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Differential Equations in Banach Spaces

Consider the equation

(E1) y′ = Ay + f, y(0) = y0,

with f ∈ C([0, T ];Y ), y0 ∈ Y , Y is a Banach space.

If A ∈ L(Y ), then equation (E1) admits a unique

solution in C1(R;Y ) given by

y(t) = etAy0 +
∫ t

0

e(t−s)Af(s)ds,

etA =
∞∑

n=0

tn

n!
An, ∀t ∈ R.
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The 1-D Heat Equation

Consider the heat equation in (0, L)× (0, T )

y ∈ L2(0, T ;H1
0(0, L)) ∩ C([0, T ];L2(0, L)),

yt − yxx = 0 in (0, L)× (0, T ),

y(0, t) = y(L, t) = 0 in (0, T ),

y(x, 0) = y0(x) in (0, L),

where T > 0, L > 0, et y0 ∈ L2(0, L).

– Typeset by FoilTEX – 5



We can rewrite the equation in the form

y ∈ L2(0, T ;H1
0(0, L)) ∩ C([0, T ];L2(0, L))

dy

dt
∈ L2(0, T ;H−1(0, L)),

dy

dt
= Ay in L2(0, T ;H−1(0, L)),

y(0) = y0 in L2(0, L),

where A ∈ L(H1
0(0, L);H−1(0, L)) is defined by

〈Ay, z〉 = −
∫ L

0

yx · zx dx.
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The operator A can be defined as an unbounded

operator in L2(0, L) by setting

D(A) = H2(0, L) ∩H1
0(0, L), Ay = yxx.

We would like to write the solution y in the form

y(t) = etAy0.

Observe that

H1
0(0, L) A7−→ H−1(0, L),

H3(0, L) ∩ {y | yxx(0) = yxx(L) = 0} A7−→ H1
0(0, L).
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To find an other definition for etA, we introduce

φk =

√
2
L

sin
(kπx

L

)
.

The family (φk)k≥1 is a Hilbertian basis of L2(0, L),
and φk is an eigenfunction of the operator (A,D(A)):

φk ∈ D(A), Aφk = λkφk, λk = −k2π2

L2
.

We look for y in the form

y(x, t) =
∞∑

k=1

gk(t)φk(x).
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If y0(x) = y(x, 0) =
∞∑

k=1

gk(0)φk(x),

and if the P.D.E. is satisfied in the sense of distributions

in (0, L)× (0, T ), then gk obeys

g′k + (k2π2)/(L2)gk = 0 in (0, T ),
gk(0) = y0k = (y0, φk).

We have gk(t) = y0ke
−k2π2t

L2 .

The function y ∈ L2(0, T ;H1
0(0, L))∩C([0, T ];L2(0, L))

y(x, t) = Σ∞k=1 y0ke
−k2π2t

L2 φk(x)

is the solution of the heat equation.

– Typeset by FoilTEX – 9



Remark. y is not defined for t < 0.

Setting

S(t)y0 =
∞∑

k=1

(y0, φk)e
−k2π2t

L2 φk(x),

we have

(i) S(0) = I,

(ii) S(t) ∈ L(L2(0, L)) for all t ≥ 0,

(iii) S(t + s)y0 = S(t) ◦ S(s) y0 ∀t ≥ 0, ∀s ≥ 0,

(iv) limt↘0‖S(t)y0 − y0‖L2(0,L) = 0.
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When A ∈ L(Y ), the family (etA)t∈R satisfies:

(i) e0A = I,

(ii) etA ∈ L(Y ) for all t ∈ R,

(iii) e(s+t)A = esA ◦ etA ∀t ∈ R, ∀s ∈ R,

(iv) limt→0‖etA − I‖L(Y ) = 0,

(v) Ay = limt→0
1
t

(
etAy − y

)
∀y ∈ Y.
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M-Dissipative Operators
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Unbounded Operators

Definition. An unbounded linear operator on a Banach

space Y is defined by a couple (A,D(A)), where D(A)
is a linear subspace of Y , and A is a linear mapping

from D(A) ⊂ Y into Y . The subspace D(A) is called

the domain of the operator A.

