Chapter 1

Optimal Control of Elliptic Equations

Jean-Pierre Raymond

– Typeset by FoilT $_{\!E\!} X$ –

1

Part 1

A model problem

Sobolev spaces

State equation

Existence of an optimal control

Characterization of the optimal solution

Part 2

Problem with control constraints

Part 3

Exercice 1. Observation on the boundary

Part 4

Exercice 2. Identification of a coefficient

Part 5

Exercice 3. Control of an electrical potential

Part 1

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

The physical problem

 y may be an electrical potential and u a current density.

 y may be a temperature distribution and u a thermal flux.

Problem. Minimize the distance between y and a given distribution y_d

$$\int_{\Omega} |y - y_d|^2.$$

The consumed energy is

$$\int_{\Gamma} |u|^2$$

The control problem

Minimize
$$J(y,u) = \frac{1}{2} \int_{\Omega} |y - y_d|^2 + \frac{\beta}{2} \int_{\Gamma} |u|^2$$

$$-\Delta y + y = f$$
 in Ω , $\frac{\partial y}{\partial n} = u$ on Γ .

 $u \in L^2(\Gamma), \qquad f \in L^2(\Omega),$

 $y_d \in L^2(\Omega), \qquad \beta > 0.$

Sobolev spaces

Prerequisite on Sobolev spaces

$$\begin{split} H^{1}(\Omega) &= \left\{ y \in L^{2}(\Omega) \mid \frac{\partial y}{\partial x_{i}} \in L^{2}(\Omega) \right\} \\ \|y\|_{H^{1}(\Omega)} &= \left(\|y\|_{L^{2}(\Omega)}^{2} + \Sigma_{i=1}^{n} \|\partial_{x_{i}}y\|_{L^{2}(\Omega)}^{2} \right)^{1/2}, \\ H^{2}(\Omega) &= \left\{ y \in H^{1}(\Omega) \mid \frac{\partial^{2} y}{\partial x_{i} \partial x_{j}} \in L^{2}(\Omega) \right\} \\ \|y\|_{H^{2}(\Omega)} &= \left(\|y\|_{H^{1}(\Omega)}^{2} + \Sigma_{i,j=1}^{n} \|\partial_{x_{i}}^{2}x_{j}y\|_{L^{2}(\Omega)}^{2} \right)^{1/2}. \end{split}$$

Intermediate spaces

$$H^2(\Omega) \subset H^s(\Omega) \subset H^1(\Omega) \subset H^{\sigma}(\Omega) \subset L^2(\Omega)$$

If $\Omega = \mathbb{R}^N$, $H^s(\Omega)$ can be characterized by Fourier transform.

$$I_{\sigma}(y) = \int_{\Omega} \int_{\Omega} \frac{|y(x) - y(\xi)|^2}{|x - \xi|^{n+2\sigma}} dx \, d\xi < \infty$$
$$\|y\|_{H^{\sigma}(\Omega)} = \left(\|y\|_{L^2(\Omega)}^2 + I_{\sigma}(y)\right)^{1/2}, \quad 0 < \sigma < 1,$$

$$\|y\|_{H^{s}(\Omega)} = \left(\|y\|_{H^{1}(\Omega)}^{2} + \sum_{i=1}^{n} I_{s-[s]}(\partial_{x_{i}}y)\right)^{1/2}, \quad 1 < s < 2.$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Trace theorems

$$\begin{aligned} H^{1/2}(\Gamma) &= \left\{ y \in L^2(\Gamma) \mid |y|_{H^{1/2}(\Gamma)} < \infty \right\} \\ |y|_{H^{1/2}(\Gamma)} &= \left(\int_{\Gamma} \int_{\Gamma} \frac{|y(x) - y(\xi)|^2}{|x - \xi|^{n - 1 + 1}} \, dx \, d\xi \right)^{1/2}, \end{aligned}$$

$$\|y\|_{H^{1/2}(\Gamma)} = \left(\|y\|_{L^{2}(\Gamma)}^{2} + |y|_{H^{1/2}(\Gamma)}^{2}\right)^{1/2}.$$

$$\gamma_0 : y \longmapsto y|_{\Gamma}$$

$$\gamma_0 : H^1(\Omega) \longmapsto H^{1/2}(\Gamma)$$

$$\gamma_0 : H^s(\Omega) \longmapsto H^{s-1/2}(\Gamma) \qquad s > 1/2$$

 γ_0 is a surjective op. from $H^s(\Omega)$ to $H^{s-1/2}(\Gamma)$.

$$\begin{split} \gamma_1 &: y \longmapsto \frac{\partial y}{\partial n} \\ \gamma_1 &: H^2(\Omega) \longmapsto H^{1/2}(\Gamma) \\ \gamma_1 &: H^s(\Omega) \longmapsto H^{s-3/2}(\Gamma) \quad s > 3/2 \\ \gamma_1 & \text{ is a surjective op. from } H^s(\Omega) \text{ to } H^{s-3/2}(\Gamma). \\ H^1_0(\Omega) &= \{ y \in H^1(\Omega) \mid \gamma_0 y = 0 \}, \\ H^1_0(\Omega) &= \overline{\mathcal{D}(\Omega)}^{H^1(\Omega)} \\ H^{-1}(\Omega) &= (H^1_0(\Omega))', \qquad H^{-1/2}(\Gamma) = (H^{1/2}(\Gamma))'. \end{split}$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Regularity results

Regularity result. If Ω is of class C^2 and if $f \in L^2(\Omega)$, then the solution y of the equation

$$-\Delta y + y = f$$
 in Ω , $\frac{\partial y}{\partial n} = 0$ on Γ ,

belongs to $H^2(\Omega)$ and

$$||y||_{H^2(\Omega)} \le C ||f||_{L^2(\Omega)}.$$

Interpolation theorems

If $L : H^{1/2}(\Gamma) \longmapsto H^{2}(\Omega)$ $L : H^{-1/2}(\Gamma) \longmapsto H^{1}(\Omega)$ that is if $\|Lu\|_{H^{2}(\Omega)} \leq C_{1} \|u\|_{H^{1/2}(\Gamma)}$ and $\|Lu\|_{H^{1}(\Omega)} \leq C_{1} \|u\|_{H^{-1/2}(\Gamma)},$ then

$$L : L^2(\Gamma) \longmapsto H^{3/2}(\Omega).$$

State equation

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

The state equation

$$-\Delta y + y = f$$
 in Ω , $\frac{\partial y}{\partial n} = u$ on Γ .
 $f \in L^2(\Omega), \quad u \in L^2(\Gamma).$

We set

$$a(y,z) = \int_{\Omega} \nabla y \cdot \nabla z + y z, \qquad \ell(z) = \int_{\Omega} f z + \int_{\Gamma} u z.$$

The variational formulation of the state equation is

find $y \in H^1(\Omega)$ such that $a(y, z) = \ell(z)$ for all $z \in H^1(\Omega)$.

