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Part1

An exact controllability problem

– Typeset by FoilTEX – 3



Exact controllability of the wave equation

The notation : Ω is a bounded open subset in RN , its

boundary Γ is of class C2, T > 0, Q = Ω× (0, T ), Σ =
Γ× (0, T ). For initial data (y0, y1) ∈ L2(Ω)×H−1(Ω),
and for terminal data (z0, z1) ∈ L2(Ω) × H−1(Ω), we

look for u ∈ L2(Σ) so that the solution y to

(WE)
y′′ −∆y = 0 in Q, y = u on Σ,

y(0) = y0 and y′(0) = y1 in Ω,

satisfies y(T ) = z0 and y′(T ) = z1.

Since the semigroup corresponding to the wave

equation is a group, the wave equation is well

posed with terminal conditions, and the controllability

problem is equivalent to the null controllability problem.
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Indeed if z is the solution to

z′′ −∆z = 0 in Q, z = 0 on Σ,

z(T ) = z0 and z′(T ) = z1 in Ω,

and (ζ, u) obeys

ζ ′′ −∆ζ = 0 in Q, ζ = u on Σ,

ζ(0) = y0 − z(0) and ζ ′(0) = y1 − z′(0) in Ω,

ζ(T ) = 0 and ζ ′(T ) = 0 in Ω,

then y = z + ζ is the solution to (WE) and it satisfies

y(T ) = 0 and y′(T ) = 0 in Ω.
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The Hilbert Uniqueness Method

The H.U.Method due to Lions, consists in finding

u ∈ L2(Σ) of minimal norm which solves the null

controllability problem.

Penalized problem

(Pε) inf{Jε(y, u) | (y, u) obeys (WE), u ∈ L2(Σ)},

the functionals Jε is defined by

Jε(y, u)

=
1
2ε

∫
Ω

|y(T )|2 +
1
2ε
‖y′(T )‖2

H−1(Ω) +
1
2

∫
Σ

u2 .
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The method

• Characterize the solution of (Pε)

• Estimates on yε, uε

• Passage to the limit

New regularity results for the wave equation Let

θ be the solution to

θ′′ −∆θ = g in Q, θ = 0 on Σ,

θ(0) = θ0, θ′(0) = θ1 in Ω.
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Theorem. The solution θ satisfies the following

estimates

‖θ‖C([0,T ];H1
0(Ω)) + ‖θ‖C1([0,T ];L2(Ω)) +

∥∥∥∂θ

∂n

∥∥∥
L2(Σ)

≤ C
(
‖θ0‖H1

0(Ω) + ‖θ1‖L2(Ω) + ‖g‖L1(0,T ;L2(Ω))

)
.

Inverse inequality

Theorem. There exist T0 > 0 and R0 such that for all

T > T0 the following estimate holds

(T−T0)1/2
(
‖θ0‖2

H1
0(Ω)

+‖θ1‖2
L2(Ω)

)1/2

≤ R0

∥∥∥∂θ

∂n

∥∥∥
L2(Σ)

.
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Characterization of yε, uε

Theorem. The solution yε, uε to (Pε) is characterized

by

uε =
∂pε

∂n
,

where pε is the solution to the adjoint equation

corresponding to yε:

p′′ε −∆pε = 0 in Q, pε = 0 on Σ,

pε(T ) =
1
ε
(−∆)−1y′ε(T ), p′ε(T ) = −1

ε
yε(T ) in Ω.
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Estimates on yε, uε

With an integration by parts between yε and pε we get

∥∥∥∂pε

∂n

∥∥∥2

L2(Σ)
+

1
ε
‖yε(T )‖2

L2(Ω) +
1
ε
‖y′ε(T )‖2

H−1(Ω)

=
〈
pε(0), y1

〉
H1

0 ,H−1
−

(
p′ε(0), y0

)
L2(Ω)

.

With the inverse inequality and Young inequality we

obtain

∥∥∥∂pε

∂n

∥∥∥2

L2(Σ)
+

1
ε
‖yε(T )‖2

L2(Ω) +
1
ε
‖y′ε(T )‖2

H−1(Ω)

≤ C
(
‖y0‖2

L2(Ω) + ‖y1‖2
H−1(Ω)

)
.

– Typeset by FoilTEX – 10



Thus

‖uε‖L2(Σ) + ‖p′ε(0)‖L2(Ω) + ‖pε(0)‖H1
0(Ω) ≤ C.

Passage to the limit

p′ε(0) ⇀ p1 weakly in L2(Ω),

pε(0) ⇀ p0 weakly in H1
0(Ω),

uε ⇀ ū weakly in L2(Σ),

yε ⇀ ȳ weakly∗ in L∞(0, T ;L2(Ω)),

y′ε ⇀ ȳ′ weakly∗ in L∞(0, T ;H−1(Ω)),

pε ⇀ p̄ weakly∗ in L∞(0, T ;H1
0(Ω)),

p′ε ⇀ p̄′ weakly∗ in L∞(0, T ;L2(Ω)),
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ū = ∂p̄
∂n, ȳ is the solution to (WE) corresponding to ū,

ȳ(T ) = 0, ȳ′(T ) = 0, and p̄ is the solution to

p̄′′ −∆p̄ = 0 in Q, p̄ = 0 on Σ,

p̄(0) = p0 and p̄′(0) = p1 in Ω.

