Chapter 1

Optimal Control of Elliptic Equations

Jean-Pierre Raymond

Part 1

A model problem
Sobolev spaces
State equation
Existence of an optimal control
Characterization of the optimal solution

Part 2

Problem with control constraints

Part 3

Exercice 1. Observation on the boundary
Part 4
Exercice 2. Identification of a coefficient
Part 5
Exercice 3. Control of an electrical potential

Part 1

The physical problem

- y may be an electrical potential
and u a current density.
- y may be a temperature distribution
and u a thermal flux.
Problem. Minimize the distance between y and a given distribution y_{d}

$$
\int_{\Omega}\left|y-y_{d}\right|^{2}
$$

The consumed energy is

$$
\int_{\Gamma}|u|^{2}
$$

The control problem

$$
\begin{aligned}
& \text { Minimize } \quad J(y, u)=\frac{1}{2} \int_{\Omega}\left|y-y_{d}\right|^{2}+\frac{\beta}{2} \int_{\Gamma}|u|^{2} \\
& -\Delta y+y=f \quad \text { in } \Omega, \quad \frac{\partial y}{\partial n}=u \quad \text { on } \Gamma . \\
& u \in L^{2}(\Gamma), \quad f \in L^{2}(\Omega), \\
& y_{d} \in L^{2}(\Omega), \quad \beta>0 .
\end{aligned}
$$

Sobolev spaces

Prerequisite on Sobolev spaces

$$
\begin{aligned}
& H^{1}(\Omega)=\left\{y \in L^{2}(\Omega) \left\lvert\, \frac{\partial y}{\partial x_{i}} \in L^{2}(\Omega)\right.\right\} \\
& \|y\|_{H^{1}(\Omega)}=\left(\|y\|_{L^{2}(\Omega)}^{2}+\Sigma_{i=1}^{n}\left\|\partial_{x_{i}} y\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}, \\
& H^{2}(\Omega)=\left\{y \in H^{1}(\Omega) \left\lvert\, \frac{\partial^{2} y}{\partial x_{i} \partial x_{j}} \in L^{2}(\Omega)\right.\right\} \\
& \|y\|_{H^{2}(\Omega)}=\left(\|y\|_{H^{1}(\Omega)}^{2}+\Sigma_{i, j=1}^{n}\left\|\partial_{x_{i} x_{j}}^{2} y\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Intermediate spaces

$$
H^{2}(\Omega) \subset H^{s}(\Omega) \subset H^{1}(\Omega) \subset H^{\sigma}(\Omega) \subset L^{2}(\Omega)
$$

If $\Omega=\mathbb{R}^{N}, H^{s}(\Omega)$ can be characterized by Fourier transform.

$$
\begin{aligned}
& I_{\sigma}(y)=\int_{\Omega} \int_{\Omega} \frac{|y(x)-y(\xi)|^{2}}{|x-\xi|^{n+2 \sigma}} d x d \xi<\infty \\
& \|y\|_{H^{\sigma}(\Omega)}=\left(\|y\|_{L^{2}(\Omega)}^{2}+I_{\sigma}(y)\right)^{1 / 2}, \quad 0<\sigma<1, \\
& \|y\|_{H^{s}(\Omega)}=\left(\|y\|_{H^{1}(\Omega)}^{2}+\Sigma_{i=1}^{n} I_{s-[s]}\left(\partial_{x_{i}} y\right)\right)^{1 / 2}, \quad 1<s<2 .
\end{aligned}
$$

Trace theorems

$$
\begin{aligned}
& H^{1 / 2}(\Gamma)=\left\{\left.y \in L^{2}(\Gamma)| | y\right|_{H^{1 / 2}(\Gamma)}<\infty\right\} \\
& |y|_{H^{1 / 2}(\Gamma)}=\left(\int_{\Gamma} \int_{\Gamma} \frac{|y(x)-y(\xi)|^{2}}{|x-\xi|^{n-1+1}} d x d \xi\right)^{1 / 2}, \\
& \|y\|_{H^{1 / 2}(\Gamma)}=\left(\|y\|_{L^{2}(\Gamma)}^{2}+|y|_{H^{1 / 2}(\Gamma)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

$\gamma_{0}:\left.y \longmapsto y\right|_{\Gamma}$
$\gamma_{0}: H^{1}(\Omega) \longmapsto H^{1 / 2}(\Gamma)$
$\gamma_{0}: H^{s}(\Omega) \longmapsto H^{s-1 / 2}(\Gamma) \quad s>1 / 2$
γ_{0} is a surjective op. from $H^{s}(\Omega)$ to $H^{s-1 / 2}(\Gamma)$.

$$
\begin{aligned}
& \gamma_{1}: y \longmapsto \frac{\partial y}{\partial n} \\
& \gamma_{1}: H^{2}(\Omega) \longmapsto H^{1 / 2}(\Gamma) \\
& \gamma_{1}: H^{s}(\Omega) \longmapsto H^{s-3 / 2}(\Gamma) \quad s>3 / 2
\end{aligned}
$$

$$
\gamma_{1} \text { is a surjective op. from } H^{s}(\Omega) \text { to } H^{s-3 / 2}(\Gamma)
$$

$$
\begin{aligned}
& H_{0}^{1}(\Omega)=\left\{y \in H^{1}(\Omega) \mid \gamma_{0} y=0\right\} \\
& H_{0}^{1}(\Omega)=\overline{\mathcal{D}}(\Omega)^{H^{1}(\Omega)} \\
& H^{-1}(\Omega)=\left(H_{0}^{1}(\Omega)\right)^{\prime}, \quad H^{-1 / 2}(\Gamma)=\left(H^{1 / 2}(\Gamma)\right)^{\prime} .
\end{aligned}
$$

Regularity results

Regularity result. If Ω is of class C^{2} and if $f \in L^{2}(\Omega)$, then the solution y of the equation

$$
-\Delta y+y=f \quad \text { in } \Omega, \quad \frac{\partial y}{\partial n}=0 \quad \text { on } \Gamma
$$

belongs to $H^{2}(\Omega)$ and

$$
\|y\|_{H^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}
$$

Interpolation theorems

If

$$
\begin{aligned}
& L: H^{1 / 2}(\Gamma) \longmapsto H^{2}(\Omega) \\
& L: H^{-1 / 2}(\Gamma) \longmapsto H^{1}(\Omega)
\end{aligned}
$$

that is if

$$
\|L u\|_{H^{2}(\Omega)} \leq C_{1}\|u\|_{H^{1 / 2}(\Gamma)}
$$

and

$$
\|L u\|_{H^{1}(\Omega)} \leq C_{1}\|u\|_{H^{-1 / 2}(\Gamma)}
$$

then

$$
L: L^{2}(\Gamma) \longmapsto H^{3 / 2}(\Omega) .
$$

State equation

The state equation

$$
\begin{array}{ll}
-\Delta y+y=f & \text { in } \Omega, \quad \frac{\partial y}{\partial n}=u \quad \text { on } \Gamma . \\
f \in L^{2}(\Omega), & u \in L^{2}(\Gamma) .
\end{array}
$$

We set
$a(y, z)=\int_{\Omega} \nabla y \cdot \nabla z+y z, \quad \ell(z)=\int_{\Omega} f z+\int_{\Gamma} u z$.
The variational formulation of the state equation is

$$
\begin{aligned}
& \text { find } y \in H^{1}(\Omega) \text { such that } \\
& a(y, z)=\ell(z) \text { for all } z \in H^{1}(\Omega) .
\end{aligned}
$$

By the Lax-Milgram theorem, the state equation admits a unique solution y in $H^{1}(\Omega)$.

