Chapter 5

Three applications of optimality conditions

Jean-Pierre Raymond

Part 1

An exact controllability problem
Part 2
A stabilization problem
A LQR problem with a finite time horizon
A LQR problem with an infinite time horizon
Numerical results

Part 3

An algorithm for solving the optimality system

Part1

An exact controllability problem

Exact controllability of the wave equation

The notation : Ω is a bounded open subset in \mathbb{R}^{N}, its boundary Γ is of class $C^{2}, T>0, Q=\Omega \times(0, T), \Sigma=$ $\Gamma \times(0, T)$. For initial data $\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$, and for terminal data $\left(z_{0}, z_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$, we look for $u \in L^{2}(\Sigma)$ so that the solution y to

$$
\begin{equation*}
y^{\prime \prime}-\Delta y=0 \quad \text { in } Q, \quad y=u \quad \text { on } \Sigma \tag{WE}
\end{equation*}
$$

$$
y(0)=y_{0} \quad \text { and } \quad y^{\prime}(0)=y_{1} \quad \text { in } \Omega,
$$

satisfies $y(T)=z_{0}$ and $y^{\prime}(T)=z_{1}$.
Since the semigroup corresponding to the wave equation is a group, the wave equation is well posed with terminal conditions, and the controllability problem is equivalent to the null controllability problem.

Indeed if z is the solution to

$$
\begin{aligned}
& z^{\prime \prime}-\Delta z=0 \quad \text { in } Q, \quad z=0 \quad \text { on } \Sigma, \\
& z(T)=z_{0} \quad \text { and } \quad z^{\prime}(T)=z_{1} \quad \text { in } \Omega
\end{aligned}
$$

and (ζ, u) obeys

$$
\begin{aligned}
& \zeta^{\prime \prime}-\Delta \zeta=0 \quad \text { in } Q, \quad \zeta=u \quad \text { on } \Sigma \\
& \zeta(0)=y_{0}-z(0) \text { and } \zeta^{\prime}(0)=y_{1}-z^{\prime}(0) \text { in } \Omega, \\
& \zeta(T)=0 \text { and } \zeta^{\prime}(T)=0 \quad \text { in } \Omega
\end{aligned}
$$

then $y=z+\zeta$ is the solution to (WE) and it satisfies

$$
y(T)=0 \quad \text { and } \quad y^{\prime}(T)=0 \quad \text { in } \Omega
$$

The Hilbert Uniqueness Method

The H.U.Method due to Lions, consists in finding $u \in L^{2}(\Sigma)$ of minimal norm which solves the null controllability problem.

Penalized problem

$\left(P_{\varepsilon}\right) \inf \left\{J_{\varepsilon}(y, u) \mid(y, u)\right.$ obeys $\left.(W E), u \in L^{2}(\Sigma)\right\}$,
the functionals J_{ε} is defined by

$$
\begin{aligned}
& J_{\varepsilon}(y, u) \\
& =\frac{1}{2 \varepsilon} \int_{\Omega}|y(T)|^{2}+\frac{1}{2 \varepsilon}\left\|y^{\prime}(T)\right\|_{H^{-1}(\Omega)}^{2}+\frac{1}{2} \int_{\Sigma} u^{2} .
\end{aligned}
$$

The method

- Characterize the solution of $\left(P_{\varepsilon}\right)$
- Estimates on $y_{\varepsilon}, u_{\varepsilon}$
- Passage to the limit

New regularity results for the wave equation Let θ be the solution to

$$
\begin{aligned}
& \theta^{\prime \prime}-\Delta \theta=g \quad \text { in } Q, \theta=0 \quad \text { on } \Sigma, \\
& \theta(0)=\theta_{0}, \quad \theta^{\prime}(0)=\theta_{1} \quad \text { in } \Omega
\end{aligned}
$$

Theorem. The solution θ satisfies the following estimates

$$
\begin{aligned}
& \|\theta\|_{C\left([0, T] ; H_{0}^{1}(\Omega)\right)}+\|\theta\|_{C^{1}\left([0, T] ; L^{2}(\Omega)\right)}+\left\|\frac{\partial \theta}{\partial n}\right\|_{L^{2}(\Sigma)} \\
& \leq C\left(\left\|\theta_{0}\right\|_{H_{0}^{1}(\Omega)}+\left\|\theta_{1}\right\|_{L^{2}(\Omega)}+\|g\|_{L^{1}\left(0, T ; L^{2}(\Omega)\right)}\right)
\end{aligned}
$$

Inverse inequality

Theorem. There exist $T_{0}>0$ and R_{0} such that for all $T>T_{0}$ the following estimate holds

$$
\left(T-T_{0}\right)^{1 / 2}\left(\left\|\theta_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|\theta_{1}\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} \leq R_{0}\left\|\frac{\partial \theta}{\partial n}\right\|_{L^{2}(\Sigma)}
$$

Characterization of $y_{\varepsilon}, u_{\varepsilon}$

Theorem. The solution $y_{\varepsilon}, u_{\varepsilon}$ to $\left(P_{\varepsilon}\right)$ is characterized by

$$
u_{\varepsilon}=\frac{\partial p_{\varepsilon}}{\partial n}
$$

where p_{ε} is the solution to the adjoint equation corresponding to y_{ε} :

$$
\begin{aligned}
& p_{\varepsilon}^{\prime \prime}-\Delta p_{\varepsilon}=0 \quad \text { in } Q, \quad p_{\varepsilon}=0 \quad \text { on } \Sigma, \\
& p_{\varepsilon}(T)=\frac{1}{\varepsilon}(-\Delta)^{-1} y_{\varepsilon}^{\prime}(T), \quad p_{\varepsilon}^{\prime}(T)=-\frac{1}{\varepsilon} y_{\varepsilon}(T) \quad \text { in } \Omega .
\end{aligned}
$$

Estimates on $y_{\varepsilon}, u_{\varepsilon}$

With an integration by parts between y_{ε} and p_{ε} we get

$$
\begin{aligned}
& \left\|\frac{\partial p_{\varepsilon}}{\partial n}\right\|_{L^{2}(\Sigma)}^{2}+\frac{1}{\varepsilon}\left\|y_{\varepsilon}(T)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{\varepsilon}\left\|y_{\varepsilon}^{\prime}(T)\right\|_{H^{-1}(\Omega)}^{2} \\
& =\left\langle p_{\varepsilon}(0), y_{1}\right\rangle_{H_{0}^{1}, H^{-1}}-\left(p_{\varepsilon}^{\prime}(0), y_{0}\right)_{L^{2}(\Omega)}
\end{aligned}
$$

With the inverse inequality and Young inequality we obtain

$$
\begin{aligned}
& \left\|\frac{\partial p_{\varepsilon}}{\partial n}\right\|_{L^{2}(\Sigma)}^{2}+\frac{1}{\varepsilon}\left\|y_{\varepsilon}(T)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{\varepsilon}\left\|y_{\varepsilon}^{\prime}(T)\right\|_{H^{-1}(\Omega)}^{2} \\
& \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}^{2}+\left\|y_{1}\right\|_{H^{-1}(\Omega)}^{2}\right) .
\end{aligned}
$$

Thus

$$
\left\|u_{\varepsilon}\right\|_{L^{2}(\Sigma)}+\left\|p_{\varepsilon}^{\prime}(0)\right\|_{L^{2}(\Omega)}+\left\|p_{\varepsilon}(0)\right\|_{H_{0}^{1}(\Omega)} \leq C
$$

Passage to the limit

$$
\begin{gathered}
p_{\varepsilon}^{\prime}(0) \rightharpoonup p_{1} \quad \text { weakly in } L^{2}(\Omega), \\
p_{\varepsilon}(0) \rightharpoonup p_{0} \quad \text { weakly in } H_{0}^{1}(\Omega), \\
u_{\varepsilon} \rightharpoonup \bar{u} \text { weakly in } L^{2}(\Sigma), \\
y_{\varepsilon} \rightharpoonup \bar{y} \quad \text { weakly* in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
y_{\varepsilon}^{\prime} \rightharpoonup \bar{y}^{\prime} \quad \text { weakly* in } L^{\infty}\left(0, T ; H^{-1}(\Omega)\right), \\
p_{\varepsilon} \rightharpoonup \bar{p} \quad \text { weakly* in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right), \\
p_{\varepsilon}^{\prime} \rightharpoonup \bar{p}^{\prime} \quad \text { weakly* in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right),
\end{gathered}
$$

$\bar{u}=\frac{\partial \bar{p}}{\partial n}, \bar{y}$ is the solution to (WE) corresponding to \bar{u}, $\bar{y}(T)=0, \bar{y}^{\prime}(T)=0$, and \bar{p} is the solution to

$$
\begin{aligned}
& \bar{p}^{\prime \prime}-\Delta \bar{p}=0 \quad \text { in } Q, \quad \bar{p}=0 \quad \text { on } \Sigma, \\
& \bar{p}(0)=p_{0} \text { and } \bar{p}^{\prime}(0)=p_{1} \text { in } \Omega .
\end{aligned}
$$