By the Lax-Milgram theorem, the state equation admits a unique solution y in $H^1(\Omega)$.

Taking z = y in the equation we find

$$\begin{split} &\int_{\Omega} \left(|\nabla y|^2 + |y|^2 \right) = \int_{\Omega} f \, y + \int_{\Gamma} u \, y \\ &\leq \|f\|_{L^2(\Omega)} \|y\|_{L^2(\Omega)} + \|u\|_{L^2(\Gamma)} \|y\|_{L^2(\Gamma)} \\ &\leq \|f\|_{L^2(\Omega)}^2 + \frac{1}{4} \|y\|_{L^2(\Omega)}^2 + C \|u\|_{L^2(\Gamma)} \|y\|_{H^1(\Omega)} \\ &\leq \|f\|_{L^2(\Omega)}^2 + \frac{1}{4} \|y\|_{L^2(\Omega)}^2 + C^2 \|u\|_{L^2(\Gamma)} + \frac{1}{4} \|y\|_{H^1(\Omega)}^2. \end{split}$$

We obtain

$$\int_{\Omega} \left(|\nabla y|^2 + |y|^2 \right) \le 2 \|f\|_{L^2(\Omega)}^2 + 2C^2 \|u\|_{L^2(\Gamma)}.$$

Conclusion

$$\|y\|_{H^1(\Omega)} \le C(\|f\|_{L^2(\Omega)} + \|u\|_{L^2(\Gamma)}).$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

The result can be improved by using

$$\left|\int_{\Gamma} u y\right| \le \|u\|_{H^{-1/2}(\Gamma)} \|y\|_{H^{1/2}(\Gamma)}.$$

We obtain

$$\|y\|_{H^1(\Omega)} \le C(\|f\|_{L^2(\Omega)} + \|u\|_{H^{-1/2}(\Gamma)}).$$

Regularity when $u \in H^{1/2}(\Gamma)$

If $u \in H^{1/2}(\Gamma)$, since

$$\gamma_1 : H^2(\Omega) \longmapsto H^{1/2}(\Gamma)$$

is surjective, there exists $w_u \in H^2(\Omega)$ such that

$$\gamma_1 w_u = \frac{\partial w_u}{\partial n} = u.$$

Moreover w_u can be chosen so that

$$||w_u||_{H^2(\Omega)} \le C ||u||_{H^{1/2}(\Gamma)}.$$

We look for y of the form y = w + z.

Equation satisfied by z:

$$-\Delta z + z = f + \Delta w - w$$
 in Ω , $\frac{\partial z}{\partial n} = 0$ on Γ .

Using the regularity result in $H^2(\Omega)$ we can write

$$||z||_{H^2(\Omega)} \le C ||f + \Delta w - w||_{L^2(\Omega)}$$

$$\leq C(\|u\|_{H^{1/2}(\Gamma)} + \|f\|_{L^2(\Omega)}).$$
 Second conclusion

$$\|y\|_{H^{2}(\Omega)} \leq C(\|f\|_{L^{2}(\Omega)} + \|u\|_{H^{1/2}(\Gamma)}).$$

Regularity if $u \in L^2(\Gamma)$

The solution y of the state equation

$$y = z + w_u,$$

where

$$-\Delta z + z = f$$
 in Ω , $\frac{\partial z}{\partial n} = 0$ on Γ ,

and

$$-\Delta w_u + w_u = 0$$
 in Ω , $\frac{\partial w_u}{\partial n} = u$ on Γ .

We have proved

$$\|w_u\|_{H^{1}(\Omega)} \leq C \|u\|_{H^{-1/2}(\Gamma)}, \|w_u\|_{H^{2}(\Omega)} \leq C \|u\|_{H^{1/2}(\Gamma)}.$$
$$\|w_u\|_{H^{3/2}(\Omega)} \leq C \|u\|_{L^{2}(\Gamma)}, \|z\|_{H^{2}(\Omega)} \leq C \|f\|_{L^{2}(\Omega)}.$$

Theorem. For every $f \in L^2(\Omega)$ and every $u \in L^2(\Gamma)$, the state equation admits a unique solution y(u) in $H^1(\Omega)$, this solution belongs to $H^{3/2}(\Omega)$ and

 $\|y(u)\|_{H^{3/2}(\Omega)} \le C(\|f\|_{L^2(\Omega)} + \|u\|_{L^2(\Gamma)}).$

Existence of an optimal control

Theorem. ([Brézis, Chapter 3, Theorem 9])

Let E and F be two Banach spaces, and let T be a continuous linear operator from E into F. Then T is also continuous from $(E, \sigma(E, E'))$ into $(F, \sigma(F, F'))$.

Corollary. Let $(u_n)_n$ be a sequence converging to u for the weak topology of $L^2(\Gamma)$. Then the sequence $(y(u_n))_n$, where $y(u_n)$ is the solution to the state equation corresponding to the control function u_n , converges to y(u) in $H^1(\Omega)$.

Proof. Set $y_n = y(u_n)$. We know that

$$\|y_n\|_{H^{3/2}(\Omega)} \le C(\|f\|_{L^2} + \|u_n\|_{L^2(\Gamma)}).$$

To prove that $(y_n)_n$ converges to y(u) in $H^1(\Omega)$, it is enough to prove that, from any subsequence extracted from $(y_n)_n$, we can extract an other subsequence converging to y(u) in $H^1(\Omega)$.

Suppose that

$$y_k \longrightarrow \tilde{y} \quad \text{in } H^1(\Omega).$$

Passage to the limit

$$\begin{split} \int_{\Omega} \left(\nabla y_k \cdot \nabla z + y_k \, z \right) &= \int_{\Omega} f \, z + \int_{\Gamma} u_k \, z. \\ \int_{\Omega} \left(\nabla \tilde{y} \cdot \nabla z + \tilde{y} \, z \right) &= \int_{\Omega} f \, z + \int_{\Gamma} u \, z, \\ \text{for all } z \in H^1(\Omega). \text{ Thus } \tilde{y} = y(u). \end{split}$$

Theorem. ([Brézis, Chapter 3, Theorem 7])

Let E be a Banach space, and let $C \subset E$ be a convex subset. If C is closed in E, then C is also closed in $(E, \sigma(E, E'))$ (that is, closed in E endowed with its weak topology).

