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The physical problem

Ω

Γ

y + y = f − ∆

u
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• y may be an electrical potential

and u a current density.

• y may be a temperature distribution

and u a thermal flux.

Problem. Minimize the distance between y and a

given distribution yd ∫
Ω

|y − yd|2.

The consumed energy is∫
Γ

|u|2.
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The control problem

Minimize J(y, u) =
1
2

∫
Ω

|y − yd|2 +
β

2

∫
Γ

|u|2

−∆y + y = f in Ω,
∂y

∂n
= u on Γ.

u ∈ L2(Γ), f ∈ L2(Ω),

yd ∈ L2(Ω), β > 0.
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Sobolev spaces
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Prerequisite on Sobolev spaces

H1(Ω) =
{
y ∈ L2(Ω) | ∂y

∂xi
∈ L2(Ω)

}
‖y‖H1(Ω) =

(
‖y‖2

L2(Ω) + Σn
i=1‖∂xi

y‖2
L2(Ω)

)1/2

,

H2(Ω) =
{
y ∈ H1(Ω) | ∂2y

∂xi∂xj
∈ L2(Ω)

}
‖y‖H2(Ω) =

(
‖y‖2

H1(Ω) + Σn
i,j=1‖∂2

xi xj
y‖2

L2(Ω)

)1/2

.
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Intermediate spaces

H2(Ω) ⊂ Hs(Ω) ⊂ H1(Ω) ⊂ Hσ(Ω) ⊂ L2(Ω)

If Ω = RN , Hs(Ω) can be characterized by Fourier

transform.

Iσ(y) =
∫

Ω

∫
Ω

|y(x)− y(ξ)|2

|x− ξ|n+2σ
dx dξ <∞

‖y‖Hσ(Ω) =
(
‖y‖2

L2(Ω) + Iσ(y)
)1/2

, 0 < σ < 1,

‖y‖Hs(Ω) =
(
‖y‖2

H1(Ω) + Σn
i=1Is−[s](∂xi

y)
)1/2

, 1 < s < 2.
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Trace theorems

H1/2(Γ) =
{
y ∈ L2(Γ) | |y|H1/2(Γ) <∞

}

|y|H1/2(Γ) =

(∫
Γ

∫
Γ

|y(x)− y(ξ)|2

|x− ξ|n−1+1
dx dξ

)1/2

,

‖y‖H1/2(Γ) =
(
‖y‖2

L2(Γ) + |y|2
H1/2(Γ)

)1/2

.
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γ0 : y 7−→ y|Γ

γ0 : H1(Ω) 7−→ H1/2(Γ)

γ0 : Hs(Ω) 7−→ Hs−1/2(Γ) s > 1/2

γ0 is a surjective op. from Hs(Ω) to Hs−1/2(Γ).
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γ1 : y 7−→ ∂y

∂n

γ1 : H2(Ω) 7−→ H1/2(Γ)

γ1 : Hs(Ω) 7−→ Hs−3/2(Γ) s > 3/2

γ1 is a surjective op. from Hs(Ω) to Hs−3/2(Γ).

H1
0(Ω) = {y ∈ H1(Ω) | γ0y = 0},

H1
0(Ω) = D(Ω)

H1(Ω)

H−1(Ω) = (H1
0(Ω))′, H−1/2(Γ) = (H1/2(Γ))′.
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Regularity results
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Regularity result. If Ω is of class C2 and if

f ∈ L2(Ω), then the solution y of the equation

−∆y + y = f in Ω,
∂y

∂n
= 0 on Γ,

belongs to H2(Ω) and

‖y‖H2(Ω) ≤ C‖f‖L2(Ω).
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Interpolation theorems

If
L : H1/2(Γ) 7−→ H2(Ω)

L : H−1/2(Γ) 7−→ H1(Ω)
that is if

‖Lu‖H2(Ω) ≤ C1‖u‖H1/2(Γ)

and

‖Lu‖H1(Ω) ≤ C1‖u‖H−1/2(Γ),

then

L : L2(Γ) 7−→ H3/2(Ω).

– Typeset by FoilTEX – 16



State equation
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The state equation

−∆y + y = f in Ω,
∂y

∂n
= u on Γ.

f ∈ L2(Ω), u ∈ L2(Γ).
We set

a(y, z) =
∫

Ω

∇y ·∇z+y z, `(z) =
∫

Ω

f z+
∫

Γ

u z.

The variational formulation of the state equation is

find y ∈ H1(Ω) such that

a(y, z) = `(z) for all z ∈ H1(Ω).

