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Optimal control of evolution

equations

– Typeset by FoilTEX – 3



Setting of the problem

We consider equations of the form

(E) y′ = Ay + Bu + f, y(0) = y0.

Assumptions

Y and U are Hilbert spaces.

The unbounded operator (A,D(A)) is the infinitesimal

generator of a strongly continuous semigroup on Y ,

denoted by (etA)t≥0.

We want to study problems for which

B 6∈ L(U ;Y ).
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1. To study equation (E) we look for an extension

of A. We look for Ŷ and an unbounded operator

(Â,D(Â)) on Ŷ for which

Y is densely embedded in Ŷ ,

D(A) is densely embedded in D(Â),

Ay = Ây for all y ∈ D(A),

B belongs to L(U ; Ŷ ).

This kind of extension will be useful to study boundary

control problems for parabolic or hyperbolic equations.

2. Extend the notion of weak solutions. Prove the

existence by approximation.
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We consider control problems of the form

(P ) inf{J(y, u) | u ∈ L2(0, T ;U), (y, u) obeys (E)}.

with

J(y, u) =
1
2

∫ T

0

|Cy(t)− zd(t)|2Z

+
1
2
|Dy(T )− zT |2ZT

+
1
2

∫ T

0

|u(t)|2U .

Bounded observations. C ∈ L(Ŷ ;Z), and D ∈
L(Ŷ ;ZT ).

If we observe the state on the boundary Γ × (0, T ) of

the domain Ω × (0, T ), C and D may be unbounded

operators.
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Neumann boundary control of the

heat equation
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The state equation

Let Ω be a bounded domain in RN , with a boundary

Γ of class C2. Let T > 0, set Q = Ω × (0, T ) and

Σ = Γ× (0, T ). We consider the heat equation with a

Neumann boundary control

(HE)

∂y

∂t
−∆y = f in Q,

∂y

∂n
= u on Σ, y(x, 0) = y0 in Ω.

The function f ∈ L2(Q) is a given source of

temperature, and the function u is a control variable.

We consider the control problem

(P ) inf{J(y, u) | u ∈ L2(Σ), (y, u) obeys (HE)},
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where

J(y, u) =
1
2

∫
Q

|y − yd|2

+
1
2

∫
Ω

|y(T )− yd(T )|2 +
β

2

∫
Σ

u2,

β > 0 and yd ∈ C([0, T ];L2(Ω)).
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The heat equation with a
nonhomogeneous

Neumann boundary condition
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Recall that

D(A) =
{

ξ ∈ H2(Ω) | ∂ξ

∂n
= 0

}
, Ay = ∆y,

the operator (A,D(A)) is the generator of a semigroup

of contractions on L2(Ω). If u = 0 a weak solution of

(HE) is a function y ∈ L2(0, T ;L2(Ω)) such that for

all ξ ∈ D(A), the mapping t 7→
∫
Ω

y(t) ξ belongs to

H1(0, T ),
∫
Ω

y(0) ξ =
∫
Ω

y0 ξ, and

d

dt

∫
Ω

y(t)ξ =
∫

Ω

y(t)∆ξ +
∫

Ω

f(t)ξ.

If y is a regular solution of (HE) then∫
Ω

∆y(t)ξ =
∫

Ω

y(t)∆ξ +
∫

Γ

u(t)ξ, ∀ξ ∈ D(A).
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Definition of a weak solution

Definition. A function y ∈ L2(0, T ;L2(Ω)) is a weak

solution to equation (HE) if, for all ξ ∈ D(A),
the mapping t 7→

∫
Ω

y(t) ξ belongs to H1(0, T ),∫
Ω

y(0) ξ =
∫
Ω

y0 ξ, and

d

dt

∫
Ω

y(t)ξ =
∫

Ω

y(t)∆ξ +
∫

Ω

f(t)ξ +
∫

Γ

u(t)ξ.

Theorem. Equation (HE) admits at most one weak

solution in L2(0, T ;L2(Ω)).
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Proof. Suppose that y1 and y2 are two weak solutions.

Set z = y1 − y2. Then for all ξ ∈ D(A), the mapping

t 7→
∫
Ω

z(t) ξ belongs to H1(0, T ),
∫
Ω

z(0) ξ = 0, and

d

dt

∫
Ω

z(t)ξ =
∫

Ω

z(t)∆ξ.

From Chapter 2, we know that z = 0.
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Approximation by regular controls

Let u be in L2(Σ) and let (un)n be a sequence in

C1([0, T ];H1/2(Γ)), converging to u in L2(Σ). Denote

by Nun(t) = wn(t) the solution to equation

−∆w + w = 0 in Ω,
∂w

∂n
= un(t) on Γ.

From elliptic regularity results we know that wn belongs

to C1([0, T ];H2(Ω)). Let zn be the solution to

∂z

∂t
−∆z = f − ∂wn

∂t
+ ∆wn in Q,

∂z

∂n
= 0 on Σ, z(x, 0) = (y0 − wn(0))(x) in Ω.

Then yn = zn + wn is the solution to (HE)
corresponding to (f, un, y0).
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Estimates on yn

Since (y0−wn(0)) ∈ L2(Ω) and f−∂wn
∂t +∆wn belongs

to L2(Q). Thus zn and wn are regular enough so that

yn obeys:

∫
Ω

|yn(t)|2 + 2
∫ t

0

∫
Ω

|∇yn|2

= 2
∫ t

0

∫
Ω

fyn + 2
∫ t

0

∫
Γ

uyn +
∫

Ω

|y0|2 ,

for every t ∈]0, T ]. We first get

‖yn‖2
C([0,T ];L2(Ω)) + 2‖∇yn‖2

L2(0,T ;L2(Ω))

≤ 2‖f‖L2‖yn‖L2(Q) + 2‖un‖L2‖yn‖L2(Σ) + ‖y0‖2
L2(Ω).
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Thus with Young’s inequality, we next obtain

‖yn‖C([0,T ];L2(Ω)) + ‖yn‖L2(0,T ;H1(Ω))

≤ C
(
‖f‖L2(Q) + ‖un‖L2(Σ) + ‖y0‖L2(Ω)

)
.

From the weak formulation we can next prove that, for

every ζ ∈ D(A),∥∥∥ d

dt

∫
Ω

yn(·)ζ
∥∥∥

L2(0,T )
≤ ‖yn‖L2(Q)‖ζ‖H2(Ω)

+‖f‖L2(Q)‖ζ‖L2(Ω) + ‖un‖L2(Σ)‖ζ‖L2(Γ).