Corollary. ([Brézis, Chapter 3, Corollary 8]) Let E be a Banach space, and let $\varphi : E \mapsto] -\infty, \infty$] be a lower semicontinuous convex function. Then φ is also lower semicontinuous for the weak topology $\sigma(E, E')$. In particular φ is sequentially lower semicontinuous.

Comments. Observe that

$$u\longmapsto \|u\|_{L^2(\Gamma)}^2$$

is convex and continuous in $L^2(\Gamma)$. Therefore, if

$$u_n \rightharpoonup u$$
 weakly in $L^2(\Gamma)$,

then

$$\int_{\Gamma} u^2 \leq {\rm liminf}_{n\to\infty} \int_{\Gamma} u_n^2.$$

Theorem. Problem (P) admits a unique solution.

Proof. Existence

Set $0 \le m = \inf(P) < \infty$. Set F(u) = J(y(u), u). Let $(u_n)_n$ be a minimizing sequence:

$$\operatorname{im}_{n\to\infty}F(u_n)=m.$$

We can suppose that

$$\frac{\beta}{2} \int_{\Gamma} u_n^2 \le F(u_n) \le F(0).$$

Thus $(u_n)_n$ is bounded in $L^2(\Gamma)$. Suppose that

$$u_n \rightharpoonup \hat{u}$$
 weakly in $L^2(\Gamma)$.

Thus

$$y(u_n) \longrightarrow y(\hat{u})$$
 in $L^2(\Omega)$.

With the continuity of $\|\cdot\|_{L^2(\Omega)}^2$ and the weakly lower semicontinuity of $\|\cdot\|_{L^2(\Gamma)}^2$, we obtain

$$\int_{\Gamma} \hat{u}^2 \leq \operatorname{liminf}_{n \to \infty} \int_{\Gamma} u_n^2,$$

$$\int_{\Omega} (y(\hat{u}) - y_d)^2 = \lim_{n \to \infty} \int_{\Omega} (y(u_n) - y_d)^2.$$

Combining these results, we have

$$F(\hat{u}) \leq \operatorname{liminf}_{n \to \infty} F(u_n) = m = \operatorname{inf}(P).$$

Thus \hat{u} is a solution of (P).

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Uniqueness

We argue by contradiction. Let u_1 and u_2 be two solutions of (P).

$$y\left(\frac{1}{2}u_1 + \frac{1}{2}u_2\right) = \frac{1}{2}y(u_1) + \frac{1}{2}y(u_2).$$

Since J is stricly convex, F is stricly convex:

$$F\left(\frac{1}{2}u_1 + \frac{1}{2}u_2\right) = J\left(y\left(\frac{1}{2}u_1 + \frac{1}{2}u_2\right), \frac{1}{2}u_1 + \frac{1}{2}u_2\right)$$
$$< \frac{1}{2}J(y(u_1), u_1) + \frac{1}{2}J(y(u_2), u_2) = \min(P).$$

Optimality conditions

Theorem. Necessary optimality conditons

Let $F : U \mapsto \mathbb{R}$. Suppose that F is Gâteauxdifferentiable at \overline{u} and that

 $F(\bar{u}) = \inf\{F(u) \mid u \in U\}.$

Then

$$F'(\bar{u}) = 0.$$

Sufficient optimality conditons

Let F be a differentiable mapping from a Banach space U into \mathbb{R} . Suppose that F is convex and $F'(\bar{u}) = 0$, then $F(\bar{u}) \leq F(u)$ for all $u \in U$.

Proof. It is a consequence of the convexity inequality

$$F(u) - F(\bar{u}) \ge F'(\bar{u})(u - \bar{u}) = 0,$$

for all $u \in U$.
Optimality condition for the control problem We set

$$F(u) = J(y(u), u) = I(y(u)) + G(u),$$

where y(u) is the solution to the state equation. Directional derivative

$$\begin{split} &I(y(u+\lambda v)) - I(y(u)) \\ &= \frac{1}{2} \int_{\Omega} |y(u+\lambda v) - y_d|^2 - \frac{1}{2} \int_{\Omega} |y(u) - y_d|^2 \\ &= \int_{\Omega} (y(u+\lambda v) - y(u)) \Big(\frac{1}{2} \Big(y(u+\lambda v) + y(u) \Big) - y_d \Big). \end{split}$$

Equation satisfied by $z_{\lambda} = y(u + \lambda v) - y(u)$

$$-\Delta z_{\lambda} + z_{\lambda} = 0$$
 in Ω , $\frac{\partial z_{\lambda}}{\partial n} = \lambda v$ on Γ .

Thus
$$z = \frac{y(u+\lambda v)-y(u)}{\lambda}$$
 obeys

$$-\Delta z + z = 0$$
 in Ω , $\frac{\partial z}{\partial n} = v$ on Γ .

And

$$\frac{1}{2}\Big(y(u+\lambda v)+y(u)\Big)-y_d\longrightarrow y(u)-y_d.$$

$$\lim_{\lambda \to 0} \frac{I(y(u + \lambda v)) - I(y(u))}{\lambda}$$

$$= \int_{\Omega} (y(u) - y_d) z(v)$$

where

$$-\Delta z + z = 0 \quad \text{in } \Omega, \qquad \frac{\partial z}{\partial n} = v \quad \text{on } \Gamma.$$

$$G(u + \lambda v) - G(u) = \frac{\beta}{2} \int_{\Gamma} \left(|u + \lambda v|^2 - |u|^2 \right)$$

$$= \frac{\beta}{2} \int_{\Gamma} (2u\,\lambda v + |\lambda v|^2).$$

$$\lim_{\lambda \to 0} \frac{G(u + \lambda v) - G(u)}{\lambda} = \beta \int_{\Gamma} u v.$$

Finally

$$F'(u;v) = \int_{\Omega} (y(u) - y_d)z + \frac{1}{2} \int_{\Gamma} u v,$$

where

$$-\Delta z + z = 0$$
 in Ω , $\frac{\partial z}{\partial n} = v$.

Since

$$|F'(u;v)| \le C ||v||_{L^2(\Gamma)},$$

F is G-differentiable and F'(u)v = F'(u;v).