By the Lax-Milgram theorem, the state equation admits

a unique solution y in H1(Ω).
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Taking z = y in the equation we find∫
Ω

(
|∇y|2 + |y|2

)
=
∫

Ω

f y +
∫

Γ

u y

≤ ‖f‖L2(Ω)‖y‖L2(Ω) + ‖u‖L2(Γ)‖y‖L2(Γ)

≤ ‖f‖2
L2(Ω) +

1
4
‖y‖2

L2(Ω) + C‖u‖L2(Γ)‖y‖H1(Ω)

≤ ‖f‖2
L2(Ω) +

1
4
‖y‖2

L2(Ω) + C2‖u‖L2(Γ) +
1
4
‖y‖2

H1(Ω).

We obtain∫
Ω

(
|∇y|2 + |y|2

)
≤ 2‖f‖2

L2(Ω) + 2C2‖u‖L2(Γ).

Conclusion

‖y‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Γ)).
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The result can be improved by using∣∣∣ ∫
Γ

u y
∣∣∣ ≤ ‖u‖H−1/2(Γ)‖y‖H1/2(Γ).

We obtain

‖y‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖H−1/2(Γ)).
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Regularity when u ∈ H1/2(Γ)

If u ∈ H1/2(Γ), since

γ1 : H2(Ω) 7−→ H1/2(Γ)

is surjective, there exists wu ∈ H2(Ω) such that

γ1wu =
∂wu

∂n
= u.

Moreover wu can be chosen so that

‖wu‖H2(Ω) ≤ C‖u‖H1/2(Γ).

We look for y of the form y = w + z.
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Equation satisfied by z:

−∆z + z = f + ∆w − w in Ω,
∂z

∂n
= 0 on Γ.

Using the regularity result in H2(Ω) we can write

‖z‖H2(Ω) ≤ C‖f + ∆w − w‖L2(Ω)

≤ C(‖u‖H1/2(Γ) + ‖f‖L2(Ω)).

Second conclusion

‖y‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖H1/2(Γ)).
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Regularity if u ∈ L2(Γ)

The solution y of the state equation

y = z + wu,

where

−∆z + z = f in Ω,
∂z

∂n
= 0 on Γ,

and

−∆wu + wu = 0 in Ω,
∂wu

∂n
= u on Γ.
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We have proved

‖wu‖H1(Ω) ≤ C‖u‖H−1/2(Γ), ‖wu‖H2(Ω) ≤ C‖u‖H1/2(Γ).

‖wu‖H3/2(Ω) ≤ C‖u‖L2(Γ), ‖z‖H2(Ω) ≤ C‖f‖L2(Ω).

Theorem. For every f ∈ L2(Ω) and every u ∈ L2(Γ),
the state equation admits a unique solution y(u) in

H1(Ω), this solution belongs to H3/2(Ω) and

‖y(u)‖H3/2(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Γ)).
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Existence of an optimal control
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Theorem. ([Brézis, Chapter 3, Theorem 9])

Let E and F be two Banach spaces, and let T be a

continuous linear operator from E into F . Then T is

also continuous from (E, σ(E,E′)) into (F, σ(F, F ′)).

Corollary. Let (un)n be a sequence converging to u

for the weak topology of L2(Γ). Then the sequence

(y(un))n, where y(un) is the solution to the state

equation corresponding to the control function un,

converges to y(u) in H1(Ω).
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Proof. Set yn = y(un). We know that

‖yn‖H3/2(Ω) ≤ C(‖f‖L2 + ‖un‖L2(Γ)).

To prove that (yn)n converges to y(u) in H1(Ω), it is

enough to prove that, from any subsequence extracted

from (yn)n, we can extract an other subsequence

converging to y(u) in H1(Ω).

Suppose that

yk −→ ỹ in H1(Ω).
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Passage to the limit∫
Ω

(
∇yk · ∇z + yk z

)
=
∫

Ω

f z +
∫

Γ

uk z.

∫
Ω

(
∇ỹ · ∇z + ỹ z

)
=
∫

Ω

f z +
∫

Γ

u z,

for all z ∈ H1(Ω). Thus ỹ = y(u).
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Theorem. ( [Brézis, Chapter 3, Theorem 7])

Let E be a Banach space, and let C ⊂ E be a convex

subset. If C is closed in E, then C is also closed in

(E, σ(E,E′)) (that is, closed in E endowed with its

weak topology).