Since $\bar{u}=\frac{\partial \bar{p}}{\partial n}$, we have

$$
\int_{\Sigma}\left|\frac{\partial \bar{p}}{\partial n}\right|^{2}=\left\langle\bar{p}(0), y_{1}\right\rangle_{H_{0}^{1}, H^{-1}}-\left(\bar{p}^{\prime}(0), y_{0}\right)_{L^{2}(\Omega)} .
$$

Uniqueness of \bar{u}

For any $\left(p_{0}, p_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$, set

$$
\Lambda\left(p_{0}, p_{1}\right)=\left(y^{\prime}(0),-y(0)\right),
$$

where y is the solution to

$$
\begin{aligned}
& y^{\prime \prime}-\Delta y=0 \quad \text { in } Q, \quad y=\frac{\partial p}{\partial n} \quad \text { on } \Sigma, \\
& y(T)=0 \text { and } y^{\prime}(T)=0 \quad \text { in } \Omega
\end{aligned}
$$

and

$$
\begin{aligned}
& p^{\prime \prime}-\Delta p=0 \quad \text { in } Q, \quad p=0 \quad \text { on } \Sigma, \\
& p(0)=p_{0} \text { and } p^{\prime}(0)=p_{1} \quad \text { in } \Omega .
\end{aligned}
$$

Theorem.

(i) Λ is bounded from $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ into $H^{-1}(\Omega) \times$ $L^{2}(\Omega)$,
(ii) $\Lambda=\Lambda^{*}$,
(iii) Λ is an isomorphism from $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ onto $H^{-1}(\Omega) \times L^{2}(\Omega)$.

Proof. (i)

$$
\left(p_{0}, p_{1}\right) \mapsto \frac{\partial p}{\partial n}
$$

belongs to $\mathcal{L}\left(\left(H_{0}^{1}(\Omega) \times L^{2}(\Omega) ; L^{2}(\Sigma)\right)\right.$, and

$$
\frac{\partial p}{\partial n} \mapsto\left(y^{\prime}(0),-y(0)\right)
$$

belongs to $\mathcal{L}\left(L^{2}(\Sigma) ; H^{-1}(\Omega) \times L^{2}(\Omega)\right)$.
(ii) Set

$$
\Lambda\left(q_{0}, q_{1}\right)=\left(z^{\prime}(0),-z(0)\right),
$$

where z is the solution to

$$
\begin{aligned}
& z^{\prime \prime}-\Delta z=0 \quad \text { in } Q, \quad z=\frac{\partial q}{\partial n} \quad \text { on } \Sigma, \\
& z(T)=0 \text { and } \quad z^{\prime}(T)=0 \quad \text { in } \Omega
\end{aligned}
$$

and

$$
\begin{aligned}
& q^{\prime \prime}-\Delta q=0 \quad \text { in } Q, \quad q=0 \quad \text { on } \Sigma, \\
& q(0)=q_{0} \text { and } q^{\prime}(0)=q_{1} \quad \text { in } \Omega
\end{aligned}
$$

With an integration by parts between q and y we obtain

$$
\begin{aligned}
& \int_{\Sigma} \frac{\partial p}{\partial n} \frac{\partial q}{\partial n}=\left\langle q_{0}, y^{\prime}(0)\right\rangle_{H_{0}^{1}, H^{-1}}-\left(q_{1}, y(0)\right)_{L^{2}(\Omega)} \\
& =\left\langle\Lambda\left(p_{0}, p_{1}\right),\left(q_{0}, q_{1}\right)\right\rangle
\end{aligned}
$$

Similarly we have

$$
\int_{\Sigma} \frac{\partial p}{\partial n} \frac{\partial q}{\partial n}=\left\langle\Lambda\left(q_{0}, q_{1}\right),\left(p_{0}, p_{1}\right)\right\rangle
$$

Thus

$$
\Lambda=\Lambda^{*}
$$

(iii) Since

$$
\int_{\Sigma}\left|\frac{\partial p}{\partial n}\right|^{2}=\left\langle\Lambda\left(p_{0}, p_{1}\right),\left(p_{0}, p_{1}\right)\right\rangle
$$

with the direct and inverse inequalities it follows that Λ is injective. But $\Lambda=\Lambda^{*}$, thus Λ is an isomorphism from $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ onto $H^{-1}(\Omega) \times L^{2}(\Omega)$.

Consequence

If we set

$$
\left(p_{0}, p_{1}\right)=\Lambda^{-1}\left(y_{1},-y_{0}\right)
$$

and if p is the solution of

$$
\begin{aligned}
& p^{\prime \prime}-\Delta p=0 \quad \text { in } Q, \quad p=0 \quad \text { on } \Sigma, \\
& p(0)=p_{0} \text { and } p^{\prime}(0)=p_{1} \quad \text { in } \Omega
\end{aligned}
$$

then $u=\frac{\partial p}{\partial n}$ is the solution of minimal norm to the null controllability problem.

It is the minimal norm solution because (y, u, p) solves the optimality system of the minimal norm null controllability problem.

Algorithm

Find $\left(p_{0}, p_{1}\right)=\Lambda^{-1}\left(y_{1},-y_{0}\right)$, by solving the minimization problem

$$
\inf \left\{F\left(p_{0}, p_{1}\right) \mid\left(p_{0}, p_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right\}
$$

where

$$
\begin{aligned}
& F\left(p_{0}, p_{1}\right)= \\
& \frac{1}{2}\left\langle\Lambda\left(p_{0}, p_{1}\right),\left(p_{0}, p_{1}\right)\right\rangle-\left\langle p_{0}, y_{1}\right\rangle_{H_{0}^{1}, H^{-1}}+\left(p_{1}, y_{0}\right)_{L^{2}(\Omega)}
\end{aligned}
$$

This problem can be solved, after discretization, by a conjugate gradient method.

Part2

A Stabilization problem

Setting of the problem

Consider the equation
$(E) \quad y^{\prime}=A y+B u, \quad y(0)=y_{0}$,
where the unbounded operator $(A, D(A))$ is the infinitesimal generator of a strongly continuous semigroup on Y, denoted by $\left(e^{t A}\right)_{t \geq 0}$. The operator B belongs to $\mathcal{L}(U ; Y)$.

We suppose that $\left(e^{t A}\right)_{t \geq 0}$ is unstable.

We look for $u \in L^{2}(0, \infty ; U)$, in a feedback form

$$
u(t)=K y(t)
$$

so that the closed loop system

$$
y^{\prime}=(A+B K) y, \quad y(0)=y_{0}
$$

is exponentially stable on Y. That is

$$
\left\|e^{t(A+B K)}\right\|_{\mathcal{L}(Y)} \leq C e^{-\lambda t} \quad \text { for all } t \geq 0
$$

and for some $\lambda>0$.

Definition. The pair (A, B) is said to be stabilizable iff there exists $K \in \mathcal{L}(Y ; U)$ such that $\left(e^{t(A+B K)}\right)_{t \geq 0}$ is exponentially stable on Y.

Remark. If the system (E) is null controllable then the pair (A, B) is stabilizable.

Example of a stabilizable system with a bounded control operator.

$$
\begin{array}{ll}
y_{t}-\Delta y+\vec{V} \cdot \nabla y=\chi_{\omega} u & \text { in } Q \\
y(0)=y_{0} & \text { in } \Omega, \\
\partial_{\nu} y=0 & \text { on } \Sigma .
\end{array}
$$

Example of a stabilizable system with an unbounded control operator.

$$
\begin{array}{ll}
y_{t}-\Delta y+\vec{V} \cdot \nabla y=0 & \text { in } Q \\
y(0)=y_{0} & \text { in } \Omega, \\
\partial_{\nu} y=0 & \text { on } \Sigma \backslash \Sigma_{c}, \\
\partial_{\nu} y=u & \text { on } \Sigma_{c} .
\end{array}
$$

Theorem. Let $(S(t))_{t \geq 0}$ be a strongly continuous semigroup on Y. The semigroup $(S(t))_{t \geq 0}$ is exponentially stable if and only if

$$
\int_{0}^{\infty}\left\|S(t) y_{0}\right\|_{Y}^{2}<\infty \quad \text { for all } y_{0} \in Y
$$

To solve the stabilization problem we look for the solution to the control problem (P)

$$
\inf \left\{J(y, u) \mid(y, u) \text { obeys }(E), u \in L^{2}(0, \infty ; U)\right\}
$$

with

$$
J(y, u)=\frac{1}{2} \int_{0}^{\infty}\|y(t)\|_{Y}^{2}+\frac{1}{2} \int_{0}^{\infty}\|u(t)\|_{U}^{2}
$$