Let (ζj)j∈N ⊂ D(A) be a Hilbertian basis in L2(Ω).
Using the diagonal process, we can prove that there

exist subsequence, still indexed by n to simplify the

writing, and y ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),
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such that

yn −→ y in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),∫
Ω

yn(·)ζj −→
∫

Ω

y(·)ζj in H1(0, T ), for all j.

Thus we can pass to the limit in

d

dt

∫
Ω

yn(t)ζj =
∫

Ω

yn(t)∆ζj +
∫

Ω

f(t)ζj +
∫

Γ

un(t)ζj,∫
Ω

yn(0)ζj =
∫

Ω

y0 ζj,
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and we obtain

d

dt

∫
Ω

y(t)ζj =
∫

Ω

y(t)∆ζj +
∫

Ω

f(t)ζj +
∫

Γ

u(t)ζj,∫
Ω

y(0)ζj =
∫

Ω

y0 ζj,

for all j ∈ N. Since (ζj)j∈N ⊂ D(A) is a Hilbertian

basis in L2(Ω), we prove that y is a weak solution of

(HE).

Theorem. For every u ∈ L2(Σ), f ∈ L2(Q),
y0 ∈ L2(Ω), the heat equation (HE) admits a unique

solution y in L2(0, T ;L2(Ω)) and

‖y‖C([0,T ];L2(Ω)) + ‖y‖L2(0,T ;H1(Ω))

≤ C
(
‖f‖L2(Q) + ‖u‖L2(Σ) + ‖y0‖L2(Ω)

)
.
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The semigroup approach

We set Ŷ = (H1(Ω))′. The norm on (H1(Ω))′ is

defined by

y 7−→ ‖(−∆ + I)−1y‖H1(Ω),

where ξ = (−∆ + I)−1ζ is the solution of

−∆ξ + ξ = ζ in Ω,
∂ξ

∂n
= 0 on Γ.

The associated inner product is(
y, ζ

)
(H1(Ω))′

=
(
(−∆ + I)−1y, (−∆ + I)−1ζ

)
H1(Ω)

.
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To define the continuous extension of A we observe

that if y ∈ D(A) we have(
Ay, ζ

)
(H1(Ω))′

=
(
(−∆ + I)−1∆y, (−∆ + I)−1ζ

)
H1(Ω)

= −
∫

Ω

∇y · ∇(−∆ + I)−1ζ .

Thus we define the unbounded operator Â on (H1(Ω))′

by D(Â) = H1(Ω), and(
Ây, ζ

)
(H1(Ω))′

= −
∫

Ω

∇y · ∇(−∆ + I)−1ζ

for every ζ ∈ (H1(Ω))′, or equivalently〈
Ây, z

〉
(H1(Ω))′,H1(Ω)

= −
∫

Ω

∇y·∇z ∀z ∈ H1(Ω).
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Theorem. The operator (Â,D(Â)) is the infinitesimal

generator of a strongly continuous semigroup of

contractions on (H1(Ω))′.

Proof. The proof relies on the Hille-Yosida theorem.

Â is dissipative.(
Ây, y

)
(H1(Ω))′

= −
∫

Ω

∇y · ∇(−∆ + I)−1y

= −
∫

Ω

y2 +
∫

Ω

[(−∆ + I)−1y] y ≤ 0.

Indeed

‖(−∆ + I)−1y‖L2(Ω) ≤ ‖y‖L2(Ω).
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Â is m-dissipative. Let λ > 0. For all f ∈ (H1(Ω))′,
the equation

λy − Ây = f

admits a unique solution in D(Â).

This equation is nothing else than∫
Ω

(
λyz +∇y · ∇z

)
=

〈
f, z

〉
(H1(Ω))′,H1(Ω)

for every z ∈ H1(Ω).
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We want to write equation (HE) in the form

y′ = Ây + f + Bu, y(0) = y0,

where B ∈ L(L2(Γ); (H1(Ω))′) must be identified.

As before, we first suppose that u ∈
C1([0, T ];H1/2(Γ)). Write y the solution to (HE)
corresponding to (f, u, y0) in the form y = z + w,

where w(t) = Nu(t). Recall that

∂z

∂t
−∆z = f − w′ − w in Q,

∂z

∂n
= 0 on Σ, z(x, 0) = (y0 − w(0))(x) in Ω.

– Typeset by FoilTEX – 23



We have

z(t) = e
bAt(y0−w(0))+

∫ t

0

e
bA(t−s)(f(s)−w′(s)+w(s)) ds.

With an integration by parts we can write∫ t

0

e
bA(t−s)w′(s) ds =

∫ t

0

Âe
bA(t−s)w(s) ds+w(t)−e

bAtw(0).

Thus

z(t) = e
bAty0 +

∫ t

0

(−Â + I)e bA(t−s)w(s) ds− w(t),

that is

y(t) = e
bAty0 +

∫ t

0

e
bA(t−s)(−Â + I)Nu(s) ds.
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Thus we can write

y′ = Ây + (−Â + I)Nu.

We set Bu(t) = (−Â + I)Nu(t).

N : L2(Γ) 7−→ H3/2(Ω)

−Â + I : H1(Ω) 7−→ (H1(Ω))′

Thus B ∈ L(L2(Γ); (H1(Ω))′) and the representation

of y by the above equation is still meaningful even if

u ∈ L2(Σ). Accordingly y is a weak solution of the

evolution equation iff

d

dt

(
y(t), ζ

)
(H1(Ω))′

=
(
y(t), Âζ

)
(H1(Ω))′

+
(
Bu, ζ

)
(H1(Ω))′

.

Is it the same definition as above ?
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From the definition of (−∆ + I)−1w it follows that(
w, ζ

)
(H1(Ω))′

=
∫

Ω

w(−∆ + I)−1ζ

Thus from the definition of Â we get(
(−Â + I)Nu, ζ

)
(H1(Ω))′

=
∫

Ω

(
∇Nu · ∇(−∆ + I)−1ζ + Nu(−∆ + I)−1ζ

)
=

∫
Γ

u (−∆ + I)−1ζ ds

We have

(Bu, ζ)(H1(Ω))′ =
∫

Γ

u (−∆+I)−1ζ for all ζ ∈ (H1(Ω))′.
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We can check that(
y, ζ

)
(H1(Ω))′

=
∫

Ω

(
∇(−∆ + I)−1y · ∇(−∆ + I)−1ζ

+(−∆ + I)−1y (−∆ + I)−1ζ
)

=
∫

Ω

y (−∆ + I)−1ζ,

and

(y, Âζ)(H1(Ω))′ = −
∫

Ω

∇(−∆ + I)−1y · ∇ζ

=
∫

Ω

y ∆(−∆ + I)−1ζ.

