Chapter 5

Three applications of optimality
conditions

Jean-Pierre Raymond
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Partl

An exact controllability problem
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Exact controllability of the wave equation

The notation : © is a bounded open subset in RY, its
boundary T"isof class C%, T' > 0, Q = Qx (0,T), X =
I" x (0,T). For initial data (yo,y1) € L*(Q) x H~1(Q),
and for terminal data (zq,21) € L*(Q) x H~1(Q), we
look for u € L#(X) so that the solution y to

y'—Ay=0 inQ, y=u on,
y(0) =yo and y'(0)=y1 inQ,

satisfies y(T') = zg and y'(T') = 2.

(WE)

Since the semigroup corresponding to the wave
equation Is a group, the wave equation is well
posed with terminal conditions, and the controllability
problem is equivalent to the null controllability problem.
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Indeed if 2z is the solution to

2~ Az=0 inQ, z=0 onX,
z2(T) =29 and 2'(T) =21 inQ,

and ((,u) obeys

"-AC=0 inQ, (=u onX,
((0) = o — 2(0) and ¢'(0) =y — #/(0) in €
C(TY=0 and ¢(T)=0 in,

then y = z + ( is the solution to (WE) and it satisfies

y(T)=0 and 3 (T)=0 inQ.
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The Hilbert Uniqueness Method

The H.U.Method due to Lions, consists in finding
uw € L?(X) of minimal norm which solves the null
controllability problem.

Penalized problem
(P:) inf{Je(y,u) | (y,u) obeys (WE), u€ L*(¥)},
the functionals J; is defined by

J:(y, u)
1

1 1
— T 2 T /T 2_ _/ 2.
2€/Q|y< )+ 5l )y + 5 [
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The method
e Characterize the solution of (F)
e Estimates on ., u,

e Passage to the limit

New regularity results for the wave equation Let
6 be the solution to

9" —A0=¢g inQ, =0 on?X,
(9(0) = (9(), (9/(0) == (91 in 2.
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Theorem. The solution 6 satisfies the following

estimates

HHHC([O T);H} (Q)) + HHHCl([O T);L2()) T H8n| L2(3)

< (180l + 1611 220 + gl a0 o) )

Inverse inequality

Theorem. There exist Ty > 0 and Ry such that for all
T > T} the following estimate holds

L2(5)

(1) (1601300 HI0: 2ge) < Fol| o]
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Characterization of y., u,

Theorem. The solution y., u. to (P.) is characterized
by
_ Op.

on’
where p. is the solution to the adjoint equation
corresponding to .:

Ug

pl—Ap.=0 inQ, p-.=0 onX,

po(T) = Z(=A) YLT), pU(T) = ——yelT) in Q.
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Estimates on ., u,

With an integration by parts between y. and p. we get

Ope ||? 1 5 1., 5
| % ~[ly= (D)3 20 + <N (T 310

L*(%)

~(n0),, - (00)

3 L2(Q)

With the inverse inequality and Young inequality we
obtain

Ope |2 1 5 1., 5
| = (D)3 ) + I D10,

L2(%)
2 2
< C(HyOHL2(Q) T “ylHH—l(Q))'
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Thus

luell Lzsy + L) L2 (o) + [[P(0)| 3oy < C-

Passage to the limit

p.(0) = p1  weakly in L*(Q),
p(0) = po  weakly in Hy (),

ue. — 4 weakly in L*(X),

ye — ¥ weakly* in L=(0,T; L*(Q)),
y. — ¢ weakly* in L=(0,T; H'(Q)),
pe — P weakly* in L=(0,T; Hy(Q2))

)
p. —p  weakly* in L=(0,T; L*(Q))

,
Y,

— Typeset by Foil TEX —

11



%, y is the solution to (WE) corresponding to 1,

y(T) =0, §'(T) =0, and p is the solution to

g
|

7' —Ap=0 inQ, p=0 onX,
15(0) =poand P (0) =p; in Q.

Since @, we have

/ ‘g N y1>H1 H-1 (ﬁl(o)"%) L2(Q)

0)
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Uniqueness of «

For any (po,p1) € H () x L*(Q), set

A(po, 1) = (¥'(0), —y(0)),
where y is the solution to

9
V' —Ay=0 inQ, y=-L on¥
on

y(T)=0and % (T)=0 inQ.
and
p" —Ap=0 inQ, p=0 onX,

p(0) = po and p'(0) =p; in Q.
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Theorem.