Corollary. ([Brézis, Chapter 3, Corollary 8]) Let E be

a Banach space, and let ϕ : E 7→] − ∞,∞] be a

lower semicontinuous convex function. Then ϕ is also

lower semicontinuous for the weak topology σ(E,E′).
In particular ϕ is sequentially lower semicontinuous.
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Comments. Observe that

u 7−→ ‖u‖2
L2(Γ)

is convex and continuous in L2(Γ). Therefore, if

un ⇀ u weakly in L2(Γ),

then ∫
Γ

u2 ≤ liminfn→∞

∫
Γ

u2
n.
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Theorem. Problem (P ) admits a unique solution.

Proof. Existence

Set 0 ≤ m = inf(P ) < ∞ . Set F (u) = J(y(u), u).
Let (un)n be a minimizing sequence:

limn→∞F (un) = m.

We can suppose that

β

2

∫
Γ

u2
n ≤ F (un) ≤ F (0).

Thus (un)n is bounded in L2(Γ). Suppose that

un ⇀ û weakly in L2(Γ).
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Thus

y(un) −→ y(û) in L2(Ω).

With the continuity of ‖ · ‖2
L2(Ω)

and the weakly lower

semicontinuity of ‖ · ‖2
L2(Γ)

, we obtain∫
Γ

û2 ≤ liminfn→∞

∫
Γ

u2
n,

∫
Ω

(y(û)− yd)2 = lim n→∞

∫
Ω

(y(un)− yd)2.

Combining these results, we have

F (û) ≤ liminfn→∞F (un) = m = inf(P ).

Thus û is a solution of (P ).
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Uniqueness

We argue by contradiction.

Let u1 and u2 be two solutions of (P ).

y
(1
2
u1 +

1
2
u2

)
=

1
2
y(u1) +

1
2
y(u2).

Since J is stricly convex, F is stricly convex:

F
(1
2
u1 +

1
2
u2

)
= J

(
y
(1
2
u1 +

1
2
u2

)
,
1
2
u1 +

1
2
u2

)
<

1
2
J(y(u1), u1) +

1
2
J(y(u2), u2) = min(P ).
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Optimality conditions
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Theorem. Necessary optimality conditons

Let F : U 7−→ R. Suppose that F is Gâteaux-

differentiable at ū and that

F (ū) = inf{F (u) | u ∈ U}.

Then

F ′(ū) = 0.

Sufficient optimality conditons

Let F be a differentiable mapping from a Banach space

U into R. Suppose that F is convex and F ′(ū) = 0,

then F (ū) ≤ F (u) for all u ∈ U .
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Proof. It is a consequence of the convexity inequality

F (u)− F (ū) ≥ F ′(ū)(u− ū) = 0,

for all u ∈ U .
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Optimality condition for the control problem

We set

F (u) = J(y(u), u) = I(y(u)) +G(u),

where y(u) is the solution to the state equation.

Directional derivative

I(y(u+ λv))− I(y(u))

=
1
2

∫
Ω

|y(u+ λv)− yd|2 −
1
2

∫
Ω

|y(u)− yd|2

=
∫

Ω

(y(u+ λv)− y(u))
(1
2

(
y(u+ λv) + y(u)

)
− yd

)
.
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Equation satisfied by zλ = y(u+ λv)− y(u)

−∆zλ + zλ = 0 in Ω,
∂zλ

∂n
= λv on Γ.

Thus z = y(u+λv)−y(u)
λ obeys

−∆z + z = 0 in Ω,
∂z

∂n
= v on Γ.

And

1
2

(
y(u+ λv) + y(u)

)
− yd −→ y(u)− yd.

– Typeset by FoilTEX – 38



limλ→0
I(y(u+ λv))− I(y(u))

λ

=
∫

Ω

(y(u)− yd)z(v)

where

−∆z + z = 0 in Ω,
∂z

∂n
= v on Γ.
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G(u+ λv)−G(u) =
β

2

∫
Γ

(
|u+ λv|2 − |u|2

)

=
β

2

∫
Γ

(2uλv + |λv|2).

limλ→0
G(u+ λv)−G(u)

λ
= β

∫
Γ

u v.
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Finally

F ′(u; v) =
∫

Ω

(y(u)− yd)z +
1
2

∫
Γ

u v,

where

−∆z + z = 0 in Ω,
∂z

∂n
= v.

Since

|F ′(u; v)| ≤ C‖v‖L2(Γ),

F is G-differentiable and F ′(u)v = F ′(u; v).
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Identification of F ′(u) : L2(Γ) 7→ R

F ′(u) belongs to (L2(Γ))′ = L2(Γ).