Replacing ξ ∈ D(A) in the first definition by (−∆ +
I)−1ζ, with ζ ∈ L2(Ω), we obtain the second definition.
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Existence of a unique optimal control

1. Set F (u) = J(y(u), u). Let (un)n be a minimizing

sequence in L2(Σ), that is

limn→∞F (un) = infu∈L2(Σ)F (u).

Let yn the solution of (HE) corresponding to un,

suppose that (un)n is bounded in L2(Σ), and that

un ⇀ ū weakly in L2(Σ).

2. Let ȳ = y(ū).

The operator

Λ : u −→ (y(u), y(u)(T ))

is affine and continuous from L2(Σ) to L2(Q)×L2(Ω).
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The sequence (yn)n converges to ȳ for the weak

topology of L2(Q), and (yn(T ))n converges to ȳ(T )
for the weak topology of L2(Ω).

3. Using the weakly lower semicontinuity of F , we

obtain

F (ū) ≤ liminfn→∞F (un) = m.

Thus ū is a solution to (P ). The uniqueness follows

from the strict convexity of F .
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Optimality conditions
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Directional Derivative

F ′(u)v =
∫

Q

(y(u)− yd)z(v)

+
∫

Ω

(y(u)(T )− yd(T ))z(v)(T ) + β

∫
Σ

uv,

where z(v) is the solution of

∂z

∂t
−∆z = 0 in Q,

∂z

∂n
= v on Σ, z(x, 0) = 0 in Ω.
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Identification of F ′(u)

We look for q such that

∫
Q

(y(u)− yd)z(v) +
∫

Ω

[(y(u)− yd)z(v)](T ) =
∫

Σ

q v.

Let p be a regular function defined on Q and write an

integration by parts between z(v) and p:

0 =
∫

Q

(zt −∆z)p

=
∫

Q

z(−pt −∆p) +
∫

Ω

z(T )p(T )−
∫

Σ

vp +
∫

Σ

∂p

∂n
z
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Identification with∫
Q

(y(u)− yd)z +
∫

Ω

[(y(u)− yd)z](T ) =
∫

Σ

q v.

We set

−∂p

∂t
−∆p = y(u)− yd in Q,

∂p

∂n
= 0 on Σ, p(x, T ) = (y(u)− yd)(T ) in Ω,

and we have

F ′(u)v =
∫

Σ

(p + βu)v,

if the above calculation are justified.
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The adjoint equation

Let g ∈ L2(Q), pT ∈ L2(Ω). The terminal boundary

value problem

(AE)
−∂p

∂t
−∆p = g in Q,

∂p

∂n
= 0 on Σ, p(x, T ) = pT in Ω,

is well posed.

‖p‖C([0,T ];L2(Ω)) ≤ C(‖g‖L2(Q) + ‖pT‖L2(Ω)).
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Integration by parts between z and p

Theorem. Suppose that g ∈ L2(Q), pT ∈ L2(Ω), and

v ∈ L2(Σ). Then the solution z of equation

∂z

∂t
−∆z = 0 in Q,

∂z

∂n
= v on Σ, z(x, 0) = 0 in Ω,

and the solution p of (AE) satisfy the following formula∫
Σ

v p =
∫

Q

z g +
∫

Ω

z(T )pT .

Proof. We prove the IBP formula for pT ∈ H1
0(Ω),

g ∈ L2(Q), v ∈ C1([0, T ];H1/2(Ω)). In that case z

and p belong to L2(0, T ;H2(Ω))) ∩ H1(0, T ;L2(Ω)),
and the IBP formula is satisfied. When pT ∈ L2(Ω)
and v ∈ L2(Σ) we use a density argument.
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Theorem. (i) If (ȳ, ū) is the solution to (P ) then

ū = −1
βp|Σ, where p is the solution to the adjoint

equation corresponding to ȳ.

(ii) Conversely, if a pair (ỹ, p̃) ∈ C([0, T ];L2(Ω)) ×
C([0, T ];L2(Ω)) obeys the system

∂ỹ

∂t
−∆ỹ = f in Q,

∂ỹ

∂n
= −1

β
p̃ on Σ, ỹ(0) = ȳ0 in Ω,

−∂p̃

∂t
−∆p̃ = ỹ − yd in Q,

∂p̃

∂n
= 0 on Σ, p̃(T ) = y(T )− yd(T ) in Ω,

then the pair (ỹ,−1
β p̃|Σ) is the optimal solution to

problem (P ).
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Proof. (i) The necessary optimality condition is already

proved.

(ii) The sufficient optimality condition can be proved

with the sufficient optimality condition stated in

Chapter 1.
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Neumann boundary control of the

wave equation
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The state equation

The notation Ω, Γ, T , Q, Σ, as well as the assumptions

on Ω and Γ, are the ones of the previous section. We

consider

(WE)
y′′ −∆y = f in Q,

∂y

∂n
= u on Σ,

y(x, 0) = y0 and y′(x, 0) = y1 in Ω,

with (y0, y1) ∈ H1 × L2(Ω), f ∈ L2(Q), and u ∈
L2(Σ).
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We set D(A) = {y1 ∈ H2(Ω) | ∂y1
∂n = 0} × H1(Ω),

Y = H1(Ω)× L2(Ω), and

Az = A

(
z1

z2

)
=

(
z2

∆z1 − z1

)
.

Theorem. The operator (A,D(A)) is the infinitesimal

generator of a strongly continuous semigroup of

contractions on Y . If f ∈ L2(Q), y0 ∈ H1(Ω), y1 ∈
L2(Ω), and u = 0, equation (WE) admits a unique

weak solution which belongs to C([0, T ];H1(Ω)) ∩
C1([0, T ];L2(Ω)).

To study the wave equation with nonhomogeneous

boundary conditions, we set D(Â) = H1(Ω) × L2(Ω),

– Typeset by FoilTEX – 40



Ŷ = L2(Ω)× (H1(Ω))′, and

Âz = Â

(
z1

z2

)
=

(
z2

Ãz1 − z1

)
,

where (Ã,D(Ã)) is the unbounded operator on

(H1(Ω))′ defined by

D(Ã) = H1(Ω),(
Ãz1, ζ

)
(H1(Ω))′

= −
∫

Ω

∇z1 · ∇(−∆ + I)−1ζ .
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Theorem. The operator (Â,D(Â)) is the infinitesimal

generator of a semigroup of contractions on Ŷ .

