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Part 1
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The physical problem
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e y may be an electrical potential
and u a current density.
e y may be a temperature distribution

and v a thermal flux.

Problem. Minimize the distance between y and a
given distribution yg4

/ \y — yd\z-
0

The consumed energy is

/ ul?.
I'

— Typeset by Foil TEX — 6



The control problem

Minimize J(y,u) /|y Yal® + /\u\z

9y
on

—Ay+y=/f inQ, =u onlT.
uwe LXT),  feL*Q),

ydELQ(Q), 5>O.
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Sobolev spaces
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Prerequisite on Sobolev spaces

1/2
9l ey = (191132 + SiillOsyllia))

0%y
833@'(933]'

HA(©) = {y € H (@) c L*(Q)}

1/2
iy = (1910 + Z2ymalOB, e 2y
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Intermediate spaces

H?*(Q) Cc H*(Q) c H'(Q) c H°(Q) C L*(Q)

If Q@ = RY, H*(Q) can be characterized by Fourier
transform.

1/2
[yl = (ll320) + L)~ 0<o <1,

1/2
llary = (1930 + S log(@y)) . 1<s<2
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Trace theorems

Hl/Q(I‘) — {y c L2(F) | ]y]Hl/Q(F) < oo}

} , 1/2
Yl 2y = (/F ] |‘y:,faj_)§‘ny;(1§l‘1 dxdﬁ) ,

2 2 1/2
1yl g2y = (\|yHL2<F) + \y\Hl/Q(P)) |
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Yo Y y|r
Y o H'(Q) — HY?(T)
o @ H3(Q) — H7Y2(I) s>1/2

Yo is a surjective op. from H*() to H5~Y/2(T).
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Co Oy
f)/ly' /872,

v H2(Q) — HY?(T)
vt H3(Q) — H3 732 s> 3/2

~

—

Hy(Q) = {y € H(Q) | yoy = 0},

mi) =) @

H™HQ) = (Hy(Q),  HTYAD) = (H(D))"
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Regularity result. If Q is of class C? and if
f € L?(Q), then the solution y of the equation

—Ay+y=7f inf{), @20 on I,
on

belongs to H?*(Q2) and

1Yl z2) < Cllfll L2
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Interpolation theorems

! L : HY*I') — H*Q)

L : H YD) — HYQ)
that is if

[Lull g2y < Crllull g2
and

[Lull g1 o) < Crllull g-1/2(ry,
then

L : L) — H3?(Q).
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The state equation

—Ay+y=[f in{, %
on

f e LQ(Q), u € LQ(F).
We set

a(y,z):/QVy-Vz%—yz, é(z):/QfZ—I—/Fuz.

The variational formulation of the state equation is

=u onl.

find y € H'(Q) such that

a(y,z) = £(z) for all z € HY(Q).
By the Lax-Milgram theorem, the state equation admits
a unique solution y in H'(Q).
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Taking z = y in the equation we find

/Q(!Vy!2+\y\2) Z/nyJr/Fuy

<

<

<

flozenlwll L2y + Jull L2y 1yl 2y

1
f %2(9) T ZH?/H%Q(Q) T CHUHLZ(F)HZ/HHl(Q)

1 1
2 2 2 2
11l 22(0) + ZHyHLQ(Q) + C7ulp2(r) + ZHyHHl(Q)‘

We obtain

[ (1997 +19) < 21120y + 2C ulloqey

Conclusion

1yl a1y < CUIfll2@) + 1wl L2ry)-
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The result can be improved by using

|/FU?J’ < lull g2y 1Yl g2y
We obtain

Yl o) < CUSllzz@) + lJull g-120)-
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Regularity when v ¢ H'/?(T)
If uw e HY2(T), since

v H?(Q) — HY2(D)

is surjective, there exists w, € H?(Q) such that

Ow,,

on

V1Wy = = U.