Since ū = ∂p̄
∂n, we have∫

Σ

∣∣∣∂p̄

∂n

∣∣∣2 =
〈
p̄(0), y1

〉
H1

0 ,H−1
−

(
p̄′(0), y0

)
L2(Ω)

.
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Uniqueness of ū

For any (p0, p1) ∈ H1
0(Ω)× L2(Ω), set

Λ(p0, p1) = (y′(0),−y(0)),

where y is the solution to

y′′ −∆y = 0 in Q, y =
∂p

∂n
on Σ,

y(T ) = 0 and y′(T ) = 0 in Ω.

and

p′′ −∆p = 0 in Q, p = 0 on Σ,

p(0) = p0 and p′(0) = p1 in Ω.
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Theorem.

(i) Λ is bounded from H1
0(Ω)× L2(Ω) into H−1(Ω)×

L2(Ω),

(ii) Λ = Λ∗,

(iii) Λ is an isomorphism from H1
0(Ω) × L2(Ω) onto

H−1(Ω)× L2(Ω).

Proof. (i)

(p0, p1) 7→
∂p

∂n
belongs to L((H1

0(Ω)× L2(Ω);L2(Σ)), and

∂p

∂n
7→ (y′(0),−y(0))

belongs to L(L2(Σ);H−1(Ω)× L2(Ω)).
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(ii) Set

Λ(q0, q1) = (z′(0),−z(0)),

where z is the solution to

z′′ −∆z = 0 in Q, z =
∂q

∂n
on Σ,

z(T ) = 0 and z′(T ) = 0 in Ω.

and

q′′ −∆q = 0 in Q, q = 0 on Σ,

q(0) = q0 and q′(0) = q1 in Ω.
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With an integration by parts between q and y we obtain∫
Σ

∂p

∂n

∂q

∂n
=

〈
q0, y

′(0)
〉

H1
0 ,H−1

−
(
q1, y(0)

)
L2(Ω)

=
〈
Λ(p0, p1), (q0, q1)

〉
.

Similarly we have∫
Σ

∂p

∂n

∂q

∂n
=

〈
Λ(q0, q1), (p0, p1)

〉
.

Thus

Λ = Λ∗.
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(iii) Since ∫
Σ

∣∣∣∂p

∂n

∣∣∣2 =
〈
Λ(p0, p1), (p0, p1)

〉
with the direct and inverse inequalities it follows that

Λ is injective. But Λ = Λ∗, thus Λ is an isomorphism

from H1
0(Ω)× L2(Ω) onto H−1(Ω)× L2(Ω).
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Consequence

If we set

(p0, p1) = Λ−1(y1,−y0),

and if p is the solution of

p′′ −∆p = 0 in Q, p = 0 on Σ,

p(0) = p0 and p′(0) = p1 in Ω.

then u = ∂p
∂n is the solution of minimal norm to the null

controllability problem.

It is the minimal norm solution because (y, u, p)
solves the optimality system of the minimal norm null

controllability problem.
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Algorithm

Find (p0, p1) = Λ−1(y1,−y0), by solving the

minimization problem

inf{F (p0, p1) | (p0, p1) ∈ H1
0(Ω)× L2(Ω)},

where

F (p0, p1) =

1
2

〈
Λ(p0, p1), (p0, p1)

〉
−

〈
p0, y1

〉
H1

0 ,H−1
+

(
p1, y0

)
L2(Ω)

.

This problem can be solved, after discretization, by a

conjugate gradient method.
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Part2

A Stabilization problem
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Setting of the problem

Consider the equation

(E) y′ = Ay + Bu, y(0) = y0,

where the unbounded operator (A,D(A)) is the

infinitesimal generator of a strongly continuous

semigroup on Y , denoted by (etA)t≥0. The operator B

belongs to L(U ;Y ).

We suppose that (etA)t≥0 is unstable.
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We look for u ∈ L2(0,∞;U), in a feedback form

u(t) = Ky(t)

so that the closed loop system

y′ = (A + BK)y, y(0) = y0,

is exponentially stable on Y . That is

‖et(A+BK)‖L(Y ) ≤ Ce−λt for all t ≥ 0,

and for some λ > 0.
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Definition. The pair (A,B) is said to be stabilizable

iff there exists K ∈ L(Y ;U) such that (et(A+BK))t≥0

is exponentially stable on Y .

Remark. If the system (E) is null controllable then the

pair (A,B) is stabilizable.

Example of a stabilizable system with a bounded
control operator.

yt −∆y + ~V · ∇y = χωu in Q,

y(0) = y0 in Ω,

∂νy = 0 on Σ.
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Example of a stabilizable system with an
unbounded control operator.

yt −∆y + ~V · ∇y = 0 in Q,

y(0) = y0 in Ω,

∂νy = 0 on Σ \ Σc,

∂νy = u on Σc.
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Theorem. Let (S(t))t≥0 be a strongly continuous

semigroup on Y . The semigroup (S(t))t≥0 is

exponentially stable if and only if∫ ∞

0

‖S(t)y0‖2
Y < ∞ for all y0 ∈ Y.

To solve the stabilization problem we look for the

solution to the control problem (P )

inf{J(y, u) | (y, u) obeys (E), u ∈ L2(0,∞;U)},

with

J(y, u) =
1
2

∫ ∞

0

‖y(t)‖2
Y +

1
2

∫ ∞

0

‖u(t)‖2
U .
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The optimal control can be written in feedback form

ū(t) = Kȳ(t).
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The LQR problem with a finite
time horizon
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Consider the problem (P (0, T, y0))

inf{JT (y, u) | (y, u) obeys (E), u ∈ L2(0, T ;U)},

with

JT (y, u) =
1
2

∫ T

0

‖y(t)‖2
Y +

1
2

∫ T

0

‖u(t)‖2
U .

