bethuel, Brezis and Hélein [2], it will be proved that |uε| is uniformly close

to 1 as ε → 0 under certain energetic conditions. The same argument is used in [11]:10

Theorem 6. Let β ∈ (0, 1). Let κ = κ(ε) > 0 be such that κ = o(| log ε|) as ε → 0.

Assume that there exists K0 > 0 such that

(47)

ˆ

∂C

(

|∂τgε|2 +
1

ε2
(1− |gε|2)2

)

dH1 ≤ K0κ

εβ
and

ˆ

C
eε(uε) dx ≤ K0κ,

for all ε ∈ (0, 12). Then there exist ε0(β) > 0 and C(K0) > 0 such that for all 0 < ε ≤ ε0
we have

sup
C

∣

∣|uε| − 1
∣

∣ ≤ C

(

κ

| log ε|

)
1
6
−

,

where 1
6− is any fixed positive number less that 1

6 . In particular, |gε| ≥ 1/2 on ∂C and

deg(gε, ∂C) = 0.

Remark 2. In the setting of the proof of Theorem 1 we take κ = 1/(δ| log δ|).

The proof of Theorem 6 is done by using the following results:

10Theorem 6 is an improvement of the results in [2] in the case where the energy of the boundary data
gε is no longer uniformly bounded.
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Lemma 1. Under the hypothesis of Theorem 6, we have
ˆ

∂C
eε(uε) dx ≤ C K0κ

εβ
,

where C > 0 is some universal constant. Up to a change of K0 in Theorem 6, we will

always assume that the above C = 1.

Proof. Since uε is a minimizer of eε, then uε is a solution of

(48) −∆uε =
2

ε2
uε(1− |uε|2) in C.

We use the Pohozaev identity for uε. More precisely, multiplying the equation by (x−x0) ·
∇uε and integrating by parts, we deduce:

∣

∣

∣

∣

1

ε2

ˆ

C
uε(1− |uε|2) ·

(

(x− x0) · ∇uε

)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2ε2

ˆ

C
(1− |uε|2)2 dx− 1

4ε2

ˆ

∂C
(x− x0) · ν(1− |gε|2)2 dH1

∣

∣

∣

∣

(47)
≤ CK0κ,(49)

ˆ

C
∆uε ·

(

(x− x0) · ∇uε

)

dx

=

ˆ

∂C

(

− 1

2
(x− x0) · ν|∇uε|2 +

∂uε
∂ν

· ∂uε
∂(x− x0)

)

dH1,(50)

where
∂uε

∂(x− x0)
= ∇uε ·(x−x0). For x ∈ ∂C, we have x−x0 = εβ(ν+sτ) with s ∈ (−1, 1),

uε(x) = gε(x) and we write (as complex numbers) ∇uε = ∇u1,ε + i∇u2,ε = ∂uε
∂ν ν + ∂gε

∂τ τ

on ∂C. By (48), (49) and (50), it follows by Young’s inequality:

CK0κ

εβ
≥
ˆ

∂C

(

1

2

∣

∣

∂uε
∂ν

∣

∣

2 − 1

2

∣

∣

∂gε
∂τ

∣

∣

2
+ s

∂uε
∂ν

· ∂gε
∂τ

)

dH1 ≥
ˆ

∂C

(

1

4

∣

∣

∂uε
∂ν

∣

∣

2 − 3

2

∣

∣

∂gε
∂τ

∣

∣

2
)

dH1.

Therefore, by (47), we deduce that
´

∂C

∣

∣

∂uε
∂ν

∣

∣

2
dH1 ≤ CK0κ

εβ
and the conclusion follows. �

In the following, we denote by T (x, r) the square centered at x of side of length 2r.

Lemma 2. Fix 1 > β1 > β2 > β > 0. Under the hypothesis of Theorem 6, there exist

ε0 = ε0(β2, β) > 0 and C = C(K0) > 0 such that for every x0 ∈ C and all 0 < ε ≤ ε0, we

can find r0 = r0(ε) ∈ (εβ1 , εβ2) such that

(51)

ˆ

∂
(

T (x0,r0)∩C
)
eε(uε) dH1 ≤ Cκ

r0| log ε|
.