The optimal control can be written in feedback form

$$
\bar{u}(t)=K \bar{y}(t) .
$$

The LQR problem with a finite time horizon

Consider the problem $\left(P\left(0, T, y_{0}\right)\right)$

$$
\inf \left\{J_{T}(y, u) \mid(y, u) \text { obeys }(E), u \in L^{2}(0, T ; U)\right\}
$$

with

$$
J_{T}(y, u)=\frac{1}{2} \int_{0}^{T}\|y(t)\|_{Y}^{2}+\frac{1}{2} \int_{0}^{T}\|u(t)\|_{U}^{2}
$$

We know that this problem admits a unique solution (\bar{y}, \bar{u}) characterized by the optimality system

$$
\begin{aligned}
& \bar{y}^{\prime}=A \bar{y}-B B^{*} p, \quad y(0)=y_{0} \\
& -p^{\prime}=A^{*} p+\bar{y}, \quad p(T)=0 \\
& \bar{u}=-B^{*} p(t)
\end{aligned}
$$

To find \bar{u} in feedback form

$$
\bar{u}(t)=K \bar{y}(t)
$$

we study the family of problems $(P(s, T, \zeta))$
$\inf \left\{J_{s, T}(y, u) \mid(y, u)\right.$ obeys $\left.\left(E_{s, \zeta}\right), u \in L^{2}(s, T ; U)\right\}$,
with

$$
J_{s, T}(y, u)=\frac{1}{2} \int_{s}^{T}\|y(t)\|_{Y}^{2}+\frac{1}{2} \int_{s}^{T}\|u(t)\|_{U}^{2}
$$

and
$\left(E_{s, \zeta}\right) \quad y^{\prime}=A y+B u, \quad y(s)=\zeta$.

The solution $\left(y_{\zeta}^{s}, u_{\zeta}^{s}\right)$ to $(P(s, T, \zeta))$ is characterized by

$$
\begin{aligned}
\frac{d y_{\zeta}^{s}}{d t} & =A y_{\zeta}^{s}-B B^{*} p_{\zeta}^{s}, \quad y_{\zeta}^{s}(s)=\zeta \\
-\frac{d p_{\zeta}^{s}}{d t} & =A^{*} p_{\zeta}^{s}+y_{\zeta}^{s}, \quad p_{\zeta}^{s}(T)=0 \\
u_{\zeta}^{s}(t) & =-B^{*} p_{\zeta}^{s}(t) .
\end{aligned}
$$

By linearity we have
$\left(y_{\beta \zeta_{1}+\zeta_{2}}^{s}, p_{\beta \zeta_{1}+\zeta_{2}}^{s}, u_{\beta \zeta_{1}+\zeta_{2}}^{s}\right)=\beta\left(y_{\zeta_{1}}^{s}, p_{\zeta_{1}}^{s}, u_{\zeta_{1}}^{s}\right)+\left(y_{\zeta_{2}}^{s}, p_{\zeta_{2}}^{s}, u_{\zeta_{2}}^{s}\right)$.
Thus the mapping

$$
P(s): \zeta \longmapsto p_{\zeta}^{s}(s)
$$

is linear from Y into itself.

For all $t \in\left[0, T\left[, P(t)=P(t)^{*} \geq 0\right.\right.$
With an IBP between the solution p_{ζ}^{s} to

$$
-p^{\prime}=A^{*} p+y_{\zeta}^{s}, \quad p(T)=0
$$

and the solution y_{ξ}^{S} to

$$
y^{\prime}=A y-B B^{*} p_{\xi}^{s}, \quad y(s)=\xi
$$

we obtain

$$
(P(s) \zeta, \xi)_{Y}=\int_{s}^{T}\left(y_{\zeta}^{s}, y_{\xi}^{s}\right)_{Y}+\int_{s}^{T}\left(B^{*} p_{\zeta}^{s}, B^{*} p_{\xi}^{s}\right)_{U}
$$

for all $\zeta \in Y$ and all $\xi \in Y$.

For all $t \in[0, T[, P(t) \in \mathcal{L}(Y)$
From the previous identity

$$
\begin{aligned}
& \frac{1}{2}(P(s) \zeta, \zeta)_{Y}=J_{s, T}\left(y_{\zeta}^{s}, u_{\zeta}^{s}\right) \leq J_{s, T}\left(e^{(t-s) A} \zeta, 0\right) \\
& \leq K\|\zeta\|_{Y}^{2}
\end{aligned}
$$

Thus

$$
\left\|P(t)^{1 / 2}\right\|_{\mathcal{L}(Y)} \leq K^{1 / 2}, \quad\|P(t)\|_{\mathcal{L}(Y)} \leq K
$$

$t \mapsto(P(t) \zeta, \xi)_{Y}$ is continuous
From the dynamic programming principle

$$
p_{\zeta}^{s}(t)=P(t) y_{\zeta}^{s}(t) \quad \text { for all } t \in[s, T]
$$

From the Duhamel formula and the DPP

$$
\left\|y_{\zeta}^{s}(t)\right\| \leq\left\|e^{(t-s) A} \zeta\right\|+\int_{s}^{T}\left\|e^{(t-\tau) A} B B^{*} P(\tau) y_{\zeta}^{s}(\tau)\right\| d \tau
$$

Thus

$$
\left\|y_{\zeta}^{s}\right\|_{C([s, T] ; Y)} \leq C\|\zeta\|_{Y}
$$

Next

$$
\left\|p_{\zeta}^{s}\right\|_{C([s, T] ; Y)} \leq C\|\zeta\|_{Y}
$$

It can be shown that

$$
\lim _{h \rightarrow 0}\left\|y_{\zeta}^{s+h}-y_{\zeta}^{s}\right\|_{C([(s+h) \wedge s, T] ; Y)}=0
$$

and

$$
\lim _{h \rightarrow 0}\left\|p_{\zeta}^{s+h}-p_{\zeta}^{s}\right\|_{C([(s+h) \wedge s, T] ; Y)}=0
$$

From which we deduce that $t \mapsto(P(t) \zeta, \xi)_{Y}$ is continuous.
$P(\cdot)$ is the solution to a Differential Riccati

Equation

Definition. We denote by $C_{s}([0, T] ; \mathcal{L}(Y))$ the space of mapping P from $[0, T]$ to $\mathcal{L}(Y)$ such that $t \mapsto P(t) \zeta$ belongs to $C([0, T] ; Y)$ for all $\zeta \in Y$.

We know that $P \in C_{s}([0, T] ; \mathcal{L}(Y))$. We are going to prove that P is the solution to the Differential Riccati Equation

$$
\begin{aligned}
& P^{*}(t)=P(t) \quad \text { and } \quad P(t) \geq 0 \\
& P^{\prime}(t)+A^{*} P(t)+P(t) A-P(t) B B^{*} P(t)+I=0 \\
& P(T)=0
\end{aligned}
$$

Definition. A function $P \in C_{s}([0, T] ; \mathcal{L}(Y))$ is a solution to the DRE on $(0, T)$ if, and only if, for every $(\zeta, \xi) \in D(A) \times D(A)$ the function $(P(\cdot) \zeta, \xi)$ belongs to $W^{1,1}(0, T)$ and satisfies

$$
\begin{aligned}
& P^{*}(t)=P(t) \quad \text { and } \quad P(t) \geq 0 \quad \text { for all } t \in[0, T], \\
& \frac{d}{d t}(P(t) \zeta, \xi)+(P(t) \zeta, A \xi)+(P(t) A \zeta, \xi) \\
& -\left(P(t) B B^{*} P(t) \zeta, \xi\right)+(\zeta, \xi)=0, \\
& (P(T) \zeta, \xi)=0 .
\end{aligned}
$$

Theorem. The function P is the unique solution to the Differential Riccati Equation on $(0, T)$.

For $(\zeta, \xi) \in D(A) \times D(A)$, consider the two systems

$$
\begin{aligned}
& z^{\prime}=A z-B B^{*} p, \quad z(s)=\zeta \\
& -p^{\prime}=A^{*} p+z, \quad p(T)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& y^{\prime}=A y-B B^{*} q, \quad y(s)=\xi \\
& -q^{\prime}=A^{*} q+y, \quad q(T)=0
\end{aligned}
$$

In the previous notation we have $(z, p)=\left(y_{\zeta}^{s}, p_{\zeta}^{s}\right)$ and $(y, q)=\left(y_{\xi}^{s}, p_{\xi}^{S}\right)$.