We know that this problem admits a unique solution

(ȳ, ū) characterized by the optimality system

ȳ′ = Aȳ −BB∗p, y(0) = y0,

−p′ = A∗p + ȳ, p(T ) = 0,

ū = −B∗p(t).
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To find ū in feedback form

ū(t) = Kȳ(t),

we study the family of problems (P (s, T, ζ))

inf{Js,T (y, u) | (y, u) obeys (Es,ζ), u ∈ L2(s, T ;U)},

with

Js,T (y, u) =
1
2

∫ T

s

‖y(t)‖2
Y +

1
2

∫ T

s

‖u(t)‖2
U ,

and

(Es,ζ) y′ = Ay + Bu, y(s) = ζ.
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The solution (ys
ζ, u

s
ζ) to (P (s, T, ζ)) is characterized by

dys
ζ

dt
= Ays

ζ −BB∗ps
ζ, ys

ζ(s) = ζ,

−
dps

ζ

dt
= A∗ps

ζ + ys
ζ, ps

ζ(T ) = 0,

us
ζ(t) = −B∗ps

ζ(t).

By linearity we have

(ys
βζ1+ζ2

, ps
βζ1+ζ2

, us
βζ1+ζ2

) = β(ys
ζ1

, ps
ζ1

, us
ζ1

)+(ys
ζ2

, ps
ζ2

, us
ζ2

).

Thus the mapping

P (s) : ζ 7−→ ps
ζ(s)

is linear from Y into itself.
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For all t ∈ [0, T [, P (t) = P (t)∗ ≥ 0

With an IBP between the solution ps
ζ to

−p′ = A∗p + ys
ζ, p(T ) = 0,

and the solution ys
ξ to

y′ = Ay −BB∗ps
ξ, y(s) = ξ,

we obtain(
P (s)ζ, ξ

)
Y

=
∫ T

s

(
ys

ζ, y
s
ξ

)
Y

+
∫ T

s

(
B∗ps

ζ, B
∗ps

ξ

)
U
,

for all ζ ∈ Y and all ξ ∈ Y .
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For all t ∈ [0, T [, P (t) ∈ L(Y )

From the previous identity

1
2

(
P (s)ζ, ζ

)
Y

= Js,T (ys
ζ, u

s
ζ) ≤ Js,T (e(t−s)Aζ, 0)

≤ K‖ζ‖2
Y .

Thus

‖P (t)1/2‖L(Y ) ≤ K1/2, ‖P (t)‖L(Y ) ≤ K.
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t 7→
(
P (t)ζ, ξ

)
Y

is continuous

From the dynamic programming principle

ps
ζ(t) = P (t)ys

ζ(t) for all t ∈ [s, T ].

From the Duhamel formula and the DPP

‖ys
ζ(t)‖ ≤ ‖e(t−s)Aζ‖+

∫ T

s

‖e(t−τ)ABB∗P (τ)ys
ζ(τ)‖d τ.

Thus

‖ys
ζ‖C([s,T ];Y ) ≤ C‖ζ‖Y .

Next

‖ps
ζ‖C([s,T ];Y ) ≤ C‖ζ‖Y .
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It can be shown that

limh→0‖ys+h
ζ − ys

ζ‖C([(s+h)∧s,T ];Y ) = 0,

and

limh→0‖ps+h
ζ − ps

ζ‖C([(s+h)∧s,T ];Y ) = 0.

From which we deduce that t 7→
(
P (t)ζ, ξ

)
Y

is

continuous.
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P (·) is the solution to a Differential Riccati
Equation

Definition. We denote by Cs([0, T ];L(Y )) the space

of mapping P from [0, T ] to L(Y ) such that t 7→ P (t)ζ
belongs to C([0, T ];Y ) for all ζ ∈ Y .

We know that P ∈ Cs([0, T ];L(Y )). We are going to

prove that P is the solution to the Differential Riccati

Equation

P ∗(t) = P (t) and P (t) ≥ 0,

P ′(t) + A∗P (t) + P (t)A− P (t)BB∗P (t) + I = 0,

P (T ) = 0.
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Definition. A function P ∈ Cs([0, T ];L(Y )) is a

solution to the DRE on (0, T ) if, and only if, for every

(ζ, ξ) ∈ D(A)×D(A) the function (P ( · )ζ, ξ) belongs

to W 1,1(0, T ) and satisfies

P ∗(t) = P (t) and P (t) ≥ 0 for all t ∈ [0, T ],

d

dt
(P (t)ζ, ξ) + (P (t)ζ, Aξ) + (P (t)Aζ, ξ)

−(P (t)BB∗P (t)ζ, ξ) + (ζ, ξ) = 0,

(P (T )ζ, ξ) = 0.

Theorem. The function P is the unique solution to

the Differential Riccati Equation on (0, T ).
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For (ζ, ξ) ∈ D(A)×D(A), consider the two systems

z′ = Az −BB∗p, z(s) = ζ,

−p′ = A∗p + z, p(T ) = 0,

and
y′ = Ay −BB∗q, y(s) = ξ,

−q′ = A∗q + y, q(T ) = 0.