Identification of $F'(u) : L^2(\Gamma) \mapsto \mathbb{R}$

$$F'(u)$$
 belongs to $(L^2(\Gamma))' = L^2(\Gamma)$.

$$F'(u)v = \int_{\Omega} (y(u) - y_d)z + \int_{\Gamma} u v = \int_{\Gamma} \pi v.$$

We introduce

$$\Lambda : v \longmapsto z, \quad \text{from } L^2(\Gamma) \text{ to } L^2(\Omega).$$
$$F'(u)v = \left((y(u) - y_d), \Lambda(v) \right)_{L^2(\Omega)} + \left(u, v \right)_{L^2(\Gamma)}$$
$$= \left(\Lambda^*(y(u) - y_d), v \right)_{L^2(\Gamma)} + \left(u, v \right)_{L^2(\Gamma)}.$$

Green Formula between z and an other function p:

$$0 = \int_{\Omega} (-\Delta z + z) \, p$$

$$0 = \int_{\Omega} (-\Delta p + p) z - \int_{\Gamma} \frac{\partial z}{\partial n} p + \int_{\Gamma} \frac{\partial p}{\partial n} z.$$
$$0 = \int_{\Omega} (-\Delta p + p) z - \int_{\Gamma} v p + \int_{\Gamma} \frac{\partial p}{\partial n} z.$$

$$\int_{\Omega} (y(u) - y_d) z = \int_{\Gamma} q v$$

Thus if p is the solution to

$$\begin{split} -\Delta p + p &= y(u) - y_d \quad \text{in } \Omega, \quad \frac{\partial p}{\partial n} = 0 \quad \text{on } \Gamma. \end{split}$$
 then
$$\int_{\Omega} (y(u) - y_d) z &= \int_{\Gamma} v \, p, \end{cases}$$
 and
$$F'(u)v &= \int_{\Gamma} (p + \beta u) \, v. \end{split}$$

and

If \bar{u} is the solution of (P) then

$$p + \beta \bar{u} = 0,$$

with

$$-\Delta p + p = y(\bar{u}) - y_d$$
 in Ω , $\frac{\partial p}{\partial n} = 0$ on Γ .

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Theorem. If (\bar{y}, \bar{u}) is the solution to (P) then $\bar{u} = -\frac{1}{\beta}p|_{\Gamma}$, where p is the solution of the equation

$$-\Delta p + p = \bar{y} - y_d$$
 in Ω , $\frac{\partial p}{\partial n} = 0$ on Γ .

Conversely, if a pair $(\tilde{y}, \tilde{p}) \in H^1(\Omega) \times H^1(\Omega)$ obeys the system

$$\begin{split} -\Delta \tilde{y} + \tilde{y} &= f & \text{in } \Omega, \quad \frac{\partial \tilde{y}}{\partial n} &= -\frac{1}{\beta} \tilde{p} & \text{on } \Gamma, \\ -\Delta \tilde{p} + \tilde{p} &= \tilde{y} - y_d & \text{in } \Omega, \quad \frac{\partial \tilde{p}}{\partial n} &= 0 & \text{on } \Gamma, \end{split}$$

then the pair $(\tilde{y}, -\frac{1}{\beta}\tilde{p})$ is the solution of problem (P).

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Proof. Suppose that (y, p) is a solution to the optimality system

$$\begin{split} -\Delta y + y &= f \quad \text{in } \Omega, \quad \frac{\partial y}{\partial n} = -\frac{1}{\beta}p \quad \text{on } \Gamma, \\ -\Delta p + p &= y - y_d \quad \text{in } \Omega, \quad \frac{\partial p}{\partial n} = 0 \quad \text{on } \Gamma, \end{split}$$

Then

$$F'\Big(-\frac{1}{\beta}p\Big) = 0,$$

because

$$F'\left(\frac{1}{\beta}p\right)v = \int_{\Gamma} (p+\beta u) \, v = \int_{\Gamma} \left(p-\beta\frac{1}{\beta}p\right)v = 0.$$

Comments.

• The optimality system

$$-\Delta y + y = f$$
 in Ω , $\frac{\partial y}{\partial n} = -p$ on Γ ,
 $-\Delta p + p = y - y_d$ in Ω , $\frac{\partial p}{\partial n} = 0$ on Γ ,

can be approximated by a finite element method, and next solved by a conjugate gradient method.

• The optimal control is obtained by taking

$$u = -\frac{1}{\beta}p|_{\Gamma}.$$

Part 2

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Control problem with control constraints

$$P_2)$$

Minimize $J(y,u) = \frac{1}{2} \int_{\Omega} |y - y_d|^2 + \frac{\beta}{2} \int_{\Gamma} |u|^2$

$$-\Delta y + y = f$$
 in Ω , $\frac{\partial y}{\partial n} = u$ on Γ .

 $u \in U_{ad}$, a closed convex subset in $L^2(\Gamma)$.

$$U_{ad} = \{ u \in L^2(\Gamma) \mid u_a \le u \le u_b \}.$$

– Typeset by Foil $\mathrm{T}_{\mathrm{E}}\mathrm{X}$ –

Theorem. Problem (P_2) admits a unique solution.

We find the existence of a minimizing sequence

$$(u_n)_n \subset U_{ad},$$

and

$$u_n \rightharpoonup u$$
 weakly in $L^2(\Gamma)$.

Since U_{ad} is a closed convex subset in $L^2(\Gamma)$,

$$u \in U_{ad}$$
.

Thus u is a solution of problem (P_2) .

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Optimality conditions

Theorem. Necessary optimality conditons Let $F : U \mapsto \mathbb{R}$. Suppose that F is Gâteauxdifferentiable at \overline{u} and that

$$F(\bar{u}) = \inf\{F(u) \mid u \in U_{ad}\}.$$

Then

$$F'(\bar{u})(u-\bar{u}) \ge 0$$
 for all $u \in U_{ad}$.

Sufficient optimality conditons

Let F be a differentiable mapping from a Banach space U into \mathbb{R} . Suppose that F is convex and $F'(\bar{u})(u-\bar{u}) \geq 0$ for all $u \in U_{ad}$, then $F(\bar{u}) \leq F(u)$ for all $u \in U_{ad}$.

Theorem. If (\bar{y}, \bar{u}) is the solution to (P_2) then

$$\int_{\Gamma} (\beta \bar{u} + p)(u - \bar{u}) \ge 0 \quad \text{for all } u \in U_{ad},$$

where p is the solution of the equation

$$-\Delta p + p = \bar{y} - y_d \quad \text{in } \Omega, \quad \frac{\partial p}{\partial n} = 0 \quad \text{on } \Gamma.$$

Proof.

$$F'(\bar{u})v = \int_{\Gamma} (\beta \bar{u} + p) v,$$

where

$$-\Delta p + p = \bar{y} - y_d$$
 in Ω , $\frac{\partial p}{\partial n} = 0$ on Γ .

Thus writing

$$F'(\bar{u})(u-\bar{u}) \ge 0$$
 for all $u \in U_{ad}$,

we obtain the necessary optimality condition of the theorem.