Let us denote by $\frac{d^{+}}{d s}(P(s) \zeta, \xi)$ the right hand side derivative of the mapping $s \mapsto(P(s) \zeta, \xi)$. We prove that for every $(\zeta, \xi) \in D(A) \times D(A)$, we have

$$
\begin{aligned}
& \frac{d^{+}}{d t}(P(t) \zeta, \xi)+(P(t) \zeta, A \xi)+(P(t) A \zeta, \xi) \\
& -\left(P(t) B B^{*} P(t) \zeta, \xi\right)+(\zeta, \xi)=0
\end{aligned}
$$

for all $t \in[0, T[$. For $(\zeta, \xi) \in D(A) \times D(A)$, the solutions z and y satisfy

$$
z(t)=e^{(t-s) A} \zeta-\int_{s}^{t} e^{(t-\tau) A} B B^{*} p(\tau) d \tau
$$

and

$$
y(t)=e^{(t-s) A} \xi-\int_{s}^{t} e^{(t-\tau) A} B B^{*} q(\tau) d \tau
$$

Thus we have

$$
\lim _{h \searrow 0}\left\|\frac{1}{h}(z(s+h)-z(s))-A \zeta+B B^{*} p(s)\right\|_{Y}=0
$$

and

$$
\lim _{h \searrow 0}\left\|\frac{1}{h}(y(s+h)-y(s))-A \xi+B B^{*} q(s)\right\|_{Y}=0 .
$$

Using a previous identity we obtain

$$
\begin{aligned}
& (P(s+h) z(s+h), y(s+h))-(P(s) z(s), y(s)) \\
& =\int_{s+h}^{s}\left((z(t), y(t))+\left(B^{*} p(t), B^{*} q(t)\right)\right) d t
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{h \backslash 0}((P(s+h) z(s+h), y(s+h))-(P(s) z(s), y(s))) / h \\
& =-(z(s), y(s))-\left(B^{*} p(s), B^{*} q(s)\right)
\end{aligned}
$$

We also have

$$
\begin{aligned}
& (P(s+h) z(s+h), y(s+h))-(P(s) z(s), y(s)) \\
& =(P(s+h) z(s+h), y(s+h)-y(s)) \\
& +(z(s+h)-z(s), P(s+h) y(s)) \\
& +((P(s+h)-P(s)) z(s), y(s)) .
\end{aligned}
$$

Dividing by h and passing to the limit when h tends to
zero, we obtain

$$
\begin{aligned}
& -(\zeta, \xi)-\left(B^{*} P(s) \zeta, B^{*} P(s) \xi\right) \\
& =(P(s) \zeta, A \xi)+(A \zeta, P(s) \xi)-2\left(B^{*} P(s) \zeta, B^{*} P(s) \xi\right) \\
& +\frac{d^{+}}{d s}(P(s) \zeta, \xi)
\end{aligned}
$$

that is

$$
\begin{aligned}
& \frac{d^{+}}{d s}(P(s) \zeta, \xi)+(P(s) \zeta, A \xi)+(A \zeta, P(s) \xi)+(\zeta, \xi) \\
& -\left(B^{*} P(s) \zeta, B^{*} P(s) \xi\right)=0
\end{aligned}
$$

Since the mapping

$$
s \mapsto(P(s) \zeta, \xi)
$$

is continuous on $[0, T]$, and the mapping

$$
\begin{aligned}
& s \mapsto \frac{d^{+}}{d s}(P(s) \zeta, \xi)=-(\zeta, \xi)+\left(B^{*} P(s) \zeta, B^{*} P(s) \xi\right) \\
& -(P(s) \zeta, A \xi)-(A \zeta, P(s) \xi)
\end{aligned}
$$

is bounded and continuous on $[0, T[$, we can affirm that

$$
s \mapsto(P(s) \zeta, \xi)
$$

is of class C^{1} on $[0, T]$. Thus P is a solution to the Differential Riccati Equation.

Theorem. The solution (\bar{y}, \bar{u}) to problem $\left(P\left(0, T, y_{0}\right)\right)$ is characterized by

$$
\begin{aligned}
& \bar{u}(t)=-B^{*} P(t) \bar{y}(t), \\
& \bar{y}^{\prime}=A \bar{y}-B B^{*} P \bar{y}, \quad \bar{y}(0)=y_{0} .
\end{aligned}
$$

Remark Setting $Q(t)=P(T-t)$, where P is the solution to the previous DRE, we can show that Q is the solution to

$$
\begin{aligned}
& Q^{*}(t)=Q(t) \quad \text { and } \quad Q(t) \geq 0 \\
& Q^{\prime}(t)=A^{*} Q(t)+Q(t) A-Q(t) B B^{*} Q(t)+I \\
& Q(0)=0
\end{aligned}
$$

Generalization to the problem

$$
\inf \left\{J_{T}(y, u) \mid(y, u) \text { obeys }(E), u \in L^{2}(0, T ; U)\right\}
$$

with

$$
\begin{aligned}
& J_{T}(y, u) \\
& =\frac{1}{2} \int_{0}^{T}\|C y(t)\|_{Z}^{2}+\frac{1}{2}\|D y(T)\|_{Z_{T}}^{2}+\frac{1}{2} \int_{0}^{T}\|u(t)\|_{U}^{2}
\end{aligned}
$$

The solution (\bar{y}, \bar{u}) is characterized by

$$
\begin{aligned}
& \bar{u}(t)=-B^{*} P(t) \bar{y}(t), \\
& \bar{y}^{\prime}=A \bar{y}-B B^{*} P \bar{y}, \quad \bar{y}(0)=y_{0},
\end{aligned}
$$

where P is the solution to

$$
\begin{aligned}
& P^{*}(t)=P(t) \quad \text { and } \quad Q(t) \geq 0 \\
& -P^{\prime}(t)=A^{*} P(t)+P(t) A-P(t) B B^{*} P(t)+C^{*} C \\
& P(T)=D^{*} D
\end{aligned}
$$

The LQR problem with an infinite time horizon

Now we consider the control problem (P)

$$
\inf \left\{J(y, u) \mid(y, u) \text { obeys }(E), u \in L^{2}(0, \infty ; U)\right\}
$$

with

$$
J(y, u)=\frac{1}{2} \int_{0}^{\infty}\|y(t)\|_{Y}^{2}+\frac{1}{2} \int_{0}^{\infty}\|u(t)\|_{U}^{2}
$$

and
$(E) \quad y^{\prime}=A y+B u, \quad y(0)=y_{0}$.

Finite cost condition For every $y_{0} \in Y$, there exists $u_{y_{0}}$ s.t.

$$
J\left(y\left(y_{0}, u_{y_{0}}\right), u_{y_{0}}\right)<\infty
$$

Remark If (A, B) is stabilizable then the $(F C C)$ is satisfied. The converse proposition is true.

Theorem. Suppose that the $(F C C)$ is satisfied. Then (P) admits a unique solution. This solution (\bar{y}, \bar{u}) obeys

$$
\bar{u}(t)=-B^{*} P \bar{y}(t),
$$

where P is the minimal solution to the ARE

$$
\begin{aligned}
& P^{*}=P \geq 0 \\
& A^{*} P+P A-P B B^{*} P+I=0
\end{aligned}
$$

Moreover

$$
J(\bar{y}, \bar{u})=\frac{1}{2}\left(P y_{0}, y_{0}\right)_{Y} .
$$

Definition. An operator $P \in \mathcal{L}(Y)$ is a solution to the ARE iff

$$
\begin{aligned}
& P^{*}=P \geq 0 \\
& (P \zeta, A \xi)+(P A \zeta, \xi)-\left(P B B^{*} P \zeta, \xi\right)+(\zeta, \xi)=0
\end{aligned}
$$

An operator $P \in \mathcal{L}(Y)$ is a minimal solution if it is a solution and if

$$
P \leq Q \quad \text { for any solution } Q
$$

Theorem. The ARE admits a unique minimal solution.

Proof.

Consider the problem
$(Q(s, T, \zeta)) \quad \inf \left\{I(s, T ; \zeta, u) \mid u \in L^{2}(s, T ; U)\right\}$,
with

$$
I(s, T ; \zeta, u)=\frac{1}{2} \int_{s}^{T}\left\|y_{\zeta, u}^{s}(t)\right\|_{Y}^{2} d t+\frac{1}{2} \int_{s}^{T}\|u(t)\|_{U}^{2} d t
$$

and $y_{\zeta, u}^{s}$ is the solution to

$$
y^{\prime}=A y+B u, \quad y(s)=\zeta
$$

For every $\zeta \in Y$ let u_{ζ} be the solution to $(Q(s, \infty, \zeta))$. Let $P_{\text {min }}$ be the solution to the differential Riccati equation

$$
\begin{aligned}
& P=P^{*} \geq 0, \quad P(0)=0 \\
& P^{\prime}=A^{*} P+P A-P B B^{*} P+I
\end{aligned}
$$

Let us prove that, for every $\zeta \in Y$, the mapping $t \mapsto(P(t) \zeta, \zeta)$ is nondecreasing. Let $0<T_{1}<T_{2}$, we know that

$$
\begin{aligned}
& \inf \left(Q\left(0, T_{1}, \zeta\right)\right)=\frac{1}{2}\left(P\left(T_{1}\right) \zeta, \zeta\right) \\
& \inf \left(Q\left(0, T_{2}, \zeta\right)\right)=\frac{1}{2}\left(P\left(T_{2}\right) \zeta, \zeta\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \inf \left(Q\left(0, T_{2}, \zeta\right)\right) \\
& =\inf _{u \in L^{2}\left(0, T_{1} ; U\right)}\left\{I\left(0, T_{1}, \zeta, u\right)+\inf \left(Q\left(T_{1}, T_{2}, z_{\zeta, u}^{0}\left(T_{1}\right)\right)\right)\right\} \\
& \geq \inf \left(Q\left(0, T_{1}, \zeta\right)\right)
\end{aligned}
$$

