

Thresholds for entanglement criteria in quantum information theory

Joint results with Nicolae Lupa, Ion Nechita and David Reeb

Toulouse 2015

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Content

- Entanglement via positive maps approach
- Reduction Criterion (RED)
- Absolute Reduction Criterion (ARED)
- Approximations of (A)SEP
- Thresholds for RED and ARED
- Comparing entanglement criteria via thresholds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction: Entanglement versus separability

Entanglement=inseparability

Separable state: $\rho = \sum_{i} p_{i} e_{i} e_{i}^{*} \otimes f_{i} f_{i}^{*}, p_{i} \ge 0, \sum_{i} p_{i} = 1, e_{i} \in \mathbb{C}^{n}, f_{i} \in \mathbb{C}^{k}$

Goal: efficient methods to characterize entangled states

PPT criterion:¹ if a state is separable, then the partial transpose respect to one of the subsystems is positive-semidef.

$$SEP := \{ \rho_{AB} : \rho_{AB} - sep \} \subset PPT = \{ \rho_{AB} / \rho^{\Gamma} \ge 0 \}$$

Tool to detect entanglement: if the partial transpose is not positive-semidefinite, then the state is entangled **Question**: exists other postive maps φ such that $(id \otimes \varphi)(\rho) \ngeq 0$, for some ρ entangled state

¹A. Peres, Separability criterion for density matrices, PRL 77, 1996 and a solution of the second second

Separability criteria based on positive maps approach Mathematical formulation²:

 $\begin{array}{l} \rho \in \mathcal{M}_n \otimes \mathcal{M}_k \text{ separable iff} \\ \rho^{\varphi} := [\mathrm{id} \otimes \varphi](\rho) \geq \mathbf{0}, \forall \varphi \geq \mathbf{0}, \varphi : \mathcal{M}_k \to \mathcal{M}_m, \text{ all positive} \\ \text{ integers } m \in \mathbb{N} \end{array}$

$$SEP := \{\rho : \rho^{\varphi} \ge \mathbf{0}\}$$

- ► transposition map $\varphi \Rightarrow$ Positive Partial Transposition (PPT)
- reduction map: $\varphi(X) := I \cdot TrX X \Rightarrow$

Reduction Criterion (RC)³:

$$\rho_{AB} - sep \Rightarrow \rho_A \otimes I_B - \rho_{AB} \ge 0 \quad , I_A \otimes \rho_B - \rho_{AB} \ge 0 \quad (1)$$

 $\rho_A = [id \otimes Tr](\rho_{AB})$ partial trace over the second subsystem

²Horodecki M, Separability of mixed states: necessary and sufficient conditions, Phys. Lett A, 1996

³Horodecki and all.'99, Cerf and all. '99

Separability via Reduction Criterion

► SEP ⊂ RED := {
$$\rho$$
 : ρ ^{red} := $\rho_A \otimes I_B - \rho_{AB} \ge 0$ }

• ρ_{AB} rank one entangled state, then $\rho^{red} \geq 0$

•
$$\rho^{\Gamma} \geq \mathbf{0} \Rightarrow \rho^{red} \geq \mathbf{0}, (PPT \subset RED)$$

- ▶ If *dimB* = 2, then PPT=RC
- RC connected to entanglement distillation: all states that violate RC are distillable.

$$SEP \subset PPT \subset RED$$

Absolutely Separable States

Knill's question⁴: given an self-adjoint positive semi-definite operator ρ , which are the conditions on the spectrum of ρ such that ρ is separable respect to any decomposition?