Theorem. Conversely, if a triplet $(\tilde{y}, \tilde{p}, \tilde{u}) \in H^1(\Omega) \times H^1(\Omega) \times L^2(\Gamma)$ obeys the system

$$\begin{split} -\Delta \tilde{y} + \tilde{y} &= f \quad \text{in } \Omega, \quad \frac{\partial \tilde{y}}{\partial n} = \tilde{u} \quad \text{on } \Gamma, \\ -\Delta \tilde{p} + \tilde{p} &= \tilde{y} - y_d \quad \text{in } \Omega, \quad \frac{\partial \tilde{p}}{\partial n} = 0 \quad \text{on } \Gamma, \\ \int_{\Gamma} (\beta \tilde{u} + \tilde{p})(u - \tilde{u}) \geq 0 \quad \text{for all } u \in U_{ad}, \end{split}$$

then the pair (\tilde{y}, \tilde{u}) is the solution of problem (P_2) .

Proof. The theorem follows from the sufficient optimality condition stated before.

Case of bound constraints

$$u_a \le u \le u_b, \quad u_a, \, u_b \in L^2(\Gamma).$$

The necessary optimality condition

$$\int_{\Gamma} (\beta \bar{u} + p)(u - \bar{u}) \ge 0 \quad \text{for all } u \in U_{ad},$$

is equivalent to the pointwise relation

 $(\beta \bar{u}(x) + p(x))(u - \bar{u}(x)) \ge 0 \quad \text{for all } u \in [u_a(x), u_b(x)],$

for almost every $x \in \Gamma$.

Recall that a Lebesgue point for $g \in L^1(\Gamma)$:

$$x_0 \in \Gamma$$
 s. t. $\lim_{\varepsilon} \frac{1}{|\Gamma \cap B(x_0, \varepsilon)|} \int_{\Gamma \cap B(x_0, \varepsilon)} g = g(x_0),$

and

$$\lim_{\varepsilon} \frac{1}{|\Gamma \cap B(x_0,\varepsilon)|} \int_{\Gamma \cap B(x_0,\varepsilon)} |g(x) - g(x_0)| dx = 0.$$

We denote by Γ_0 the set of Lebesgue points of the functions

$$(\beta \bar{u} + p)(u_a - \bar{u}), \qquad u_a,$$
$$(\beta \bar{u} + p)(u_b - \bar{u}), \qquad u_b.$$

Let $x_0 \in \Gamma_0$, we choose

$$u = u_a \chi_{\Gamma \cap B(x_0,\varepsilon)} + \bar{u} \chi_{\Gamma \setminus B(x_0,\varepsilon)}.$$

We substitute u in the integral relation,

$$\int_{\Gamma} (\beta \bar{u} + p)(u - \bar{u}) \ge 0 \quad \text{for all } u \in U_{ad},$$

we divide by $|\Gamma \cap B(x_0, \varepsilon)|$, and by passing to the limit, we obtain

$$(\beta \bar{u}(x_0) + p(x_0))(u_a(x_0) - \bar{u}(x_0)) \ge 0.$$

Similarly

$$(\beta \bar{u}(x_0) + p(x_0))(u_b(x_0) - \bar{u}(x_0)) \ge 0.$$

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

Finally

$$(\beta \bar{u}(x_0) + p(x_0))(u - \bar{u}(x_0)) \ge 0,$$

for all $u \in [u_a(x_0), u_b(x_0)]$.

From the pointwise relation, we deduce that

$$\begin{split} \bar{u}(x) &= u_a(x) & \text{if } \beta \bar{u}(x) + p(x) > 0, \\ u_a(x) &\leq \bar{u}(x) \leq u_b(x) & \text{if } \beta \bar{u}(x) + p(x) = 0, \\ \bar{u}(x) &= u_b(x) & \text{if } \beta \bar{u}(x) + p(x) < 0. \end{split}$$

We can summarize these results by writing

$$\bar{u}(x) = \mathsf{Proj}_{[u_a(x), u_b(x)]} \left(-\frac{1}{\beta} p(x) \right)$$
 for a. e. $x \in \Gamma$.

Part 3

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Exercise 1. Observation on the boundary

$$\begin{array}{ll} (P_3) \\ \text{Minimize} \quad J(y,u) = \frac{1}{2} \int_{\Gamma_o} |y - y_d|^2 + \frac{\beta}{2} \int_{\Gamma_c} |u|^2 \\ -\Delta y + y = f \quad \text{in } \Omega, \\ \\ \frac{\partial y}{\partial n} = u \quad \text{on } \Gamma_c, \qquad \frac{\partial y}{\partial n} = 0 \quad \text{on } \Gamma \setminus \Gamma_c. \\ \\ u \in L^2(\Gamma), \qquad f \in L^2(\Omega), \\ \\ y_d \in L^2(\Gamma_o), \qquad \beta > 0. \end{array}$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Questions.

- **1.** Prove the existence of a unique optimal control u.
- **2.** Write the first order optimality conditions for u.

Existence of a solution to the state equation

Lax-Milgram theorem in $H^1(\Omega)$ with

$$\begin{aligned} a(y,z) &= \int_{\Omega} \left(\nabla y \cdot \nabla z + y \, z \right) \,, \\ \ell(z) &= \int_{\Omega} f \, z + \int_{\Gamma_c} u \, z. \end{aligned}$$

The variational formulation of the state equation is

find $y \in H^1(\Omega)$ such that $a(y,z) = \ell(z)$ for all $z \in H^1(\Omega)$.

1. For every $u \in L^2(\Gamma)$, the state equation admits a unique solution in $H^1(\Omega)$. This solution belongs to $H^{3/2}(\Omega)$. Moreover

$$\|y\|_{H^{3/2}(\Omega)} \le C(\|f\|_{L^2(\Omega)} + \|u\|_{L^2(\Gamma_c)}).$$

2. If $(u_n)_n$ is a sequence in $L^2(\Gamma_c)$ converging to u for the weak topology of $L^2(\Gamma_c)$, then the sequence $(y(u_n))_n$ converges to y(u) in $H^1(\Omega)$.

Thus

$$y(u_n)|_{\Gamma_o} \longrightarrow y(u)|_{\Gamma_o}$$
 in $L^2(\Gamma_o)$.