Now, we consider equation (WE) with a control

in the Neumann boundary condition. As for the heat

equation we can prove that equation (WE) may be

written in the form

dz

dt
= (Â + L)z + F + Bu, z(0) = z0,

F, Bu ∈ L2(0, T ;L2(Ω)) × L2(0, T ; (H1(Ω))′), z0 ∈
L2(Ω)× (H1(Ω))′, are defined by

Bu =
(

0
B2u

)
, L

(
z1

z2

)
=

(
0
z1

)
, F =

(
0
f

)
,
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z0 =
(

y0

y1

)
, and B2u = (−Ã + I)Nu.

Theorem. For every (f, u, y0, y1) ∈ L2(Q) ×
L2(Σ) × L2(Ω) × (H1(Ω))′, equation (WE)
admits a unique weak solution z(f, u, y0, y1) =
(y(f, u, y0, y1), y′(f, u, y0, y1)) in C([0, T ];L2(Ω)) ×
C([0, T ]; (H1(Ω))′).
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The control problem

(P ) inf{J(y, u) | (y, u) obeys (WE), u ∈ L2(Σ)},

the functional J is defined by

J(y, u) =
1
2

∫
Q

|y − yd|2 +
1
2

∫
Ω

|y(T )− yd(T )|2 +
β

2

∫
Σ

u2,

where the function yd belongs to C([0, T ];L2(Ω)).

Theorem. Assume that f ∈ L2(Q), y0 ∈ H1(Ω),
y1 ∈ L2(Ω), and yd ∈ C([0, T ];L2(Ω)). Problem (P )
admits a unique solution (ȳ, ū).
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Existence of a unique optimal control

1. Set F (u) = J(y(u), u). Let (un)n be a minimizing

sequence in L2(Σ), that is

limn→∞F (un) = infu∈L2(Σ)F (u).

We suppose that

un ⇀ ū weakly in L2(Σ).

Let yn the solution of (WE) corresponding to un,

suppose that (un)n is bounded in L2(Σ), and that

un ⇀ ū weakly in L2(Σ).
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Passage to the limit in the equation. Let ȳ = y(ū).

The operator

Λ : u −→
(
y(u), y(u)(T )

)
is affine and continuous from L2(Σ) to L2(Q)×L2(Ω).

We conclude that problem (P ) admits a unique solution

(ȳ, ū).
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Optimality conditions for (P )
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By a classical calculation we have

F ′(u)v =
∫

Q

(y(u)− yd)z(v)

+
∫

Ω

(y(u)(T )− yd(T ))z(v)(T ) + β

∫
Σ

uv,

where z(v) is the solution of

z′′ −∆z = 0 in Q,
∂z

∂n
= v on Σ,

z(x, 0) = 0 and z′(x, 0) = 0 in Ω.
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Identification of F ′(u)

We look for q such that∫
Q

(y(u)− yd)z(v) +
∫

Ω

[(y(u)− yd)z(v)](T ) =
∫

Σ

q v.

Let p be a regular function defined on Q̄ and write an

integration by parts between z(v) and p:

0 =
∫

Q

(z′′ −∆z)p

=
∫

Q

z(p′′ −∆p) +
∫

Ω

z′(T )p(T )

−
∫

Ω

z(T )p′(T )−
∫

Σ

vp +
∫

Σ

∂p

∂n
z
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Identification with∫
Q

(y(u)− yd)z +
∫

Ω

[(y(u)− yd)z](T ) =
∫

Σ

q v.

We set

p′′ −∆p = y(u)− yd in Q,
∂p

∂n
= 0 on Σ,

p(T ) = 0 and p′(T ) = −(y(u)− yd)(T ) in Ω.

and we have

F ′(u)v =
∫

Σ

(p + βu)v,

if the above calculation are justified.
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Theorem. (i) If (ȳ, ū) is the solution to (P ) then

ū = −1
βp|Σ, where p is the solution to the adjoint

equation corresponding to ȳ:

p′′ −∆p = ȳ − yd in Q,
∂p

∂n
= 0 on Σ,

p(T ) = 0 and p′(T ) = −(ȳ − yd)(T ) in Ω.
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(ii) Conversely, if a pair (ỹ, p̃) ∈ C([0, T ];L2(Ω)) ×
C([0, T ];L2(Ω)) obeys the system

ỹ′′ −∆ỹ = f in Q,
∂ỹ

∂n
= −1

β
p̃ on Σ,

ỹ(0) = y0, ỹ′(0) = y1, in Ω,

p̃′′ −∆p̃ = ỹ − yd in Q,
∂p̃

∂n
= 0 on Σ,

p̃(T ) = 0, p̃′(T ) = −ỹ(T ) + yd(T ) in Ω,

then the pair (ỹ,−1
β p̃|Σ) is the optimal solution to (P ).
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Dirichlet boundary control of the

heat equation
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The state equation

Let Ω be a bounded domain in RN , with a boundary

Γ of class C2. Let T > 0, set Q = Ω × (0, T ) and

Σ = Γ× (0, T ). We consider the heat equation with a

Dirichlet boundary control

(HE)
∂y

∂t
−∆y = f in Q,

y = u on Σ, y(x, 0) = y0 in Ω.

The function f ∈ L2(Q) is a given source of

temperature, and the function u is a control variable.

We suppose that y0 ∈ L2(Ω).
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We consider the control problem

(P ) inf{J(y, u) | u ∈ L2(Σ), (y, u) obeys (HE)},

J(y, u) =
1
2
‖y(T )− yd(T )‖2

H−1(Ω)

+
1
2

∫
Q

|y − yd|2 +
β

2

∫
Σ

u2,

β > 0 and yd ∈ C([0, T ];L2(Ω)).

Recall that

‖y(T )− yd(T )‖2
H−1(Ω)

=
〈
(−∆)−1(y(T )− yd(T )), y(T )− yd(T )

〉
H1

0(Ω),H−1(Ω)
.
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The heat equation with a
nonhomogeneous

Dirichlet boundary condition
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Recall that

D(A) = H2(Ω) ∩H1
0(Ω), Ay = ∆y,

the operator (A,D(A)) is the generator of a semigroup

of contraction on L2(Ω). If u = 0 a weak solution of

(HE) is a function y ∈ L2(0, T ;L2(Ω)) such that for

all ξ ∈ D(A), the mapping t 7→
∫
Ω

y(t) ξ belongs to

H1(0, T ),
∫
Ω

y(0) ξ =
∫
Ω

y0 ξ, and

d

dt

∫
Ω

y(t)ξ =
∫

Ω

y(t)∆ξ +
∫

Ω

f(t)ξ.