ASEP: states that remain separable under any unitary transformation

$$ASEP_{n,k} = \bigcap_{U \in \mathcal{U}_{nk}} USEP_{n,k}U^*$$

Goal= conditions on the spectrum such that to be separable!

$$APPT_{n,k} := \{ \rho \in \mathcal{D}_{n,k} / \forall U \in \mathcal{U}_{nk} : (U\rho U^*)^{\Gamma} \ge \mathbf{0} \} = \bigcap_{U \in \mathcal{U}_{nk}} UPPT_{n,k} U^*$$

$$\textit{ARED}_{n,k} := \{ \rho \in \mathcal{D}_{n,k} / \forall U \in \mathcal{U}_{nk} : (U\rho U^*)^{\textit{red}} \ge 0 \} = \bigcap_{U \in \mathcal{U}_{nk}} U \text{RED}_{n,k} U$$

⁴Open Problems in Quantum Information Theory, http://www. imaph.tu-bs.de/gi/problems

Absolutely PPT states

- necessary and sufficient conditions ⁵ on the spectrum under which the absolute PPT property holds
- the condition is to check the positivity of an exponential number of Hermitian matrices (the number of LMI is bounded above by e^{2p/np(1+o(1))}, p = min(n, k))
- if $\rho \in \mathcal{H}_{2n} = \mathcal{H}_2 \otimes \mathcal{H}_n$, then $\rho \in APPT$ iff

$$\lambda_{1} \leq \lambda_{2n-1} + 2\sqrt{\lambda_{2n}\lambda_{2n-2}}$$

• if
$$\rho \in \mathcal{H}_{3n} = \mathcal{H}_3 \otimes \mathcal{H}_n$$
, then $\rho \in APPT$ iff

$$\begin{pmatrix} 2\lambda_{3n} & \lambda_{3n-1} - \lambda_1 & \lambda_{3n-2} - \lambda_2 \\ \lambda_{3n-1} - \lambda_1 & 2\lambda_{3n-3} & \lambda_{3n-4} - \lambda_3 \\ \lambda_{3n-2} - \lambda_2 & \lambda_{3n-4} - \lambda_3 & 2\lambda_{3n-5} \end{pmatrix} \ge 0,$$

$$\begin{pmatrix} 2\lambda_{3n} & \lambda_{3n-1} - \lambda_1 & \lambda_{3n-3} - \lambda_2 \\ \lambda_{3n-1} - \lambda_1 & 2\lambda_{3n-2} & \lambda_{3n-4} - \lambda_3 \\ \lambda_{3n-3} - \lambda_2 & \lambda_{3n-4} - \lambda_3 & 2\lambda_{3n-5} \end{pmatrix} \ge 0.$$

$$(2)$$

⁵Hildebrand, Positive partial transpose from spectra, PRA, 2007, ABA BAR Sector BAR SE

Absolutely Reduced pure states

$$ARED_{n,k} := \{ \rho \in D_{n,k} \mid \forall U \in \mathcal{U}_{nk} : (U\rho U^*)^{red} \ge 0 \}$$
(3)

Reduction of pure state⁶:

Given a vector $\psi \in \mathbb{C}^n \otimes \mathbb{C}^k$ with Schmidt coefficients $\{x_i\}_{i=1}^r$, the eigenvalues of the reduced matrix $(\psi \psi^*)^{red}$ are

spec
$$\left(\left(\psi\psi^*\right)^{red}\right) = \left(\underbrace{x_1, \dots, x_1}_{k-1 \text{ times}}, \eta_1, x_2, \dots, \eta_{r-1}, \underbrace{x_r, \dots, x_r}_{k-1 \text{ times}}, \underbrace{0, \dots, 0}_{(n-r)k \text{ times}}, \eta_r\right)$$

where $x_i \ge \eta_i \ge x_{i+1}$ for $i \in [r-1]$ and $\eta_r = -\sum_{i=1}^{r-1} \eta_i \le 0$. The set $\{\eta_i\}_{i=1}^r \setminus \{x_i\}_{i=1}^r$ is the set of solutions $\eta \in \mathbb{R} \setminus \{x_i\}_{i=1}^r$ of the equation

$$\sum_{i=1}^r \frac{x_i}{x_i - \eta} = \frac{1}{2}$$

⁶M.A. Jivulescu, N. Lupa, I. Nechita, D. Reeb, Positive reduction from spectra, Linear Algebra and its Applications, 2014