Thus the mapping $t \mapsto(P(t) \zeta, \zeta)$ is nondecreasing.
On the other hand

$$
(P(t) \zeta, \zeta) \leq 2 I\left(0, t ; \zeta, u_{\zeta}\right) \leq 2 J\left(z\left(\zeta, u_{\zeta}\right), u_{\zeta}\right)<\infty
$$

Thus the limit $\lim _{t \rightarrow \infty}(P(t) \zeta, \zeta)$ exists and is finite for every $\zeta \in Y$. Since
$(P(t) \zeta, \xi)=\frac{1}{4}(P(t)(\zeta+\xi), \zeta+\xi)-\frac{1}{4}(P(t)(\zeta-\xi), \zeta-\xi)$,
applying the Banach-Steinhaus theorem to the family of operator $(P(t) \zeta, \cdot)$, we deduce that $\sup _{t \geq 0}|(P(t) \zeta, \cdot)|<\infty$. Next, still with the Banach-Steinhaus theorem, we obtain $\sup _{t \geq 0}|(P(t) \cdot, \cdot)|<\infty$. Therefore there exists an operator $P_{\text {min }}^{\infty} \in \mathcal{L}(Y)$ such that

$$
\lim _{t \rightarrow \infty}(P(t) \zeta, \zeta)=\left(P_{\min }^{\infty} \zeta, \zeta\right)
$$

Since $P(t)=P^{*}(t) \geq 0$ it follows that $P_{\text {min }}^{\infty}=$ $\left(P_{m i n}^{\infty}\right)^{*} \geq 0$.

For every $\zeta \in D(A)$, we have

$$
\begin{aligned}
& \frac{d}{d t}(P(t) \zeta, \zeta) \\
& =(P \zeta, A \zeta)+(P A \zeta, \zeta)-\left(P B B^{*} P \zeta, \zeta\right)+(\zeta, \zeta)
\end{aligned}
$$

The mapping $t \mapsto(P(t) \zeta, \zeta)$ is of class C^{1}, the right hand side of the equation admits a limit when t tends to infinity, thus the limit of $\frac{d}{d t}(P(t) \zeta, \zeta)$ exists and is necessarily zero. This means that $P_{\text {min }}^{\infty}$ is a solution to the ARE. To prove that $P_{\text {min }}^{\infty}$ is a minimal solution, we suppose that \hat{P} is an other solution. Observe that \hat{P} is also the solution to the differential Riccati equation

$$
\begin{aligned}
& P=P^{*} \geq 0, \quad P(0)=\hat{P} \\
& P^{\prime}=A^{*} P+P A-P B B^{*} P+I
\end{aligned}
$$

Since $\hat{P}(0) \geq P_{\min }(0)=0$, we have $P_{\min }(t) \leq \hat{P}(t)=$ \hat{P}. Passing to the limit when t tends to infinity, we prove that $P_{m i n}^{\infty} \leq \hat{P}$.

Theorem. The unique solution (\bar{y}, \bar{u}) to problem (P) satisfies the feedback formula

$$
\bar{u}(t)=-B^{*} P_{\min }^{\infty} \bar{y}(t),
$$

where $P_{\min }^{\infty}$ is the minimal solution to ARE, and \bar{y} is the solution to

$$
y^{\prime}=A y-B B^{*} P_{\min }^{\infty} y, \quad y(0)=y_{0}
$$

Moreover the optimal cost is given by

$$
J(\bar{y}, \bar{u})=\frac{1}{2}\left(P_{m i n}^{\infty} y_{0}, y_{0}\right)_{Y}
$$

The Algebraic Riccati Equation admits a unique solution.

Proof. Let \bar{y} be the solution to

$$
\bar{y}^{\prime}=A \bar{y}-B B^{*} P_{\min }^{\infty} \bar{y}, \quad \bar{y}(0)=y_{0}
$$

The solution to problem

$$
\begin{gathered}
\inf \left\{\frac{1}{2} \int_{0}^{T}\left(\left\|y_{u}\right\|_{Y}^{2}+\|u\|_{U}^{2}\right)+\frac{1}{2}\left(P_{\min }^{\infty} y_{u}(T), y_{u}(T)\right)_{Y}\right. \\
\left.\mid u \in L^{2}(0, T ; U)\right\}
\end{gathered}
$$

where y_{u} is the solution to equation

$$
y^{\prime}=A y+B u, \quad y(0)=y_{0}
$$

is given by $(\hat{y}, \hat{u})=\left(\hat{y},-B^{*} P \hat{y}\right)$, where P solves the

Riccati equation

$$
\begin{aligned}
& P=P^{*} \geq 0, \quad P(T)=P_{m i n}^{\infty} \\
& -P^{\prime}=A^{*} P+P A-P B B^{*} P+I
\end{aligned}
$$

and \hat{y} satisfies $\hat{y}^{\prime}=A \hat{y}-B B^{*} P \hat{y}$, and $\hat{y}(0)=y_{0}$. Still the previous part, we have
$\left(P(0) y_{0}, y_{0}\right)=\int_{0}^{T}\left(\|\hat{y}\|^{2}+\|\hat{u}\|^{2}\right)+\left(P_{\min }^{\infty} \hat{y}(T), \hat{y}(T)\right)$.
But $P_{\text {min }}^{\infty}$ is the unique solution to the above DRE. Consequently we have $(\hat{y}, \hat{u})=(\bar{y}, \bar{u})$, and for every $T>0$
$\left(P_{\min }^{\infty} y_{0}, y_{0}\right)=\int_{0}^{T}\left(\|\bar{y}\|^{2}+\|\bar{u}\|^{2}\right)+\left(P_{\min }^{\infty} \bar{y}(T), \bar{y}(T)\right)$.

When T tends to infinity we obtain

$$
2 J(\bar{y}, \bar{u}) \leq\left(P_{m i n}^{\infty} y_{0}, y_{0}\right)
$$

Considering the problem

$$
\inf \left\{\left.\frac{1}{2} \int_{0}^{T}\left(\left\|y_{u}\right\|_{Y}^{2}+\|u\|_{U}^{2}\right) \right\rvert\, u \in L^{2}(0, T ; U)\right\}
$$

we also have

$$
\left(P_{\min }(T) y_{0}, y_{0}\right) \leq \int_{0}^{T}\left(\|\bar{y}\|^{2}+\|\bar{u}\|^{2}\right) \leq 2 J(\bar{y}, \bar{u})
$$

and

$$
\left(P_{\min }(T) y_{0}, y_{0}\right) \leq \int_{0}^{T}\left(\left\|y_{u}\right\|^{2}+\|u\|^{2}\right) \leq 2 J\left(y_{u}, u\right)
$$

for all u, where $P_{\text {min }}$ is the above DRE. By passing to the limit when T tends to infinity it yields

$$
\left(P_{\min }^{\infty} y_{0}, y_{0}\right) \leq \int_{0}^{\infty}\left(\|\bar{y}\|^{2}+\|\bar{u}\|^{2}\right) d t \leq 2 J(\bar{y}, \bar{u})
$$

and
$\left(P_{\min }^{\infty} y_{0}, y_{0}\right) \leq 2 J\left(y_{u}, u\right), \quad$ for all $u \in L^{2}(0, \infty ; U)$.
Thus $\left(P_{m i n}^{\infty} y_{0}, y_{0}\right)=2 J(\bar{y}, \bar{u})=2 \inf (P)$, and (\bar{y}, \bar{u}) is the unique solution to problem (P).

Lemma. If P is a solution to the ARE, then the operator $A-B B^{*} P$ with domain $D(A)$ is the generator of an exponentially stable semigroup on Y.