If y is a regular solution of (HE) then∫
Ω

∆y(t)ξ =
∫

Ω

y(t)∆ξ −
∫

Γ

u(t)
∂ξ

∂n
, ∀ξ ∈ D(A).
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Definition of a weak solution

Definition. A function y ∈ L2(0, T ;L2(Ω)) is a weak

solution to equation (HE) if, for all ξ ∈ D(A),
the mapping t 7→

∫
Ω

y(t) ξ belongs to H1(0, T ),∫
Ω

y(0) ξ =
∫
Ω

y0 ξ, and

d

dt

∫
Ω

y(t)ξ =
∫

Ω

y(t)∆ξ +
∫

Ω

f(t)ξ −
∫

Γ

u(t)
∂ξ

∂n
.

Theorem. Equation (HE) admits at most one weak

solution in L2(0, T ;L2(Ω)).
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Proof of uniqueness. Suppose that y1 and y2 are

two weak solutions. Set z = y1 − y2. Then for

all ξ ∈ D(A), the mapping t 7→
∫
Ω

z(t) ξ belongs to

H1(0, T ),
∫
Ω

z(0) ξ = 0, and

d

dt

∫
Ω

z(t)ξ =
∫

Ω

z(t)∆ξ.

From Chapter 2, we know that z = 0.
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Approximation by regular controls

Let u be in L2(Σ) and let (un)n be a sequence in

C1([0, T ];H3/2(Γ)), converging to u in L2(Σ). Denote

by Dun(t) = wn(t) the solution to equation

−∆w = 0 in Ω, w = un(t) on Γ.

From elliptic regularity results we know that wn belongs

to C1([0, T ];H2(Ω)). Let zn be the solution to

∂z

∂t
−∆z = f − ∂wn

∂t
+ ∆wn in Q,

z = 0 on Σ, z(x, 0) = (y0 − wn(0))(x) in Ω.

Then yn = zn + wn is the solution to (HE)
corresponding to (f, un, y0).
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Estimates on yn

Since (y0−wn(0)) ∈ L2(Ω) and f−∂wn
∂t +∆wn belongs

to L2(Q), zn and wn are regular enough so that yn

obeys:∫
Ω

yn(t)(−∆)−1yn(t) + 2
∫ t

0

∫
Ω

|yn|2 − ‖y0‖2
H−1(Ω)

= 2
∫ t

0

∫
Ω

f(−∆)−1yn + 2
∫ t

0

∫
Γ

un
∂

∂n

[
(−∆)−1yn

]
.

for some t ∈]0, T ].
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We first get

‖yn‖2
C([0,T ];H−1(Ω)) + 2‖yn‖2

L2(0,T ;L2(Ω))

≤ ‖y0‖2
H−1(Ω) + 2C‖f‖L2‖yn‖L2(Q)

+2‖un‖L2(Σ)

∥∥∥ ∂

∂n
(−∆)−1yn

∥∥∥
L2(Σ)

.

Observe that∥∥∥ ∂

∂n
(−∆)−1yn

∥∥∥
L2(Σ)

≤ C‖yn‖L2(Q).

Thus with Young’s inequality, we next obtain

‖yn‖C([0,T ];H−1(Ω)) + ‖yn‖L2(0,T ;L2(Ω))

≤ C
(
‖f‖L2(Q) + ‖un‖L2(Σ) + ‖y0‖L2(Ω)

)
.
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An other estimate on yn

From the variational formulation we can next prove

that, for every ζ ∈ D(A),

∥∥∥ d

dt

∫
Ω

yn(·)ζ
∥∥∥

L2(0,T )
≤ ‖yn‖L2(Q)‖ζ‖H2(Ω)

+‖f‖L2(Q)‖ζ‖L2(Ω) + ‖un‖L2(Σ)‖ζ‖L2(Γ).

Let (ζj)j∈N ⊂ D(A) be a Hilbertian basis in L2(Ω).
Using the diagonal process, we can prove that there

exist subsequence, still indexed by n to simplify the

writing, and y ∈ C([0, T ];H−1(Ω)) ∩ L2(0, T ;L2(Ω)),
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such that

yn −→ y in C([0, T ];H−1(Ω)) ∩ L2(0, T ;L2(Ω)),∫
Ω

yn(·)ζj −→
∫

Ω

y(·)ζj in H1(0, T ), for all j.

Thus we can pass to the limit in

d

dt

∫
Ω

yn(t)ζj =
∫

Ω

yn(t)∆ζj +
∫

Ω

f(t)ζj −
∫

Γ

un(t)
∂ζj

∂n
,∫

Ω

yn(0)ζj =
∫

Ω

y0 ζj,
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and we obtain

d

dt

∫
Ω

y(t)ζj =
∫

Ω

y(t)∆ζj +
∫

Ω

f(t)ζj −
∫

Γ

u(t)
∂ζj

∂n
,∫

Ω

y(0)ζj =
∫

Ω

y0 ζj,

for all j ∈ N. Since (ζj)j∈N ⊂ D(A) is a Hilbertian

basis in L2(Ω), we prove that y is a weak solution of

(HE).

Theorem. For every u ∈ L2(Σ), f ∈ L2(Q),
y0 ∈ L2(Ω), the heat equation (HE) admits a unique

solution y in L2(0, T ;L2(Ω)) and

‖y‖C([0,T ];H−1(Ω)) + ‖y‖L2(0,T ;L2(Ω))

≤ C
(
‖f‖L2(Q) + ‖u‖L2(Σ) + ‖y0‖L2(Ω)

)
.
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The semigroup approach

We set Ŷ = (H2(Ω)∩H1
0(Ω))′. The norm on (H2(Ω)∩

H1
0(Ω))′ is defined by

y 7−→ ‖(−∆)−1y‖L2(Ω),

where ξ = (−∆)−1ζ is the solution of

−∆ξ = ζ in Ω, ξ = 0 on Γ.

The associated inner product is(
y, ζ

)
(H2(Ω)∩H1

0(Ω))′
=

(
(−∆)−1y, (−∆)−1ζ

)
L2(Ω)

.
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To define the continuous extension of A we observe

that if y ∈ D(A) we have(
Ay, ζ

)
(H2∩H1

0(Ω))′
=

(
(−∆)−1∆y, (−∆)−1ζ

)
L2(Ω)

= −
∫

Ω

y(−∆)−1ζ .

Thus we define the unbounded operator Â on (H2(Ω)∩
H1

0(Ω))′ by D(Â) = L2(Ω), and(
Ây, ζ

)
(H2(Ω)∩H1

0(Ω))′
= −

∫
Ω

y(−∆)−1ζ .

Theorem. The operator (Â,D(Â)) is the infinitesimal

generator of a strongly continuous semigroup of

contractions on (H2(Ω) ∩H1
0(Ω))′.
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Proof. The proof relies on the Hille-Yosida theorem.

Â is dissipative.