Characterizing Absolutely Reduced states

$$ARED_{n,k} = \{ \rho \in D_{n,k} : \forall x \in \Delta_{\min(n,k)}, \langle \lambda_{\rho}^{\downarrow}, \hat{x}^{\uparrow} \rangle \ge 0 \}, \quad (4)$$

where $\lambda_{\rho}^{\downarrow}$ is the vect. of the eigenvalues of ρ and \hat{x}^{\uparrow} is the vector of Schmidt coefficients.

$$\hat{x} := (\underbrace{x_1, \dots, x_1}_{k-1 \text{ times}}, \eta_1, \underbrace{x_2, \dots, x_2}_{k-1 \text{ times}}, \dots, \eta_{r-1}, \underbrace{x_r, \dots, x_r}_{k-1 \text{ times}}, \underbrace{0, \dots, 0}_{(n-r)k \text{ times}}, \eta_r),$$

 η_i are the solutions of the equation $F_x(\lambda) := \sum_{i=1}^q \frac{m_i x_i}{x_i - \lambda} - 1 = 0.$

 necessary and sufficient condition on the spectrum as family of linear inequalities in terms of the spectrum of reduced of a pure state

• given $\rho \in M_2(\mathbb{C}) \otimes M_k(\mathbb{C})$, then $\rho \in ARED_{2,k}$ if and only if

$$\lambda_1 \leq \lambda_{k+1} + 2\sqrt{(\lambda_2 + \cdots + \lambda_k)(\lambda_{k+2} + \cdots + \lambda_{2k})}.$$

Approximations of SEP SEPBALL_{*n,k*} = $\left\{ \rho \in D_{n,k} \mid \operatorname{Tr}(\rho^2) \leq \frac{1}{nk-1} \right\}$

- ▶ largest Euclidian ball⁷ inside $D_{n,k}$, centered at $\frac{1}{nk}$
- contains states on the boundary of D_{n,k}
- all states within SEPBALL are separable
- ▶ depends only on the spectrum, i.e. SEPBALL_{*n,k*} \subset ASEP
- it is smaller than other sets

$$\text{GER}_{n,k} = \left\{ \lambda \in \Delta_{nk} : \sum_{i=1}^{r-1} \lambda_i^{\downarrow} \le 2\lambda_{nk}^{\downarrow} + \sum_{i=1}^{r-1} \lambda_{nk-i}^{\downarrow} \right\}$$

- the defining equation⁸ represents the sufficient condition provided by Gershgorin's theorem for all Hildebrand APPT matrix inequalities to be satisfied
- ▶ lower approximation of APPT, since $GER_{n,k} \subset APPT_{n,k}$
- provides easily-checkable sufficient condition to be APPT, much simpler that Hildebrand's conditions

⁷Gurvitz L., PRA 2002

⁸M.A. Jivulescu, N. Lupa, I. Nechita, D. Reeb, Positive reduction from spectra, Linear Algebra and its Applications, 2014

Approximations of (A)SEP

$$\mathrm{LS}_{\boldsymbol{\rho}} := \{ \lambda \in \Delta_{nk} : \lambda_1^{\downarrow} \leq \lambda_{nk-\boldsymbol{\rho}+1}^{\downarrow} + \lambda_{nk-\boldsymbol{\rho}+2}^{\downarrow} + \dots + \lambda_{nk}^{\downarrow} \}$$

LS_P -the sets of eigenvalue vectors for which the largest eigenvalue is less or equal than the sum of the *p* smallest (arbitrary *p* ∈ [*nk*])

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▶ For $n, k \ge 3$, APPT $\subseteq LS_3 \subseteq LS_k \subseteq ARED_{n,k} \subseteq LS_{2k-1}$.

Threshold concept

Threshold=the value *c* of the parameter, giving an scaling of the environment, value at which a sharp phase transition of the system occurs!