Moreover, we have

(52)
1

ε2

ˆ

T (x0,r0)∩C
(1− |uε|2)2 dx ≤ C̃κ

| log ε|

for some C̃ > 0 depending on K0.

Proof. We distinguish two steps:

Step 1. Proof of (51). Fix ε0 ∈ (0, 12) (depending on β2−β) such that εβ2−β
0 | log ε0| ≤ 1/2.

Assume by contradiction that for every C ≥ K0 there exist x ∈ C and ε ∈ (0, ε0) such that

for every r ∈ (εβ1 , εβ2), we have
ˆ

∂
(

T (x0,r)∩C
)
eε(uε) dH1 ≥ Cκ

r| log ε| .
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By Lemma 1, we have
ˆ

∂C
eε(uε) dH1 ≤ K0κ

εβ
≤ K0κ

2εβ2 | log ε| ≤
Cκ

2r| log ε| , ∀r ∈ (εβ1 , εβ2).

Therefore, we deduce that
ˆ

∂T (x0,r)∩C
eε(uε) dH1 ≥

ˆ

∂
(

T (x0,r)∩C
)
eε(uε) dH1 −

ˆ

∂C
eε(uε) dH1 ≥ Cκ

2r| log ε| .

Integrating in r ∈ (εβ1 , εβ2), we obtain

K0κ
(47)
≥

ˆ

C
eε(uε) dx ≥

ˆ

T (x0,εβ2)∩C
eε(uε) dx

≥
ˆ εβ2

εβ1
dr

ˆ

∂T (x0,r)∩C
eε(uε) dH1 ≥ C(β1 − β2)κ

2

which is a contradiction with the fact that C can be arbitrary large.

Step 2. Proof of (52). Let x0 ∈ C. We use the same argument as at Lemma 1 involving a

Pohozaev identity for the solution uε of (48) in the domain

D := T (x0, r0) ∩ C

where r0 is given at (51). Multiplying the equation by (x − x0) · ∇uε and integrating by

parts, we deduce:
ˆ

D
−∆uε ·

(

(x− x0) · ∇uε

)

dx

=

ˆ

∂D

(

1

2
(x− x0) · ν|∇uε|2 −

∂uε
∂ν

· ∂uε
∂(x− x0)

)

dH1,

1

ε2

ˆ

D
uε(1− |uε|2) ·

(

(x− x0) · ∇uε

)

dx

=
1

2ε2

ˆ

D
(1− |uε|2)2 dx− 1

4ε2

ˆ

∂D
(x− x0) · ν(1− |uε|2)2 dH1.

Since |x− x0| ≤
√
2r0 on ∂D, by (51), we deduce that (52) holds true. �

Lemma 3. Under the hypothesis of Theorem 6, we have that ‖uε‖L∞(C) ≤ 1 and

|uε(x)− uε(y)| ≤ C

(

|x− y|
ε

+
|x− y| 12−

ε
1
2
−

)

, ∀x, y ∈ C,

where C ≥ 1 is a universal constant (independent of K0) and 1
2− is some positive number

less than 1
2 .

Remark 3. Unlike [2], the estimate ‖∇uε‖L∞(C) ≤ C/ε does not hold in general here since

it might already fail for the boundary data gε (due to (47)). Therefore, the estimate given

by Lemma 3 is the natural one in our situation.

Proof. Let ρ = 1 − |uε|2. Then (48) implies that −∆ρ + 4
ε2
|uε|2ρ ≥ 0 in C and ρ =

1 − |gε|2 ≥ 0 on ∂C. Thus, the maximal principle implies that ρ ≥ 0, i.e., |uε| ≤ 1 on ∂C.