F ′(u)v =
∫

Ω

(y(u)− yd)z +
∫

Γ

u v =
∫

Γ

π v.

We introduce

Λ : v 7−→ z, from L2(Γ) to L2(Ω).

F ′(u)v =
(
(y(u)− yd),Λ(v)

)
L2(Ω)

+
(
u, v
)

L2(Γ)

=
(
Λ∗(y(u)− yd), v

)
L2(Γ)

+
(
u, v
)

L2(Γ)
.
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Green Formula between z and an other function p:

0 =
∫

Ω

(−∆z + z) p

0 =
∫

Ω

(−∆p+ p) z −
∫

Γ

∂z

∂n
p+

∫
Γ

∂p

∂n
z.

0 =
∫

Ω

(−∆p+ p) z −
∫

Γ

v p+
∫

Γ

∂p

∂n
z.

∫
Ω

(y(u)− yd)z =
∫

Γ

q v
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Thus if p is the solution to

−∆p+ p = y(u)− yd in Ω,
∂p

∂n
= 0 on Γ.

then ∫
Ω

(y(u)− yd)z =
∫

Γ

v p,

and

F ′(u)v =
∫

Γ

(p+ βu) v.

If ū is the solution of (P ) then

p+ βū = 0,

with

−∆p+ p = y(ū)− yd in Ω,
∂p

∂n
= 0 on Γ.
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Theorem. If (ȳ, ū) is the solution to (P ) then

ū = −1
βp|Γ, where p is the solution of the equation

−∆p+ p = ȳ − yd in Ω,
∂p

∂n
= 0 on Γ.

Conversely, if a pair (ỹ, p̃) ∈ H1(Ω)×H1(Ω) obeys the

system

−∆ỹ + ỹ = f in Ω,
∂ỹ

∂n
= −1

β p̃ on Γ,

−∆p̃+ p̃ = ỹ − yd in Ω,
∂p̃

∂n
= 0 on Γ,

then the pair (ỹ,−1
β p̃) is the solution of problem (P ).
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Proof. Suppose that (y, p) is a solution to the

optimality system

−∆y + y = f in Ω,
∂y

∂n
= −1

β
p on Γ,

−∆p+ p = y − yd in Ω,
∂p

∂n
= 0 on Γ,

Then

F ′
(
− 1
β
p
)

= 0,

because

F ′
(1
β
p
)
v =

∫
Γ

(p+ βu) v =
∫

Γ

(
p− β

1
β
p
)
v = 0.
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Comments.

• The optimality system

−∆y + y = f in Ω,
∂y

∂n
= −p on Γ,

−∆p+ p = y − yd in Ω,
∂p

∂n
= 0 on Γ,

can be approximated by a finite element method, and

next solved by a conjugate gradient method.

• The optimal control is obtained by taking

u = −1
β
p|Γ.
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Part 2
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Control problem with control constraints

(P2)

Minimize J(y, u) =
1
2

∫
Ω

|y − yd|2 +
β

2

∫
Γ

|u|2

−∆y + y = f in Ω,
∂y

∂n
= u on Γ.

u ∈ Uad, a closed convex subset in L2(Γ).

Uad = {u ∈ L2(Γ) | ua ≤ u ≤ ub}.
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Theorem. Problem (P2) admits a unique solution.

We find the existence of a minimizing sequence

(un)n ⊂ Uad,

and

un ⇀ u weakly in L2(Γ).

Since Uad is a closed convex subset in L2(Γ),

u ∈ Uad.

Thus u is a solution of problem (P2).
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Optimality conditions

Theorem. Necessary optimality conditons

Let F : U 7−→ R. Suppose that F is Gâteaux-

differentiable at ū and that

F (ū) = inf{F (u) | u ∈ Uad}.

Then

F ′(ū)(u− ū) ≥ 0 for all u ∈ Uad.

Sufficient optimality conditons

Let F be a differentiable mapping from a Banach space

U into R. Suppose that F is convex and F ′(ū)(u−ū) ≥
0 for all u ∈ Uad, then F (ū) ≤ F (u) for all u ∈ Uad.
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Theorem. If (ȳ, ū) is the solution to (P2) then∫
Γ

(βū+ p)(u− ū) ≥ 0 for all u ∈ Uad,

where p is the solution of the equation

−∆p+ p = ȳ − yd in Ω,
∂p

∂n
= 0 on Γ.
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Proof.