Taking $z=y$ in the equation we find

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla y|^{2}+|y|^{2}\right)=\int_{\Omega} f y+\int_{\Gamma} u y \\
& \leq\|f\|_{L^{2}(\Omega)}\|y\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Gamma)}\|y\|_{L^{2}(\Gamma)} \\
& \leq\|f\|_{L^{2}(\Omega)}^{2}+\frac{1}{4}\|y\|_{L^{2}(\Omega)}^{2}+C\|u\|_{L^{2}(\Gamma)}\|y\|_{H^{1}(\Omega)} \\
& \leq\|f\|_{L^{2}(\Omega)}^{2}+\frac{1}{4}\|y\|_{L^{2}(\Omega)}^{2}+C^{2}\|u\|_{L^{2}(\Gamma)}+\frac{1}{4}\|y\|_{H^{1}(\Omega)}^{2} .
\end{aligned}
$$

We obtain

$$
\int_{\Omega}\left(|\nabla y|^{2}+|y|^{2}\right) \leq 2\|f\|_{L^{2}(\Omega)}^{2}+2 C^{2}\|u\|_{L^{2}(\Gamma)} .
$$

Conclusion

$$
\|y\|_{H^{1}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Gamma)}\right) .
$$

The result can be improved by using

$$
\left|\int_{\Gamma} u y\right| \leq\|u\|_{H^{-1 / 2}(\Gamma)}\|y\|_{H^{1 / 2}(\Gamma)}
$$

We obtain

$$
\|y\|_{H^{1}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{H^{-1 / 2}(\Gamma)}\right)
$$

Regularity when $u \in H^{1 / 2}(\Gamma)$
If $u \in H^{1 / 2}(\Gamma)$, since

$$
\gamma_{1}: H^{2}(\Omega) \longmapsto H^{1 / 2}(\Gamma)
$$

is surjective, there exists $w_{u} \in H^{2}(\Omega)$ such that

$$
\gamma_{1} w_{u}=\frac{\partial w_{u}}{\partial n}=u .
$$

Moreover w_{u} can be chosen so that

$$
\left\|w_{u}\right\|_{H^{2}(\Omega)} \leq C\|u\|_{H^{1 / 2}(\Gamma)} .
$$

We look for y of the form $y=w+z$.

Equation satisfied by z :

$$
-\Delta z+z=f+\Delta w-w \quad \text { in } \Omega, \quad \frac{\partial z}{\partial n}=0 \quad \text { on } \Gamma .
$$

Using the regularity result in $H^{2}(\Omega)$ we can write

$$
\begin{aligned}
& \|z\|_{H^{2}(\Omega)} \leq C\|f+\Delta w-w\|_{L^{2}(\Omega)} \\
& \quad \leq C\left(\|u\|_{H^{1 / 2}(\Gamma)}+\|f\|_{L^{2}(\Omega)}\right) .
\end{aligned}
$$

Second conclusion

$$
\|y\|_{H^{2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{H^{1 / 2}(\Gamma)}\right)
$$

Regularity if $u \in L^{2}(\Gamma)$

The solution y of the state equation

$$
y=z+w_{u}
$$

where

$$
-\Delta z+z=f \quad \text { in } \Omega, \quad \frac{\partial z}{\partial n}=0 \quad \text { on } \Gamma
$$

and

$$
-\Delta w_{u}+w_{u}=0 \quad \text { in } \Omega, \quad \frac{\partial w_{u}}{\partial n}=u \quad \text { on } \Gamma .
$$

We have proved

$$
\begin{gathered}
\left\|w_{u}\right\|_{H^{1}(\Omega)} \leq C\|u\|_{H^{-1 / 2}(\Gamma)},\left\|w_{u}\right\|_{H^{2}(\Omega)} \leq C\|u\|_{H^{1 / 2}(\Gamma)} \\
\left\|w_{u}\right\|_{H^{3 / 2}(\Omega)} \leq C\|u\|_{L^{2}(\Gamma)},\|z\|_{H^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}
\end{gathered}
$$

Theorem. For every $f \in L^{2}(\Omega)$ and every $u \in L^{2}(\Gamma)$, the state equation admits a unique solution $y(u)$ in $H^{1}(\Omega)$, this solution belongs to $H^{3 / 2}(\Omega)$ and

$$
\|y(u)\|_{H^{3 / 2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Gamma)}\right)
$$

Existence of an optimal control

Theorem. ([Brézis, Chapter 3, Theorem 9])

Let E and F be two Banach spaces, and let T be a continuous linear operator from E into F. Then T is also continuous from $\left(E, \sigma\left(E, E^{\prime}\right)\right.$) into ($F, \sigma\left(F, F^{\prime}\right)$).

Corollary. Let $\left(u_{n}\right)_{n}$ be a sequence converging to u for the weak topology of $L^{2}(\Gamma)$. Then the sequence $\left(y\left(u_{n}\right)\right)_{n}$, where $y\left(u_{n}\right)$ is the solution to the state equation corresponding to the control function u_{n}, converges to $y(u)$ in $H^{1}(\Omega)$.

Proof. Set $y_{n}=y\left(u_{n}\right)$. We know that

$$
\left\|y_{n}\right\|_{H^{3 / 2}(\Omega)} \leq C\left(\|f\|_{L^{2}}+\left\|u_{n}\right\|_{L^{2}(\Gamma)}\right)
$$

To prove that $\left(y_{n}\right)_{n}$ converges to $y(u)$ in $H^{1}(\Omega)$, it is enough to prove that, from any subsequence extracted from $\left(y_{n}\right)_{n}$, we can extract an other subsequence converging to $y(u)$ in $H^{1}(\Omega)$.

Suppose that

$$
y_{k} \longrightarrow \tilde{y} \quad \text { in } H^{1}(\Omega)
$$

Passage to the limit

$$
\begin{aligned}
& \qquad \begin{aligned}
\int_{\Omega}\left(\nabla y_{k} \cdot \nabla z+y_{k} z\right) & =\int_{\Omega} f z+\int_{\Gamma} u_{k} z \\
\int_{\Omega}(\nabla \tilde{y} \cdot \nabla z+\tilde{y} z) & =\int_{\Omega} f z+\int_{\Gamma} u z
\end{aligned} \\
& \text { for all } z \in H^{1}(\Omega) . \text { Thus } \tilde{y}=y(u) .
\end{aligned}
$$

Theorem. ([Brézis, Chapter 3, Theorem 7])
Let E be a Banach space, and let $C \subset E$ be a convex subset. If C is closed in E, then C is also closed in $\left(E, \sigma\left(E, E^{\prime}\right)\right.$) (that is, closed in E endowed with its weak topology).

Corollary. ([Brézis, Chapter 3, Corollary 8]) Let E be a Banach space, and let $\varphi: E \mapsto]-\infty, \infty]$ be a lower semicontinuous convex function. Then φ is also lower semicontinuous for the weak topology $\sigma\left(E, E^{\prime}\right)$. In particular φ is sequentially lower semicontinuous.