In the previous notation we have (z, p) = (ys
ζ, p

s
ζ) and

(y, q) = (ys
ξ, p

s
ξ).
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Let us denote by d+

ds (P (s)ζ, ξ) the right hand side

derivative of the mapping s 7→ (P (s)ζ, ξ). We prove

that for every (ζ, ξ) ∈ D(A)×D(A), we have

d+

dt
(P (t)ζ, ξ) + (P (t)ζ, Aξ) + (P (t)Aζ, ξ)

−(P (t)BB∗P (t)ζ, ξ) + (ζ, ξ) = 0,

for all t ∈ [0, T [. For (ζ, ξ) ∈ D(A) × D(A), the

solutions z and y satisfy

z(t) = e(t−s)Aζ −
∫ t

s

e(t−τ)ABB∗p(τ) dτ,

and

y(t) = e(t−s)Aξ −
∫ t

s

e(t−τ)ABB∗q(τ) dτ.
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Thus we have

limh↘0‖
1
h
(z(s + h)− z(s))−Aζ + BB∗p(s)‖Y = 0,

and

limh↘0‖
1
h
(y(s + h)− y(s))−Aξ + BB∗q(s)‖Y = 0.

Using a previous identity we obtain

(P (s + h)z(s + h), y(s + h))− (P (s)z(s), y(s))

=
∫ s

s+h

((z(t), y(t)) + (B∗p(t), B∗q(t))) dt,
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and

limh↘0

(
(P (s + h)z(s + h), y(s + h))− (P (s)z(s), y(s))

)
/h

= −(z(s), y(s))− (B∗p(s), B∗q(s)).

We also have(
P (s + h)z(s + h), y(s + h)

)
−

(
P (s)z(s), y(s)

)
=

(
P (s + h)z(s + h), y(s + h)− y(s)

)
+

(
z(s + h)− z(s), P (s + h)y(s)

)
+

(
(P (s + h)− P (s))z(s), y(s)

)
.

Dividing by h and passing to the limit when h tends to
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zero, we obtain

−(ζ, ξ)− (B∗P (s)ζ, B∗P (s)ξ)

= (P (s)ζ, Aξ) + (Aζ, P (s)ξ)− 2(B∗P (s)ζ, B∗P (s)ξ)

+
d+

ds
(P (s)ζ, ξ),

that is

d+

ds
(P (s)ζ, ξ) + (P (s)ζ, Aξ) + (Aζ, P (s)ξ) + (ζ, ξ)

−(B∗P (s)ζ, B∗P (s)ξ) = 0.

Since the mapping

s 7→ (P (s)ζ, ξ)
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is continuous on [0, T ], and the mapping

s 7→ d+

ds (P (s)ζ, ξ) = −(ζ, ξ) + (B∗P (s)ζ, B∗P (s)ξ)

−(P (s)ζ, Aξ)− (Aζ, P (s)ξ)

is bounded and continuous on [0, T [, we can affirm that

s 7→ (P (s)ζ, ξ)

is of class C1 on [0, T ]. Thus P is a solution to the

Differential Riccati Equation.

Theorem. The solution (ȳ, ū) to problem (P (0, T, y0))
is characterized by

ū(t) = −B∗P (t)ȳ(t),

ȳ′ = Aȳ −BB∗P ȳ, ȳ(0) = y0.
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Remark Setting Q(t) = P (T − t), where P is the

solution to the previous DRE, we can show that Q is

the solution to

Q∗(t) = Q(t) and Q(t) ≥ 0,

Q′(t) = A∗Q(t) + Q(t)A−Q(t)BB∗Q(t) + I,

Q(0) = 0.
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Generalization to the problem

inf{JT (y, u) | (y, u) obeys (E), u ∈ L2(0, T ;U)},

with

JT (y, u)

=
1
2

∫ T

0

‖Cy(t)‖2
Z +

1
2
‖Dy(T )‖2

ZT
+

1
2

∫ T

0

‖u(t)‖2
U .

The solution (ȳ, ū) is characterized by

ū(t) = −B∗P (t)ȳ(t),

ȳ′ = Aȳ −BB∗P ȳ, ȳ(0) = y0,
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where P is the solution to

P ∗(t) = P (t) and Q(t) ≥ 0,

−P ′(t) = A∗P (t) + P (t)A− P (t)BB∗P (t) + C∗C,

P (T ) = D∗D.
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The LQR problem with an infinite
time horizon
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Now we consider the control problem (P )

inf{J(y, u) | (y, u) obeys (E), u ∈ L2(0,∞;U)},

with

J(y, u) =
1
2

∫ ∞

0

‖y(t)‖2
Y +

1
2

∫ ∞

0

‖u(t)‖2
U ,

and

(E) y′ = Ay + Bu, y(0) = y0.
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Finite cost condition For every y0 ∈ Y , there exists

uy0 s.t.

J(y(y0, uy0), uy0) < ∞.

Remark If (A,B) is stabilizable then the (FCC) is

satisfied. The converse proposition is true.

Theorem. Suppose that the (FCC) is satisfied. Then

(P ) admits a unique solution. This solution (ȳ, ū)
obeys

ū(t) = −B∗P ȳ(t),

where P is the minimal solution to the ARE

P ∗ = P ≥ 0,

A∗P + PA− PBB∗P + I = 0.
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Moreover

J(ȳ, ū) =
1
2

(
Py0, y0

)
Y
.

Definition. An operator P ∈ L(Y ) is a solution to the

ARE iff

P ∗ = P ≥ 0,

(Pζ, Aξ) + (PAζ, ξ)− (PBB∗Pζ, ξ) + (ζ, ξ) = 0.

An operator P ∈ L(Y ) is a minimal solution if it is a

solution and if

P ≤ Q for any solution Q.

Theorem. The ARE admits a unique minimal solution.
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Proof.