F ′(ū)v =
∫

Γ

(βū+ p) v,

where

−∆p+ p = ȳ − yd in Ω,
∂p

∂n
= 0 on Γ.

Thus writing

F ′(ū)(u− ū) ≥ 0 for all u ∈ Uad,

we obtain the necessary optimality condition of the

theorem.
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Theorem. Conversely, if a triplet (ỹ, p̃, ũ) ∈ H1(Ω)×
H1(Ω)× L2(Γ) obeys the system

−∆ỹ + ỹ = f in Ω,
∂ỹ

∂n
= ũ on Γ,

−∆p̃+ p̃ = ỹ − yd in Ω,
∂p̃

∂n
= 0 on Γ,∫

Γ

(βũ+ p̃)(u− ũ) ≥ 0 for all u ∈ Uad,

then the pair (ỹ, ũ) is the solution of problem (P2).

Proof. The theorem follows from the sufficient

optimality condition stated before.
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Case of bound constraints

ua ≤ u ≤ ub, ua, ub ∈ L2(Γ).

The necessary optimality condition∫
Γ

(βū+ p)(u− ū) ≥ 0 for all u ∈ Uad,

is equivalent to the pointwise relation

(βū(x)+p(x))(u−ū(x)) ≥ 0 for all u ∈ [ua(x), ub(x)],

for almost every x ∈ Γ.
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Recall that a Lebesgue point for g ∈ L1(Γ):

x0 ∈ Γ s. t. limε
1

|Γ ∩B(x0, ε)|

∫
Γ∩B(x0,ε)

g = g(x0),

and

limε
1

|Γ ∩B(x0, ε)|

∫
Γ∩B(x0,ε)

|g(x)− g(x0)|dx = 0.

We denote by Γ0 the set of Lebesgue points of the

functions

(βū+ p)(ua − ū), ua,

(βū+ p)(ub − ū), ub.
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Let x0 ∈ Γ0, we choose

u = uaχΓ∩B(x0,ε) + ūχΓ\B(x0,ε).

We substitute u in the integral relation,∫
Γ

(βū+ p)(u− ū) ≥ 0 for all u ∈ Uad,

we divide by |Γ∩B(x0, ε)|, and by passing to the limit,

we obtain

(βū(x0) + p(x0))(ua(x0)− ū(x0)) ≥ 0.

Similarly

(βū(x0) + p(x0))(ub(x0)− ū(x0)) ≥ 0.
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Finally

(βū(x0) + p(x0))(u− ū(x0)) ≥ 0,

for all u ∈ [ua(x0), ub(x0)].

From the pointwise relation, we deduce that

ū(x) = ua(x) if βū(x) + p(x) > 0,

ua(x) ≤ ū(x) ≤ ub(x) if βū(x) + p(x) = 0,

ū(x) = ub(x) if βū(x) + p(x) < 0.

We can summarize these results by writing

ū(x) = Proj[ua(x),ub(x)]

(
− 1
β
p(x)

)
for a. e. x ∈ Γ.
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Part 3
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Exercise 1. Observation on the boundary

u

0

y + y = f− ∆

Γ

Γ

Ω

c

o
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(P3)

Minimize J(y, u) =
1
2

∫
Γo

|y − yd|2 +
β

2

∫
Γc

|u|2

−∆y + y = f in Ω,

∂y

∂n
= u on Γc,

∂y

∂n
= 0 on Γ \ Γc.

u ∈ L2(Γ), f ∈ L2(Ω),

yd ∈ L2(Γo), β > 0.
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Questions.

1. Prove the existence of a unique optimal control u.

2. Write the first order optimality conditions for u.
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Existence of a solution to the state equation

Lax-Milgram theorem in H1(Ω) with

a(y, z) =
∫

Ω

(
∇y · ∇z + y z

)
,

`(z) =
∫

Ω

f z +
∫

Γc

u z.

The variational formulation of the state equation is

find y ∈ H1(Ω) such that

a(y, z) = `(z) for all z ∈ H1(Ω).
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1. For every u ∈ L2(Γ), the state equation admits

a unique solution in H1(Ω). This solution belongs to

H3/2(Ω). Moreover

‖y‖H3/2(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Γc)).

2. If (un)n is a sequence in L2(Γc) converging to u

for the weak topology of L2(Γc), then the sequence

(y(un))n converges to y(u) in H1(Ω).

Thus

y(un)|Γo −→ y(u)|Γo in L2(Γo).