Comments. Observe that

$$
u \longmapsto\|u\|_{L^{2}(\Gamma)}^{2}
$$

is convex and continuous in $L^{2}(\Gamma)$. Therefore, if

$$
u_{n} \rightharpoonup u \quad \text { weakly in } L^{2}(\Gamma)
$$

then

$$
\int_{\Gamma} u^{2} \leq \liminf _{n \rightarrow \infty} \int_{\Gamma} u_{n}^{2}
$$

Theorem. Problem (P) admits a unique solution.

Proof. Existence

Set $0 \leq m=\inf (P)<\infty$. Set $F(u)=J(y(u), u)$.
Let $\left(u_{n}\right)_{n}$ be a minimizing sequence:

$$
\lim _{n \rightarrow \infty} F\left(u_{n}\right)=m
$$

We can suppose that

$$
\frac{\beta}{2} \int_{\Gamma} u_{n}^{2} \leq F\left(u_{n}\right) \leq F(0) .
$$

Thus $\left(u_{n}\right)_{n}$ is bounded in $L^{2}(\Gamma)$. Suppose that

$$
u_{n} \rightharpoonup \hat{u} \quad \text { weakly in } L^{2}(\Gamma) .
$$

Thus

$$
y\left(u_{n}\right) \longrightarrow y(\hat{u}) \quad \text { in } L^{2}(\Omega) .
$$

With the continuity of $\|\cdot\|_{L^{2}(\Omega)}^{2}$ and the weakly lower semicontinuity of $\|\cdot\|_{L^{2}(\Gamma)}^{2}$, we obtain

$$
\begin{aligned}
\int_{\Gamma} \hat{u}^{2} & \leq \liminf _{n \rightarrow \infty} \int_{\Gamma} u_{n}^{2} \\
\int_{\Omega}\left(y(\hat{u})-y_{d}\right)^{2} & =\lim _{n \rightarrow \infty} \int_{\Omega}\left(y\left(u_{n}\right)-y_{d}\right)^{2} .
\end{aligned}
$$

Combining these results, we have

$$
F(\hat{u}) \leq \liminf _{n \rightarrow \infty} F\left(u_{n}\right)=m=\inf (P) .
$$

Thus \hat{u} is a solution of (P).

Uniqueness

We argue by contradiction.
Let u_{1} and u_{2} be two solutions of (P).

$$
y\left(\frac{1}{2} u_{1}+\frac{1}{2} u_{2}\right)=\frac{1}{2} y\left(u_{1}\right)+\frac{1}{2} y\left(u_{2}\right)
$$

Since J is stricly convex, F is stricly convex:

$$
\begin{aligned}
& F\left(\frac{1}{2} u_{1}+\frac{1}{2} u_{2}\right)=J\left(y\left(\frac{1}{2} u_{1}+\frac{1}{2} u_{2}\right), \frac{1}{2} u_{1}+\frac{1}{2} u_{2}\right) \\
& \quad<\frac{1}{2} J\left(y\left(u_{1}\right), u_{1}\right)+\frac{1}{2} J\left(y\left(u_{2}\right), u_{2}\right)=\min (P)
\end{aligned}
$$

Optimality conditions

Theorem. Necessary optimality conditons
Let $F: U \longmapsto \mathbb{R}$. Suppose that F is Gâteauxdifferentiable at \bar{u} and that

$$
F(\bar{u})=\inf \{F(u) \mid u \in U\}
$$

Then

$$
F^{\prime}(\bar{u})=0 .
$$

Sufficient optimality conditons
Let F be a differentiable mapping from a Banach space U into \mathbb{R}. Suppose that F is convex and $F^{\prime}(\bar{u})=0$, then $F(\bar{u}) \leq F(u)$ for all $u \in U$.

Proof. It is a consequence of the convexity inequality

$$
F(u)-F(\bar{u}) \geq F^{\prime}(\bar{u})(u-\bar{u})=0,
$$

for all $u \in U$.

Optimality condition for the control problem

We set

$$
F(u)=J(y(u), u)=I(y(u))+G(u),
$$

where $y(u)$ is the solution to the state equation.
Directional derivative

$$
\begin{aligned}
& I(y(u+\lambda v))-I(y(u)) \\
& =\frac{1}{2} \int_{\Omega}\left|y(u+\lambda v)-y_{d}\right|^{2}-\frac{1}{2} \int_{\Omega}\left|y(u)-y_{d}\right|^{2} \\
& =\int_{\Omega}(y(u+\lambda v)-y(u))\left(\frac{1}{2}(y(u+\lambda v)+y(u))-y_{d}\right) .
\end{aligned}
$$

Equation satisfied by $z_{\lambda}=y(u+\lambda v)-y(u)$

$$
-\Delta z_{\lambda}+z_{\lambda}=0 \quad \text { in } \Omega, \quad \frac{\partial z_{\lambda}}{\partial n}=\lambda v \quad \text { on } \Gamma .
$$

Thus $z=\frac{y(u+\lambda v)-y(u)}{\lambda}$ obeys

$$
-\Delta z+z=0 \quad \text { in } \Omega, \quad \frac{\partial z}{\partial n}=v \quad \text { on } \Gamma .
$$

And

$$
\frac{1}{2}(y(u+\lambda v)+y(u))-y_{d} \longrightarrow y(u)-y_{d} .
$$

$$
\lim _{\lambda \rightarrow 0} \frac{I(y(u+\lambda v))-I(y(u))}{\lambda}
$$

$$
=\int_{\Omega}\left(y(u)-y_{d}\right) z(v)
$$

where

$$
-\Delta z+z=0 \quad \text { in } \Omega, \quad \frac{\partial z}{\partial n}=v \quad \text { on } \Gamma .
$$

$$
G(u+\lambda v)-G(u)=\frac{\beta}{2} \int_{\Gamma}\left(|u+\lambda v|^{2}-|u|^{2}\right)
$$

$$
=\frac{\beta}{2} \int_{\Gamma}\left(2 u \lambda v+|\lambda v|^{2}\right)
$$

$$
\lim _{\lambda \rightarrow 0} \frac{G(u+\lambda v)-G(u)}{\lambda}=\beta \int_{\Gamma} u v
$$

Finally

$$
F^{\prime}(u ; v)=\int_{\Omega}\left(y(u)-y_{d}\right) z+\frac{1}{2} \int_{\Gamma} u v
$$

where

$$
-\Delta z+z=0 \quad \text { in } \Omega, \quad \frac{\partial z}{\partial n}=v
$$

Since

$$
\left|F^{\prime}(u ; v)\right| \leq C\|v\|_{L^{2}(\Gamma)}
$$

F is G-differentiable and $F^{\prime}(u) v=F^{\prime}(u ; v)$.