Consider the problem

(Q(s, T, ζ)) inf{I(s, T ; ζ, u) | u ∈ L2(s, T ;U)},

with

I(s, T ; ζ, u) =
1
2

∫ T

s

‖ys
ζ,u(t)‖2

Y dt +
1
2

∫ T

s

‖u(t)‖2
U dt,

and ys
ζ,u is the solution to

y′ = Ay + Bu, y(s) = ζ.
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For every ζ ∈ Y let uζ be the solution to (Q(s,∞, ζ)).
Let Pmin be the solution to the differential Riccati

equation

P = P ∗ ≥ 0, P (0) = 0,

P ′ = A∗P + PA− PBB∗P + I.

Let us prove that, for every ζ ∈ Y , the mapping

t 7→ (P (t)ζ, ζ) is nondecreasing. Let 0 < T1 < T2, we

know that

inf(Q(0, T1, ζ)) = 1
2(P (T1)ζ, ζ),

inf(Q(0, T2, ζ)) = 1
2(P (T2)ζ, ζ),
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and

inf(Q(0, T2, ζ))

= infu∈L2(0,T1;U)

{
I(0, T1, ζ, u) + inf(Q(T1, T2, z

0
ζ,u(T1)))

}
≥ inf(Q(0, T1, ζ)).

Thus the mapping t 7→ (P (t)ζ, ζ) is nondecreasing.

On the other hand

(P (t)ζ, ζ) ≤ 2I(0, t; ζ, uζ) ≤ 2J(z(ζ, uζ), uζ) < ∞.

Thus the limit limt→∞(P (t)ζ, ζ) exists and is finite for

every ζ ∈ Y . Since

(P (t)ζ, ξ) =
1
4
(P (t)(ζ+ξ), ζ+ξ)−1

4
(P (t)(ζ−ξ), ζ−ξ),
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applying the Banach-Steinhaus theorem to the

family of operator (P (t)ζ, ·), we deduce

that supt≥0|(P (t)ζ, ·)| < ∞. Next, still

with the Banach-Steinhaus theorem, we obtain

supt≥0|(P (t)·, ·)| < ∞. Therefore there exists an

operator P∞min ∈ L(Y ) such that

limt→∞(P (t)ζ, ζ) = (P∞minζ, ζ).

Since P (t) = P ∗(t) ≥ 0 it follows that P∞min =
(P∞min)∗ ≥ 0.

For every ζ ∈ D(A), we have

d

dt
(P (t)ζ, ζ)

= (Pζ, Aζ) + (PAζ, ζ)− (PBB∗Pζ, ζ) + (ζ, ζ).
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The mapping t 7→ (P (t)ζ, ζ) is of class C1, the right

hand side of the equation admits a limit when t tends

to infinity, thus the limit of d
dt(P (t)ζ, ζ) exists and is

necessarily zero. This means that P∞min is a solution to

the ARE. To prove that P∞min is a minimal solution, we

suppose that P̂ is an other solution. Observe that P̂ is

also the solution to the differential Riccati equation

P = P ∗ ≥ 0, P (0) = P̂ ,

P ′ = A∗P + PA− PBB∗P + I.

Since P̂ (0) ≥ Pmin(0) = 0, we have Pmin(t) ≤ P̂ (t) =
P̂ . Passing to the limit when t tends to infinity, we

prove that P∞min ≤ P̂ .
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Theorem. The unique solution (ȳ, ū) to problem (P )
satisfies the feedback formula

ū(t) = −B∗P∞minȳ(t),

where P∞min is the minimal solution to ARE, and ȳ is

the solution to

y′ = Ay −BB∗P∞miny, y(0) = y0.

Moreover the optimal cost is given by

J(ȳ, ū) =
1
2
(P∞miny0, y0)Y .

The Algebraic Riccati Equation admits a unique

solution.
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Proof. Let ȳ be the solution to

ȳ′ = Aȳ −BB∗P∞minȳ, ȳ(0) = y0.

The solution to problem

inf
{1

2

∫ T

0

(
‖yu‖2

Y + ‖u‖2
U

)
+

1
2
(P∞minyu(T ), yu(T ))Y

| u ∈ L2(0, T ;U)
}

,

where yu is the solution to equation

y′ = Ay + Bu, y(0) = y0,

is given by (ŷ, û) = (ŷ,−B∗P ŷ), where P solves the

– Typeset by FoilTEX – 56



Riccati equation

P = P ∗ ≥ 0, P (T ) = P∞min,

−P ′ = A∗P + PA− PBB∗P + I,

and ŷ satisfies ŷ′ = Aŷ−BB∗P ŷ, and ŷ(0) = y0. Still

the previous part, we have

(P (0)y0, y0) =
∫ T

0

(
‖ŷ‖2+‖û‖2

)
+(P∞minŷ(T ), ŷ(T )).

But P∞min is the unique solution to the above DRE.

Consequently we have (ŷ, û) = (ȳ, ū), and for every

T > 0

(P∞miny0, y0) =
∫ T

0

(
‖ȳ‖2+‖ū‖2

)
+(P∞minȳ(T ), ȳ(T )).
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When T tends to infinity we obtain

2J(ȳ, ū) ≤ (P∞miny0, y0).

Considering the problem

inf
{1

2

∫ T

0

(
‖yu‖2

Y + ‖u‖2
U

)
| u ∈ L2(0, T ;U)

}
,

we also have

(Pmin(T )y0, y0) ≤
∫ T

0

(
‖ȳ‖2 + ‖ū‖2

)
≤ 2J(ȳ, ū),

and

(Pmin(T )y0, y0) ≤
∫ T

0

(
‖yu‖2 + ‖u‖2

)
≤ 2J(yu, u),
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for all u, where Pmin is the above DRE. By passing to

the limit when T tends to infinity it yields

(P∞miny0, y0) ≤
∫ ∞

0

(
‖ȳ‖2 + ‖ū‖2

)
dt ≤ 2J(ȳ, ū),

and

(P∞miny0, y0) ≤ 2J(yu, u), for all u ∈ L2(0,∞;U).