(Ây, y)(H2∩H1
0(Ω))′ = −

∫
Ω

(−∆)−1y y ≤ 0.

Â is m-dissipative. Let λ > 0. For all f ∈ (H2 ∩
H1

0(Ω))′, the equation

λy − Ây = f

admits a unique solution in D(Â).
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We want to write equation (HE) in the form

y′ = Ây + f + Bu, y(0) = y0,

where B ∈ L(L2(Γ); (H2∩H1
0(Ω))′) must be identified.

As before, we first suppose that u ∈
C1([0, T ];H3/2(Γ)). Write y the solution to (HE)
corresponding to (f, u, y0) in the form y = z + w,

where w(t) = Du(t). Recall that

∂z

∂t
−∆z = f − w′ in Q,

z = 0 on Σ, z(x, 0) = (y0 − w(0))(x) in Ω.
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We have

z(t) = e
bAt(y0 − w(0)) +

∫ t

0

e
bA(t−s)(f(s)− w′(s)) ds.

With an integration by parts we can write∫ t

0

e
bA(t−s)w′(s) ds =

∫ t

0

Âe
bA(t−s)w(s) ds+w(t)−e

bAtw(0).

Thus

z(t) = e
bAty0 +

∫ t

0

(−Â)e bA(t−s)w(s) ds− w(t),

that is

y(t) = e
bAty0 +

∫ t

0

e
bA(t−s)(−Â)Du(s) ds.
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Thus we can write

y′ = Ây + (−Â)Du.

We set Bu(t) = (−Â)Du(t).

D : L2(Γ) 7−→ H1/2(Ω)

−Â : L2(Ω) 7−→ (H2 ∩H1
0(Ω))′

Thus B ∈ L(L2(Γ); (H2 ∩ H1
0(Ω))′) and the

representation of y by the above equation is still

meaningful even if u ∈ L2(Σ). Accordingly y is a

weak solution of the evolution equation iff

d

dt
(y(t), ζ)bY = (y(t), Âζ)bY + (Bu, ζ)bY .

Is it the same definition as above ?
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From the definition of Â and with a Green formula, we

get

(
(−Â)Du, ζ

)
(H2∩H1

0(Ω))′

=
∫

Ω

Du(−∆)−1ζ =
∫

Ω

Du(−∆)(−∆)−2ζ

=
∫

Γ

u
∂

∂n

[
(−∆)−2ζ

]

We have

(
Bu, ζ

)
(H2∩H1

0(Ω))′
=

∫
Γ

u
∂

∂n

[
(−∆)−2ζ

]
∀ζ ∈ Ŷ .
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We can check that(
y, ζ

)
(H2∩H1

0(Ω))′
=

∫
Ω

(−∆)−1y (−∆)−1ζ

=
∫

Ω

y (−∆)−2ζ,

and (
y, Âζ

)
(H2∩H1

0(Ω))′
= −

∫
Ω

(−∆)−1y ζ

=
∫

Ω

y ∆(−∆)−2ζ.

Replacing ξ ∈ D(A) in the first definition by (−∆)−2ζ,

with ζ ∈ (H2∩H1
0(Ω))′, we obtain the second defintion.
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Remark. With the semigroup approach we obtain the

existence of a solution in C([0, T ]; (H2 ∩ H1
0(Ω))′).

With the variational method, the approximation

by regular controls and the estimates we obtain

the existence of a solution in C([0, T ];H−1(Ω)) ∩
L2(0, T ;L2(Ω)).
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Existence of a unique optimal control

1. Set F (u) = J(y(u), u). Let (un)n be a minimizing

sequence in L2(Σ), that is

limn→∞F (un) = infu∈L2(Σ)F (u).

Let yn the solution of (HE) corresponding to un,

suppose that (un)n is bounded in L2(Σ), and that

un ⇀ ū weakly in L2(Σ).

2. Let ȳ = y(ū). The operator

Λ : u −→ (y(u), y(u)(T ))

is affine and continuous from L2(Σ) to L2(Q) ×
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H−1(Ω).

The sequence (yn)n converges to ȳ for the weak

topology of L2(Q), and (yn(T ))n converges to ȳ(T )
for the weak topology of H−1(Ω).

3. Using the weakly lower semicontinuity of F , we

obtain

F (ū) ≤ liminfn→∞F (un) = m.

Thus ū is a solution to (P ). The uniqueness follows

from the strict convexity of F .
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Optimality conditions
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Directional Derivative

F ′(u)v =
∫

Q

(y(u)− yd)z(v)

+
(
y(u)(T )− yd(T ), z(v)(T )

)
H−1(Ω)

+ β

∫
ω×(0,T )

uv,

where z(v) is the solution of

∂z

∂t
−∆z = 0 in Q,

z = v on Σ, z(x, 0) = 0 in Ω.
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Identification of F ′(u)

We look for q such that

∫
Q

(y(u)−yd)z +
(
(y(u)−yd)(T ), z(T )

)
H−1

=
∫

Σ

q v.

Let p be a regular function defined on Q̄ and write an

integration by parts between z(v) and p:

−
∫

Σ

v
∂p

∂n
=

∫
Q

(zt −∆z)p

=
∫

Q

z(−pt −∆p) +
〈
p(T ), z(T )

〉
H1

0 ,H−1
−

∫
Σ

∂z

∂n
p
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Identification with∫
Q

(y(u)−yd)z+
(
(y(u)−yd)(T ), z(v)(T )

)
H−1

=
∫

Σ

q v.

We set

−∂p

∂t
−∆p = y(u)− yd in Q, p = 0 on Σ,

p(T ) = (−∆)−1[(y(u)− yd)(T )] in Ω,

and we have

F ′(u)v =
∫

Σ

(−∂p

∂n
+ βu)v,

if the above calculation are justified.
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The adjoint equation

Let g ∈ L2(Q), pT ∈ H1
0(Ω). The terminal boundary

value problem

(AE)
−∂p

∂t
−∆p = g in Q,

p = 0 on Σ, p(x, T ) = pT in Ω,

is well posed.

‖p‖C([0,T ];H1
0(Ω)) + ‖p‖L2(0,T ;H2(Ω))

≤ C(‖g‖L2(Q) + ‖pT‖L2(Ω)).
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Integration by parts between z and p

Theorem. Suppose that g ∈ L2(Q), pT ∈ L2(Ω), and

v ∈ L2(Σ). Then the solution z of equation

∂z

∂t
−∆z = 0 in Q, z = v on Σ, z(0) = 0 in Ω,

and the solution p of (AE) satisfy the following formula

−
∫

Σ

v
∂p

∂n
=

∫
Q

z g + 〈z(T ), pT 〉H−1,H1
0
.