3. The control problem admits a unique solution.

Optimality conditions

Setting
$$F(u) = J(y(u), u)$$
 we have

$$F'(u)v = \int_{\Gamma_o} (y(u) - y_d)z(v) + \beta \int_{\Gamma_c} u v,$$

where z(v) is the solution of

$$-\Delta z + z = 0$$
 in Ω ,

$$\frac{\partial z}{\partial n} = v \quad \text{on } \Gamma_c, \qquad \frac{\partial z}{\partial n} = 0 \quad \text{on } \Gamma \setminus \Gamma_c.$$

What is the adjoint equation ? With an integration by parts between z = z(v) and an other function p we have

$$0 = \int_{\Omega} (-\Delta p + p) z - \int_{\Gamma} \frac{\partial z}{\partial n} p + \int_{\Gamma} \frac{\partial p}{\partial n} z$$
$$0 = \int_{\Omega} (-\Delta p + p) z - \int_{\Gamma_c} v p + \int_{\Gamma} \frac{\partial p}{\partial n} z.$$
$$\int_{\Gamma_o} (y(u) - y_d) z = \int_{\Gamma_c} v p.$$

If we set

$$-\Delta p + p = 0,$$

and

$$\frac{\partial p}{\partial n} = y(u) - y_d \quad \text{on } \Gamma_o, \qquad \frac{\partial p}{\partial n} = 0 \quad \text{on } \Gamma \setminus \Gamma_o$$

– Typeset by $\mathsf{FoilT}_{\!E\!} X$ –

we have

$$\int_{\Gamma_o} (y(u) - y_d) z = \int_{\Gamma_c} v \, p.$$

Conclusion

$$F'(u)v = \int_{\Gamma_c} (pv + \beta uv).$$

The optimal control \bar{u} is characterized by

$$\bar{u} = -\frac{1}{\beta}p|_{\Gamma_c},$$

 and

$$-\Delta p + p = 0$$
 in Ω , $rac{\partial p}{\partial n} = \chi_{\Gamma_0}(y(ar u) - y_d)$ on Γ .

Part 4

Exercise 2. Identification of a boundary coefficient

$$(P_4)$$

Minimize $J(y,u) = \frac{1}{2} \int_{\omega} |y - y_d|^2 + \frac{\beta}{2} \int_{\Gamma} |u - h|^2$

$$-\Delta y + y = f$$
 in Ω , $\frac{\partial y}{\partial n} + uy = g$ on Γ .

$$u \in U_{ad} = \Big\{ u \in L^2(\Gamma) \mid u_a \le u \le u_b \Big\},$$

 $0 < u_a < u_b \in \mathbb{R}, \qquad \omega \subset \Omega.$

We suppose that

$$y_d \in L^2(\omega), \ f \in L^2(\Omega), \quad h, \ g \in L^2(\Gamma), \quad \beta > 0.$$

Questions.

- **1.** Prove the existence of an optimal control u.
- **2.** Write the first order optimality conditions for u.

Existence of a solution to the state equation

Lax-Milgram theorem in $H^1(\Omega)$ with

$$\begin{aligned} a(y,z) &= \int_{\Omega} \left(\nabla y \cdot \nabla z + y \, z \right) + \int_{\Gamma} u \, y \, z \ , \\ \ell(z) &= \int_{\Omega} f \, z + \int_{\Gamma} g \, z. \end{aligned}$$

The variational formulation of the state equation is

find $y \in H^1(\Omega)$ such that $a(y,z) = \ell(z)$ for all $z \in H^1(\Omega)$.
1. For every $u \in U_{ad}$, the state equation admits a unique solution in $H^1(\Omega)$. Moreover

$$\|y\|_{H^1(\Omega)} \le C(\|f\|_{L^2(\Omega)} + \|g\|_{L^2(\Gamma)}),$$

where C is independent of u.

Writing the boundary condition in the form

$$\frac{\partial y}{\partial n} = -uy + g \quad \text{on } \Gamma,$$

and using the estimates of part 1, we find

$$\|y\|_{H^{3/2}(\Omega)} \leq C(\|f\|_{L^2(\Omega)} + \|-uy + g\|_{L^2(\Gamma)}).$$
 Thus

 $\|y\|_{H^{3/2}(\Omega)} \le C(\|f\|_{L^{2}(\Omega)} + \|g\|_{L^{2}(\Gamma)} + \|y\|_{H^{1}}\|u\|_{L^{\infty}}).$

– Typeset by FoilT $_{\!E\!}\mathrm{X}$ –

2. If $(u_n)_n$ is a sequence in U_{ad} converging to u for the weak-star topology of $L^{\infty}(\Gamma)$, then the sequence $(y(u_n))_n$ converges to y(u) in $H^1(\Omega)$.

The mapping

$$u \longmapsto y(u)$$

is nonlinear.

Proof. Set $y_n = y(u_n)$. We know that

$$\|y_n\|_{H^1(\Omega)} \le C(\|f\|_{L^2(\Omega)} + \|g\|_{L^2(\Gamma)}).$$

 and

$$\|y_n\|_{H^{3/2}(\Omega)} \le C(\|f\|_{L^2} + \|g\|_{L^2} + \|y_n\|_{H^1}\|u_n\|_{L^\infty}).$$

To prove that $(y_n)_n$ converges to y(u) in $H^1(\Omega)$, it is enough to prove that y(u) is the unique cluster point of the sequence in $H^1(\Omega)$.

Let us denote by $(y_k)_k$ such a subsequence and suppose that $(y_k)_k$ converges to \tilde{y} weakly in $H^{3/2}(\Omega)$, and strongly in $H^1(\Omega)$.

Passage to the limit

$$\int_{\Omega} \left(\nabla y_k \cdot \nabla z + y_k z \right) + \int_{\Gamma} u_k y_k z ,$$
$$= \int_{\Omega} f z + \int_{\Gamma} g z.$$

Since $(y_k)_k$ converges to \tilde{y} in $H^1(\Omega)$,

$$\begin{split} &\int_{\Omega} \left(\nabla y_k \cdot \nabla z + y_k \, z \right) \longrightarrow \int_{\Omega} \left(\nabla \tilde{y} \cdot \nabla z + \tilde{y} \, z \right) \\ &y_k |_{\Gamma} \stackrel{L^2(\Gamma)}{\longrightarrow} \tilde{y}|_{\Gamma}, \\ &\int_{\Gamma} u_k \, y_k \, z \longrightarrow \int_{\Gamma} u \, \tilde{y} \, z \, , \end{split}$$

for all $z \in H^1(\Omega)$. Thus $\tilde{y} = y(u)$.

3. The control problem admits at least one solution. In general the uniqueness cannot be proved because the mapping

$$u \longmapsto y(u)$$

is not affine.