(i) A is bounded from H}(Q2) x L*(Q) into H1(Q) x
L*(%2),

(i) A = A*,

(iii) A is an isomorphism from H}(Q) x L?(2) onto
H-1(Q) x L2(Q).
Proof. (i)

Jp
(p07p1) I %

belongs to L((H}(Q) x L*(Q); L*(X)), and

D s /(0),~(0)

belongs to L(L*(X); H () x L*(Q)).
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(if) Set
A(qo, 1) = (#(0), —2(0)),

where z i1s the solution to

0
2 —Az=0 inQ, r =4 on X,
on

z2(T)=0and 2 (T)=0 inQ.

and

g —Ag=0 inQ, ¢g=0 onX,
q(0) = qgo and ¢'(0) =¢; in Q.

— Typeset by Foil TEX — 15



With an integration by parts between ¢ and y we obtain

- (09 ©@), = (0900)

= <A(po,p1), (qO,ql)>.

Similarly we have

Opdq _
ondn <A(q(), q1), (poap1)>-

Thus
A=A~
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(iii) Since

/ ‘g A(po,p1), (po,p1)>

with the direct and inverse inequalities it follows that
A is injective. But A = A*, thus A is an isomorphism
from H} () x L*(Q) onto H~1(Q) x L*(Q).
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Consequence

If we set
(o, p1) = A" (y1, —¥o),
and if p is the solution of

p'—Ap=0 in@Q, p=0 onX,
p(0) = po and p'(0) =p; in Q.

then u = g—i Is the solution of minimal norm to the null

controllability problem.

It is the minimal norm solution because (y,u,p)
solves the optimality system of the minimal norm null
controllability problem.
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Algorithm

Find (po,p1) = A Yy1,—wyo), by solving the
minimization problem

inf{F(po,p1) | (po,p1) € Hy () x L*(2)},

where

F(p()apl) —

1
—(A ) ) ) > o < ) > ( ) ) .
2< (Pos 1) (Pos p1) Pory1) o T POV L

07

This problem can be solved, after discretization, by a
conjugate gradient method.

— Typeset by Foil TEX — 19



Part2
A Stabilization problem
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Setting of the problem

Consider the equation
(E) y'= Ay + Bu,  y(0) = o,

where the unbounded operator (A, D(A)) is the
infinitesimal generator of a strongly continuous
semigroup on Y, denoted by (e!);>g. The operator B

belongs to L(U;Y).

We suppose that (e!!);> is unstable.
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We look for w € L?(0,00;U), in a feedback form
u(t) = Ky(t)
so that the closed loop system
y'=(A+BK)y,  y(0)=yo,
Is exponentially stable on Y. That is
Het(AJFBK)HE(y) < Ce M for all ¢ > 0,

and for some \ > 0.
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Definition. The pair (A, B) is said to be stabilizable

iff there exists K € L(Y;U) such that (e!(4+5K)), 4
Is exponentially stable on Y.

Remark. If the system (E) is null controllable then the
pair (A, B) is stabilizable.

Example of a stabilizable system with a bounded
control operator.

ye — Ay +V - Vy = x,u inQ,
y(0) = yo in €,
&/y =0 on ..
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Example of a stabilizable system with
unbounded control operator.

yt—Ay+‘7-Vy:0 in (),

y(0) = yo in €,
0,y =0 on X\ X,
81/y — U on ...
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Theorem. Let (S(t))t>0 be a strongly continuous
semigroup on Y. The semigroup (S(t))¢>0 is
exponentially stable if and only if

/ 1S (t)yoll3 < oo for all yp € Y.
0

To solve the stabilization problem we look for the
solution to the control problem (P)

inf{J(y,u) | (y,u) obeys (E), u € L*(0,00;U)},

with

T =5 [ @45 [ @l
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The optimal control can be written in feedback form
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The LQR problem with a finite
time horizon
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Consider the problem (P(0,T,0))
inf{Jr(y,v) | (y,u) obeys (E), u € L*(0,T;U)},

with

Il =5 [ @I+ [ ek

We know that this problem admits a unique solution
(7, w) characterized by the optimality system

g,:Ay_BB*pa ’y(O) = Yo,
—p'=A"+y, p(T)=0,
u = —B"p(t).
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To find u in feedback form

we study the family of problems (P(s,T,())

inf{Js r(y,u) | (y,u) obeys (Es¢), u € L2(S,T; U)t,

with
1 [ , 1 [ )
Jsr,w) =5 [ lyOly +5 [ u@®)]o,
and
(Es.¢) y =Ay+ Bu,  y(s)= (.
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The solution (y¢, u¢) to (P(s,T),()) is characterized by

dy?