Identification of $F^{\prime}(u): L^{2}(\Gamma) \mapsto \mathbb{R}$

$$
\begin{gathered}
F^{\prime}(u) \quad \text { belongs to }\left(L^{2}(\Gamma)\right)^{\prime}=L^{2}(\Gamma) . \\
F^{\prime}(u) v=\int_{\Omega}\left(y(u)-y_{d}\right) z+\int_{\Gamma} u v=\int_{\Gamma} \pi v .
\end{gathered}
$$

We introduce
$\Lambda: v \longmapsto z, \quad$ from $L^{2}(\Gamma)$ to $L^{2}(\Omega)$.

$$
\begin{aligned}
& F^{\prime}(u) v=\left(\left(y(u)-y_{d}\right), \Lambda(v)\right)_{L^{2}(\Omega)}+(u, v)_{L^{2}(\Gamma)} \\
& =\left(\Lambda^{*}\left(y(u)-y_{d}\right), v\right)_{L^{2}(\Gamma)}+(u, v)_{L^{2}(\Gamma)} .
\end{aligned}
$$

Green Formula between z and an other function p :

$$
\begin{gathered}
0=\int_{\Omega}(-\Delta z+z) p \\
0=\int_{\Omega}(-\Delta p+p) z-\int_{\Gamma} \frac{\partial z}{\partial n} p+\int_{\Gamma} \frac{\partial p}{\partial n} z \\
0=\int_{\Omega}(-\Delta p+p) z-\int_{\Gamma} v p+\int_{\Gamma} \frac{\partial p}{\partial n} z \\
\int_{\Omega}\left(y(u)-y_{d}\right) z=\int_{\Gamma} q v
\end{gathered}
$$

Thus if p is the solution to

$$
-\Delta p+p=y(u)-y_{d} \quad \text { in } \Omega, \quad \frac{\partial p}{\partial n}=0 \quad \text { on } \Gamma
$$

then

$$
\int_{\Omega}\left(y(u)-y_{d}\right) z=\int_{\Gamma} v p
$$

and

$$
F^{\prime}(u) v=\int_{\Gamma}(p+\beta u) v
$$

If \bar{u} is the solution of (P) then

$$
p+\beta \bar{u}=0,
$$

with

$$
-\Delta p+p=y(\bar{u})-y_{d} \quad \text { in } \Omega, \quad \frac{\partial p}{\partial n}=0 \quad \text { on } \Gamma
$$

Theorem. If (\bar{y}, \bar{u}) is the solution to (P) then $\bar{u}=-\left.\frac{1}{\beta} p\right|_{\Gamma}$, where p is the solution of the equation

$$
-\Delta p+p=\bar{y}-y_{d} \quad \text { in } \Omega, \quad \frac{\partial p}{\partial n}=0 \quad \text { on } \Gamma .
$$

Conversely, if a pair $(\tilde{y}, \tilde{p}) \in H^{1}(\Omega) \times H^{1}(\Omega)$ obeys the system

$$
\begin{array}{llll}
-\Delta \tilde{y}+\tilde{y}=f & \text { in } \Omega, & \frac{\partial \tilde{y}}{\partial n}=-\frac{1}{\beta} \tilde{p} & \text { on } \Gamma, \\
-\Delta \tilde{p}+\tilde{p}=\tilde{y}-y_{d} & \text { in } \Omega, & \frac{\partial \tilde{p}}{\partial n}=0 & \text { on } \Gamma,
\end{array}
$$

then the pair $\left(\tilde{y},-\frac{1}{\beta} \tilde{p}\right)$ is the solution of problem (P).

Proof. Suppose that (y, p) is a solution to the optimality system

$$
\begin{aligned}
& -\Delta y+y=f \quad \text { in } \Omega, \quad \frac{\partial y}{\partial n}=-\frac{1}{\beta} p \quad \text { on } \Gamma, \\
& -\Delta p+p=y-y_{d} \quad \text { in } \Omega, \quad \frac{\partial p}{\partial n}=0 \quad \text { on } \Gamma,
\end{aligned}
$$

Then

$$
F^{\prime}\left(-\frac{1}{\beta} p\right)=0
$$

because

$$
F^{\prime}\left(\frac{1}{\beta} p\right) v=\int_{\Gamma}(p+\beta u) v=\int_{\Gamma}\left(p-\beta \frac{1}{\beta} p\right) v=0 .
$$

Comments.

- The optimality system

$$
\begin{aligned}
& -\Delta y+y=f \quad \text { in } \Omega, \quad \frac{\partial y}{\partial n}=-p \quad \text { on } \Gamma \\
& -\Delta p+p=y-y_{d} \quad \text { in } \Omega, \quad \frac{\partial p}{\partial n}=0 \quad \text { on } \Gamma
\end{aligned}
$$

can be approximated by a finite element method, and next solved by a conjugate gradient method.

- The optimal control is obtained by taking

$$
u=-\left.\frac{1}{\beta} p\right|_{\Gamma}
$$

Part 2

Control problem with control constraints

$\left(P_{2}\right)$
Minimize $J(y, u)=\frac{1}{2} \int_{\Omega}\left|y-y_{d}\right|^{2}+\frac{\beta}{2} \int_{\Gamma}|u|^{2}$

$$
-\Delta y+y=f \quad \text { in } \Omega, \quad \frac{\partial y}{\partial n}=u \quad \text { on } \Gamma .
$$

$u \in U_{a d}$, a closed convex subset in $L^{2}(\Gamma)$.

$$
U_{a d}=\left\{u \in L^{2}(\Gamma) \mid u_{a} \leq u \leq u_{b}\right\}
$$

Theorem. Problem (P_{2}) admits a unique solution.
We find the existence of a minimizing sequence

$$
\left(u_{n}\right)_{n} \subset U_{a d}
$$

and

$$
u_{n} \rightharpoonup u \quad \text { weakly in } L^{2}(\Gamma)
$$

Since $U_{a d}$ is a closed convex subset in $L^{2}(\Gamma)$,

$$
u \in U_{a d}
$$

Thus u is a solution of problem $\left(P_{2}\right)$.

Optimality conditions

Theorem. Necessary optimality conditons
Let $F: U \longmapsto \mathbb{R}$. Suppose that F is Gâteauxdifferentiable at \bar{u} and that

$$
F(\bar{u})=\inf \left\{F(u) \mid u \in U_{a d}\right\}
$$

Then

$$
F^{\prime}(\bar{u})(u-\bar{u}) \geq 0 \quad \text { for all } u \in U_{a d}
$$

Sufficient optimality conditons
Let F be a differentiable mapping from a Banach space U into \mathbb{R}. Suppose that F is convex and $F^{\prime}(\bar{u})(u-\bar{u}) \geq$ 0 for all $u \in U_{a d}$, then $F(\bar{u}) \leq F(u)$ for all $u \in U_{a d}$.

Theorem. If (\bar{y}, \bar{u}) is the solution to $\left(P_{2}\right)$ then

$$
\int_{\Gamma}(\beta \bar{u}+p)(u-\bar{u}) \geq 0 \quad \text { for all } u \in U_{a d}
$$

where p is the solution of the equation

$$
-\Delta p+p=\bar{y}-y_{d} \quad \text { in } \Omega, \quad \frac{\partial p}{\partial n}=0 \quad \text { on } \Gamma .
$$

Proof.

$$
F^{\prime}(\bar{u}) v=\int_{\Gamma}(\beta \bar{u}+p) v
$$

where

$$
-\Delta p+p=\bar{y}-y_{d} \quad \text { in } \Omega, \quad \frac{\partial p}{\partial n}=0 \quad \text { on } \Gamma .
$$

Thus writing

$$
F^{\prime}(\bar{u})(u-\bar{u}) \geq 0 \quad \text { for all } u \in U_{a d}
$$

we obtain the necessary optimality condition of the theorem.