In a similar way, an unbounded linear operator from

Y into Z is defined by a couple (A,D(A)), where D(A)
is a linear subspace of Y , and A is a linear mapping

from D(A) ⊂ Y into Z.

Definition. An unbounded linear operator (A,D(A))
on Y is a closed operator if its graph G(A) = {(y, Ay) |
y ∈ D(A)} is closed in Y × Y .
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Definition. Let (A,D(A)) be an unbounded linear

operator (A,D(A)) on Y . We say that (A,D(A)) is a

densely defined operator in Y , or that (A,D(A)) is an

operator with dense domain in Y , if D(A) is dense in

Y .

Definition. Let (A,D(A)) be a densely defined

operator in Y . The adjoint operator of A is the

operator (A∗, D(A∗)) defined by

D(A∗) = {z ∈ Y ′ | ∃c ≥ 0 such that

〈Ay, z〉Y,Y ′ ≤ c‖y‖Y for all y ∈ D(A)},

and

〈y, A∗z〉Y,Y ′ = 〈Ay, z〉Y,Y ′

for all y ∈ D(A) and all z ∈ D(A∗).
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Theorem. Let (A,D(A)) be an unbounded linear

operator with dense domain in Y . Suppose that Y is

a reflexive Banach space and that A is closed. Then

D(A∗) is dense in Y ′.
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Example 1. Suppose that Ω is a bounded regular

subset of Rn. The boundary of Ω is denoted by Γ. Set

Y = L2(Ω), D(A) = H2 ∩H1
0(Ω), Ay = ∆y.

A is a closed operator. Let (yn)n ⊂ D(A) such that

yn
L2(Ω)−→ y and Ayn

L2(Ω)−→ f.

We know that

∆yn
D′(Ω)−→ ∆y = f.

Therefore

y ∈ H(∆; Ω) = {y ∈ L2(Ω) | ∆y ∈ L2(Ω)}.
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Since

γ0 ∈ L(H(∆; Ω);H−1/2(Γ)),

we have

γ0y = 0.

The problem

y ∈ H(∆; Ω), ∆y = f in Ω, γ0y = 0 on Γ,

admits a unique solution. From elliptic existence results

and elliptic regularity results it follows that y ∈ D(A).

A = A∗. First prove that

D(A) ⊂ D(A∗).
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Let z ∈ D(A). For every y ∈ D(A), we have

〈Ay, z〉Y,Y ′ =
∫

Ω

∆y z =
∫

Ω

y ∆z ≤ C‖y‖L2(Ω).

Thus z ∈ D(A∗) and A∗z = ∆z.

Prove the reverse inclusion. Let z ∈ D(A∗). We know

that

|(y, A∗z)L2| = |(Ay, z)L2| = |
∫

Ω

∆y z| ≤ C‖y‖L2(Ω)

for all y ∈ D(A). Thus

A∗z ∈ L2(Ω).
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Set f = A∗z. Denote by z̃ ∈ D(A) the solution of

z̃ ∈ D(A), ∆z̃ = f.

We have

(Ay, z − z̃)L2 = (y, A∗z −∆z̃)L2 = 0

for all y ∈ D(A). For every g ∈ L2(Ω),

(g, z − z̃)L2 = 0.

This means that z = z̃.
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Example 2. Let (0, L) be an open bounded interval in

R. Set

Y = L2(0, L), D(A) = {y ∈ H1(0, L) | y(0) = 0},

Ay = yx ∀y ∈ D(A).
A is a closed operator. Let (yn)n ⊂ D(A) such that

yn
L2(0,L)−→ y and Ayn

L2(0,L)−→ f.

We know that

dyn

dx

D′(0,L)−→ dy

dx
= f.

Thus y ∈ H1(0, L). Since (yn)n is bounded in

H1(0, L), we can prove that yn(0) → y(0). Therefore

y ∈ D(A).
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Characterization of A∗. Let us prove that

D(A∗) = {y ∈ H1(0, L) | y(L) = 0}, A∗y = −yx.