Moreover w,, can be chosen so that
|lwull g2y < C”“Hﬂlﬂ(r)-
We look for y of the form y = w + z.
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Equation satisfied by z:

—Az+z=f4+Aw—w in ], %:O on I
n

Using the regularity result in H%(Q2) we can write
12|l g2y < Cllf + Aw — w||p2(q)

< C(HUHHl/Z(F) + 1 f 2 )
Second conclusion

H?/HH2(Q) < C(”fHL2(Q> + HUHHU?(F))-
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Regularity if v € L*(T)

The solution y of the state equation

Y = Z 1+ Wy,
where
—Az+z=f in{, %20 on I,

on

and
Owy,

—Aw, + w, =0 in (, v —u onl.

on

— Typeset by Foil TEX —

23



We have proved
lwall ey < Cllull -z, Twallmzy < Cllull ey

”wuHH3/2(Q) < CHUHLQ(F)a HZHH2(Q) < CHfHL2(Q)-

Theorem. For every f € L?(Q) and every u € L*(T),
the state equation admits a unique solution y(u) in
H'(Q), this solution belongs to H3/2() and

H?J(U)||H3/2(Q) < C(||fHL2(Q) + ||UHL2(F))-
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Existence of an optimal control
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Theorem. ([Brézis, Chapter 3, Theorem 9])

Let £ and F' be two Banach spaces, and let T" be a

continuous linear operator from E into F'. Then T’ is
also continuous from (E,o(E, E")) into (F,o(F, F")).

Corollary. Let (u,), be a sequence converging to u
for the weak topology of L?(I'). Then the sequence
(y(tun))pn, where y(uy,) is the solution to the state
equation corresponding to the control function wu,,
converges to y(u) in H'(9).
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Proof. Set y,, = y(u,). We know that

|ynll a2y < CUI NIz + lunll2qr))-

To prove that (,), converges to y(u) in H(Q), it is
enough to prove that, from any subsequence extracted
from (y,),, we can extract an other subsequence
converging to y(u) in H1(Q).

Suppose that
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Passage to the limit
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Theorem. ( [Brézis, Chapter 3, Theorem 7])

Let £/ be a Banach space, and let C' C F be a convex
subset. If (U is closed in E, then C is also closed in

(E,o(E,E")) (that is, closed in E endowed with its
weak topology).

Corollary. ([Brézis, Chapter 3, Corollary 8]) Let E be
a Banach space, and let ¢ : F +—] — 00,00] be a
lower semicontinuous convex function. Then ¢ is also
lower semicontinuous for the weak topology o(E, E').
In particular ¢ is sequentially lower semicontinuous.
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Comments. Observe that
2
U ||UHL2(F)
is convex and continuous in L(T"). Therefore, if

u, — u  weakly in L*(T),

/u2 < Iiminfnﬁoo/u%.
r r

then
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Theorem. Problem (P) admits a unique solution.

Proof. Existence
Set 0 <m =inf(P) <oo. Set F(u) = J(y(u),u).
Let (uy), be a minimizing sequence:

lim,, oo F'(uy) = m.

We can suppose that

é/ui < F(u,) < F(0).
2 Jr
Thus (uy,),, is bounded in L?(T"). Suppose that

Up — U weakly in L*(T).
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Thus
y(un) — y(a) in L*(Q).

With the continuity of || - HQLQ(m and the weakly lower
2

12Ty o We obtain

/ﬂz < Iiminfn_wo/u%7
r r

[ (@) = 0)* = tim e [ (wl) = 30

Q

semicontinuity of | - ||

Combining these results, we have
F(u) <liminf,, o F(u,) = m = inf(P).

Thus @ is a solution of (P).
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Uniqueness
We argue by contradiction.

Let u; and uy be two solutions of (P).

1

(Gu1 + yu2) = sy(un) + su(us)
—u1 + =u2 ) = =y(u —y(u2).
y21 o2 2y1 2y2

Since J is stricly convex, F' is stricly convex:

FGo 30) = 90+ go2) o+ 3
— — = — —U —U —U
2U1 2U2 92U1 22 5 1 22

< %J(y(ul),ul) + %J(y(ug),ug) = min(P).
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Optimality conditions
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Theorem. Necessary optimality conditons

let ¥ : U —— R. Suppose that F' is Gateaux-
differentiable at u and that

F(u) =inf{F(u) |ueU}.

Then
F'(u) = 0.
Sufficient optimality conditons

Let F' be a differentiable mapping from a Banach space
U into R. Suppose that F' is convex and F’(u) = 0,
then F'(u) < F(u) for all u e U.
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Proof. It is a consequence of the convexity inequality

F(u) — F(u) > F'(u)(u—ua) =0,

forall u e U.
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Optimality condition for the control problem

We set

F(u) = J(y(u),u) = I(y(u)) + G(u),

where y(u) is the solution to the state equation.

Directional derivative

y(u+Av)) = I(y(u))

/!y U+ \v) yd\Q——/!?/ — yql?