Optimality conditions

4. Equation satisfied by
$$w_{\lambda} = \frac{y(u+\lambda v)-y(u)}{\lambda}$$
.
 $-\Delta w_{\lambda} + w_{\lambda} = 0 \quad \text{in } \Omega,$
 $\frac{\partial w_{\lambda}}{\partial n} + (u+\lambda v)w_{\lambda} + vy(u) = 0 \quad \text{on } \Gamma.$

For λ small enough ($|\lambda| \leq \lambda_0$), the bilinear form:

$$a(w,z) = \int_{\Omega} \left(\nabla w \cdot \nabla z + w \, z \right) + \int_{\Gamma} (u + \lambda v) \, w \, z$$

is coercive in $H^1(\Omega)$ and the coercivity constant is independent of λ . Thus

$$||w_{\lambda}||_{H^{1}(\Omega)} \leq C ||v||_{L^{\infty}(\Gamma)} ||y(u)||_{L^{2}(\Gamma)},$$

where C is independent of λ .

At least formally when $\lambda \rightarrow 0$

$$w_{\lambda} \longrightarrow z,$$

where z is the solution to

$$-\Delta z + z = 0$$
 in Ω , $\frac{\partial z}{\partial n} + u z + v y(u) = 0$ on Γ .

To prove that w_{λ} converges to z in $L^{2}(\Omega)$ or in $H^{1}(\Omega)$, we write the equation satisfied by $\zeta = w_{\lambda} - z$

$$-\Delta \zeta + \zeta = 0$$
 in Ω , $\frac{\partial \zeta}{\partial n} + u\zeta + \lambda v w_{\lambda} = 0$ on Γ .

With a classical estimate we get

$$\|\zeta\|_{H^1(\Omega)} \le C|\lambda| \|v\|_{L^{\infty}(\Gamma)} \|w_{\lambda}\|_{L^2(\Gamma)}.$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Conclusion

$$\lim_{\lambda \to 0} \left\| \frac{y(u + \lambda v) - y(u)}{\lambda} - z \right\|_{H^{1}(\Omega)} = 0,$$

and setting F(u) = J(y(u), u) we have

$$F'(u)v = \int_{\omega} (y(u) - y_d)z(v) + \beta \int_{\Gamma} (u - h)v.$$

What is the adjoint equation ? With an integration by parts between z = z(v) and an other function p we have

$$0 = \int_{\Omega} (-\Delta p + p) z - \int_{\Gamma} \frac{\partial z}{\partial n} p + \int_{\Gamma} \frac{\partial p}{\partial n} z$$

$$0 = \int_{\Omega} (-\Delta p + p) z + \int_{\Gamma} (u z + v y(u)) p + \int_{\Gamma} \frac{\partial p}{\partial n} z.$$

$$\int_{\omega} (y(u) - y_d) z = \int_{\Gamma} q v.$$

If we set

$$\begin{split} -\Delta p + p &= \chi_{\omega}(y(u) - y_d), & \text{ in } \Omega, \\ \frac{\partial p}{\partial n} + u \, p &= 0, & \text{ on } \Gamma, \end{split}$$

– Typeset by Foil $\mathrm{T}_{\mathrm{E}}\mathrm{X}$ –

we have

$$\int_{\omega} (y(u) - y_d) z(v) = -\int_{\Gamma} v \, y(u) \, p.$$

Conclusion

$$F'(u)v = -\int_{\Gamma} v y(u) p + \beta \int_{\Gamma} (u-h)v.$$

If (\bar{y}, \bar{u}) is a solution of (P_4) then

$$\int_{\Gamma} \left(-\bar{y} \, p + \beta(\bar{u}-h) \right) (u-\bar{u}) \ge 0$$

for all $u_a \leq u \leq u_b$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Pointwise conditions

$$\begin{split} \bar{u}(x) &= u_a & \text{if } (-\bar{y}\,p + \beta(\bar{u} - h))(x) > 0, \\ \bar{u}(x) &= u_b & \text{if } (-\bar{y}\,p + \beta(\bar{u} - h))(x) < 0, \\ u_a &\leq \bar{u}(x) \leq u_b & \text{if } (-\bar{y}\,p + \beta(\bar{u} - h))(x) = 0, \\ \bar{u}(x) &= h(x) + \frac{1}{\beta}\bar{y}p(x). \end{split}$$

We can summarize

$$\bar{u}(x) = \operatorname{Proj}_{[u_a, u_b]} \left(h(x) + \frac{1}{\beta} \bar{y} p(x) \right).$$

Part 5

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Exercise 3. Control of an electrical potential

The electrical potential ϕ satisfies the elliptic equation

$$-{\rm div}(\sigma\nabla\phi)=0\qquad {\rm in}\,\,\Omega,$$

$$-\sigma \frac{\partial \phi}{\partial n} = u \quad \text{on } \Gamma_a, \qquad -\sigma \frac{\partial \phi}{\partial n} = 0 \quad \text{on } \Gamma_i,$$

$$-\sigma \frac{\partial \phi}{\partial n} = f(\phi) \quad \text{on } \Gamma_c,$$

 Γ_a corresponds to the **anode**, Γ_c corresponds to the **cathode**, Γ_i is the **rest of the boundary** Γ .

f is of class C^1 , $f(0)=0, \ 0 < c_1 \leq f'(r) \leq c_2$ for all $r \in \mathbb{R},$

the conductivity $\sigma > 0$.

The control problem (P_5)

 $\inf\{J(\phi, u) \mid (\phi, u) \in H^1(\Omega) \times L^2(\Gamma_a), \ u_a \le u \le u_b\},\$

where (ϕ, u) solves the state equation and

$$J(\phi, u) = \frac{1}{2} \int_{\Gamma_c} (\phi - \phi_d)^2 + \frac{\beta}{2} \int_{\Gamma_a} u^2,$$

 $u_a \in L^2(\Gamma_a)$ and $u_b \in L^2(\Gamma_a)$ are some bounds on the current u, and β is a positive constant.