First prove that

{y ∈ H1(0, L) | y(L) = 0} ⊂ D(A∗).

Let z ∈ {y ∈ H1(0, L) | y(L) = 0}. For every y ∈
D(A), we have

(Ay, z)L2 =
∫ L

0

yx z = −
∫ L

0

y zx ≤ C‖y‖L2(0,L).

Thus z ∈ D(A∗) and A∗z = −zx.
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Prove the reverse inclusion. Let z ∈ D(A∗). We know

that

|(y, A∗z)L2| = |(Ay, z)L2| = |
∫ L

0

yx z| ≤ C‖y‖L2(0,L).

for all y ∈ D(A). Thus

zx ∈ L2(0, L).

Set f = −zx. Denote by z̃ ∈ {y ∈ H1(0, L) | y(L) =
0} the solution of

z̃ ∈ H1(0, L), z̃(L) = 0, −z̃x = f.
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We have

(Ay, z − z̃)L2 = (y, A∗z − z̃x)L2 = 0

for all y ∈ D(A).

For every g ∈ L2(0, L),

(g, z − z̃)L2 = 0.

This means that z = z̃.
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M-Dissipative Operators on Hilbert spaces

From now on we suppose that Y is a Hilbert space.

Definition. An unbounded linear operator (A,D(A))
on Y , is dissipative if and only if

∀y ∈ D(A), (Ay, y)Y ≤ 0.

For a complex Hilbert space the previous condition is

replaced by

∀y ∈ D(A), Re(Ay, y)Y ≤ 0.
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Remark. If Y is a Banach space, an unbounded linear

operator (A,D(A)) on Y , is dissipative if and only if

∀y ∈ D(A), ∀λ > 0, ‖λy −Ay‖ ≥ λ‖y‖.

Definition. An unbounded linear operator (A,D(A))
on Y , is m-dissipative if and only if

• A is dissipative,

• ∀f ∈ Y, ∀λ > 0, ∃y ∈ D(A) such that

λy −Ay = f.
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Theorem. If (A,D(A)) is an m-dissipative operator

then, for all λ > 0, the operator (λI − A) admits an

inverse, (λI − A)−1f belongs to D(A) for all f ∈ Y ,

and (λI − A)−1 is a linear bounded operator on Y

satisfying

‖(λI −A)−1‖L(Y ) ≤
1
λ
.

Theorem. Let (A,D(A)) be an unbounded dissipative

operator on Y . The operator A is m-dissipative if and

only if

∃λ0 > 0 such that ∀f ∈ Y,

∃y ∈ D(A) satisfying λ0y −Ay = f.
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Theorem. If A is an m-dissipative then A is closed

and D(A) is dense in Y .

Remark. If (A,D(A)) is an unbounded operator on

Y , the mapping

y 7−→ ‖y‖Y + ‖Ay‖Y

is a norm on D(A). We denote it by ‖ · ‖D(A).

Corollary. Let A be an m-dissipative operator.

Then (D(A), ‖ · ‖D(A)) is a Banach and A|D(A) ∈
L(D(A);Y ).
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Theorem. If A is a dissipative operator with dense

domain in Y . Then A is m-dissipative if and only if A

is closed and A∗ is dissipative.

Definition. An unbounded linear operator (A,D(A)),
with dense domain in Y is selfadjoint if A = A∗. It is

skew-adjoint if A = −A∗.
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Example 1. The heat operator in L2(Ω).

Let Ω be a bounded regular subset of Rn, with a

boundary Γ of class C2. Set

Y = L2(Ω), D(A) = H2 ∩H1
0(Ω), Ay = ∆y.

A is dissipative.

(Ay, y)L2(Ω) =
∫

Ω

∆y y = −
∫

Ω

∇y · ∇y ≤ 0.

A is m-dissipative. Let λ > 0. For all f ∈ L2(Ω), the

equation

λy −∆y = f

admits a unique solution in D(A).
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Example 2. A convection operator in L2(Rn).