Proof. Let $\zeta \in Y$, let y be the solution to

$$
y(0)=\zeta, \quad y^{\prime}=A y-B B^{*} P y
$$

First suppose that $\zeta \in D(A)$. Let $\left(u_{n}\right)_{n}$ be a sequence in $C^{1}([0, \infty) ; U) \cap L^{2}(0, \infty ; U)$ converging to $-B^{*} P y$ in $L^{2}(0, \infty ; U)$. Let y_{n} be the solution to the equation

$$
y(0)=\zeta, \quad y^{\prime}=A y+B u_{n} .
$$

With the ARE, we deduce

$$
\begin{aligned}
& \quad \frac{d}{d t}\left(P y_{n}(t), y_{n}(t)\right)=2\left(A y_{n}+B u_{n}, P y_{n}\right) \\
& =-\left(y_{n}, y_{n}\right)-\left(B^{*} P y_{n}, B^{*} P y_{n}\right)+2\left(B^{*} P y_{n}, B^{*} P y_{n}\right) \\
& +2\left(u_{n}, B^{*} P y_{n}\right) .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \left(P y_{n}(t), y_{n}(t)\right)+\int_{0}^{t}\left(\left\|y_{n}\right\|^{2}+\left\|B^{*} P y_{n}\right\|^{2}\right) \\
& =(P \zeta, \zeta)+\int_{0}^{t}\left(2\left\|B^{*} P y_{n}\right\|^{2}+2\left(u_{n}, B^{*} P y_{n}\right)\right)
\end{aligned}
$$

By passing to the limit when n tends to infinity, we
obtain

$$
\begin{aligned}
& \int_{0}^{t}\left(\|y\|^{2}+\left\|B^{*} P y\right\|^{2}\right) \\
& \leq(P y(t), y(t))+\int_{0}^{t}\left(\|y\|^{2}+\left\|B^{*} P y\right\|^{2}\right) \\
& =(P \zeta, \zeta)
\end{aligned}
$$

By a density argument this inequality also holds for every $\zeta \in Y$ and we have

$$
\int_{0}^{\infty}\left(\|y\|^{2}+\left\|B^{*} P y\right\|^{2}\right) \leq(P \zeta, \zeta)
$$

Lemma. Let P and Q be two solutions to the ARE. Suppose that the operator $A-B B^{*} P$ with domain $D(A)$, is the generator of an exponentially stable semigroup in Y. Then $P \geq Q$.

Proof. Since P and Q are two solutions to ARE, we can verify that

$$
\begin{aligned}
& (P-Q)\left(A-B B^{*} P\right) \\
& +\left(A-B B^{*} P\right)^{*}(P-Q)+(P-Q) B B^{*}(P-Q)=0
\end{aligned}
$$

From this identity, we deduce:

$$
\begin{aligned}
& \frac{d}{d t}\left((P-Q) e^{t\left(A-B B^{*} P\right)} \zeta, e^{t\left(A-B B^{*} P\right)} \zeta\right) \\
& =-\left\|B^{*}(P-Q) e^{t\left(A-B B^{*} P\right)} \zeta\right\|^{2}
\end{aligned}
$$

for all $\zeta \in D(A)$. By integrating this equality between

0 and T, we obtain

$$
\begin{aligned}
& ((P-Q) \zeta, \zeta) \\
& =\left((P-Q) e^{T\left(A-B B^{*} P\right)} \zeta, e^{T\left(A-B B^{*} P\right)} \zeta\right) \\
& +\int_{0}^{T}\left\|B^{*}(P-Q) e^{t\left(A-B B^{*} P\right)} \zeta\right\|^{2} d t \\
& \geq\left((P-Q) e^{T\left(A-B B^{*} P\right)} \zeta, e^{T\left(A-B B^{*} P\right)} \zeta\right)
\end{aligned}
$$

By passing to the limit when T tends to infinity, we obtain $((P-Q) \zeta, \zeta) \geq 0$ for all $\zeta \in D(A)$, that is $P \geq Q$.

Stabilization of a convection-diffusion equation

Notations

$$
\begin{gathered}
Q=\Omega \times(0, \infty) \quad \text { Space-time domain } \\
\Omega=(0,10) \times(0,10) \\
\Sigma=\Gamma \times(0, \infty) \quad \text { Lateral boundary } \\
\Sigma_{c}=\Gamma_{c} \times(0, \infty) \quad \text { Control boundary } \\
\Gamma_{o}=\{1\} \times(0,10) \quad \text { Observation on a boundary } \\
\Gamma_{c}=\{0\} \times(0,10)
\end{gathered}
$$

State equation

$$
\begin{array}{ll}
y_{t}-\Delta y+\vec{V} \cdot \nabla y-c y=0 & \text { in } Q, \\
y(0)=y_{0} & \text { in } \Omega, \\
\partial_{\nu} y=0 & \text { on } \Sigma \backslash \Sigma_{c}, \\
\partial_{\nu} y=u & \text { on } \Sigma_{c} .
\end{array}
$$

Cost functional

$$
\begin{aligned}
& I_{1}(y, u)=\frac{1}{2} \int_{0}^{\infty} \int_{\Gamma_{c}} u^{2}+\int_{0}^{\infty} \int_{\Omega} y^{2} . \\
& I_{2}(y, u)=\frac{1}{2} \int_{0}^{\infty} \int_{\Gamma_{c}} u^{2}+\int_{0}^{\infty} \int_{\Gamma_{o}} y^{2} .
\end{aligned}
$$

Setting

$$
\begin{gathered}
A y=\Delta y-\vec{V} \cdot \nabla y+c y, \\
D(A)=\left\{y \in H^{2}(\Omega) \mid \partial_{\nu} y=0\right\} \\
\langle B u, \phi\rangle=\int_{\Gamma_{c}} u \phi,
\end{gathered}
$$

The state equation can be written in the following form

$$
\frac{d}{d t} \int_{\Omega} y(t) \phi=\int_{\Omega} y(t)(\Delta \phi+\operatorname{div}(\vec{V} \phi))+\int_{\Gamma_{c}} u \phi,
$$

for all ϕ in

$$
D\left(A^{*}\right)=\left\{\phi \in H^{2}(\Omega) \mid \partial_{\nu} \phi+\vec{V} \cdot \vec{n} \phi=0 \text { on } \Gamma\right\},
$$

with

$$
A^{*} \phi=\Delta \phi+\operatorname{div}(\vec{V} \phi)
$$

thus we have

$$
y^{\prime}=A y+B u, \quad y(0)=y_{0}
$$

Problem (P) admits a unique solution (\bar{y}, \bar{u}) which is characterized by

$$
\bar{u}(t)=-B^{*} P \bar{y}(t),
$$

where

$$
\begin{gathered}
\quad P \quad \text { is the solution to the ARE } \\
P=P^{*} \geq 0, \quad A^{*} P+P A-P B B^{*} P+2 C^{*} C=0, \\
B^{*} \quad \text { is the trace operator on } \quad \Gamma_{c}, \\
\text { in example } 1
\end{gathered}
$$

$$
C=C^{*}=I
$$

in example 2

$$
C \quad \text { is the trace operator on } \quad \Gamma_{0},
$$

and

$$
\left\langle C^{*} y, \phi\right\rangle=\int_{\Gamma_{0}} y \phi
$$

Remark. A null controllability result can be proved for the convection-diffusion equation. Thus the pair (A, B) is stabilizable.

Similarly we can prove that the pair (A, C) is detectable.

Thus the ARE admits a unique solution.

Algorithms

Numerical resolution of the finite dimensional Riccati equation

$$
P=P^{*} \geq 0, \quad A^{*} P+P A-P B B^{*} P+C^{*} C=0 .
$$

Hypotheses
(H) The pair (A, B) is stabilizable, and the pair (A, C) is detectable.
Methods based on the computation of the eigenvalues of the matrix

$$
H=\left[\begin{array}{cc}
A & -B B^{*} \\
C C^{*} & -A^{*}
\end{array}\right]
$$

The spectrum of H is symmetric w.r. to the origin and H has no eigenvalues with a null real part.

Algorithm 1.

1 - Compute the eigenvalues and the eigenvectors of H by the $Q R$-method.
2 - Select the eigenvectors corresponding to eigenvalues with a negative real part. Let V_{1} be the matrix whose columns correspond to these vectors:

$$
V_{1}=\left[\begin{array}{l}
V_{11} \\
V_{21}
\end{array}\right]
$$

3 - Solve $V_{11}^{*} P=V_{21}^{*}$ to calculate P.

Algorithm 2.

1 - Write the real Schur decomposition of H

$$
T=U^{*} H U
$$

2 - Use orthogonal transformations to reorder the matrix T so that the quasi-triangular bloc T_{11} has eigenvalues with a negative real part.
3 - Solve $U_{11}^{*} P=U_{21}^{*}$ to compute P, where $U_{1}=$ $\left[\begin{array}{l}U_{11} \\ U_{21}\end{array}\right]$, are the Schur-vectors corresponding to T_{11}.