— =AYt —BBp;, yis) =,
dpe L ;

u(t) = —B*pi(t).

By linearity we have

(y5C1+C2’pﬁC1+C2’ uﬁCH—CQ) 6(yC1’pC1’ uC1)+(yE2’p22’ ugz)
Thus the mapping
P(s) : ¢+ pi(s)

Is linear from Y into itself.
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Forallt € [0, T, P(t)=P(t)* >0

With an IBP between the solution p¢ to
—p'=Ap+yi,  p(T)=0,
and the solution y¢ to
y = Ay — BB*p,  y(s) =¢,
we obtain
T T
P 7): () /(BH’BH)j
( (5)C, € . /8 Yes Ye Y"‘ S P, B pe)

forall(eY andall £ €Y.
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For all t € [0, T, P(t) € L(Y)

From the previous identity

HPE)GC), = Torlyg wd) < Jor(e=4¢,0)

< K|[<|13-
Thus

IPOY2| vy < K2, [P()|lcovy < K.
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t— (P(t)(,g)y is continuous

From the dynamic programming principle
pi(t) = P(t)yi(t) forallt € [s,T].

From the Duhamel formula and the DPP
T
Ol < 94+ [ DA B P(rye(r) I
Thus
lyZllcqs,m:v) < CliCly-

Next
1p¢lleqs,m:yy < ClC]ly-

— Typeset by Foil TEX — 33



It can be shown that

IimhﬁoHyéM —yelles+hyns, ) = 0,
and

limp—ollpE™" — pEllc(((s+n)nsm)iv) = 0.

From which we deduce that ¢ — (P(t)g“,g)y IS

continuous.
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P(-) is the solution to a Differential Riccati
Equation

Definition. We denote by C4([|0,T]; L(Y')) the space
of mapping P from [0,7T] to L(Y) such that t — P(t)(
belongs to C([0,T];Y) forall ( € Y.

We know that P € C4(]0,T]; L(Y)). We are going to
prove that P is the solution to the Differential Riccati
Equation

P*(t) = P(t) and P(t) >0,
P'(t) + A*P(t) + P(t)A — P(t)BB*P(t) + I = 0,
P(T) =
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Definition. A function P € C4(|0,T]; L(Y)) is a
solution to the DRE on (0,T) if, and only if, for every
(¢,&) € D(A) x D(A) the function (P(-)(, &) belongs
to W11(0,T) and satisfies

P*(t) = P(t) and P(t)>0 foralltel0,T],

L(P)C.€) + (PG, A + (P(DAC.©

—(P(t)BB*P(t)¢, &) + (¢, &) =0,
(P(T)¢,€) = 0.

Theorem. The function P is the unique solution to
the Differential Riccati Equation on (0,7).
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For ((,&) € D(A) x D(A), consider the two systems

7= Az — BB*p, 2(s) = (,

—p' = A"p+ 2, p(T) =0,
and

y' = Ay — BB*q, y(s) =&,

—q¢' =A%q+y, qT)=0.
In the previous notation we have (z,p) = (yZ,p¢) and
(v, q) = (yg, pg)-
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Let us denote by %(P(s)(j,f) the right hand side
derivative of the mapping s — (P(s)(,£). We prove
that for every ((,&) € D(A) x D(A), we have

T P16.€) + (PG, A + (P(DAC,©
~(POBBP()G.€) + (C.€) =0,

for all ¢ € [0,T|. For ((,&) € D(A) x D(A), the
solutions z and y satisfy

t
2(t) = elt=9)4¢ — / e =MABB*p(7) dr,
and
t
y(t) = elt=5)A¢ —/ e(t_T)ABB*q(T) dr.
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Thus we have

imissoll (2(s + h) — 2(s)) — AC + BB*p(s)]ly =0,

and

imis ol (s + h) — y(s)) — A€ + BBq(s) [y = 0.

Using a previous identity we obtain

(P(s+ h)z(s + h),y(s + h)) — (P(s)z(s),y(s))
_ /  (GOwO) + (B0, Bra0) dr
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and
imy o ((P(s+ h)=(s + ), y(s + k) = (P(s)2(5),(5)) ) /1
= —(2(5),9(s)) = (B"p(s), B*q(s));
We also have
(P(s+h)z(s + h),y(s +h)) — (P(s)2(5),y(s))
= (P(s+ h)=(s + h), y(s + h) - y(s))
+(2(s + ) = 2(s), P(s + h)y(s))
+((P(s +h) = P(s))2(s), y(s) ).