Theorem. Conversely, if a triplet $(\tilde{y}, \tilde{p}, \tilde{u}) \in H^{1}(\Omega) \times$ $H^{1}(\Omega) \times L^{2}(\Gamma)$ obeys the system

$$
\begin{aligned}
& -\Delta \tilde{y}+\tilde{y}=f \quad \text { in } \Omega, \quad \frac{\partial \tilde{y}}{\partial n}=\tilde{u} \quad \text { on } \Gamma \\
& -\Delta \tilde{p}+\tilde{p}=\tilde{y}-y_{d} \quad \text { in } \Omega, \quad \frac{\partial \tilde{p}}{\partial n}=0 \quad \text { on } \Gamma \\
& \int_{\Gamma}(\beta \tilde{u}+\tilde{p})(u-\tilde{u}) \geq 0 \quad \text { for all } u \in U_{a d}
\end{aligned}
$$

then the pair (\tilde{y}, \tilde{u}) is the solution of problem $\left(P_{2}\right)$.
Proof. The theorem follows from the sufficient optimality condition stated before.

Case of bound constraints

$$
u_{a} \leq u \leq u_{b}, \quad u_{a}, u_{b} \in L^{2}(\Gamma)
$$

The necessary optimality condition

$$
\int_{\Gamma}(\beta \bar{u}+p)(u-\bar{u}) \geq 0 \quad \text { for all } u \in U_{a d}
$$

is equivalent to the pointwise relation
$(\beta \bar{u}(x)+p(x))(u-\bar{u}(x)) \geq 0 \quad$ for all $u \in\left[u_{a}(x), u_{b}(x)\right]$,
for almost every $x \in \Gamma$.

Recall that a Lebesgue point for $g \in L^{1}(\Gamma)$:

$$
x_{0} \in \Gamma \quad \text { s. t. } \lim _{\varepsilon} \frac{1}{\left|\Gamma \cap B\left(x_{0}, \varepsilon\right)\right|} \int_{\Gamma \cap B\left(x_{0}, \varepsilon\right)} g=g\left(x_{0}\right),
$$

and

$$
\lim _{\varepsilon} \frac{1}{\left|\Gamma \cap B\left(x_{0}, \varepsilon\right)\right|} \int_{\Gamma \cap B\left(x_{0}, \varepsilon\right)}\left|g(x)-g\left(x_{0}\right)\right| d x=0
$$

We denote by Γ_{0} the set of Lebesgue points of the functions

$$
\begin{array}{ll}
(\beta \bar{u}+p)\left(u_{a}-\bar{u}\right), & u_{a} \\
(\beta \bar{u}+p)\left(u_{b}-\bar{u}\right), & u_{b}
\end{array}
$$

Let $x_{0} \in \Gamma_{0}$, we choose

$$
u=u_{a} \chi_{\Gamma \cap B\left(x_{0}, \varepsilon\right)}+\bar{u} \chi_{\Gamma \backslash B\left(x_{0}, \varepsilon\right)}
$$

We substitute u in the integral relation,

$$
\int_{\Gamma}(\beta \bar{u}+p)(u-\bar{u}) \geq 0 \quad \text { for all } u \in U_{a d}
$$

we divide by $\left|\Gamma \cap B\left(x_{0}, \varepsilon\right)\right|$, and by passing to the limit, we obtain

$$
\left(\beta \bar{u}\left(x_{0}\right)+p\left(x_{0}\right)\right)\left(u_{a}\left(x_{0}\right)-\bar{u}\left(x_{0}\right)\right) \geq 0 .
$$

Similarly

$$
\left(\beta \bar{u}\left(x_{0}\right)+p\left(x_{0}\right)\right)\left(u_{b}\left(x_{0}\right)-\bar{u}\left(x_{0}\right)\right) \geq 0 .
$$

Finally

$$
\left(\beta \bar{u}\left(x_{0}\right)+p\left(x_{0}\right)\right)\left(u-\bar{u}\left(x_{0}\right)\right) \geq 0
$$

for all $u \in\left[u_{a}\left(x_{0}\right), u_{b}\left(x_{0}\right)\right]$.
From the pointwise relation, we deduce that

$$
\begin{aligned}
& \bar{u}(x)=u_{a}(x) \quad \text { if } \beta \bar{u}(x)+p(x)>0 \\
& u_{a}(x) \leq \bar{u}(x) \leq u_{b}(x) \quad \text { if } \beta \bar{u}(x)+p(x)=0, \\
& \bar{u}(x)=u_{b}(x) \quad \text { if } \beta \bar{u}(x)+p(x)<0
\end{aligned}
$$

We can summarize these results by writing
$\bar{u}(x)=\operatorname{Proj}_{\left[u_{a}(x), u_{b}(x)\right]}\left(-\frac{1}{\beta} p(x)\right) \quad$ for a. e. $x \in \Gamma$.

Part 3

Exercise 1. Observation on the boundary

$\left(P_{3}\right)$
Minimize $J(y, u)=\frac{1}{2} \int_{\Gamma_{o}}\left|y-y_{d}\right|^{2}+\frac{\beta}{2} \int_{\Gamma_{c}}|u|^{2}$
$-\Delta y+y=f \quad$ in Ω,
$\frac{\partial y}{\partial n}=u \quad$ on $\Gamma_{c}, \quad \frac{\partial y}{\partial n}=0 \quad$ on $\Gamma \backslash \Gamma_{c}$.
$u \in L^{2}(\Gamma), \quad f \in L^{2}(\Omega)$,
$y_{d} \in L^{2}\left(\Gamma_{o}\right), \quad \beta>0$.

Questions.

1. Prove the existence of a unique optimal control u.
2. Write the first order optimality conditions for u.

Existence of a solution to the state equation

Lax-Milgram theorem in $H^{1}(\Omega)$ with

$$
\begin{aligned}
& a(y, z)=\int_{\Omega}(\nabla y \cdot \nabla z+y z) \\
& \ell(z)=\int_{\Omega} f z+\int_{\Gamma_{c}} u z
\end{aligned}
$$

The variational formulation of the state equation is

$$
\begin{aligned}
& \text { find } y \in H^{1}(\Omega) \text { such that } \\
& a(y, z)=\ell(z) \text { for all } z \in H^{1}(\Omega) .
\end{aligned}
$$

1. For every $u \in L^{2}(\Gamma)$, the state equation admits a unique solution in $H^{1}(\Omega)$. This solution belongs to $H^{3 / 2}(\Omega)$. Moreover

$$
\|y\|_{H^{3 / 2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{L^{2}\left(\Gamma_{c}\right)}\right) .
$$

2. If $\left(u_{n}\right)_{n}$ is a sequence in $L^{2}\left(\Gamma_{c}\right)$ converging to u for the weak topology of $L^{2}\left(\Gamma_{c}\right)$, then the sequence $\left(y\left(u_{n}\right)\right)_{n}$ converges to $y(u)$ in $H^{1}(\Omega)$.