:/Q( (u+Av) — (u))(Q( (u+Av) +ylu ))—yd)-
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Equation satisfied by z) = y(u + \v) — y(u)

87;)\

—Azy+2y=0 in ), —— =M onl.
on
Thus z = y(“+’\§)_y(“) obeys
0
—Az+2z=0 in (), —Z:v on I'.
on

And

= (vl 20) +y(w)) — s — y(w) — va
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where

—Az+2=0
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in €2,

19,
—z:v on I

on
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G(u + A\v)

Iim)\—>0
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/F (Ju+ Nof? — [uf?)

_ g/r(Qu Mo+ [Aof?),

G(u+ M) — G(u) -
( . B/p
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Finally

Flu) = [ )=o)z +3 [ o,

where

—Az+2z=0 in (), %:’U.
on

Since

[F'(u; )| < Cllvfl p2(r),

F' is G-differentiable and F'(u)v = F'(u;v).
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Identification of F'(u) : L*(T') — R

F'(u)  belongs to (L*(T")) = L*(T).

F’(u)v:L(y(u)—yd)z+éuvzﬁﬂv.

We introduce

A v— 2z, from L*(T) to L*(Q).
F'(u)o = ((y(u) - ya) A<”))L2<m + (wv) .

— (A*(y(u) — Yd), ’U) L2y — (u, v) L2y’
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Green Formula between z and an other function p:

oz/Q(—AHz)p

0 0
(22, [ 2,

O:/( Ap+p)z—

O—/( Ap + p) z—/vp+/
[ W —wz = [ av
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Thus if p is the solution to

0
—Ap+p=yu) —yq in €, 8_p:O on I
n
then
/(y(u)—yd)zzfvp,
Q T
and

F'(u)v = /F(]H—ﬂu)v.

If 4 is the solution of (P) then
p+fu =0,

with
Op

—Ap+p=yu) —yq in €, %:O on I
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Theorem. If (y,u) is the solution to (P) then

u = —%p|p, where p is the solution of the equation
, 0
—Ap+p=9y—yq in ) —p:O on I
on

Conversely, if a pair (7,p) € HY(Q) x H'(Q) obeys the
system

95

Aj+G = f nQ Y — _15  onT,
o

—Ap+p = Y—yqg in €2, °Lo_ on I,
on

then the pair (7, —%}5) is the solution of problem (P).

— Typeset by Foil TEX — 45



Proof. Suppose that (y,p) is a solution to the

optimality system

9, 1
—Ay+y=/f 1inQ, 3_7%:_61? on I,
—Ap+p=y—1yg in S, @:O on I,
on
Then
F’(—lp):()
6 9
because

F’(%p)vz/r(p+ﬁU)v=/F(p—ﬁ%p)vz()-
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Comments.

e The optimality system

—Ay+y=/f inQ, @:—p on I,
on 3
—Ap+p=y—yg in —pzo on I,
on

can be approximated by a finite element method, and
next solved by a conjugate gradient method.

e The optimal control is obtained by taking

1
u = ——p‘r‘.

p
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Control problem with control constraints

Minimize J(y,u) /|y yal? + /\u|2
T

9y
on

(P2)

=u onl.

—Ay+y=f 1in{,
u € Uyq, a closed convex subset in L*(T").

Upg = {u € L*(T) | ug < u < up}b.
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Theorem. Problem (P;) admits a unique solution.

We find the existence of a minimizing sequence
(un)n C Uada

and
un, — u  weakly in L*(T).

Since U,q is a closed convex subset in L?(T),
u € Ugyg.

Thus u is a solution of problem (P).
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Optimality conditions

Theorem. Necessary optimality conditons

let ¥ : U +—— R. Suppose that F' is Gateaux-
differentiable at w and that

F(u) =inf{F(u) | u € Uyq}.
Then

F'(u)(u—u) >0  forallue Ui.