Thus (P∞miny0, y0) = 2J(ȳ, ū) = 2inf(P ), and (ȳ, ū) is

the unique solution to problem (P ).
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Lemma. If P is a solution to the ARE, then the

operator A − BB∗P with domain D(A) is the

generator of an exponentially stable semigroup on Y .

Proof. Let ζ ∈ Y , let y be the solution to

y(0) = ζ, y′ = Ay −BB∗Py.

First suppose that ζ ∈ D(A). Let (un)n be a sequence

in C1([0,∞);U) ∩ L2(0,∞;U) converging to −B∗Py

in L2(0,∞;U). Let yn be the solution to the equation

y(0) = ζ, y′ = Ay + Bun.
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With the ARE, we deduce

d

dt
(Pyn(t), yn(t)) = 2(Ayn + Bun, Pyn)

= −(yn, yn)− (B∗Pyn, B∗Pyn) + 2(B∗Pyn, B∗Pyn)

+2(un, B∗Pyn).

Therefore we have

(Pyn(t), yn(t)) +
∫ t

0

(
‖yn‖2 + ‖B∗Pyn‖2

)
= (Pζ, ζ) +

∫ t

0

(
2‖B∗Pyn‖2 + 2(un, B∗Pyn)

)
.

By passing to the limit when n tends to infinity, we
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obtain∫ t

0

(
‖y‖2 + ‖B∗Py‖2

)
≤ (Py(t), y(t)) +

∫ t

0

(
‖y‖2 + ‖B∗Py‖2

)
= (Pζ, ζ).

By a density argument this inequality also holds for

every ζ ∈ Y and we have∫ ∞

0

(
‖y‖2 + ‖B∗Py‖2

)
≤ (Pζ, ζ).
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Lemma. Let P and Q be two solutions to the

ARE. Suppose that the operator A − BB∗P with

domain D(A), is the generator of an exponentially

stable semigroup in Y . Then P ≥ Q.

Proof. Since P and Q are two solutions to ARE, we

can verify that

(P −Q)(A−BB∗P )

+(A−BB∗P )∗(P −Q) + (P −Q)BB∗(P −Q) = 0.

From this identity, we deduce:

d

dt

(
(P −Q)et(A−BB∗P )ζ, et(A−BB∗P )ζ

)
= −‖B∗(P −Q)et(A−BB∗P )ζ‖2,

for all ζ ∈ D(A). By integrating this equality between
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0 and T , we obtain(
(P −Q)ζ, ζ

)
=

(
(P −Q)eT (A−BB∗P )ζ, eT (A−BB∗P )ζ

)
+

∫ T

0

‖B∗(P −Q)et(A−BB∗P )ζ‖2dt

≥
(
(P −Q)eT (A−BB∗P )ζ, eT (A−BB∗P )ζ

)
.

By passing to the limit when T tends to infinity, we

obtain
(
(P − Q)ζ, ζ

)
≥ 0 for all ζ ∈ D(A), that is

P ≥ Q.
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Stabilization of a convection-diffusion
equation

Neumann Hom. 

Neumann

Hom.

Neumann Hom. 

u

DΩ

Γ

Γ
C

0
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Notations

Q = Ω× (0,∞) Space-time domain

Ω = (0, 10)× (0, 10)

Σ = Γ× (0,∞) Lateral boundary

Σc = Γc × (0,∞) Control boundary

Γo = {1} × (0, 10) Observation on a boundary

Γc = {0} × (0, 10)
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State equation

yt −∆y + ~V · ∇y − cy = 0 in Q,

y(0) = y0 in Ω,

∂νy = 0 on Σ \ Σc,

∂νy = u on Σc.

Cost functional

I1(y, u) =
1
2

∫ ∞

0

∫
Γc

u2 +
∫ ∞

0

∫
Ω

y2.

I2(y, u) =
1
2

∫ ∞

0

∫
Γc

u2 +
∫ ∞

0

∫
Γo

y2 .
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Setting

Ay = ∆y − ~V · ∇y + cy,

D(A) = {y ∈ H2(Ω) | ∂νy = 0}

〈Bu, φ〉 =
∫

Γc

uφ,

The state equation can be written in the following form

d

dt

∫
Ω

y(t)φ =
∫

Ω

y(t)(∆φ + div(~V φ)) +
∫

Γc

uφ,

for all φ in

D(A∗) = {φ ∈ H2(Ω) | ∂νφ + ~V · ~nφ = 0 on Γ},

with

A∗φ = ∆φ + div(~V φ),
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thus we have

y′ = Ay + Bu, y(0) = y0.

Problem (P ) admits a unique solution (ȳ, ū) which

is characterized by

ū(t) = −B∗P ȳ(t),

where

P is the solution to the ARE

P = P ∗ ≥ 0, A∗P + PA− PBB∗P + 2C∗C = 0,

B∗ is the trace operator on Γc,

in example 1

C = C∗ = I,
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in example 2

C is the trace operator on Γ0,

and

〈C∗y, φ〉 =
∫

Γ0

y φ.

Remark. A null controllability result can be proved

for the convection-diffusion equation. Thus the pair

(A,B) is stabilizable.

Similarly we can prove that the pair (A,C) is detectable.