For the second estimate, we do the rescaling U(x) = uε(ε
βx) for x ∈ Ω0 := (0, 1)2 and

G(x) = gε(ε
βx) for x ∈ ∂Ω0 and get the equation

−∆U =
2

ε2(1−β)
U(1− |U |2) in Ω0 with U = G on ∂Ω0.
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Then we write U = V +W with −∆V = 2
ε2(1−β)U(1 − |U |2) in Ω0 and V = 0 on ∂Ω0

and ∆W = 0 in Ω0 with W = G on ∂Ω0. In particular, −∆|W |2 = −2|∇W |2 ≤ 0 in Ω0;

since |W | ≤ 1 on ∂Ω0, the maximal principle implies that |W | ≤ 1 in Ω0. Due to |U | ≤ 1,

we deduce that |V | ≤ 2 in Ω0. Using the Gagliardo-Nirenberg inequality, we have

‖∇V ‖L∞(Ω0) ≤ C0‖V ‖
1
2

L∞(Ω0)
‖∆V ‖

1
2

L∞(Ω0)
,

so that we obtain

‖∇V ‖L∞(Ω0) ≤ C/ε1−β .

In order to have the C0,1/2− estimate for W , we start by noting that
ˆ

∂Ω0

|∂τG|2 dH1 = εβ
ˆ

∂C
|∂τgε|2 dH1

(47)
≤ K0κ.

So, by regularity theory for harmonic functions, we deduce:11

‖W‖
Ḣ

3
2−(Ω0)

≤ C0‖G‖Ḣ1−(∂Ω0)
≤ C(K0κ)

1/2.

By Sobolev embedding H
3
2
−(Ω0) ⊂ C0, 1

2
−(Ω0), it follows:

|W (x)−W (y)| ≤ C|x− y| 12−‖W‖
Ḣ

3
2−(Ω0)

≤ C(K0κ)
1/2|x− y| 12−, ∀(x, y) ∈ Ω2

0.

Therefore, we obtain

|U(x)− U(y)| ≤ |V (x)− V (y)|+ |W (x)−W (y)|

≤ C

(

|x− y|
ε1−β

+
|x− y| 12−

ε
1−β
2

−
(K0κ)

1/2ε
1−β
2

−

)

, ∀(x, y) ∈ Ω2
0.

Scaling back, we obtain the desired estimate for uε in C since (K0κ)
1/2ε

1−β
2

− = o(1). �

Proof of Theorem 6. We will show that

‖|uε|2 − 1‖L∞(C) ≤ C

(

κ

| log ε|

)
1
6
−

.

Let x0 ∈ C such that |uε(x0)| < 1. Set 0 < A < 1 such that

2C(2A+ (2A)
1
2
−) =

(1− |uε(x0)|2)
2

> 0,

where C is given by Lemma 3. In particular, A
1
2
− ≥ A ≥ C1(1−|uε(x0)|2)2+. By Lemma 3,

we obtain for any y ∈ T (x0, Aε) ∩ C: |y − x0| ≤ 2Aε and

1− |uε(y)|2 ≥ 1− |uε(x0)|2 − 2C(2A+ (2A)
1
2
−) =

1− |uε(x0)|2
2

.

Hence, for small ε, we have Aε < ε ≤ εβ1 ≤ r0 (with r0 given in (51)) and

C̃κε2

| log ε|
(52)
≥

ˆ

T (x0,Aε)∩C
(1− |uε(y)|2)2 dy

≥ 1

16
A2ε2(1− |uε(x0)|2)2 =

1

16
C2
1ε

2(1− |uε(x0)|2)6+.

11Let us consider for simplicity the following 2D situation: ∆W = 0 for x2 6= 0 and W = G for x2 = 0.
Passing in Fourier transform in x1, we obtain that F(W )(ξ1, x2) = e−|ξ1| |x2|F(G)(ξ1). Therefore, the
Fourier transform in both variables of R

2 of W is given by Ŵ (ξ) = F(G)(ξ1)
´

R
e−iξ2x2e−|ξ1||x2| dx2 =

F(G)(ξ1)
|ξ1|
|ξ|2 because F(x1 7→ 1

1+x2

1

)(ξ1) = e−|x1|. Therefore, ‖W ‖
Ḣ

3

2
−

(R2)
∼ ‖G‖Ḣ1−(R).
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Thus, we conclude that

(1− |uε(x0)|2)6+ ≤ Ĉ
κ

| log ε| . �
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