Sufficient optimality conditons

Let F' be a differentiable mapping from a Banach space
U into R. Suppose that F'is convex and F'(u)(u—u) >
0 for all u € Uyg, then F(u) < F(u) for all u € U,y
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Theorem. |If (y,u) is the solution to (P5) then

/(5u+p)(u —u) >0 forall u € Uy,
r

where p is the solution of the equation

Jp

—Ap+p=y—yg in), —=0 onl.

on
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Proof.
Flap = [ (Ba+pv

where

0
—Ap+p=y—1yg in S, —p:O on I
on

Thus writing

F'(u)(u—u) >0  forall u € Uy,

we obtain the necessary optimality condition of the
theorem.
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Theorem. Conversely, if a triplet (7, p, 1) € H'(Q) x
H1(Q) x L*(I") obeys the system

9
—Ay+y=f inQ, % _ g on I,
on
- . op
—Ap+p=9y—yg in), —=0 onl,
on

/(ﬁﬂ—l—ﬁ)(u—ﬂ) >0 forall u € Ugg,
r

then the pair (7, u) is the solution of problem (P).

Proof. The theorem follows from the sufficient
optimality condition stated before.
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Case of bound constraints

Ug < u < Up, Ug, Up € LQ(F).

The necessary optimality condition

/(5u+p)(u —u) >0 forall ue U,
T

Is equivalent to the pointwise relation
(Bu(x)+p(x))(u—u(x)) >0 for all u € [uq(x), up(x)],

for almost every x € T

— Typeset by Foil TEX — 55



Recall that a Lebesgue point for g € L(T):

1

g = g(xO)a
‘F A B(x()v 5)‘ I'NB(xg,e)

ro€ ' s. t. lim,

and

1

9(z) — g(z0)|dz = 0.
‘F A B(x(% 5)‘ I'nB(xq,e)

lim_

We denote by I'y the set of Lebesgue points of the
functions
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Let xg € I'y, we choose
U = Ua XTNB(xg,¢) + ﬂ’XP\B(xo,é‘)'

We substitute u in the integral relation,

/(ﬂﬂ—l—p)(u —u) >0 forall u € Uy,
r

we divide by |I'N B(xg, €)|, and by passing to the limit,
we obtain

(Bu(zo) + p(20))(1a(z0) — u(z0)) = 0.
Similarly

(Bu(zo) + p(w0))(us(zo) — u(0)) = 0.
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Finally

(Bu(wo) + p(xo))(u — u(x0)) 2 0,

for all u € |uq(xg), up(xo)].

From the pointwise relation, we deduce that
u(x) = ug(x) if u(x) + p(z) >0,
uo(z) < u(z) <wup(z)  if fuz) + p(z) =0,
u(x) = up(x) if Bu(z)+ p(x) <O0.

We can summarize these results by writing

1
I_L(ZC) m— Proj[u&(x%ub(w)](— Ep(flf)) fora. e. x cl.
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Exercise 1. Observation on the boundary
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(Ps)
1

Minimize J(y,u) = 5 \y—yd\2—l-§ u|?
'y Lc

—Ay+y=/[f inf,

0 0
a_z:u on I, 8—z20 onF\FC.

uwe LX),  feL*Q),

Yd < LQ(FO), ﬂ > 0.
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Questions.
1. Prove the existence of a unique optimal control w.

2. Write the first order optimality conditions for w.
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Existence of a solution to the state equation

Lax-Milgram theorem in H'(Q) with

a(y,Z)Z/Q(Vy-VeryZ),

E(z):/szqL/FCuz.

The variational formulation of the state equation is

find y € H'(Q) such that
a(y,z) = £(z) for all z € HYQ).
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1. For every u € L*('), the state equation admits
a unique solution in H1(Q). This solution belongs to
H3/2(Q)). Moreover

(Yl 320y < CUf L2y + ullz2r,))-
2. If (un)n is a sequence in L*(I'.) converging to u

for the weak topology of L*(T.), then the sequence
(y(up)), converges to y(u) in H1(Q).

Thus
y(un)|r, — y(w)lr, in L*(T,).

3. The control problem admits a unique solution.
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Optimality conditions
Setting F'(u) = J(y(u),u) we have

F'(u)v = / (y(w) — ya)=(w) + B | uv,

I'c

where z(v) is the solution of

—Az+2z=0 in{,

B 9
a_Z:” on T, a—zzo on T'\ T..
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What is the adjoint equation ? With an integration
by parts between z = z(v) and an other function p we
have

9 9
0=/( Ap+p)z — Zp+ p

O:/( Ap + p) z—/cvar/
[ W =wz= [ wn

If we set
—Ap+p =0,
and
0 0
a—zzy(u)—yd on I, 82—0 on '\ T,
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we have

[t =z = [ op

FO C
Conclusion

F'(u)v = /C(pv + Buv).