Thus the ARE admits a unique solution.
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Algorithms

Numerical resolution of the finite dimensional Riccati

equation

P = P ∗ ≥ 0, A∗P + PA− PBB∗P + C∗C = 0.

Hypotheses

(H) The pair (A,B) is stabilizable, and the pair (A,C)
is detectable.

Methods based on the computation of the eigenvalues

of the matrix

H =
[

A −BB∗

CC∗ −A∗

]
– Typeset by FoilTEX – 71



The spectrum of H is symmetric w.r. to the origin and

H has no eigenvalues with a null real part.

Algorithm 1.

1 - Compute the eigenvalues and the eigenvectors of H

by the QR-method.

2 - Select the eigenvectors corresponding to eigenvalues

with a negative real part. Let V1 be the matrix whose

columns correspond to these vectors:

V1 =
[

V11

V21

]
.

3 - Solve V ∗11P = V ∗21 to calculate P .
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Algorithm 2.

1 - Write the real Schur decomposition of H

T = U∗HU

2 - Use orthogonal transformations to reorder the matrix

T so that the quasi-triangular bloc T11 has eigenvalues

with a negative real part.

3 - Solve U∗11P = U∗21 to compute P , where U1 =[
U11

U21

]
, are the Schur-vectors corresponding to T11.
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Numerical tests

Ω = (0, 10)× (0, 10), ∆t = 0.01, T = 10,

mesh size = 1

The equation

yt −∆y + ~V · ∇y − cy = 0,

with

~V = [10 3]T , c = 0 or c = 3.
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Control boundary

Γc = {0} × (0, 10) or Γc = {0} × (3, 6).

Cost functional

I1(y, u) =
1
2

∫ ∞

0

∫
Γc

u2 +
∫ ∞

0

∫
Ω

y2

or

I2(y, u) =
1
2

∫ ∞

0

∫
Γc

u2+
∫ ∞

0

∫
Γo

y2, Γo = {1}×(0, 10).
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Without control c = 3, y0 = cos(2πx1/10)sin(2πx2/10)
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Control on Γc = {0} × (0, 10)

Observation on D0 = Ω

c = 3, y0(x1, x2) = cos(2πx1/10)sin(2πx2/10)
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Control on Γc = {0} × (0, 10)

and on Γc = {0} × (3, 6)

Observation on D0 = Γo = {1} × (0, 10)

c = 3, y0(x1, x2) = cos(2πx1/10)sin(2πx2/10)
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Control on Γc = {0} × (0, 10)

Observation on D0 = Ω

c = 0, y0(x1, x2) = cos(2πx1/10)sin(2πx2/10)
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Part 3

The conjugate gradient method

for solving an

optimal control problem
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The conjugate gradient method

Consider the optimization problem

(P1) inf{F (u) | u ∈ U},

where U is a Hilbert space and F is a quadratic

functional

F (u) =
1
2
(u, Qu)U − (b, u)U .

In this setting Q ∈ L(U), Q = Q∗ > 0, b ∈ U , and

(·, ·)U denotes the scalar product in U . For simplicity

we write (·, ·) in place of (·, ·)U .
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The principe of the GCM:

1. Choose u0 ∈ U and compute

d0 = −Qu0 + b.

Minimize F over C0 = u0 + Vect(d0). Let u1 be the

solution.

2. If d0, . . . , dk−1, uk−1 are known, uk is the solution

of

(P1) inf{F (u) | u ∈ Ck−1},

where Ck−1 = uk−1 + Vect(d0, . . . , dk−1)
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Let us recall the GC algorithm:

Algorithm 1.

Initialization. Choose u0 in U . Compute g0 = Qu0−b.

Set d0 = −g0 and n = 0.

Step 1. Compute

ρn = (gn, gn)/(dn, Qdn),

and

un+1 = un + ρndn.

Determine

gn+1 = Qun+1 − b = gn + ρnQdn.
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Step 2. If ‖gn+1‖U/‖g0‖U ≤ ε, stop the algorithm and

take u = un+1, else compute

βn = (gn+1, gn+1)/(gn, gn),

and

dn+1 = −gn+1 + βndn.

Replace n by n + 1 and go to step 1.
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The conjugate gradient method for control
problems

We want to apply the CGM to problems studied in

chapters 1, 3, 4. The state equation is of the form

(E) y′ = Ay + Bu + f, y(0) = y0,

and the control problem is defined by

(P2) inf{J(yu, u) | u ∈ L2(0, T ;U)},

J(y, u) =
1
2

∫ T

0

‖Cy(t)− zd(t)‖2
Z

+
1
2
‖Dy(T )− zT‖2

ZT
+

1
2

∫ T

0

‖u(t)‖2
U .

We have to identify problem (P2) with a problem of
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the form (P1). Let yu be the solution to equation (E),

and set F (u) = J(yu, u). Observe that (yu, yu(T )) =
(Λ1u, Λ2u) + ζ(f, y0), where Λ1 is a bounded linear

operator from L2(0, T ;U) to L2(0, T ;Y ), and Λ2 is a

bounded linear operator from L2(0, T ;U) to Y . We

must determine the quadratic form Q such that

J(yu, u) =
1
2
(u, Qu)U − (b, u)U + c.