3. The control problem admits a unique solution.
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Optimality conditions

Setting F (u) = J(y(u), u) we have

F ′(u)v =
∫

Γo

(y(u)− yd)z(v) + β

∫
Γc

u v,

where z(v) is the solution of

−∆z + z = 0 in Ω,

∂z

∂n
= v on Γc,

∂z

∂n
= 0 on Γ \ Γc.
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What is the adjoint equation ? With an integration

by parts between z = z(v) and an other function p we

have

0 =
∫

Ω

(−∆p+ p) z −
∫

Γ

∂z

∂n
p+

∫
Γ

∂p

∂n
z

0 =
∫

Ω

(−∆p+ p) z −
∫

Γc

v p+
∫

Γ

∂p

∂n
z.∫

Γo

(y(u)− yd)z =
∫

Γc

v p.

If we set

−∆p+ p = 0,

and

∂p

∂n
= y(u)− yd on Γo,

∂p

∂n
= 0 on Γ \ Γo
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we have ∫
Γo

(y(u)− yd)z =
∫

Γc

v p.

Conclusion

F ′(u)v =
∫

Γc

(p v + βu v).

The optimal control ū is characterized by

ū = −1
β
p|Γc,

and

−∆p+ p = 0 in Ω,
∂p

∂n
= χΓ0(y(ū)− yd) on Γ.
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Part 4

– Typeset by FoilTEX – 68



Exercise 2. Identification of a boundary coefficient

y + y = f− ∆

Γ

Γ

Ω

g

ω

yd
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(P4)

Minimize J(y, u) =
1
2

∫
ω

|y − yd|2 +
β

2

∫
Γ

|u− h|2

−∆y + y = f in Ω,
∂y

∂n
+ uy = g on Γ.

u ∈ Uad =
{
u ∈ L2(Γ) | ua ≤ u ≤ ub

}
,

0 < ua < ub ∈ R, ω ⊂ Ω.
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We suppose that

yd ∈ L2(ω), f ∈ L2(Ω), h, g ∈ L2(Γ), β > 0.

Questions.

1. Prove the existence of an optimal control u.

2. Write the first order optimality conditions for u.
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Existence of a solution to the state equation

Lax-Milgram theorem in H1(Ω) with

a(y, z) =
∫

Ω

(
∇y · ∇z + y z

)
+
∫

Γ

u y z ,

`(z) =
∫

Ω

f z +
∫

Γ

g z.

The variational formulation of the state equation is

find y ∈ H1(Ω) such that

a(y, z) = `(z) for all z ∈ H1(Ω).
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1. For every u ∈ Uad, the state equation admits a

unique solution in H1(Ω). Moreover

‖y‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Γ)),

where C is independent of u.

Writing the boundary condition in the form

∂y

∂n
= −uy + g on Γ,

and using the estimates of part 1, we find

‖y‖H3/2(Ω) ≤ C(‖f‖L2(Ω) + ‖ − uy + g‖L2(Γ)).

Thus

‖y‖H3/2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Γ) + ‖y‖H1‖u‖L∞).
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2. If (un)n is a sequence in Uad converging to u for

the weak-star topology of L∞(Γ), then the sequence

(y(un))n converges to y(u) in H1(Ω).

The mapping

u 7−→ y(u)

is nonlinear.

Proof. Set yn = y(un). We know that

‖yn‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Γ)).

and

‖yn‖H3/2(Ω) ≤ C(‖f‖L2 + ‖g‖L2 + ‖yn‖H1‖un‖L∞).
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To prove that (yn)n converges to y(u) in H1(Ω), it is

enough to prove that y(u) is the unique cluster point

of the sequence in H1(Ω).

Let us denote by (yk)k such a subsequence and suppose

that (yk)k converges to ỹ weakly in H3/2(Ω), and

strongly in H1(Ω).

Passage to the limit∫
Ω

(
∇yk · ∇z + yk z

)
+
∫

Γ

uk yk z ,

=
∫

Ω

f z +
∫

Γ

g z.
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Since (yk)k converges to ỹ in H1(Ω),∫
Ω

(
∇yk · ∇z + yk z

)
−→

∫
Ω

(
∇ỹ · ∇z + ỹ z

)
yk|Γ

L2(Γ)−→ ỹ|Γ,∫
Γ

uk yk z −→
∫

Γ

u ỹ z ,

for all z ∈ H1(Ω). Thus ỹ = y(u).