Let ~V ∈ Rn. Set

Y = L2(Rn), D(A) = {y ∈ L2(Rn) | ~V ·∇y ∈ L2(Rn)},

Ay = −~V · ∇y ∀y ∈ D(A).

A is dissipative.

(Ay, y)L2(Rn) =
∫

Rn
−(~V ·∇y) y =

∫
Rn

y (~V ·∇y) ≤ 0.

A is m-dissipative. Let λ > 0. For all f ∈ L2(Rn),
consider the equation

λy + ~V · ∇y = f.
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Let us prove that

y(x) =
∫ ∞

0

e−λsf(x− s~V )ds

is the unique solution to the above equation in D(A).

We first prove this result when f ∈ D(Rn). In this case

~V · ∇y(x) =
∫ ∞

0

e−λs~V · ∇f(x− s~V )ds.

But

~V · ∇f(x− s~V ) = − d

ds
[f(x− s~V )].
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With an integration by parts

~V · ∇y(x)

= −λ

∫ ∞

0

e−λsf(x− s~V )ds +
[
− e−λsf(x− s~V )

]∞
0

= −λ

∫ ∞

0

e−λsf(x− s~V )ds + f(x)

= −λy(x) + f(x) .
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To prove that y ∈ D(A), let us establish the following

estimate

‖y‖L2(Rn) ≤
1
λ
‖f‖L2(Rn).

From Cauchy-Schwarz inequality it follows that

|y(x)|

≤
( ∫ ∞

0

e−λsds
)1/2( ∫ ∞

0

e−λs|f(x− s~V )|2ds
)1/2

≤
(1
λ

)1/2( ∫ ∞

0

e−λs|f(x− s~V )|2ds
)1/2

.
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Thus

‖y‖2
L2(Rn) ≤

1
λ

∫
Rn

∫ ∞

0

e−λs|f(x− s~V )|2ds dx

≤ 1
λ
‖f‖2

L2(Rn)

1
λ
.

The estimate is proved. From the estimate and the

equation, we deduce that

‖~V · ∇y‖L2(Rn) ≤ C‖f‖L2(Rn).

Thus y ∈ D(A).
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Existence when f ∈ L2(Rn).

Let (fn)n be a sequence of functions in D(Rn)
converging to f in L2(Rn). With the above estimates

we prove that

yn(x) =
∫ ∞

0

e−λsfn(x− s~V )ds,

converges to

y(x) =
∫ ∞

0

e−λsf(x− s~V )ds,

in D(A) and that y is a solution to equation

λy + ~V · ∇y = f .

– Typeset by FoilTEX – 35



Uniqueness.

Let y ∈ D(A) obeying

λy + ~V · ∇y = 0.

Let us prove that y = 0. Let ρε be a mollifier

ρε(x) =

{
kε−nexp(−ε−2/(ε−2 − |x|2)), |x| < ε,

0, |x| ≥ ε,

and

k−1 =
∫
|x|<1

exp(−1/(1− |x|2))dx.

Set

yε = ρε ∗ y.

We have

λyε + ~V · ∇yε = 0.
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For x fixed set

h(t) = eλtyε(x + ~V t).

For x fixed, we have

h′(t) = eλt
(
λyε(x + ~V t) + ~V · ∇yε(x + ~V t)

)
= 0.

Thus h is a constant function. Letting t tend to

−∞, we obtain h = 0 because yε is bounded. Thus

yε(x) = 0. Since x is arbitrary, yε = 0. We finally

obtain y = 0.
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Semigroup on a Banach space
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We are interested in equation

(E) y′ = Ay, y(0) = y0,

y0 ∈ Y , Y is a Banach space, A is an unbounded

operator on Y .

When equation (E) does admit a solution in C1(R;Y )
given by

y(t) = S(t)y0 ∀t ∈ R ?
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Definition. A family of bounded linear operators

(S(t))t≥0 on Y is a strongly continuous semigroup

on Y when the following conditions hold:

(i) S(0) = I,

(ii) S(t + s) = S(t) ◦ S(s) ∀t ≥ 0, ∀ s ≥ 0,

(iii) limt↘0‖S(t)y − y‖Y = 0 for all y ∈ Y .