Proof. We prove the IBP formula for pT ∈ H1
0(Ω),

g ∈ L2(Q), v ∈ C1([0, T ];H3/2(Ω)). If z and p belong

to L2(0, T ;H2(Ω))) ∩ H1(0, T ;L2(Ω)), and the IBPF

is proved. When v ∈ L2(Σ) we use a density argument.
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Theorem. (i) If (ȳ, ū) is the solution to (P ) then

ū = 1
β

∂p
∂n, where p is the solution to the adjoint equation

corresponding to ȳ:

−∂p

∂t
−∆p = ȳ − yd in Q,

p = 0 on Σ, p(x, T ) = (−∆)−1[(ȳ − yd)(T )] in Ω,
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(ii) Conversely, if a pair (ỹ, p̃) ∈ C([0, T ];L2(Ω)) ×
C([0, T ];L2(Ω)) obeys the system

∂ỹ

∂t
−∆ỹ = f in Q,

ỹ =
1
β

∂p̃

∂n
on Σ, ỹ(0) = ȳ0 in Ω,

−∂p̃

∂t
−∆p̃ = ỹ − yd in Q,

p̃ = 0 on Σ, p̃(T ) = (−∆)−1[ỹ(T )− yd(T )] in Ω,

then the pair (ỹ, 1
β

∂p̃
∂n) is the optimal solution to problem

(P ).
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Dirichlet boundary control of the

wave equation
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The state equation

The notation Ω, Γ, T , Q, Σ, as well as the assumptions

on Ω and Γ, are the ones of the previous section. We

consider

(WE)
y′′ −∆y = f in Q, y = u on Σ,

y(x, 0) = y0 and y′(x, 0) = y1 in Ω,

with (y0, y1) ∈ L2(Ω) × H−1(Ω), f ∈ L2(Q), and

u ∈ L2(Σ).
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We set D(A) = H2(Ω) ∩ H1
0(Ω) × H1

0(Ω), Y =
H1

0(Ω)× L2(Ω), and

Az = A

(
z1

z2

)
=

(
z2

∆z1

)
.

Theorem. The operator (A,D(A)) is the infinitesimal

generator of a strongly continuous semigroup of

contractions on Y . If f ∈ L2(Q), y0 ∈ H1
0(Ω), y1 ∈

L2(Ω), and u = 0, equation (WE) admits a unique

weak solution which belongs to C([0, T ];H1
0(Ω)) ∩

C1([0, T ];L2(Ω)).

To study the wave equation with nonhomogeneous

Dirichlet boundary conditions, we set D(Â) = L2(Ω)×
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H−1(Ω), Ŷ = H−1(Ω)× (H2(Ω) ∩H1
0(Ω))′, and

Âz = Â

(
z1

z2

)
=

(
z2

Ãz1

)
,

where (Ã,D(Ã)) is the unbounded operator on

(H2(Ω) ∩H1
0(Ω))′ defined by

D(Ã) = L2(Ω),(
Ãz1, ζ

)
(H2(Ω)∩H1

0(Ω))′
= −

∫
Ω

z1(−∆)−1ζ .

Theorem. The operator (Â,D(Â)) is the infinitesimal

generator of a semigroup of contractions on Ŷ .
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Now, we consider equation (WE) with a control in the

Dirichlet boundary condition. As for the heat equation

we can prove that equation (WE) may be written in

the form

dz

dt
= Âz + F + Bu, z(0) = z0,

F, Bu ∈ L2(0, T ;L2(Ω)) × L2(0, T ; (H2(Ω) ∩
H1

0(Ω))′), z0 ∈ L2(Ω)×H1
0(Ω), are defined by

Bu =
(

0
B2u

)
, F =

(
0
f

)
, and z0 =

(
y0

y1

)
,

and

B2u = −ÃDu.
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Theorem. For every (f, u, y0, y1) ∈ L2(Q)× L2(Σ)×
H−1(Ω)× (H2(Ω) ∩H1

0(Ω))′, equation (WE) admits

a unique weak solution z(f, u, y0, y1) = (y, y′) in

C([0, T ];H−1(Ω)) ∩ C1([0, T ]; (H2(Ω) ∩H1
0(Ω))′).

Existence of a solution in C([0, T ];L2(Ω)) ∩
C1([0, T ];H−1(Ω))

• Approximation by regular controls

• Definition of solutions in the sense of transposition

• Estimates on yn by duality
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New regularity results for the wave equation Let

θ be the solution to

θ′′ −∆θ = g in Q, θ = 0 on Σ,

θ(0) = θ0, θ′(0) = θ1 in Ω.

Theorem. The solution θ satisfies the following

estimates

‖θ‖C([0,T ];H1
0(Ω)) + ‖θ‖C1([0,T ];L2(Ω)) +

∥∥∥∂θ

∂n

∥∥∥
L2(Σ)

≤ C
(
‖θ0‖H1

0(Ω) + ‖θ1‖L2(Ω) + ‖g‖L1(0,T ;L2(Ω))

)
.
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Approximation by regular controls

Let u be in L2(Σ) and let (un)n be a sequence in

C2
c (]0, T [;H3/2(Γ)), converging to u in L2(Σ). Denote

by Dun(t) = wn(t) the solution to equation

−∆w(t) = 0 in Ω, w(t) = un(t) on Γ.

From elliptic regularity results we know that wn belongs

to C2
c (]0, T [;H2(Ω)). Let (y0,n)n be a sequence in

H2(Ω) ∩ H1
0(Ω), converging to y0 in L2(Ω), and let

(y1,n)n be a sequence in H1
0(Ω), converging to y1 in

H−1(Ω). Let zn be the solution to

z′′ −∆z = f − w′′n + ∆wn in Q, z = 0 on Σ,

z(0) = y0,n, z′(0) = y1,n in Ω.

– Typeset by FoilTEX – 92



Then yn = zn + wn is the solution to (WE)
corresponding to (f, un, y0,n, y1,n).

Let θ be the solution to

θ′′ −∆θ = g in Q, θ = 0 on Σ,

θ(T ) = 0, θ′(T ) = 0 in Ω,

where g is a given function in L1(0, T ;L2(Ω)). The

functions yn and θ are regular enough to justify

integrations by parts. We obtain∫
Q

yn g = −
∫

Σ

un
∂θ

∂n
−

∫
Ω

y0,n θ′(0) +
∫

Ω

y1,n θ(0).
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Definition of a solution in the sense of
transposition

Definition. A function y ∈ L2(0, T ;L2(Ω)) is a

solution to equation (WE) in the transposition sense

if and only if∫
Q

y g

= −
∫

Σ

u
∂θ

∂n
−

∫
Ω

y0 θ′(0) +
〈
θ(0), y1

〉
H1

0(Ω),H−1(Ω)

for all g ∈ L1(0, T ;L2(Ω)), where θ is the solution to

θ′′ −∆θ = g in Q, θ = 0 on Σ,

θ(T ) = 0, θ′(T ) = 0 in Ω.
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Theorem. Equation (WE) admits at most one

solution in L2(0, T ;L2(Ω)) in the transposition sense.