Dividing by h and passing to the limit when h tends to
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zero, we obtain

—(¢,8) = (B*P(s)¢, B*P(s)¢)

= (P(s)¢, A) + (AC, P(s)§) — 2(B*P(s)¢, B*P(s)§)

d+
+—(P(5)¢, ),

that is

.
"P)GE) + (PG, AQ) + (A P)E) + (0,0

—(B*P(s)¢, B*P(s)£) = 0.

Since the mapping

s = (P(s)¢, )
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is continuous on [0, 7], and the mapping

s S (P(s)C,€) = —(C,€) + (B*P(s)¢, B*P(s)¢)

is bounded and continuous on [0, 7’|, we can affirm that

s = (P(s)¢,¢)

is of class C! on [0,7]. Thus P is a solution to the
Differential Riccati Equation.

Theorem. The solution (%, ) to problem (P (0,7, o))
Is characterized by

u(t) = =B*P()y(t),
y'=Ay—BB*Py,  y(0) = yo.
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Remark Setting Q(t) = P(T —t), where P is the
solution to the previous DRE, we can show that () is
the solution to

Q*(t) =Q(t) and Q(t) =0,
't) = A*"Q() + Q(H)A — Q(t)BB*Q(t) + 1,
(0) = 0.

Q
Q
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Generalization to the problem

inf{Jr(y,u) | (y,u) obeys (E), u € L*(0,T;U)},
with

Jr(y, u)

1

£ 9 1 2 1 g 2
:5/ \\Cy(t)]!z+§|]Dy(T)HZT+§/ lu(®)]]7-
0 0

The solution (g, u) is characterized by

y = Ay—BB*Py,  §(0) = yo,
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where P is the solution to
P*(t) = P(t) and Q(t) 20,
—P'(t) = A*P(t)+ P(t)A — P(t)BB*P(t) + C*C,
P(T) = D*D.
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The LQR problem with an infinite
time horizon
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Now we consider the control problem (P)

inf{J(y,u) | (y,u) obeys (E), u € L*0,00;U)},

with
1 [ 5 1 [ 5
Ty, u) =3 ly@lly +5 Ju(®) |7,
0 0
and
(E) y' = Ay+ Bu,  y(0) = yo.
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Finite cost condition For every yy € Y, there exists
Uy, S-T.

J(y(y07 uy0)7 uyo) < Q.

Remark If (A, B) is stabilizable then the (FCC) is
satisfied. The converse proposition is true.

Theorem. Suppose that the (F'C'C') is satisfied. Then
(P) admits a unique solution. This solution (%, u)
obeys

where P is the minimal solution to the ARE

pP*=P>0,
A*P+ PA— PBB*P+1=0.
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Moreover 1

J(y,u) = i(Py%yO)Y-

Definition. An operator P € L(Y') is a solution to the
ARE iff

pP*=P>0,
(P¢, AE) + (PAC,§) — (PBB*P(,§) + (¢, §) =0.

An operator P € L(Y) is a minimal solution if it is a
solution and if

P <@ for any solution ().

Theorem. The ARE admits a unique minimal solution.
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Proof.

Consider the problem
(Q(s,T.¢))  inf{I(s,T;¢,u) | ue L¥(s, T;U)},

with

1

T T
< 1
I, TiCu) =5 [ It u@Idet 5 [ (el de

and y¢ , Is the solution to

y' = Ay + Bu, y(s) = ¢.
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For every ( € Y let u,s be the solution to (Q(s, 0, ()).
Let P,,;, be the solution to the differential Riccati

equation

P=P*>0, P(0)=0,
P' = A*P+ PA— PBB*P + 1.

Let us prove that, for every ( € Y, the mapping
t — (P(t)(, () is nondecreasing. Let 0 < T} < T, we
know that

inf(Q(0,Ty,¢)) = 3
inf(Q(0,T%,¢)) = 3(P(T»)¢, C),
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and
inf(Q(0, T3, ())
= infue 2020 { 100, Th, G, w) + inf(Q(Ty, T, 2, (T1)) |
> inf(Q(0, 71, )).
Thus the mapping t — (P(¢)¢, () is nondecreasing.
On the other hand
(P()C,C) < 21(0,: . uc) < 2J(=(C, uc), uc) < oc.