3. The control problem admits at least one solution. In

general the uniqueness cannot be proved because the

mapping

u 7−→ y(u)

is not affine.
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Optimality conditions

4. Equation satisfied by wλ = y(u+λv)−y(u)
λ .

−∆wλ + wλ = 0 in Ω,

∂wλ

∂n
+ (u+ λv)wλ + vy(u) = 0 on Γ.

For λ small enough (|λ| ≤ λ0), the bilinear form:

a(w, z) =
∫

Ω

(
∇w · ∇z + w z

)
+
∫

Γ

(u+ λv)w z

is coercive in H1(Ω) and the coercivity constant is

independent of λ. Thus

‖wλ‖H1(Ω) ≤ C‖v‖L∞(Γ)‖y(u)‖L2(Γ),

where C is independent of λ.
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At least formally when λ→ 0

wλ −→ z,

where z is the solution to

−∆z+z = 0 in Ω,
∂z

∂n
+u z+vy(u) = 0 on Γ.

To prove that wλ converges to z in L2(Ω) or in H1(Ω),
we write the equation satisfied by ζ = wλ − z

−∆ζ+ ζ = 0 in Ω,
∂ζ

∂n
+uζ+λv wλ = 0 on Γ.

With a classical estimate we get

‖ζ‖H1(Ω) ≤ C|λ| ‖v‖L∞(Γ)‖wλ‖L2(Γ).
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Conclusion

limλ→0

∥∥∥y(u+ λv)− y(u)
λ

− z
∥∥∥

H1(Ω)
= 0,

and setting F (u) = J(y(u), u) we have

F ′(u)v =
∫

ω

(y(u)− yd)z(v) + β

∫
Γ

(u− h)v.
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What is the adjoint equation ? With an integration

by parts between z = z(v) and an other function p we

have

0 =
∫

Ω

(−∆p+ p) z −
∫

Γ

∂z

∂n
p+

∫
Γ

∂p

∂n
z

0 =
∫

Ω

(−∆p+ p) z +
∫

Γ

(u z + vy(u))p+
∫

Γ

∂p

∂n
z.∫

ω

(y(u)− yd)z =
∫

Γ

q v.

If we set

−∆p+ p = χω(y(u)− yd), in Ω,

∂p

∂n
+ u p = 0, on Γ,

– Typeset by FoilTEX – 80



we have ∫
ω

(y(u)− yd)z(v) = −
∫

Γ

v y(u) p.

Conclusion

F ′(u)v = −
∫

Γ

v y(u) p+ β

∫
Γ

(u− h)v.

If (ȳ, ū) is a solution of (P4) then

∫
Γ

(
− ȳ p+ β(ū− h)

)
(u− ū) ≥ 0

for all ua ≤ u ≤ ub.
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Pointwise conditions

ū(x) = ua if (−ȳ p+ β(ū− h))(x) > 0,

ū(x) = ub if (−ȳ p+ β(ū− h))(x) < 0,

ua ≤ ū(x) ≤ ub if (−ȳ p+ β(ū− h))(x) = 0,

ū(x) = h(x) +
1
β
ȳp(x).

We can summarize

ū(x) = Proj[ua,ub]

(
h(x) +

1
β
ȳp(x)

)
.
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Part 5
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Exercise 3. Control of an electrical potential

− div ( σ grad ( Φ )) = 0

Γ

Γ
Γ

Γ Γ Γ Γ Γc i a i c

i

i
i
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The electrical potential φ satisfies the elliptic equation

−div(σ∇φ) = 0 in Ω,

−σ∂φ
∂n

= u on Γa, −σ∂φ
∂n

= 0 on Γi,

−σ∂φ
∂n

= f(φ) on Γc,

Γa corresponds to the anode, Γc corresponds to the

cathode, Γi is the rest of the boundary Γ.

f is of class C1, f(0) = 0, 0 < c1 ≤ f ′(r) ≤ c2 for all

r ∈ R,

the conductivity σ > 0.
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The control problem (P5)

inf{J(φ, u) | (φ, u) ∈ H1(Ω)× L2(Γa), ua ≤ u ≤ ub},

where (φ, u) solves the state equation and

J(φ, u) =
1
2

∫
Γc

(φ− φd)2 +
β

2

∫
Γa

u2,

ua ∈ L2(Γa) and ub ∈ L2(Γa) are some bounds on the

current u, and β is a positive constant.