1. Prove that (P_5) has at least one solution.

2. Write the first order optimality condition for the solutions to (P_5) .

The state equation

Theorem. (The Minty-Browder Theorem, [Brézis]) Let E be a reflexive Banach space, and \mathcal{A} be a nonlinear continuous mapping from E into E'. Suppose that

$$\langle \mathcal{A}(\phi_1) - \mathcal{A}(\phi_2), \phi_1 - \phi_2 \rangle_{E',E} > 0$$

for all ϕ_1 , ϕ_2 in E, with $\phi_1 \neq \phi_2$, and

$$\lim_{\|\phi\|_E \to \infty} \frac{\langle \mathcal{A}(\phi), \phi \rangle_{E', E}}{\|\phi\|_E} = \infty.$$

Then, for all $\ell \in E'$, there exists a unique $\phi \in E$ such that $\mathcal{A}(\phi) = \ell$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

To apply this theorem, we set $E = H^1(\Omega)$, and we define \mathcal{A} by

$$\langle \mathcal{A}(\phi), z \rangle_{(H^1(\Omega))', H^1(\Omega)} = \int_{\Omega} \sigma \nabla \phi \cdot \nabla z + \int_{\Gamma_c} f(\phi) z,$$

and ℓ by

$$\ell(z) = -\int_{\Gamma_a} z \, u.$$

3. We can prove that the state equation

$$\langle \mathcal{A}(\phi), z \rangle = \ell(z) \qquad \forall z \in H^1(\Omega),$$

admits a unique solution $\phi \in H^1(\Omega)$.

Observe that

$$f(\phi(x)) = f(0) + \int_0^1 f'(\theta\phi) \, d\theta \, \phi \, \phi(x).$$

Writing the nonlinear boundary condition in the form

$$\sigma \frac{\partial \phi}{\partial n} + a(x)\phi = 0 \qquad \text{on } \Gamma_c,$$

with

$$0 < c_1 \le a(x) = \int_0^1 f'(\theta\phi(x)) \, d\theta.$$

We can prove that

$$\|\phi\|_{H^1(\Omega)} \le C \|u\|_{L^2(\Gamma_a)},$$

and

$$\|\phi\|_{H^{3/2}(\Omega)} \le C(c_2 \|\phi\|_{L^2(\Gamma_c)} + \|u\|_{L^2(\Gamma_a)}).$$

Thus if $(u_n)_n$ is a sequence weakly converging to uin $L^2(\Gamma_a)$, the sequence $(\phi_n)_n$, where $\phi_n = \phi(u_n)$, is bounded in $H^{3/2}(\Omega)$. We can pass to the limit in the variational equation

$$\langle \mathcal{A}(\phi_n), z \rangle_{(H^1(\Omega))', H^1(\Omega)} = \ell_n(z) = -\int_{\Gamma_a} u_n z.$$

Indeed

$$\phi_n \longrightarrow \phi \quad \text{in } H^1(\Omega).$$

Thus

$$\int_{\Gamma_c} f(\phi_n) z \longrightarrow \int_{\Gamma_c} f(\phi) z$$

for all $z \in H^1(\Omega)$.

Thanks to this result, we prove that (P_5) admits at least one solution.

Optimality conditions

Equation satisfied by
$$\psi_{\lambda} = \frac{\phi(u+\lambda v) - \phi(u)}{\lambda}$$
.

 $-\mathsf{div}(\sigma\nabla\psi_{\lambda})=0\qquad\text{in }\Omega,$

$$-\sigma \frac{\partial \psi_{\lambda}}{\partial n} = v \quad \text{on } \Gamma_a, \qquad -\sigma \frac{\partial \psi_{\lambda}}{\partial n} = 0 \quad \text{on } \Gamma_i,$$

$$-\sigma \frac{\partial \psi_{\lambda}}{\partial n} = \frac{1}{\lambda} \Big(f(\phi(u+\lambda v)) - f(\phi(u)) \Big) \quad \text{on } \Gamma_c.$$

We have

$$\frac{1}{\lambda} \Big(f(\phi(u+\lambda v)) - f(\phi(u)) \Big) = b(x)\psi_{\lambda},$$

with

$$b(x) = \int_0^1 f'(\phi(u) + \theta\phi(u + \lambda v)) d\theta \ge c_1 > 0.$$

The limit of ψ_{λ} in $H^1(\Omega)$, is the solution ψ of the equation

$$-{\rm div}(\sigma\nabla\psi)=0\qquad {\rm in}\ \Omega,$$

$$-\sigma \frac{\partial \psi}{\partial n} = v \quad \text{on } \Gamma_a, \qquad -\sigma \frac{\partial \psi}{\partial n} = 0 \quad \text{on } \Gamma_i,$$

$$-\sigma \frac{\partial \psi}{\partial n} = f'(\phi)\psi$$
 on Γ_c .

Conclusion

Setting $F(u)=J(\phi(u),u)$ we have

$$F'(u)v = \int_{\Gamma_c} (\phi(u) - \phi_d)\psi(v) + \beta \int_{\Gamma_a} u v.$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

What is the adjoint equation ? With an integration by parts between $\psi = \psi(v)$ and an other function p we have

$$0 = -\int_{\Omega} \operatorname{div}(\sigma \nabla p) \psi - \int_{\Gamma} \sigma \frac{\partial \psi}{\partial n} p + \int_{\Gamma} \sigma \frac{\partial p}{\partial n} \psi$$

$$0 = \int_{\Omega} (-\operatorname{div}(\sigma \nabla p)\psi + \int_{\Gamma_a} vp + \int_{\Gamma_c} f'(\phi)\psi p$$

$$+\int_{\Gamma}\sigma\frac{\partial p}{\partial n}\psi.$$

$$\int_{\Gamma_c} (\phi(u) - \phi_d) \psi(v) = \int_{\Gamma_a} q \, v.$$

– Typeset by Foil $T_{\rm F}X$ –

If we set

$$\begin{split} -\operatorname{div}(\sigma \nabla p) &= 0, & \text{in } \Omega, \\ \sigma \frac{\partial p}{\partial n} &= 0, & \text{on } \Gamma_i \cup \Gamma_a, \\ \sigma \frac{\partial p}{\partial n} &+ f'(\phi)p &= \phi(u) - \phi_d, & \text{on } \Gamma_c, \end{split}$$

we have

$$\int_{\Gamma_c} (\phi(u) - y_d) \psi(v) = -\int_{\Gamma_a} v \, p.$$

Conclusion

$$F'(u)v = \int_{\Gamma_a} (-p + \beta u)v.$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

If $(\bar{\phi}, \bar{u})$ is a solution of (P_5) then

$$\int_{\Gamma_a} \Big(-p + \beta \bar{u} \Big) (u - \bar{u}) \ge 0$$

for all $u_a \leq u \leq u_b$.

That is

$$\bar{u}(x) = \operatorname{Proj}_{[u_a, u_b]} \left(\frac{1}{\beta} p(x) \right).$$

References

- [1] H. Brezis, Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1983.
- [2] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.
- [3] S. Kesavan, Topics in Functional Analysis and Applications, Wiley-Eastern, New Delhi, 1989.
- [4] N. G. Zamani, J. M. Chunang, Optimal control of current in a cathodic protection system: A numerical investigation, Opt. Cont. Appl. Meth., Vol. 8 (1987), 339-350.