Thus

$$
\left.\left.y\left(u_{n}\right)\right|_{\Gamma_{o}} \longrightarrow y(u)\right|_{\Gamma_{o}} \quad \text { in } L^{2}\left(\Gamma_{o}\right) .
$$

3. The control problem admits a unique solution.

Optimality conditions

Setting $F(u)=J(y(u), u)$ we have

$$
F^{\prime}(u) v=\int_{\Gamma_{o}}\left(y(u)-y_{d}\right) z(v)+\beta \int_{\Gamma_{c}} u v
$$

where $z(v)$ is the solution of

$$
\begin{aligned}
& -\Delta z+z=0 \quad \text { in } \Omega \\
& \frac{\partial z}{\partial n}=v \quad \text { on } \Gamma_{c}, \quad \frac{\partial z}{\partial n}=0 \quad \text { on } \Gamma \backslash \Gamma_{c} .
\end{aligned}
$$

What is the adjoint equation ? With an integration by parts between $z=z(v)$ and an other function p we have

$$
\begin{aligned}
& 0=\int_{\Omega}(-\Delta p+p) z-\int_{\Gamma} \frac{\partial z}{\partial n} p+\int_{\Gamma} \frac{\partial p}{\partial n} z \\
& 0=\int_{\Omega}(-\Delta p+p) z-\int_{\Gamma_{c}} v p+\int_{\Gamma} \frac{\partial p}{\partial n} z . \\
& \int_{\Gamma_{o}}\left(y(u)-y_{d}\right) z=\int_{\Gamma_{c}} v p .
\end{aligned}
$$

If we set

$$
-\Delta p+p=0
$$

and

$$
\frac{\partial p}{\partial n}=y(u)-y_{d} \quad \text { on } \Gamma_{o}, \quad \frac{\partial p}{\partial n}=0 \quad \text { on } \Gamma \backslash \Gamma_{o}
$$

we have

$$
\int_{\Gamma_{o}}\left(y(u)-y_{d}\right) z=\int_{\Gamma_{c}} v p
$$

Conclusion

$$
F^{\prime}(u) v=\int_{\Gamma_{c}}(p v+\beta u v)
$$

The optimal control \bar{u} is characterized by

$$
\bar{u}=-\left.\frac{1}{\beta} p\right|_{\Gamma_{c}},
$$

and
$-\Delta p+p=0 \quad$ in $\Omega, \quad \frac{\partial p}{\partial n}=\chi_{\Gamma_{0}}\left(y(\bar{u})-y_{d}\right) \quad$ on Γ.

Part 4

Exercise 2. Identification of a boundary coefficient

$\left(P_{4}\right)$
Minimize $J(y, u)=\frac{1}{2} \int_{\omega}\left|y-y_{d}\right|^{2}+\frac{\beta}{2} \int_{\Gamma}|u-h|^{2}$
$-\Delta y+y=f \quad$ in $\Omega, \quad \frac{\partial y}{\partial n}+u y=g \quad$ on Γ.
$u \in U_{a d}=\left\{u \in L^{2}(\Gamma) \mid u_{a} \leq u \leq u_{b}\right\}$,
$0<u_{a}<u_{b} \in \mathbb{R}, \quad \omega \subset \Omega$.

We suppose that

$$
y_{d} \in L^{2}(\omega), f \in L^{2}(\Omega), \quad h, g \in L^{2}(\Gamma), \quad \beta>0
$$

Questions.

1. Prove the existence of an optimal control u.
2. Write the first order optimality conditions for u.

Existence of a solution to the state equation

Lax-Milgram theorem in $H^{1}(\Omega)$ with

$$
\begin{aligned}
& a(y, z)=\int_{\Omega}(\nabla y \cdot \nabla z+y z)+\int_{\Gamma} u y z \\
& \ell(z)=\int_{\Omega} f z+\int_{\Gamma} g z
\end{aligned}
$$

The variational formulation of the state equation is

$$
\begin{aligned}
& \text { find } y \in H^{1}(\Omega) \text { such that } \\
& a(y, z)=\ell(z) \text { for all } z \in H^{1}(\Omega) .
\end{aligned}
$$

1. For every $u \in U_{a d}$, the state equation admits a unique solution in $H^{1}(\Omega)$. Moreover

$$
\|y\|_{H^{1}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Gamma)}\right),
$$

where C is independent of u.
Writing the boundary condition in the form

$$
\frac{\partial y}{\partial n}=-u y+g \quad \text { on } \Gamma
$$

and using the estimates of part 1 , we find

$$
\|y\|_{H^{3 / 2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|-u y+g\|_{L^{2}(\Gamma)}\right)
$$

Thus

$$
\|y\|_{H^{3 / 2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Gamma)}+\|y\|_{H^{1}}\|u\|_{L^{\infty}}\right)
$$

2. If $\left(u_{n}\right)_{n}$ is a sequence in $U_{a d}$ converging to u for the weak-star topology of $L^{\infty}(\Gamma)$, then the sequence $\left(y\left(u_{n}\right)\right)_{n}$ converges to $y(u)$ in $H^{1}(\Omega)$.

The mapping

$$
u \longmapsto y(u)
$$

is nonlinear.
Proof. Set $y_{n}=y\left(u_{n}\right)$. We know that

$$
\left\|y_{n}\right\|_{H^{1}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Gamma)}\right)
$$

and

$$
\left\|y_{n}\right\|_{H^{3 / 2}(\Omega)} \leq C\left(\|f\|_{L^{2}}+\|g\|_{L^{2}}+\left\|y_{n}\right\|_{H^{1}}\left\|u_{n}\right\|_{L^{\infty}}\right)
$$

To prove that $\left(y_{n}\right)_{n}$ converges to $y(u)$ in $H^{1}(\Omega)$, it is enough to prove that $y(u)$ is the unique cluster point of the sequence in $H^{1}(\Omega)$.

Let us denote by $\left(y_{k}\right)_{k}$ such a subsequence and suppose that $\left(y_{k}\right)_{k}$ converges to \tilde{y} weakly in $H^{3 / 2}(\Omega)$, and strongly in $H^{1}(\Omega)$.

Passage to the limit

$$
\begin{aligned}
& \int_{\Omega}\left(\nabla y_{k} \cdot \nabla z+y_{k} z\right)+\int_{\Gamma} u_{k} y_{k} z \\
& =\int_{\Omega} f z+\int_{\Gamma} g z
\end{aligned}
$$

Since $\left(y_{k}\right)_{k}$ converges to \tilde{y} in $H^{1}(\Omega)$,

$$
\begin{aligned}
& \int_{\Omega}\left(\nabla y_{k} \cdot \nabla z+y_{k} z\right) \longrightarrow \int_{\Omega}(\nabla \tilde{y} \cdot \nabla z+\tilde{y} z) \\
& \left.\left.y_{k}\right|_{\Gamma} \xrightarrow{L^{2}(\Gamma)} \tilde{y}\right|_{\Gamma}, \\
& \int_{\Gamma} u_{k} y_{k} z \longrightarrow \int_{\Gamma} u \tilde{y} z
\end{aligned}
$$

for all $z \in H^{1}(\Omega)$. Thus $\tilde{y}=y(u)$.
3. The control problem admits at least one solution. In general the uniqueness cannot be proved because the mapping

$$
u \longmapsto y(u)
$$

is not affine.