Numerical tests

$$
\begin{aligned}
& \Omega=(0,10) \times(0,10), \quad \Delta t=0.01, \quad T=10, \\
& \text { mesh size }=1
\end{aligned}
$$

The equation

$$
y_{t}-\Delta y+\vec{V} \cdot \nabla y-c y=0
$$

with

$$
\vec{V}=\left[\begin{array}{ll}
10 & 3
\end{array}\right]^{T}, \quad c=0 \quad \text { or } \quad c=3 .
$$

Control boundary

$$
\Gamma_{c}=\{0\} \times(0,10) \quad \text { or } \quad \Gamma_{c}=\{0\} \times(3,6)
$$

Cost functional

$$
I_{1}(y, u)=\frac{1}{2} \int_{0}^{\infty} \int_{\Gamma_{c}} u^{2}+\int_{0}^{\infty} \int_{\Omega} y^{2}
$$

or

$$
I_{2}(y, u)=\frac{1}{2} \int_{0}^{\infty} \int_{\Gamma_{c}} u^{2}+\int_{0}^{\infty} \int_{\Gamma_{o}} y^{2}, \quad \Gamma_{o}=\{1\} \times(0,10) .
$$

Without control $c=3, y_{0}=\cos \left(2 \pi x_{1} / 10\right) \sin \left(2 \pi x_{2} / 10\right)$

Etat initial $\mathrm{t}=0$

Control on $\Gamma_{c}=\{0\} \times(0,10)$

Observation on $D_{0}=\Omega$

$c=3$,
$y_{0}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1} / 10\right) \sin \left(2 \pi x_{2} / 10\right)$

Control on $\Gamma_{c}=\{0\} \times(0,10)$

$$
\text { and on } \Gamma_{c}=\{0\} \times(3,6)
$$

Observation on $D_{0}=\Gamma_{o}=\{1\} \times(0,10)$

$$
c=3, \quad y_{0}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1} / 10\right) \sin \left(2 \pi x_{2} / 10\right)
$$

Norme des états, $\Gamma_{c}=\{0\} \times[0,10]$ et $\{0\} \times[3,6]$

$$
\mathrm{D}_{0}=\Gamma_{0}, \Gamma_{\mathrm{c}}=[3,6], \mathrm{t}=2.5
$$

$$
\mathrm{D}_{0}=\Gamma_{0}, \Gamma_{\mathrm{c}}=[3,6], \mathrm{t}=7.5
$$

$$
\mathrm{D}_{0}=\Gamma_{0}, \Gamma_{\mathrm{c}}=[3,6], \mathrm{t}=5
$$

$$
\mathrm{D}_{0}=\Gamma_{0}, \Gamma_{\mathrm{c}}=[3,6], \mathrm{t}=10
$$

$$
D_{0}=\Gamma_{0}, t=7.5
$$

$$
D_{0}=\Gamma_{0}, t=10
$$

Control on $\Gamma_{c}=\{0\} \times(0,10)$

Observation on $D_{0}=\Omega$

$$
c=0, \quad y_{0}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1} / 10\right) \sin \left(2 \pi x_{2} / 10\right)
$$

Norme de l'état, $\mathrm{D}_{0}=\Omega, \mathrm{c}=0$

$$
\times 10^{-5} \quad c=0, t=5
$$

Part 3

The conjugate gradient method

for solving an

optimal control problem

The conjugate gradient method

Consider the optimization problem
$\left(P_{1}\right) \quad \inf \{F(u) \mid u \in U\}$,
where U is a Hilbert space and F is a quadratic functional

$$
F(u)=\frac{1}{2}(u, Q u)_{U}-(b, u)_{U}
$$

In this setting $Q \in \mathcal{L}(U), Q=Q^{*}>0, b \in U$, and $(\cdot, \cdot)_{U}$ denotes the scalar product in U. For simplicity we write (\cdot, \cdot) in place of $(\cdot, \cdot)_{U}$.

The principe of the GCM:

1. Choose $u_{0} \in U$ and compute

$$
d_{0}=-Q u_{0}+b
$$

Minimize F over $C_{0}=u_{0}+\operatorname{Vect}\left(d_{0}\right)$. Let u_{1} be the solution.
2. If $d_{0}, \ldots, d_{k-1}, u_{k-1}$ are known, u_{k} is the solution of
$\left(P_{1}\right) \quad \inf \left\{F(u) \mid u \in C_{k-1}\right\}$,
where $C_{k-1}=u_{k-1}+\operatorname{Vect}\left(d_{0}, \ldots, d_{k-1}\right)$

Let us recall the GC algorithm:

Algorithm 1.

Initialization. Choose u_{0} in U. Compute $g_{0}=Q u_{0}-b$.
Set $d_{0}=-g_{0}$ and $n=0$.
Step 1. Compute

$$
\rho_{n}=\left(g_{n}, g_{n}\right) /\left(d_{n}, Q d_{n}\right)
$$

and

$$
u_{n+1}=u_{n}+\rho_{n} d_{n} .
$$

Determine

$$
g_{n+1}=Q u_{n+1}-b=g_{n}+\rho_{n} Q d_{n} .
$$

Step 2. If $\left\|g_{n+1}\right\|_{U} /\left\|g_{0}\right\|_{U} \leq \varepsilon$, stop the algorithm and take $u=u_{n+1}$, else compute

$$
\beta_{n}=\left(g_{n+1}, g_{n+1}\right) /\left(g_{n}, g_{n}\right),
$$

and

$$
d_{n+1}=-g_{n+1}+\beta_{n} d_{n}
$$

Replace n by $n+1$ and go to step 1 .

The conjugate gradient method for control problems

We want to apply the CGM to problems studied in chapters $1,3,4$. The state equation is of the form
(E) $\quad y^{\prime}=A y+B u+f, \quad y(0)=y_{0}$,
and the control problem is defined by
$\left(P_{2}\right) \quad \inf \left\{J\left(y_{u}, u\right) \mid u \in L^{2}(0, T ; U)\right\}$,

$$
\begin{aligned}
& J(y, u)=\frac{1}{2} \int_{0}^{T}\left\|C y(t)-z_{d}(t)\right\|_{Z}^{2} \\
& +\frac{1}{2}\left\|D y(T)-z_{T}\right\|_{Z_{T}}^{2}+\frac{1}{2} \int_{0}^{T}\|u(t)\|_{U}^{2} .
\end{aligned}
$$

We have to identify problem $\left(P_{2}\right)$ with a problem of
the form $\left(P_{1}\right)$. Let y_{u} be the solution to equation (E), and set $F(u)=J\left(y_{u}, u\right)$. Observe that $\left(y_{u}, y_{u}(T)\right)=$ $\left(\Lambda_{1} u, \Lambda_{2} u\right)+\zeta\left(f, y_{0}\right)$, where Λ_{1} is a bounded linear operator from $L^{2}(0, T ; U)$ to $L^{2}(0, T ; Y)$, and Λ_{2} is a bounded linear operator from $L^{2}(0, T ; U)$ to Y. We must determine the quadratic form Q such that

$$
J\left(y_{u}, u\right)=\frac{1}{2}(u, Q u)_{U}-(b, u)_{U}+c
$$

Since $\left(y_{u}, y_{u}(T)\right)=\left(\Lambda_{1} u, \Lambda_{2} u\right)+\zeta\left(f, y_{0}\right)$, we have

$$
Q=\Lambda_{1}^{*} \widehat{C}^{*} \widehat{C} \Lambda_{1}+\Lambda_{2}^{*} D^{*} D \Lambda_{2}+I
$$

where $\widehat{C} \in \mathcal{L}\left(L^{2}(0, T ; Y) ; L^{2}(0, T ; Z)\right)$ is defined by $(\widehat{C} y)(t)=C y(t)$ for all $y \in L^{2}(0, T ; Z)$, and $\widehat{C}^{*} \in$ $\mathcal{L}\left(L^{2}(0, T ; Z) ; L^{2}(0, T ; Y)\right)$ is the adjoint of \widehat{C}. In the

CGM we have to compute $Q d$ for some $d \in L^{2}(0, T ; U)$. Observe that $\left(\Lambda_{1} d, \Lambda_{2} d\right)$ is equal to $\left(w_{d}, w_{d}(T)\right)$, where w_{d} is the solution to

$$
w^{\prime}=A w+B d, \quad w(0)=0
$$

Moreover, using an IBP, we can prove that $\Lambda_{1}^{*} g=B^{*} p_{1}$, where p_{1} is the solution to equation

$$
-p^{\prime}=A^{*} p+g, \quad p(T)=0
$$

and $\Lambda_{2}^{*} p_{T}=B^{*} p_{2}$, where p_{2} is the solution to equation

$$
-p^{\prime}=A^{*} p, \quad p(T)=p_{T}
$$

Thus $\Lambda_{1}^{*} \widehat{C}^{*} \widehat{C} \Lambda_{1} d+\Lambda_{2}^{*} D^{*} D \Lambda_{2} d$ is equal to $B^{*} p$, where
p is the solution to

$$
-p^{\prime}=A^{*} p+C^{*} C w_{d}, \quad p(T)=D^{*} D w_{d}(T)
$$

If we apply Algorithm 1 to problem $\left(P_{2}\right)$ we obtain: Algorithm 2.
Initialization. Choose u_{0} in $L^{2}(0, T ; U)$. Denote by y^{0} the solution to the state equation

$$
y^{\prime}=A y+B u_{0}+f, \quad y(0)=y_{0}
$$

Denote by p^{0} the solution to the adjoint equation
$-p^{\prime}=A^{*} p+C^{*}\left(C y^{0}-z_{d}\right), \quad p(T)=D^{*}\left(D y^{0}(T)-z_{T}\right)$.
Compute $g_{0}=B^{*} p^{0}+u_{0}$, set $d_{0}=-g_{0}$ and $n=0$.