The optimal control u is characterized by

_ 1 |
U= ——p c)
6 I
and
. op _
—Ap+p=0 inQ, %:XFO(ZU(U)_?M)
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Exercise 2. lIdentification of a boundary coefficient
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(Ps) 1
Minimize J(y,u) :—/ |y—yd\2+§/\u—h’2
2/, 2 Jr

—Ay+y=7f in(), @—I—uy:g on I
on

ueUad:{ueB(F)\uaéuSub},

0 <uy, <up €R, w C S
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We suppose that

ys € L*(w), f e L*(Q), h, geL*I), B>0.

Questions.
1. Prove the existence of an optimal control w.

2. Write the first order optimality conditions for w.
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Existence of a solution to the state equation

Lax-Milgram theorem in H'(Q) with

a(y,Z)I/ (Vy-Vz+yZ)+/uyz,
Q I

E(z):/szJr/ng.

The variational formulation of the state equation is

find y € H'(Q) such that
a(y,z) = £(z) for all z € HY Q).
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1. For every u € U,q, the state equation admits a
unique solution in H'(9). Moreover

1Yl zr) < CUfll L2 + 119llL2ay))

where C' is independent of w.
Writing the boundary condition in the form

0
—y:—uy+g on I,
on

and using the estimates of part 1, we find

1Yl 322y < CUI Nl z200) + [ = vy + gllz2r))-

Thus

Yl 3200y < CUIF L2y + N9ll2ey + [yl llullzec)-
(€2)
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2. If (un)n is a sequence in U,y converging to u for
the weak-star topology of L°°(I'), then the sequence
(y(un))n converges to y(u) in HY(Q).

The mapping
ur— y(u)

Is nonlinear.

Proof. Set vy, = y(u,). We know that

lynllzr) < CUflL2) + 9l L2@))-

and

1Ynll a2y < CUIFll2 + Mgl 2 + ynll mrllunllLoc)-
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To prove that (,), converges to y(u) in HY(Q), it is
enough to prove that y(u) is the unique cluster point
of the sequence in H'(Q).

Let us denote by (yx)x such a subsequence and suppose
that (yi)r converges to § weakly in H3/2(2), and
strongly in H(Q).

Passage to the limit

/(vyk'vz+ykz)+/ukykza
Q r
:/fz+/gz.

Q r
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Since (y)x converges to ¢ in H(Q),

/Q(Vyk-Verykz)—>/Q(V3]-Vz+2jz)

L*(T) .
?/klr — y‘Fa

/ukykz—>/ug]z,
I r

for all z € HYQ). Thus § = y(u).

3. The control problem admits at least one solution. In
general the uniqueness cannot be proved because the

mapping
ur— y(u)

Is not affine.
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Optimality conditions

4. Equation satisfied by wy = y(“H‘r‘Q_y(u).

—Awy +wyx=0 1inQ,

% + (u+ A)wy +vy(u) =0 onT.
n

For A small enough (|A| < XAg), the bilinear form:

a(w,z):/Q(Vw-Vz—l—wz>—I—/F(u—l—)\v)wz

is coercive in H(Q) and the coercivity constant is
independent of A\. Thus

lwill 1) < Cllvllzeomlly (W)l L2,
where C' is independent of .
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At least formally when A\ — 0
Wx — <,

where z i1s the solution to

0
—Az4+2z=0 in €, a—z—|—uz—|—vy(u):() onT.
n

To prove that w) converges to z in L*(Q) or in H1(Q),
we write the equation satisfied by ( = wy — 2

—A(+(¢=0 inQ, %—I—u(j—l—)\vw)\:o on I'.
n

With a classical estimate we get

HCHHl(Q) < C[A HU”LOO(I‘)HwAHLQ(F)-

— Typeset by Foil TEX — 78



Conclusion

‘PW+Aw—yW)

A _4‘ =0,

lim)\—>0 H1(9)

and setting F'(u) = J(y(u),u) we have

Fwo = [ (o) = w2() + 5 [ (b
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What is the adjoint equation ? With an integration
by parts between z = z(v) and an other function p we
have

0z op
= —A — | == =
| /Q( Ptz Fanp+/1“anz
9p

024(—Ap+p)z+é(u2+vy( ))p + o

/w(y(U) —yd)zzfrqv-

If we set

—Ap+p = xu(y(u) — ya), in €,

0
p+up—0 on I,
on
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we have

Conclusion

F’(u)v:—/Fvy(u)pqLﬂ/F(u—h)v.