Optimality conditions

4. Equation satisfied by $w_{\lambda}=\frac{y(u+\lambda v)-y(u)}{\lambda}$.

$$
\begin{aligned}
& -\Delta w_{\lambda}+w_{\lambda}=0 \quad \text { in } \Omega \\
& \frac{\partial w_{\lambda}}{\partial n}+(u+\lambda v) w_{\lambda}+v y(u)=0 \quad \text { on } \Gamma .
\end{aligned}
$$

For λ small enough $\left(|\lambda| \leq \lambda_{0}\right)$, the bilinear form:

$$
a(w, z)=\int_{\Omega}(\nabla w \cdot \nabla z+w z)+\int_{\Gamma}(u+\lambda v) w z
$$

is coercive in $H^{1}(\Omega)$ and the coercivity constant is independent of λ. Thus

$$
\left\|w_{\lambda}\right\|_{H^{1}(\Omega)} \leq C\|v\|_{L^{\infty}(\Gamma)}\|y(u)\|_{L^{2}(\Gamma)}
$$

where C is independent of λ.

At least formally when $\lambda \rightarrow 0$

$$
w_{\lambda} \longrightarrow z
$$

where z is the solution to
$-\Delta z+z=0 \quad$ in $\Omega, \quad \frac{\partial z}{\partial n}+u z+v y(u)=0 \quad$ on Γ.

To prove that w_{λ} converges to z in $L^{2}(\Omega)$ or in $H^{1}(\Omega)$, we write the equation satisfied by $\zeta=w_{\lambda}-z$
$-\Delta \zeta+\zeta=0 \quad$ in $\Omega, \quad \frac{\partial \zeta}{\partial n}+u \zeta+\lambda v w_{\lambda}=0 \quad$ on Γ.
With a classical estimate we get

$$
\|\zeta\|_{H^{1}(\Omega)} \leq C|\lambda|\|v\|_{L^{\infty}(\Gamma)}\left\|w_{\lambda}\right\|_{L^{2}(\Gamma)} .
$$

Conclusion

$$
\lim _{\lambda \rightarrow 0}\left\|\frac{y(u+\lambda v)-y(u)}{\lambda}-z\right\|_{H^{1}(\Omega)}=0
$$

and setting $F(u)=J(y(u), u)$ we have

$$
F^{\prime}(u) v=\int_{\omega}\left(y(u)-y_{d}\right) z(v)+\beta \int_{\Gamma}(u-h) v
$$

What is the adjoint equation ? With an integration by parts between $z=z(v)$ and an other function p we have

$$
\begin{aligned}
& 0=\int_{\Omega}(-\Delta p+p) z-\int_{\Gamma} \frac{\partial z}{\partial n} p+\int_{\Gamma} \frac{\partial p}{\partial n} z \\
& 0=\int_{\Omega}(-\Delta p+p) z+\int_{\Gamma}(u z+v y(u)) p+\int_{\Gamma} \frac{\partial p}{\partial n} z . \\
& \int_{\omega}\left(y(u)-y_{d}\right) z=\int_{\Gamma} q v .
\end{aligned}
$$

If we set

$$
\begin{aligned}
& -\Delta p+p=\chi_{\omega}\left(y(u)-y_{d}\right), \quad \text { in } \Omega, \\
& \frac{\partial p}{\partial n}+u p=0, \quad \text { on } \Gamma,
\end{aligned}
$$

we have

$$
\int_{\omega}\left(y(u)-y_{d}\right) z(v)=-\int_{\Gamma} v y(u) p
$$

Conclusion

$$
F^{\prime}(u) v=-\int_{\Gamma} v y(u) p+\beta \int_{\Gamma}(u-h) v
$$

If (\bar{y}, \bar{u}) is a solution of $\left(P_{4}\right)$ then

$$
\int_{\Gamma}(-\bar{y} p+\beta(\bar{u}-h))(u-\bar{u}) \geq 0
$$

for all $u_{a} \leq u \leq u_{b}$.

Pointwise conditions

$$
\begin{aligned}
& \bar{u}(x)=u_{a} \quad \text { if }(-\bar{y} p+\beta(\bar{u}-h))(x)>0, \\
& \bar{u}(x)=u_{b} \quad \text { if }(-\bar{y} p+\beta(\bar{u}-h))(x)<0, \\
& u_{a} \leq \bar{u}(x) \leq u_{b} \quad \text { if }(-\bar{y} p+\beta(\bar{u}-h))(x)=0, \\
& \bar{u}(x)=h(x)+\frac{1}{\beta} \bar{y} p(x) .
\end{aligned}
$$

We can summarize

$$
\bar{u}(x)=\operatorname{Proj}_{\left[u_{a}, u_{b}\right]}\left(h(x)+\frac{1}{\beta} \bar{y} p(x)\right) .
$$

Part 5

Exercise 3. Control of an electrical potential

The electrical potential ϕ satisfies the elliptic equation

$$
\begin{aligned}
& -\operatorname{div}(\sigma \nabla \phi)=0 \quad \text { in } \Omega \\
& -\sigma \frac{\partial \phi}{\partial n}=u \quad \text { on } \Gamma_{a}, \quad-\sigma \frac{\partial \phi}{\partial n}=0 \quad \text { on } \Gamma_{i}, \\
& -\sigma \frac{\partial \phi}{\partial n}=f(\phi) \quad \text { on } \Gamma_{c},
\end{aligned}
$$

Γ_{a} corresponds to the anode, Γ_{c} corresponds to the cathode, Γ_{i} is the rest of the boundary Γ.
f is of class $C^{1}, f(0)=0,0<c_{1} \leq f^{\prime}(r) \leq c_{2}$ for all $r \in \mathbb{R}$,
the conductivity $\sigma>0$.

The control problem (P_{5})

$\inf \left\{J(\phi, u) \mid(\phi, u) \in H^{1}(\Omega) \times L^{2}\left(\Gamma_{a}\right), u_{a} \leq u \leq u_{b}\right\}$,
where (ϕ, u) solves the state equation and

$$
J(\phi, u)=\frac{1}{2} \int_{\Gamma_{c}}\left(\phi-\phi_{d}\right)^{2}+\frac{\beta}{2} \int_{\Gamma_{a}} u^{2},
$$

$u_{a} \in L^{2}\left(\Gamma_{a}\right)$ and $u_{b} \in L^{2}\left(\Gamma_{a}\right)$ are some bounds on the current u, and β is a positive constant.

1. Prove that $\left(P_{5}\right)$ has at least one solution.
2. Write the first order optimality condition for the solutions to $\left(P_{5}\right)$.

The state equation

Theorem. (The Minty-Browder Theorem, [Brézis])
Let E be a reflexive Banach space, and \mathcal{A} be a nonlinear continuous mapping from E into E^{\prime}. Suppose that

$$
\left\langle\mathcal{A}\left(\phi_{1}\right)-\mathcal{A}\left(\phi_{2}\right), \phi_{1}-\phi_{2}\right\rangle_{E^{\prime}, E}>0
$$

for all ϕ_{1}, ϕ_{2} in E, with $\phi_{1} \neq \phi_{2}$, and

$$
\lim _{\|\phi\|_{E} \rightarrow \infty} \frac{\langle\mathcal{A}(\phi), \phi\rangle_{E^{\prime}, E}}{\|\phi\|_{E}}=\infty
$$

Then, for all $\ell \in E^{\prime}$, there exists a unique $\phi \in E$ such that $\mathcal{A}(\phi)=\ell$.