Thus the limit lim;_ o (P(t)(, () exists and is finite for
every ( € Y. Since

(P()C,€) = Z(PO(CHE). CHE) 7 (PH(C—E), (~E).
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applying the Banach-Steinhaus theorem to the
family —of operator (P(¢)(,:), we deduce
that  sup;~o|(P(t)(,-)] < o0. Next,  still
with the Banach-Steinhaus theorem, we obtain
sup,;>o|(P(t)-,:)] < oo. Therefore there exists an
operator P° e £(Y) such that

min

iMoo (P(t)¢,¢) = (Prin€, €).

Since P(t) = P*(t) > 0 it follows that P> =
(Prin)™ = 0.

min

For every ( € D(A), we have

d
Z(P(£)C,0)

= (PC, AQ) + (PAC, ¢) — (PBB*P(, () + (, €).
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The mapping t — (P(t)(, () is of class C!, the right
hand side of the equation admits a limit when ¢ tends
to infinity, thus the limit of 4(P(¢)(,¢) exists and is
necessarily zero. This means that P>° is a solution to

min

the ARE. To prove that P75, is a minimal solution, we

suppose that P is an other solution. Observe that P is
also the solution to the differential Riccati equation

A

P=PpP*>0, P(0)=P,
P =A*"P+ PA— PBB*P + 1.
Since P(0) > Ppin(0) = 0, we have P (t) < P(t) =

P. Passing to the limit when ¢ tends to infinity, we
prove that P°° < P

min
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Theorem. The unique solution (g, %) to problem (P)
satisfies the feedback formula

where P> is the minimal solution to ARE, and ¥ is

min

the solution to

y' = Ay — BB*P>. v, y(0) = yo.

Moreover the optimal cost is given by

—(Pﬁfmyo, yo)Y

J(g,ﬂ) — 9

The Algebraic Riccati Equation admits a unique
solution.
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Proof. Let y be the solution to
g =Ay—BB*Py,y,  §(0) = yo.

The solution to problem

ni{5 [ (Il + 1l + 2P0 @), 5 @)y
lw e L0, T: U)},

where y,, Is the solution to equation
y = Ay + Bu,  y(0) = yo,

is given by (¢,u) = (y, —B*Py), where P solves the
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Riccati equation

P=P*>0, P(T)=P2

main’?

—P'=A*"P+ PA— PBB*P + 1,

and g satisfies ' = Ay — BB* Py, and §(0) = yo. Still
the previous part, we have

(POw.w0) = [ (112 +1817) + (P35 (1), 5(T)).

But P°° is the unique solution to the above DRE.

Consequently we have (y,4) = (y,u), and for every
17 >0

(Pt 0) = [ (1517 +1712) + (P35 (D). 5T)).
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When 1" tends to infinity we obtain
2J(g7 ﬂ') < (P’I’C;I?l,ny()? yO)
Considering the problem
e 2 2 2
nfls | (e +lulip) 1w e 20, 750) )
we also have
T
Prin@oswo) < | (1917 + 1) < 275,
0

and

T
PrinTos0) < [ (Il + ul?) < 27,
0
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for all u, where P,,;, is the above DRE. By passing to
the limit when 7' tends to infinity it yields

Pz < [ (1P + ) de < 27(5,0)
0
and

(P22 40, Y0) < 2J (Yu, v, for all u € L?(0,00;U).

m

Thus (P22, 10, %0) = 2J(y,u) = 2inf(P), and (y,u) is

main

the unique solution to problem (P).
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Lemma. If P is a solution to the ARE, then the
operator A — BB*P with domain D(A) is the

generator of an exponentially stable semigroup on Y.
Proof. Let ( € Y, let y be the solution to

y(0)=(, 1y = Ay — BB*Py.
First suppose that ( € D(A). Let (u,), be a sequence
in C([0,00);U) N L?*(0,00;U) converging to —B*Py

in L?(0,00;U). Let y,, be the solution to the equation
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With the ARE, we deduce

d

%(Pyn(t), yn(t)) = 2(Ay,, + Buy,, Pyy,)

— _(ynayn) - (B*Pyna B*Pyn) + 2(B*Pyn7 B*Pyn)

Therefore we have

(Pyalt).va(0) + | (loml + 1B Pya)
= (P(, () + /Ot (QHB*PynH2 — 2(un,B*Pyn)).

By passing to the limit when n tends to infinity, we
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obtain

t
[ (i + 15" Pyl?)

< (Pyt)w(e) + [ (Il +15°Pyl?)
— (PC,0).

By a density argument this inequality also holds for
every ( € Y and we have

[ (P +18°PulP) < (Pe.0)
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Lemma. Let P and () be two solutions to the
ARE. Suppose that the operator A — BB*P with
domain D(A), is the generator of an exponentially
stable semigroup in Y. Then P > ().