Proof. Suppose that y1 and y2 are two solutions.

Set z = y1 − y2. Then∫
Q

z g = 0

for all g ∈ L1(0, T ;L2(Ω)). Thus z = 0.
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First estimate on yn

We have

‖yn‖L∞(0,T ;L2(Ω)) = sup
{∫

Q

yn g | ‖g‖L1(0,T ;L2(Ω)) = 1
}

≤ ‖un‖L2(Σ)

∥∥∥∂θ

∂n

∥∥∥
L2(Σ)

+ ‖y0,n‖L2(Ω)‖θ′(0)‖L2(Ω)

+‖θ(0)‖H1
0(Ω)‖y1,n‖H−1(Ω)

≤ C
(
‖u‖L2(Σ) + ‖y0‖L2(Ω) + ‖y1‖H−1(Ω)

)
.

Thus (yn)n is a Cauchy sequence in C([0, T ];L2(Ω)).
Denote by y the limit of this sequence.
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By passing to the limit in the variational formulation

satisfied by yn we prove that∫
Q

y g = −
∫

Σ

u
∂θ

∂n
−

∫
Ω

y0θ
′(0) +

〈
θ(0), y1

〉
H1

0 ,H−1

for all g ∈ L1(0, T ;L2(Ω)). Thus we have proved

the existence of a unique solution to (WE) in

C([0, T ];L2(Ω)).
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Second estimates on yn

For 0 ≤ τ ≤ T , let θτ be the solution to

θ′′ −∆θ = 0 in Q, θ = 0 on Σ,

θ(τ) = θ0, θ′(τ) = 0 in Ω.

We can verify that〈
y′n(τ), θ0

〉
H−1,H1

0

=
∫

Ω

y1,nθτ(0)−
∫

Ω

y0,nθ′τ(0)−
∫

Σ

un
∂θτ

∂n
.

Thus

‖y′n‖C([0,T ];H−1) = supτsup‖θ0‖H1
0
=1

∣∣∣〈y′n(τ), θ0

〉
H−1,H1

0

∣∣∣.
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We have

‖y′n‖C([0,T ];H−1)

≤ C
(
‖un‖L2(Σ) + ‖y0,n‖L2(Ω) + ‖y1,n‖H−1(Ω)

)
,

and

‖y′‖C([0,T ];H−1)

≤ C
(
‖u‖L2(Σ) + ‖y0‖L2(Ω) + ‖y1‖H−1(Ω)

)
.
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The control problem

(P ) inf{J(y, u) | (y, u) obeys (WE), u ∈ L2(Σ)},

the functionals J is defined by

J(y, u)

=
1
2

∫
Q

|y − yd|2 +
1
2

∫
Ω

|y(T )− yd(T )|2 +
β

2

∫
Σ

u2,

where the function yd belongs to C([0, T ];L2(Ω)).

Theorem. Assume that f ∈ L2(Q), y0 ∈ L2(Ω),
y1 ∈ H−1(Ω), and yd ∈ C([0, T ];L2(Ω)). Problem

(P ) admits a unique solution (ȳ, ū).
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Existence of a unique optimal control

1. Set F (u) = J(y(u), u). Let (un)n be a minimizing

sequence in L2(Σ), that is

limn→∞F (un) = infu∈L2(Σ)F (u).

We suppose that

un ⇀ ū weakly in L2(Σ).

Let yn the solution of (WE) corresponding to un.
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Passage to the limit in the equation. Let ȳ = y(ū).

The operator

Λ : u −→
(
y(u), y(u)(T )

)
is affine and continuous from L2(Σ) to L2(Q)×L2(Ω).

We conclude that problem (P ) admits a unique solution

(ȳ, ū).
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Optimality conditions for (P )
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By a classical calculation we have

F ′(u)v =
∫

Q

(y(u)− yd)z(v)

+
∫

Ω

(y(u)(T )− yd(T ))z(v)(T ) + β

∫
Σ

uv,

where z(v) is the solution of

z′′ −∆z = 0 in Q, z = v on Σ,

z(x, 0) = 0 and z′(x, 0) = 0 in Ω.
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Identification of F ′(u)

We look for q such that∫
Q

(y(u)− yd)z(v) +
∫

Ω

[(y(u)− yd)z(v)](T ) =
∫

Σ

q v.

Let p be a regular function defined on Q and write an

integration by parts between z(v) and p:

0 =
∫

Q

(z′′ −∆z)p

=
∫

Q

z(p′′ −∆p) +
∫

Ω

z′(T )p(T )

−
∫

Ω

z(T )p′(T )−
∫

Σ

∂z

∂n
p +

∫
Σ

∂p

∂n
v
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Identification with∫
Q

(y(u)− yd)z +
∫

Ω

[(y(u)− yd)z](T ) =
∫

Σ

q v.

We set

p′′ −∆p = y(u)− yd in Q, p = 0 on Σ,

p(x, T ) = 0 and p′(x, T ) = −(y(u)− yd)(T ) in Ω.

and we have

F ′(u)v =
∫

Σ

(−∂p

∂n
+ βu)v,

if the above calculation are justified.
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Theorem. (i) If (ȳ, ū) is the solution to (P ) then

ū = 1
β

∂p
∂n, where p is the solution to the adjoint equation

corresponding to ȳ:

p′′ −∆p = ȳ − yd in Q, p = 0 on Σ,

p(x, T ) = 0 and p′(x, T ) = −(ȳ − yd)(T ) in Ω.
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(ii) Conversely, if a pair (ỹ, p̃) ∈ C([0, T ];L2(Ω)) ×
C([0, T ];L2(Ω)) obeys the system

ỹ′′ −∆ỹ = f in Q, ỹ =
1
β

∂p̃

∂n
on Σ,

ỹ(0) = y0, ỹ′(0) = y1, in Ω,

p̃′′ −∆p̃ = ỹ − yd in Q, p̃ = 0 on Σ,

p̃(T ) = 0, p̃′(T ) = −ỹ(T ) + yd(T ) in Ω,

then the pair (ỹ, 1
β

∂p̃
∂n) is the optimal solution to (P ).
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