Theorem. Let (S(t))t≥0 be a strongly continuous

semigroup on Y . Then there exist constants ω ∈ R
and M ≥ 1 such that

‖S(t)‖L(Y ) ≤ Meωt for all t ≥ 0.
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Corollary. Let (S(t))t≥0 be a strongly continuous

semigroup on Y . Then, for all y ∈ Y , the mapping

t 7−→ S(t)y

is continuous from [0,∞) into Y .

Definition. Let (S(t))t≥0 be a strongly continuous

semigroup on Y . The infinitesimal generator of

the semigroup (S(t))t≥0 is the unbounded operator

(A,D(A)) defined by

D(A) =
{

y ∈ Y | limt↘0
S(t)y − y

t
exists in Y

}
,

Ay = limt↘0
S(t)y − y

t
for all y ∈ D(A).
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Theorem. Let (S(t))t≥0 be a strongly continuous

semigroup on Y and let (A,D(A)) be its infinitesimal

generator. The following properties are satisfied.

(i) For all y ∈ Y , we have

limt↘0
1
h

∫ t+h

t

S(s)yds = S(t)y.

(ii) For all y ∈ Y and all t > 0,
∫ t

0
S(s)y ds belongs to

D(A) and

A
( ∫ t

0

S(s)y ds
)

= S(t)y − y.
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(iii) If y ∈ D(A) then S(t)y ∈ D(A) and

d

dt
S(t)y = AS(t)y = S(t)Ay.

(iv) If y ∈ D(A) then

S(t)y − S(s)y =
∫ t

s

S(τ)Ay dτ =
∫ t

s

AS(τ)y dτ

Corollary. If (A,D(A)) is the infinitesimal generator

of a strongly continuous semigroup on Y , (S(t))t≥0,

then D(A) is dense in Y , and A is closed.
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Theorem. Let (A,D(A)) be the infinitesimal generator

of (S(t))t≥0, a strongly continuous semigroup on Y .

For all y0 ∈ D(A), y(t) = S(t)y0 is the unique solution

of the problem

y ∈ C([0,∞);D(A)) ∩ C1([0,∞);Y ),
y′(t) = Ay(t) for all t ≥ 0, y(0) = y0.
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Proof. Let y0 ∈ D(A) and set y(t) = S(t)y0. We

know that

AS(t)y0 = S(t)Ay0.

Since the mapping

t 7−→ S(t)Ay0

is continuous from [0,∞) into Y , y ∈ C([0,∞);D(A)).
Moreover

d

dt
S(t)y0 = AS(t)y0 = S(t)Ay0.

Thus y ∈ C1([0,∞);Y ) and y′ = Ay.
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Uniqueness. Let t > 0 be arbitrarily fixed. Let u ∈
C([0,∞);D(A)) ∩ C1([0,∞);Y ) be an other solution

of the problem. Set

v(s) = S(t− s)u(s) for 0 ≤ s ≤ t.

We have

dv

dt
(s) = −AS(t− s)u(s) + S(t− s)Au(s) = 0.

Consequently v(s) = v(0) for all s ∈ [0, t]. In particular

v(t) = u(t) and v(0) = y(t). Thus u(t) = y(t).
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Theorem. Let (A,D(A)) be the infinitesimal generator

of (S(t))t≥0, a strongly continuous semigroup on Y

satisfying

‖S(t)‖L(Y ) ≤ Meωt.

Then, for all c ∈ R, (A − cI,D(A)) is the

infinitesimal generator of the strongly continuous

semigroup (e−ctS(t))t≥0 on Y .