Since (yu, yu(T )) = (Λ1u, Λ2u) + ζ(f, y0), we have

Q = Λ∗1Ĉ
∗ĈΛ1 + Λ∗2D

∗DΛ2 + I,

where Ĉ ∈ L(L2(0, T ;Y );L2(0, T ;Z)) is defined by

(Ĉy)(t) = Cy(t) for all y ∈ L2(0, T ;Z), and Ĉ∗ ∈
L(L2(0, T ;Z);L2(0, T ;Y )) is the adjoint of Ĉ. In the
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CGM we have to compute Qd for some d ∈ L2(0, T ;U).
Observe that (Λ1d, Λ2d) is equal to (wd, wd(T )), where

wd is the solution to

w′ = Aw + Bd, w(0) = 0.

Moreover, using an IBP, we can prove that Λ∗1g = B∗p1,

where p1 is the solution to equation

−p′ = A∗p + g, p(T ) = 0,

and Λ∗2pT = B∗p2, where p2 is the solution to equation

−p′ = A∗p, p(T ) = pT .

Thus Λ∗1Ĉ
∗ĈΛ1d+Λ∗2D

∗DΛ2d is equal to B∗p, where

– Typeset by FoilTEX – 98



p is the solution to

−p′ = A∗p + C∗Cwd, p(T ) = D∗Dwd(T ).

If we apply Algorithm 1 to problem (P2) we obtain:

Algorithm 2.

Initialization. Choose u0 in L2(0, T ;U). Denote by

y0 the solution to the state equation

y′ = Ay + Bu0 + f, y(0) = y0.

Denote by p0 the solution to the adjoint equation

−p′ = A∗p+C∗(Cy0−zd), p(T ) = D∗(Dy0(T )−zT ).

Compute g0 = B∗p0 +u0 , set d0 = −g0 and n = 0.
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Step 1. To compute Qdn, we calculate wn the solution

to equation

w′ = Aw + Bdn, w(0) = 0.

We compute pn the solution to equation

−p′ = A∗p + C∗Cwn, p(T ) = D∗Dwn(T ).

We have Qdn = B∗pn + dn. Set ḡn = B∗pn + dn.

Compute

ρn = −(gn, gn)/(ḡn, gn),
and

un+1 = un + ρndn.

Determine

gn+1 = gn + ρnḡn.
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Step 2. If ‖gn+1‖L2(0,T ;U)/‖g0‖L2(0,T ;U) ≤ ε, stop the

algorithm and take u = un+1, else compute

βn = (gn+1, gn+1)/(gn, gn),

and

dn+1 = −gn+1 + βndn.

Replace n by n + 1 and go to step 1.
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Algorithms for discrete problems

For numerical computations, we have to write

discrete approximations to control problems. Suppose

that equation

y′ = Ay + Bu + f, y(0) = y0,

is approximated by an implicit Euler scheme

(DE)
y0 = y0,

for n = 1, . . . ,M, yn is the solution to
1

∆t(y
n − yn−1) = Ayn + Bun + fn,

where fn = 1
∆t

∫ tn

tn−1
f(t) dt, un = 1

∆t

∫ tn

tn−1
u(t) dt,

tn = n∆t, and T = M∆t. To approximate the
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functional J(y, u) we set

JM(y, u) =
1
2
∆t

M∑
n=1

‖Cyn − zn
d‖2

Z

+
1
2
‖DyM − zT‖2

ZT
+

1
2
∆t

M∑
n=1

‖un‖2
U ,

with y = (y0, . . . , yM), u = (u1, . . . , uM), zn
d =

1
∆t

∫ tn

tn−1
zd(t) dt. We can define a discrete control

problem associated with (P2) as follows:

(PM) inf{JM(y, u) | u ∈ UM , (y, u) satisfies (DE)}.

To apply the CGM to problem (PM), we have to

compute the gradient of the mapping u 7→ JM(yu, u),
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where yu is the solution to (DE) corresponding to u.

Set FM(u) = JM(yu, u). We have

F ′M(ū)u = ∆t

M∑
n=1

(Cȳn − zn
d , Cwn

u)Z

+(DȳM − yT , DwM
u )ZT

+ ∆t

M∑
n=1

(ūn, un)U ,

where ȳ = yū and w = (w0, . . . , wM) ∈ Y M+1 is

defined by

(G)
w0 = 0,

for n = 1, . . . ,M, wn is the solution to
1

∆t(w
n − wn−1) = Awn + Bun.

To find the expression of F ′M(ū), we have to introduce
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an adjoint equation. Let p = (p0, . . . , pM) be in Y M+1,

or in D(A∗)M+1 if we want to justify the calculations.

Taking a weak formulation of the different equations in

(G), we can write

1
∆t

((wn − wn−1), pn−1)Y − (wn, A∗pn−1)Y

= (Bun, pn−1)Y = (un, B∗pn−1)U .

Now, by adding the different equalities, we find the

adjoint equation by identifying

∆t
M∑

n=1

(Cȳn − yn
d , Cwn

u)Z + (Dz̄M − yT , DwM
u )ZT
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with

∆t

M∑
n=1

(un, B∗pn−1)U .

More precisely, if p = (p0, . . . , pM) is defined by

pM = D∗(Dz̄M − yT ),
for n = 1, . . . ,M, pn is the solution to
1

∆t(−pn + pn−1) = A∗pn−1 + C∗(Cz̄n − yn
d ),

then

F ′M(ū)u = ∆t
M∑

n=1

(un, B∗pn−1)U + ∆t
M∑

n=1

(ūn, un)U .

Observe that the above identification is not justified

since D∗(DȳM − yT ) does not necessarily belong to
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D(A∗). In practice, a ’space-discretization’ is also

performed. This means that equation (E) is replaced by

a system of ordinary differential equations, the operator

A is replaced by an operator belonging to L(R`), where

` is the dimension of the discrete space, and the above

calculations are justified for the corresponding discrete

problem.
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