To apply this theorem, we set $E=H^{1}(\Omega)$, and we define \mathcal{A} by

$$
\langle\mathcal{A}(\phi), z\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)}=\int_{\Omega} \sigma \nabla \phi \cdot \nabla z+\int_{\Gamma_{c}} f(\phi) z,
$$

and ℓ by

$$
\ell(z)=-\int_{\Gamma_{a}} z u
$$

3. We can prove that the state equation

$$
\langle\mathcal{A}(\phi), z\rangle=\ell(z) \quad \forall z \in H^{1}(\Omega)
$$

admits a unique solution $\phi \in H^{1}(\Omega)$.

Observe that

$$
f(\phi(x))=f(0)+\int_{0}^{1} f^{\prime}(\theta \phi) d \theta \phi \phi(x)
$$

Writing the nonlinear boundary condition in the form

$$
\sigma \frac{\partial \phi}{\partial n}+a(x) \phi=0 \quad \text { on } \Gamma_{c},
$$

with

$$
0<c_{1} \leq a(x)=\int_{0}^{1} f^{\prime}(\theta \phi(x)) d \theta
$$

We can prove that

$$
\|\phi\|_{H^{1}(\Omega)} \leq C\|u\|_{L^{2}\left(\Gamma_{a}\right)},
$$

and

$$
\|\phi\|_{H^{3 / 2}(\Omega)} \leq C\left(c_{2}\|\phi\|_{L^{2}\left(\Gamma_{c}\right)}+\|u\|_{L^{2}\left(\Gamma_{a}\right)}\right)
$$

Thus if $\left(u_{n}\right)_{n}$ is a sequence weakly converging to u in $L^{2}\left(\Gamma_{a}\right)$, the sequence $\left(\phi_{n}\right)_{n}$, where $\phi_{n}=\phi\left(u_{n}\right)$, is bounded in $H^{3 / 2}(\Omega)$.

We can pass to the limit in the variational equation

$$
\left\langle\mathcal{A}\left(\phi_{n}\right), z\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)}=\ell_{n}(z)=-\int_{\Gamma_{a}} u_{n} z .
$$

Indeed

$$
\phi_{n} \longrightarrow \phi \text { in } H^{1}(\Omega) .
$$

Thus

$$
\int_{\Gamma_{c}} f\left(\phi_{n}\right) z \longrightarrow \int_{\Gamma_{c}} f(\phi) z
$$

for all $z \in H^{1}(\Omega)$.
Thanks to this result, we prove that $\left(P_{5}\right)$ admits at least one solution.

Optimality conditions

Equation satisfied by $\psi_{\lambda}=\frac{\phi(u+\lambda v)-\phi(u)}{\lambda}$.

$$
-\operatorname{div}\left(\sigma \nabla \psi_{\lambda}\right)=0 \quad \text { in } \Omega
$$

$$
-\sigma \frac{\partial \psi_{\lambda}}{\partial n}=v \quad \text { on } \Gamma_{a}, \quad-\sigma \frac{\partial \psi_{\lambda}}{\partial n}=0 \quad \text { on } \Gamma_{i}
$$

$$
-\sigma \frac{\partial \psi_{\lambda}}{\partial n}=\frac{1}{\lambda}(f(\phi(u+\lambda v))-f(\phi(u))) \quad \text { on } \Gamma_{c} .
$$

We have

$$
\frac{1}{\lambda}(f(\phi(u+\lambda v))-f(\phi(u)))=b(x) \psi_{\lambda}
$$

with

$$
b(x)=\int_{0}^{1} f^{\prime}(\phi(u)+\theta \phi(u+\lambda v)) d \theta \geq c_{1}>0
$$

The limit of ψ_{λ} in $H^{1}(\Omega)$, is the solution ψ of the equation

$$
\begin{aligned}
& -\operatorname{div}(\sigma \nabla \psi)=0 \quad \text { in } \Omega \\
& -\sigma \frac{\partial \psi}{\partial n}=v \quad \text { on } \Gamma_{a}, \quad-\sigma \frac{\partial \psi}{\partial n}=0 \quad \text { on } \Gamma_{i}, \\
& -\sigma \frac{\partial \psi}{\partial n}=f^{\prime}(\phi) \psi \quad \text { on } \Gamma_{c} .
\end{aligned}
$$

Conclusion

Setting $F(u)=J(\phi(u), u)$ we have

$$
F^{\prime}(u) v=\int_{\Gamma_{c}}\left(\phi(u)-\phi_{d}\right) \psi(v)+\beta \int_{\Gamma_{a}} u v .
$$

What is the adjoint equation ? With an integration by parts between $\psi=\psi(v)$ and an other function p we have

$$
\begin{gathered}
0=-\int_{\Omega} \operatorname{div}(\sigma \nabla p) \psi-\int_{\Gamma} \sigma \frac{\partial \psi}{\partial n} p+\int_{\Gamma} \sigma \frac{\partial p}{\partial n} \psi \\
0=\int_{\Omega}\left(-\operatorname{div}(\sigma \nabla p) \psi+\int_{\Gamma_{a}} v p+\int_{\Gamma_{c}} f^{\prime}(\phi) \psi p\right. \\
+\int_{\Gamma} \sigma \frac{\partial p}{\partial n} \psi . \\
\int_{\Gamma_{c}}\left(\phi(u)-\phi_{d}\right) \psi(v)=\int_{\Gamma_{a}} q v .
\end{gathered}
$$

If we set

$$
\begin{aligned}
& -\operatorname{div}(\sigma \nabla p)=0, \quad \text { in } \Omega \\
& \sigma \frac{\partial p}{\partial n}=0, \quad \text { on } \Gamma_{i} \cup \Gamma_{a} \\
& \sigma \frac{\partial p}{\partial n}+f^{\prime}(\phi) p=\phi(u)-\phi_{d}, \quad \text { on } \Gamma_{c}
\end{aligned}
$$

we have

$$
\int_{\Gamma_{c}}\left(\phi(u)-y_{d}\right) \psi(v)=-\int_{\Gamma_{a}} v p .
$$

Conclusion

$$
F^{\prime}(u) v=\int_{\Gamma_{a}}(-p+\beta u) v
$$

If $(\bar{\phi}, \bar{u})$ is a solution of $\left(P_{5}\right)$ then

$$
\int_{\Gamma_{a}}(-p+\beta \bar{u})(u-\bar{u}) \geq 0
$$

for all $u_{a} \leq u \leq u_{b}$.
That is

$$
\bar{u}(x)=\operatorname{Proj}_{\left[u_{a}, u_{b}\right]}\left(\frac{1}{\beta} p(x)\right) .
$$

References

[1] H. Brezis, Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1983.
[2] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.
[3] S. Kesavan, Topics in Functional Analysis and Applications, Wiley-Eastern, New Delhi, 1989.
[4] N. G. Zamani, J. M. Chunang, Optimal control of current in a cathodic protection system: A numerical investigation, Opt. Cont. Appl. Meth., Vol. 8 (1987), 339-350.