Proof. It is easy to verify that (e−ctS(t))t≥0 is

a strongly continuous semigroup on Y . To prove

that (A − cI,D(A)) is its infinitesimal generator it is

sufficient to show that

d

dt
(e−ctS(t))y = (A− cI)y

for all y ∈ D(A).
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The Hille-Yosida Theorem
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Semigroups of contractions

Definition. A strongly continuous semigroup (S(t))t≥0

on Y is a semigroup of contractions if

‖S(t)‖ ≤ 1 for all t ≥ 0.
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Theorem. (Hille-Yosida’s Theorem in Banach spaces)

An unbounded linear operator (A,D(A)) in Y is the

infinitesimal generator of a semigroup of contractions

on Y if and only if the following conditions are satisfied:

(i) A is a closed operator,

(ii) D(A) is dense in Y ,

(iii) for all λ > 0, (λI − A) is a bijective mapping

from D(A) to Y , its inverse (λI − A)−1 is a bounded

operator on Y obeying

‖(λI −A)−1‖ ≤ 1
λ
.
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Theorem. (Hille-Yosida’s Theorem in Hilbert spaces -

Phillips’ Theorem)

An unbounded linear operator (A,D(A)) in Y is the

infinitesimal generator of a semigroup of contractions

on Y if and only if A is m-dissipative in Y (or if and

only if A∗ is m-dissipative in Y ′).

Theorem. (Lumer-Phillips’ Theorem in Hilbert spaces)

Let (A,D(A)) be an unbounded linear operator with

dense domain in Y . If A is closed and if A and A∗

are dissipative then A is the infinitesimal generator of

a semigroup of contractions on Y .
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A characterization of C0-semigroups

Theorem. An unbounded linear operator (A,D(A)) in

Y is the infinitesimal generator of a strongly continuous

semigroup (S(t))t≥0 on Y obeying

‖S(t)‖L(Y ) ≤ Meωt ∀t ≥ 0,

if and only if the following conditions are satisfied:

(i) A is a closed operator,

(ii) D(A) is dense in Y ,

(iii) for all λ > ω, (λI − A) is a bijective mapping

from D(A) to Y , its inverse (λI − A)−1 is a bounded

operator on Y obeying

‖(λI −A)−n‖L(Y ) ≤
M

(λ− ω)n
, ∀n ∈ N.
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Perturbations by bounded operators

Theorem. Let (A,D(A)) be the infinitesimal generator

of a strongly continuous semigroup (S(t))t≥0 on Y

obeying

‖S(t)‖L(Y ) ≤ Meωt ∀t ≥ 0.

If B ∈ L(Y ), then A + B is the infinitesimal generator

of a strongly continuous semigroup (T (t))t≥0 on Y

satisfying

‖T (t)‖L(Y ) ≤ Me(ω+M‖B‖)t ∀t ≥ 0.
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C0-group on a Hilbert space
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Definition. A family of bounded linear operators

(S(t))t∈R on Y is a strongly continuous group on

Y when the following conditions hold:

(i) S(0) = I,

(ii) S(t + s) = S(t) ◦ S(s) ∀t ∈ R, ∀ s ∈ R,

(iii) limt→0‖S(t)y − y‖ = 0 for all y ∈ Y .

Definition. A strongly continuous group (S(t))t∈R on

Y is a unitary group if

‖S(t)y‖Y = ‖y‖Y ∀y ∈ Y, ∀t ∈ R.
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Theorem. (Stone’s Theorem)

An unbounded linear operator (A,D(A)) on a complex

Hilbert space Y is the infinitesimal generator of a

unitary group on Y if and only if iA is self-adjoint.

Theorem. (Unitary group on a real Hilbert space)

Let (A,D(A)) be an m-dissipative operator on a real

Hilbert space Y and let (S(t))t≥0 be the C0-semigroup

on Y generated by A. Then is (S(t))t≥0 is the

restriction to R+ of a unitary group if and only if

−A is m-dissipative.
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Example: The wave equation

To study the equation

∂2z

∂t2
−∆z = 0 in Q = Ω× (0, T ),

z = 0 on Σ = Γ× (0, T ),

z(x, 0) = z0 and
∂z

∂t
(x, 0) = z1 in Ω,

with (z0, z1) ∈ H2(Ω)∩H1
0(Ω)×H1

0(Ω), we transform

the equation into a first order evolution equation. Set

y = (z, dz
dt), the equation can be rewritten in the form

dy

dt
= Ay, y(0) = y0,
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where

Ay = A

(
y1

y2

)
=

(
y2

∆y1

)
, and y0 =

(
z0

z1

)
.