Proof. Since P and () are two solutions to ARE, we
can verify that

(P—-Q)(A— BB*P)
+(A— BB*P)*(P—- Q)+ (P —Q)BB*(P - Q) = 0.

From this identity, we deduce:

d . * . *

E((P B Q)et(A BB*P); ot(A-BB P)C)
= —|[B*(P — Q!5 P

for all ( € D(A). By integrating this equality between
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0 and T', we obtain
(P -Q)¢.¢)
_ ((P _ Q)eT(A-BBP)¢ eT(A—BB*P)C)
T *
b [ 1B (P - QP T P
0
> ((P B Q)eT(A—BB*P)C’ eT(A—BB*P)C).

By passing to the limit when T tends to infinity, we
obtain ((P — Q). g) > 0 for all ¢ € D(A), that is
P>qQ.
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Stabilization of a convection-diffusion
equation

Neumann Hom.

Neumann

Hom.

Neumann Hom.
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Notations

Q = Q x (0,00) Space-time domain

Q = (0,10) x (0, 10)
=T x (0,0) Lateral boundary

Ye =T, x(0,00) Control boundary
', ={1} x (0,10) Observation on a boundary
I'. = {0} x (0,10)
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State equation
yt—Ay+‘7-Vy—cy:O in (),

y(O) — Yo In Q?
6yy — O on E \ ZC)
0,y = u on 2.

Cost functional

1 [~ >
nww =g e L

. 0

1 [~ >
so =g e
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Setting
Ay=Ay—V - Vy + cy,

D(A)={y € H*(Q) | 8,y = 0}
(Bu, §) = / ud,

The state equation can be written in the following form

(1)) = / )86+ div(Te) + [ us,
for all ¢ in

D(A*) = {p € H* Q) | 9,6 +V -fip = 0 on T'},

with
A*p = A + div(V ),
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thus we have

y = Ay + Bu, y(0) = o.

Problem (P) admits a unique solution (g, %) which
Is characterized by

u(t) = =B Py(t),

where
P Is the solution to the ARE

P=P >0, AP+ PA—-PBB*P +2C*C =0,
B* Is the trace operator on I,
in example 1

C=C*=1,
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in example 2

C Is the trace operator on I'o,

and
C* ’ ¢ L]

Remark. A null controllability result can be proved
for the convection-diffusion equation. Thus the pair
(A, B) is stabilizable.

Similarly we can prove that the pair (A, C') is detectable.

Thus the ARE admits a unique solution.
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Algorithms

Numerical resolution of the finite dimensional Riccati
equation

P=P >0, AP+ PA— PBB*P+C"C' =0

Hypotheses
(H) The pair (A, B) is stabilizable, and the pair (A, C)
is detectable.

Methods based on the computation of the eigenvalues
of the matrix

H:[ A —BB*]

ccr —-Ar
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The spectrum of H is symmetric w.r. to the origin and
H has no eigenvalues with a null real part.

Algorithm 1.

1 - Compute the eigenvalues and the eigenvectors of H
by the () R-method.

2 - Select the eigenvectors corresponding to eigenvalues
with a negative real part. Let V7 be the matrix whose
columns correspond to these vectors:

n=[ W]

Va1

3 - Solve V; P = V3 to calculate P.
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Algorithm 2.
1 - Write the real Schur decomposition of H

T=U"HU

2 - Use orthogonal transformations to reorder the matrix
T" so that the quasi-triangular bloc 771 has eigenvalues
with a negative real part.

3 - Solve Uj;P = Uj; to compute P, where U; =

[Ull

[ ] , are the Schur-vectors corresponding to 77;.
21
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Q = (0,10) X

mesh size =

The equation

Yt

with

Numerical tests

(0,10),  At=0.01, T =10,
1

—Ay+‘7-Vy—cy:O,

vV =[10 3|7, c=0 or ¢c=3.
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Control boundary
' ={0} x (0,10) or I'.={0} x (3,6).