If (,u) is a solution of (Py) then

/F(—ypﬂLﬁ(u—h))(u—U) >0

for all u, < u < up.
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Pointwise conditions

ux) =ua  if (=yp+B(u—h))(z) >0,
u(x) =uy  if (=yp+p(u—h))(z) <0,
ug SU(x) <up  if (=gp+ B —h))(z) =0,

We can summarize

u(z) = Projr,, ] (h(az) + @p(x)).
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Exercise 3. Control of an electrical potential
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The electrical potential ¢ satisfies the elliptic equation

—div(cVe) =0 in Q,

0o do |
—U%—’UJ on Fa, —O'%—O on Fz,
0o
—05 = f(¢) on [,

I', corresponds to the anode, I'. corresponds to the
cathode, I'; is the rest of the boundary I'.

fisof class C!, f(0)=0,0<c; < f(r) < ¢y for all
r € R,

the conductivity o > 0.
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The control problem (Fs)
inf{J(¢,u) | (¢,u) € H'(Q) x L*(Ta), ua < u < up},

where (¢, u) solves the state equation and

I =5 [ (-0t +5 [

u, € L*(T',) and uy € L?(T',) are some bounds on the
current u, and 3 is a positive constant.

1. Prove that (Ps) has at least one solution.

2. Write the first order optimality condition for the
solutions to (Ps).
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The state equation

Theorem. (The Minty-Browder Theorem, [Brézis|)

Let F' be a reflexive Banach space, and A be a nonlinear
continuous mapping from E into E’. Suppose that

(A(¢1) — Al92), 01 — ¢2) g1 g > 0

for all gbl, ¢2 In E, with gbl # gbg, and

<~A(¢)7 ¢>E’,E — 0

lim|\¢HE—>OO 10| 5

Then, for all £ € E’, there exists a unique ¢ € E such
that A(¢) = /4.
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To apply this theorem, we set £ = H'(Q), and we
define A by

(A(D), 2) (1)) m1(Q) = / oVo-Vz+ [ f(9)z,
Q I,

l(z) = —/azu.

3. We can prove that the state equation

and ¢ by

(A(9),2) =L(z)  Vze H(Q),

admits a unique solution ¢ € H'(Q).
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Observe that

F(é(x)) = £(0) + /0 7(66) d6 & b(x).

Writing the nonlinear boundary condition in the form

0

5. (x)p =0 on T,

o

with

0<eci <alxr)= /o f(0o(x))do.
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We can prove that

19Nl 1) < Cllullp2r,),

and

191l sr2(0y < ClealldllL2r,y + lullpzr,))-

Thus if (u,), is a sequence weakly converging to u
in L?(T',), the sequence (¢,)n, where ¢, = ¢(uy,), is
bounded in H3/2().
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We can pass to the limit in the variational equation

(An),2) ey e = tale) == [ wnz

a

Indeed
b — ¢ in HY(Q).

Thus
I'- I'c

for all z € H'(Q).

Thanks to this result, we prove that (P5) admits at

least one solution.
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Optimality conditions
Equation satisfied by ¢y = ¢(u+>\v) d(u)

—div(cVyy) =0  in (),

O o
“Ton — U O La, 0o = =0 onlIy,
(‘M/\ 1

7o = 3 (F(@(ut X)) — f(6(u)) on T
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with
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The limit of ¢y in HY(Q), is the solution v of the
equation

—div(eVy) =0 in Q,

o o
—O'%—’U on Fa; —O'%—O on FZ,
o
—O'% = f (gb)w on FC.
Conclusion

Setting F'(u) = J(¢(u),u) we have

F'(u)v = / (6(u) — pa)b(v) + 8 | uv.

I'q
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What is the adjoint equation ? With an integration
by parts between ¢ = ¢(v) and an other function p we
have

0= /dlv(OVp )Y — /0—p+ 5’p
7 on

O:L(—div(an)¢+/avp+ Fcf’(czb)wp

Jp

—+ O'%.
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If we set

—div(eVp) =0,  in €,

5p
an O, on Fz U Fa,
op
oL+ [(6)p=0(u) — s,  onT,,
we have
/ (80~ pa)i) = - / o
Conclusion
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If (¢, %) is a solution of (Ps) then

/ (—p+pu)(w—1) >0

for all u, < u < uy.

That is

(@) = Proj, ) (39(0)).
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