Step 1. To compute $Q d_{n}$, we calculate w_{n} the solution to equation

$$
w^{\prime}=A w+B d_{n}, \quad w(0)=0
$$

We compute p_{n} the solution to equation

$$
-p^{\prime}=A^{*} p+C^{*} C w_{n}, \quad p(T)=D^{*} D w_{n}(T)
$$

We have $Q d_{n}=B^{*} p_{n}+d_{n}$. Set $\bar{g}_{n}=B^{*} p_{n}+d_{n}$. Compute

$$
\rho_{n}=-\left(g_{n}, g_{n}\right) /\left(\bar{g}_{n}, g_{n}\right),
$$

and

$$
u_{n+1}=u_{n}+\rho_{n} d_{n} .
$$

Determine

$$
g_{n+1}=g_{n}+\rho_{n} \bar{g}_{n}
$$

Step 2. If $\left\|g_{n+1}\right\|_{L^{2}(0, T ; U)} /\left\|g_{0}\right\|_{L^{2}(0, T ; U)} \leq \varepsilon$, stop the algorithm and take $u=u_{n+1}$, else compute

$$
\beta_{n}=\left(g_{n+1}, g_{n+1}\right) /\left(g_{n}, g_{n}\right)
$$

and

$$
d_{n+1}=-g_{n+1}+\beta_{n} d_{n}
$$

Replace n by $n+1$ and go to step 1 .

Algorithms for discrete problems

For numerical computations, we have to write discrete approximations to control problems. Suppose that equation

$$
y^{\prime}=A y+B u+f, \quad y(0)=y_{0}
$$

is approximated by an implicit Euler scheme

$$
y^{0}=y_{0}
$$

$(D E) \quad$ for $n=1, \ldots, M, y^{n}$ is the solution to

$$
\frac{1}{\Delta t}\left(y^{n}-y^{n-1}\right)=A y^{n}+B u^{n}+f^{n}
$$

where $f^{n}=\frac{1}{\Delta t} \int_{t_{n-1}}^{t_{n}} f(t) d t, \quad u^{n}=\frac{1}{\Delta t} \int_{t_{n-1}}^{t_{n}} u(t) d t$, $t_{n}=n \Delta t$, and $T=M \Delta t$. To approximate the
functional $J(y, u)$ we set

$$
\begin{aligned}
& J_{M}(y, u)=\frac{1}{2} \Delta t \sum_{n=1}^{M}\left\|C y^{n}-z_{d}^{n}\right\|_{Z}^{2} \\
& +\frac{1}{2}\left\|D y^{M}-z_{T}\right\|_{Z_{T}}^{2}+\frac{1}{2} \Delta t \sum_{n=1}^{M}\left\|u^{n}\right\|_{U}^{2}
\end{aligned}
$$

with $y=\left(y^{0}, \ldots, y^{M}\right), \quad u=\left(u^{1}, \ldots, u^{M}\right), \quad z_{d}^{n}=$ $\frac{1}{\Delta t} \int_{t_{n-1}}^{t_{n}} z_{d}(t) d t$. We can define a discrete control problem associated with $\left(P_{2}\right)$ as follows:
$\left(P_{M}\right) \inf \left\{J_{M}(y, u) \mid u \in U^{M},(y, u)\right.$ satisfies $\left.(D E)\right\}$.
To apply the CGM to problem $\left(P_{M}\right)$, we have to compute the gradient of the mapping $u \mapsto J_{M}\left(y_{u}, u\right)$,
where y_{u} is the solution to (DE) corresponding to u. Set $F_{M}(u)=J_{M}\left(y_{u}, u\right)$. We have

$$
\begin{aligned}
& F_{M}^{\prime}(\bar{u}) u=\Delta t \sum_{n=1}^{M}\left(C \bar{y}^{n}-z_{d}^{n}, C w_{u}^{n}\right)_{Z} \\
& +\left(D \bar{y}^{M}-y_{T}, D w_{u}^{M}\right)_{Z_{T}}+\Delta t \sum_{n=1}^{M}\left(\bar{u}^{n}, u^{n}\right)_{U}
\end{aligned}
$$

where $\bar{y}=y_{\bar{u}}$ and $w=\left(w^{0}, \ldots, w^{M}\right) \in Y^{M+1}$ is defined by

$$
w^{0}=0
$$

(G) for $n=1, \ldots, M, w^{n}$ is the solution to

$$
\frac{1}{\Delta t}\left(w^{n}-w^{n-1}\right)=A w^{n}+B u^{n}
$$

To find the expression of $F_{M}^{\prime}(\bar{u})$, we have to introduce
an adjoint equation. Let $p=\left(p^{0}, \ldots, p^{M}\right)$ be in Y^{M+1}, or in $D\left(A^{*}\right)^{M+1}$ if we want to justify the calculations. Taking a weak formulation of the different equations in (G), we can write

$$
\begin{aligned}
& \frac{1}{\Delta t}\left(\left(w^{n}-w^{n-1}\right), p^{n-1}\right)_{Y}-\left(w^{n}, A^{*} p^{n-1}\right)_{Y} \\
& =\left(B u^{n}, p^{n-1}\right)_{Y}=\left(u^{n}, B^{*} p^{n-1}\right)_{U}
\end{aligned}
$$

Now, by adding the different equalities, we find the adjoint equation by identifying

$$
\Delta t \sum_{n=1}^{M}\left(C \bar{y}^{n}-y_{d}^{n}, C w_{u}^{n}\right)_{Z}+\left(D \bar{z}^{M}-y_{T}, D w_{u}^{M}\right)_{Z_{T}}
$$

with

$$
\Delta t \sum_{n=1}^{M}\left(u^{n}, B^{*} p^{n-1}\right)_{U}
$$

More precisely, if $p=\left(p^{0}, \ldots, p^{M}\right)$ is defined by

$$
\begin{aligned}
& p^{M}=D^{*}\left(D \bar{z}^{M}-y_{T}\right) \\
& \text { for } n=1, \ldots, M, \quad p^{n} \text { is the solution to } \\
& \frac{1}{\Delta t}\left(-p^{n}+p^{n-1}\right)=A^{*} p^{n-1}+C^{*}\left(C \bar{z}^{n}-y_{d}^{n}\right),
\end{aligned}
$$

then

$$
F_{M}^{\prime}(\bar{u}) u=\Delta t \sum_{n=1}^{M}\left(u^{n}, B^{*} p^{n-1}\right)_{U}+\Delta t \sum_{n=1}^{M}\left(\bar{u}^{n}, u^{n}\right)_{U}
$$

Observe that the above identification is not justified since $D^{*}\left(D \bar{y}^{M}-y_{T}\right)$ does not necessarily belong to
$D\left(A^{*}\right)$. In practice, a 'space-discretization' is also performed. This means that equation (E) is replaced by a system of ordinary differential equations, the operator A is replaced by an operator belonging to $\mathcal{L}\left(\mathbb{R}^{\ell}\right)$, where ℓ is the dimension of the discrete space, and the above calculations are justified for the corresponding discrete problem.

References

[1] V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer Academic Publishers, 1994.
[2] A. Bensoussan, G. Da Prato, M. C. Delfour, S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. 1, Birkhäuser, 1992.
[3] A. Bensoussan, G. Da Prato, M. C. Delfour, S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. 2, Birkhäuser, 1993.
[4] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.
[5] J.-L. Lions, Contrôlabilité exacte et Stabilisation des systèmes distribués, Vol. 1, 2, Masson, Paris 1988.
[6] R. Glowinski, J.-L. Lions, Exact and approximate controllablity for distributed parameter systems, Part 1, Acta Numerica 1994, 269-378.
[7] R. Glowinski, J.-L. Lions, Exact and approximate controllablity for distributed parameter systems, Part 2, Acta Numerica 1995, 159-333.
[8] V. Komornik, Exact controllability and stabilization, Masson-Wiley, 1994.
[9] I. Lasiecka, R. Triggiani, Differential and Algebraic Riccati Equations with Applications to

Boundary/Point Control Problems: Continuous Theory and Approximation Theory, SpringerVerlag, 1991.
[10] I. Lasiecka, R. Triggiani, Control Theory for Partial Differential Equations, Vol. 1, Cambridge University Press, 2000.
[11] I. Lasiecka, R. Triggiani, Control Theory for Partial Differential Equations, Vol. 2, Cambridge University Press, 2000.
[12] R. F. Curtain, H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems theory, Springer-Verlag, 1995.
[13] J. Zabczyk, Mathematical Control Theory: An Introduction, Birkhäuser, 1992.
[14] H. T. Banks, Control and estimation in distributed parameter systems, SIAM, Philadelphia, 1992.