Cost functional

1 ©.@ @)
D) =5 [ [ e [ ]2
0 c 0 Q
or
I _1 ©.@) 5 ) 5 B
oy =s [ [ [T [ A = {1yx.0)
0 I'c 0 I's
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Without control ¢ = 3, yg = cos(2mx1/10)sin(2mwx2/10)

Etat initial t=0
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Norme de I'état non controlé, ¢ =3
4500 T T T T T T T T T

4000

3500

3000

2500

2000

1500

1000

500 -

0 10 20 30 40 50 60 70 80 90 100
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Control on I'. = {0} x (0, 10)

Observation on Dy = ()

c =3, Yo(x1,x2) = cos(2wx1/10)sin(2wxo/10)
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Norme du contrdle, D0 =Q
14000 T T T T T T T T T

12000 [ -

10000 - T

8000 - T

6000 - -

4000 - _

2000+ -

0 10 20 30 40 50 60 70 80 90 100
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Norme de I'état, D0 =Q

1600 T

1400

1200

1000

800

600

400

200
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Control on I'. = {0} x (0, 10)

and on I'. = {0} x (3,6)

Observation on Dy =T, = {1} x (0, 10)

c =3, Yo(x1, x2) = cos(2mx1/10)sin(2wxy/10)
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4 Norme des contréles, Fc ={0}x]0, 10]et{0} x[3, 6]
2.5 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

— Typeset by Foil TEX —



Norme des états, Fc ={0} x[0,10] et {0} x]3, 6]
4500 T T T T T T T T T

4000

3500

3000

2500

2000

1500

1000

500 n

0 50 100 150 200 250 300 350 400 450 500
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D, =Ty M, =136]t=25
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D =Tyl =[36]t=5
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Control on I'. = {0} x (0, 10)

Observation on Dy = ()

c =0, Yo(x1,x2) = cos(2wx1/10)sin(2wxo/10)
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12 T

Norme du contrdle, D0 =Q,c=0
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Norme de I'état, D0 =Q,c=0

18
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c=0,t=10

90
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Part 3
The conjugate gradient method

for solving an

optimal control problem
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The conjugate gradient method

Consider the optimization problem
(Pr) inf{ F(u) | ue U},

where U is a Hilbert space and F' is a quadratic
functional

Flu) = %(u, Q)i — (b, ).

In this setting Q € L(U), Q@ = Q* >0, b € U, and

(+,-)u denotes the scalar product in U. For simplicity
we write (-, -) in place of (-, -)y.
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The principe of the GCM:
1. Choose ug € U and compute

d() = —QUO -+ b.

Minimize F' over Cy = ug + Vect(dp). Let u; be the
solution.

2. Ifdy,...,dr_1,ur—_1 are known, u; is the solution
of
(Py) inf{ F(u) | u € Cir_1},

where C_1 = up_1 + Vect(do, ..., dk_1)
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Let us recall the GC algorithm:

Algorithm 1.

Initialization. Choose ug in U. Compute gop = Qug—b.
Set dyp = —¢gg and n =0.

Step 1. Compute

Prn = (Gn, Gn)/(dn, Qdy),

and
Up+1 = Up T+ pndn

Determine

gn+1 = Qun—l—l — b= 9n + andn

— Typeset by Foil TEX — 94



Step 2. If ||gnr1llu/||gol|lu < €, stop the algorithm and
take u = u, 41, else compute

Br. = (Gn+1:9n+1)/(gn> 9n);

and
dn—|—1 = —0gn+1 T ﬁndn
Replace n by n+1 and go to step 1.
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The conjugate gradient method for control
problems

We want to apply the CGM to problems studied in
chapters 1, 3, 4. The state equation is of the form

(E) y'=Ay+Bu+f,  y(0)=yo,
and the control problem is defined by
(P2) inf{.J (yu,u) | u € L*(0,T:U)},

T =5 [ lIowe) =0l

1

1 T
Hipy) - iz, 4 L / lu()l3.
2 2/,

We have to identify problem (FP;) with a problem of

— Typeset by Foil TEX — 96



the form (P;). Let y, be the solution to equation (E),
and set F'(u) = J(yy,u). Observe that (y.,y.(T)) =
(Au, Asu) + C(f,yo), where A; is a bounded linear
operator from L?(0,T;U) to L?(0,T;Y), and As is a
bounded linear operator from L?(0,T;U) to Y. We
must determine the quadratic form () such that

J (Y, 1) = %(u, Qu)y — (b,u)y + c.

Since (Yu, Yu(T)) = (Ayu, Asu) + ((f,yo), we have
Q = AiC*CAy + A5D*DAs + 1,
where C' € L£(L2(0,T,Y); L%(0,T;Z)) is defined by

(Cy)(t) = Cy(t) for all y € L*(0,T;Z), and C* €
L(L*(0,T;Z); L*(0,T;Y)) is the adjoint of C. In the
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CGM we have to compute Qd for some d € L*(0,T;U).
Observe that (A1d, Azd) is equal to (wgq, wq(T)), where
wy IS the solution to

w' = Aw + Bd, w(0) = 0.