1. Prove that (P5) has at least one solution.

2. Write the first order optimality condition for the

solutions to (P5).
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The state equation

Theorem. (The Minty-Browder Theorem, [Brézis])

Let E be a reflexive Banach space, and A be a nonlinear

continuous mapping from E into E′. Suppose that

〈A(φ1)−A(φ2), φ1 − φ2〉E′,E > 0

for all φ1, φ2 in E, with φ1 6= φ2, and

lim‖φ‖E→∞
〈A(φ), φ〉E′,E

‖φ‖E
= ∞.

Then, for all ` ∈ E′, there exists a unique φ ∈ E such

that A(φ) = `.
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To apply this theorem, we set E = H1(Ω), and we

define A by

〈A(φ), z〉(H1(Ω))′,H1(Ω) =
∫

Ω

σ∇φ · ∇z +
∫

Γc

f(φ)z,

and ` by

`(z) = −
∫

Γa

z u.

3. We can prove that the state equation

〈A(φ), z〉 = `(z) ∀z ∈ H1(Ω),

admits a unique solution φ ∈ H1(Ω).
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Observe that

f(φ(x)) = f(0) +
∫ 1

0

f ′(θφ) dθ φφ(x).

Writing the nonlinear boundary condition in the form

σ
∂φ

∂n
+ a(x)φ = 0 on Γc,

with

0 < c1 ≤ a(x) =
∫ 1

0

f ′(θφ(x)) dθ.
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We can prove that

‖φ‖H1(Ω) ≤ C‖u‖L2(Γa),

and

‖φ‖H3/2(Ω) ≤ C(c2‖φ‖L2(Γc) + ‖u‖L2(Γa)).

Thus if (un)n is a sequence weakly converging to u

in L2(Γa), the sequence (φn)n, where φn = φ(un), is

bounded in H3/2(Ω).
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We can pass to the limit in the variational equation

〈A(φn), z〉(H1(Ω))′,H1(Ω) = `n(z) = −
∫

Γa

un z.

Indeed

φn −→ φ in H1(Ω).

Thus ∫
Γc

f(φn)z −→
∫

Γc

f(φ)z

for all z ∈ H1(Ω).
Thanks to this result, we prove that (P5) admits at

least one solution.
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Optimality conditions

Equation satisfied by ψλ = φ(u+λv)−φ(u)
λ .

−div(σ∇ψλ) = 0 in Ω,

−σ∂ψλ

∂n
= v on Γa, −σ∂ψλ

∂n
= 0 on Γi,

−σ∂ψλ

∂n
=

1
λ

(
f(φ(u+ λv))− f(φ(u))

)
on Γc.
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We have

1
λ

(
f(φ(u+ λv))− f(φ(u))

)
= b(x)ψλ,

with

b(x) =
∫ 1

0

f ′(φ(u) + θφ(u+ λv)) dθ ≥ c1 > 0.
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The limit of ψλ in H1(Ω), is the solution ψ of the

equation

−div(σ∇ψ) = 0 in Ω,

−σ∂ψ
∂n

= v on Γa, −σ∂ψ
∂n

= 0 on Γi,

−σ∂ψ
∂n

= f ′(φ)ψ on Γc.

Conclusion

Setting F (u) = J(φ(u), u) we have

F ′(u)v =
∫

Γc

(φ(u)− φd)ψ(v) + β

∫
Γa

u v.
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What is the adjoint equation ? With an integration

by parts between ψ = ψ(v) and an other function p we

have

0 = −
∫

Ω

div(σ∇p)ψ −
∫

Γ

σ
∂ψ

∂n
p+

∫
Γ

σ
∂p

∂n
ψ

0 =
∫

Ω

(−div(σ∇p)ψ +
∫

Γa

vp+
∫

Γc

f ′(φ)ψp

+
∫

Γ

σ
∂p

∂n
ψ.

∫
Γc

(φ(u)− φd)ψ(v) =
∫

Γa

q v.
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If we set

−div(σ∇p) = 0, in Ω,

σ
∂p

∂n
= 0, on Γi ∪ Γa,

σ
∂p

∂n
+ f ′(φ)p = φ(u)− φd, on Γc,

we have ∫
Γc

(φ(u)− yd)ψ(v) = −
∫

Γa

v p.

Conclusion

F ′(u)v =
∫

Γa

(−p+ βu)v.
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If (φ̄, ū) is a solution of (P5) then∫
Γa

(
− p+ βū

)
(u− ū) ≥ 0

for all ua ≤ u ≤ ub.

That is

ū(x) = Proj[ua,ub]

(1
β
p(x)

)
.
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