Set Y = H1
0(Ω) × L2(Ω). The domain of A in Y is

D(A) = (H2(Ω)∩H1
0(Ω))×H1

0(Ω). Let us prove that

(A,D(A)) is m-dissipative on Y , when Y is equipped

with the inner product

(u, v)Y =
∫

Ω

∇u1 · ∇v1 +
∫

Ω

u2 v2,

where u = (u1, u2) and v = (v1, v2).

A and −A are dissipative.
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(Ay, y)Y =
∫

Ω

∇y2 · ∇y1 +
∫

Ω

∆y1 y2 = 0.

A is m-dissipative.

Let (f, g) ∈ H1
0(Ω)× L2(Ω) and λ > 0. The equation

λy −Ay = (f, g)

is equivalent to the system

λy1 − y2 = f,

λy2 −∆y1 = g.

Substituting y2 = λy1 − f into the second equation:

λ2y1 −∆y1 = λf + g.
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This equation admits a unique solution y1 ∈ H2(Ω) ∩
H1

0(Ω). Consequently y2 ∈ H1
0(Ω) is unique. Thus A

is m-dissipative.

In the same way we prove that −A is m-dissipative.

Therefore (A,D(A)) is the generator of a semigroup of

contractions on Y , and this semigroup can be extended

to a unitary group on Y .
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Weak solutions
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Classical solutions to nonhomogeneous problems

We already know that equation

(E2) y′ = Ay, y(0) = y0 ∈ D(A),

admits a unique classical solution y (i.e. y ∈
C([0,∞);D(A)) ∩ C1([0,∞);Y )) defined by

y(t) = S(t)y0 ∀t ∈ R.

We can extend this result to nonhomogeneous

equations.
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Theorem. Let (A,D(A)) be the infinitesimal generator

of a strongly continuous semigroup (S(t))t≥0 on Y . If

y0 ∈ D(A) and if f ∈ C([0, T ];Y )∩L1(0, T ;D(A)) or

f ∈ C([0, T ];Y ) ∩W 1,1(0, T ;Y ) then equation

(E3) y′ = Ay + f, y(0) = y0,

admits a unique classical solution y defined by

y(t) = S(t)y0 +
∫ t

0

S(t− s)f(s) ds ∀t ∈ R+.
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Weak solutions

Definition. A weak solution to equation (E3) in

Lp(0, T ;Y ) (1 ≤ p < ∞) is a function y ∈ Lp(0, T ;Y )
such that, for all z ∈ D(A∗), the mapping

t 7−→ 〈y(t), z〉Y,Y ′

belongs to W 1,p(0, T ) and obeys

d

dt
〈y(t), z〉 = 〈y(t), A∗z〉+ 〈f(t), z〉,

〈y(0), z〉 = 〈y0, z〉.
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Theorem. If y0 ∈ Y and if f ∈ Lp(0, T ;Y ),
then equation (E3) admits a unique weak solution

in Lp(0, T ;Y ). Moreover this solution belongs to

C([0, T ];Y ) and is defined by

y(t) = S(t)y0+
∫ t

0

S(t−s)f(s)ds, for all t ∈ [0, T ].

Remark. From the variation of constant formula it

follows that

‖y‖C([0,T ];Y ) ≤ C(‖y0‖Y + ‖f‖L1(0,T ;Y )).
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Adjoint semigroup
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Theorem. [8, Chapter 1, Corollary 10.6]

Let Y be a reflexive Banach space and let (S(t))t≥0

be a strongly continuous semigroup on Y with

infinitesimal generator A. Then the family (S(t)∗)t≥0

is a semigroup, called the adjoint semigroup, which

is strongly continuous on Y ′, whose infinitesimal

generator is A∗ the adjoint of A.
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