Moreover, using an IBP, we can prove that Ajg = B*p;,
where p; is the solution to equation

and ASpr = B*ps, where ps is the solution to equation
—p'=A"p,  p(T) = pr.

Thus A*C*CAid+A3D*DAsd is equal to B*p, where
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p is the solution to

—p' = A*p + C*Cuwy, p(T) = D*Dwy(T).

If we apply Algorithm 1 to problem (P») we obtain:
Algorithm 2.

Initialization. Choose ug in L?(0,T;U). Denote by
" the solution to the state equation

y' = Ay+ Buo+ f,  y(0) = vo.
Denote by p" the solution to the adjoint equation
—p' = Ap+C*(Cy°—za), p(T) = D*(Dy"(T)—2r).

Compute go = B*p’ +ug , set dy = —gg and n = 0.
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Step 1. To compute (Xd,,, we calculate w,, the solution
to equation

w' = Aw + Bd,, w(0) = 0.
We compute p,, the solution to equation
—p' = A*p + C*Cw,, p(T) = D*Dw,(T).

We have Qd,, = B*p,, + d,. Set g, = B*p,, + d,.
Compute

P = —(In> 9n)/ (Gn;> Gn);
and
Unt1 = Uy + Prdy.
Determine
In+1 = gn T Pndn-

— Typeset by FoilTEX — 100



Step 2. It H9n+1”L2(0,T;U)/H90||L2(0,T;U) < ¢, stop the

algorithm and take u = u,1 1, else compute

671 — (gn—l—lygn—i—l)/(gna gn)a

and
dn+1 — —gn+1 + Bndn
Replace n by n+1 and go to step 1.
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Algorithms for discrete problems

For numerical computations, we have to write

discrete approximations to control problems. Suppose
that equation

y = Ay + Bu + f, y(0) = yo,

Is approximated by an implicit Euler scheme

0
Y = Yo,

(DE) form=1,...,M, y"is the solution to
ALt(yn . yn—l) — Ayn o+ Bu™ + fn’

<
S

n tn n tn
where f" = z7 [," f(t)dt, u" = z7[," u(t)dt,

t, = nAt, and T = MAt. To approximate the
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functional J(y,u) we set

M
1
I (y,u) = §Atz ICy™ — 23117

M
1 1 )
DM = rlF, + AL un,

With y = (yo,...,yM), u = (ul,...,uM)
N ft t)dt. We can define a discrete control

problem assoaated with (P») as follows:

' Zd -

(Py) inf{Jar(y,u) | u € UM, (y,u) satisfies (DE)}.

To apply the CGM to problem (P;), we have to
compute the gradient of the mapping u — Jys(yu, u),
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where 1, is the solution to (DE) corresponding to w.
Set Fis(u) = Jpr(yu, w). We have

M
Fy(a)u = At Z(Cg” — 2z, Cwl) 7

n=1

M
+(DgM — Yr, Dwzjy)ZT + At Z(ﬂnv un)Ua

n=1
where § = yz and w = (wY,...,wM) € YMTL is
defined by
wY = 0,
(G) form=1,..., M, w"™is the solution to
~(w" —w" ) = Aw™ + Bu"™.

To find the expression of F'j, (@), we have to introduce
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an adjoint equation. Let p = (p°,...,pM) be in YM+1
or in D(A*)MT1 if we want to justify the calculations.
Taking a weak formulation of the different equations in
(G), we can write

Now, by adding the different equalities, we find the
adjoint equation by identifying

M
AN (CY" — g, Cul) g + (DM — yr, Dwl) 7,

n=1
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with

M
At Z(un, B*pn—l)U
n=1

More precisely, if p = (p°,...,p™) is defined by

pM = D*(DzM — yp),
form=1,...,M, p"is the solution to
Ait(_pn _|_pn 1) A* n—1 T C*(CZTL . yd)

then
M M
Fip(@u=At» (u",Bp" Ny + At Y (a"u")y.
n=1 n=1

Observe that the above identification is not justified
since D*(Dy™ — yr) does not necessarily belong to
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D(A*). In practice, a 'space-discretization’ is also
performed. This means that equation (E) is replaced by
a system of ordinary differential equations, the operator
A is replaced by an operator belonging to £(R*), where
¢ is the dimension of the discrete space, and the above
calculations are justified for the corresponding discrete
problem.
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