Mathematical characterisation⁹:

Consider a random bipartite quantum state $\rho_{AB} \in M_n(\mathbb{C}) \otimes M_k(\mathbb{C})$, obtained by partial tracing over \mathbb{C}^s a uniformly distributed, pure state $x \in \mathbb{C}^n \otimes \mathbb{C}^k \otimes \mathbb{C}^s$. When one (or both)of the system dimensions *n* and *k* are large, a threshold phenomenon occurs:

if $s \sim cnk$, then there is a *threshold value* c_0 such that

- for all *c* < *c*₀, as dimension *nk* grows, *P*(*ρ*_{AB} satisfies the entangled criterion) = 0;
- 2. for all $c > c_0$, as dimension *nk* grows, $P(\rho_{AB} \text{ satisfies the entangled criterion}) = 1;$

Reduction Criterion: RMT approach

 $W = XX^* \in M_d(\mathbb{C})$ -Wishart matrix of parmeters *d* and *s*. Wishart matrices – physically reasonable models for random density matrices on a tensor product space.

The spectral properties of $\rho^{red} \rightarrow reduced matrix$

$$R = W^{red} := W_A \otimes I_k - W_{AB},$$

where W_{AB} is a Wishart matrix of parameters nk and s, W_A is its partial trace with respect to the second subsystem B. Issues:

- study the distribution of the eigenvalues of the random matrix R = W^{red}
- evaluating the probability that R is positive semidefinite

Moment formula for R

Theorem The moments of the random matrix $R = W^{red} = W_A \otimes I_k - W_{AB} \in M_{nk}(\mathbb{C})$ are given by¹⁰

$$\forall \boldsymbol{p} \geq 1, \quad \mathbb{E}\mathrm{Tr}(\boldsymbol{R}^{\boldsymbol{p}}) = \sum_{\alpha \in \mathcal{S}_{\boldsymbol{p}}, f \in \mathcal{F}_{\boldsymbol{p}}} (-1)^{|f^{-1}(2)|} s^{\#\alpha} n^{\#(\gamma^{-1}\alpha)} k^{\mathbf{1}_{f\equiv 1} + \#(\boldsymbol{P}_{f}^{-1}\alpha)},$$
(5)

(# -number of cycles of α , $f : \{1, \dots, p\} \rightarrow \{1, 2\}$). Examples:

$$\mathbb{E}\mathrm{Tr}(R) = nk(k-1)s$$
$$\mathbb{E}\mathrm{Tr}(R^2) = (k-2)\left[(ks)^2n + ksn^2\right] + nks^2 + (nk)^2s.$$

¹⁰M.A. Jivulescu, N. Lupa, I. Nechita, On the reduction criterion for random quantum states, Journal of Mathematical Physics, Volume: 55, Issue: 11, 2014

Moment formula

The proof is based on

- ► the development of R^p using the non-commutative binomial formula R^p = ∑_{f∈F_p} (-1)^{|f⁻¹(2)|}R_f
- *f*: {1,...,*p*} → {1,2} encodes the choice of the term (choose the *f*(*i*)-th term) in each factor in the product

$$\mathcal{R}^{\rho} = (W_{\mathcal{A}} \otimes \mathrm{I}_{k} - W_{\mathcal{A}B})(W_{\mathcal{A}} \otimes \mathrm{I}_{k} - W_{\mathcal{A}B}) \cdots (W_{\mathcal{A}} \otimes \mathrm{I}_{k} - W_{\mathcal{A}B}).$$

R_f denotes the ordered product

$$R_f = R_{f(1)}R_{f(2)}\cdots R_{f(p)} = \overrightarrow{\prod_{1\leq i\leq p}}R_{f(i)},$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for the two possible values of the factors $R_1 = W_A \otimes I_k, R_2 = W_{AB}.$

• Wick graphical calculus to compute \mathbb{E} Tr R_f ;

Three asymptotics regimes

We aim to study the behavior of the combinatorial powers of n, k and s (dominant term) from the moment formula in three asymptotics regimes:

Balanced asymptotics: (\exists) c, t > 0 such that

$$n \to \infty$$
; $k \to \infty$, $k/n \to t$; $s \to \infty$, $s/(nk) \to c$.

Unbalanced asymptotics, first case: (\exists) c > 0 such that

$$n-$$
 fixed; $k \to \infty$; $s \to \infty$, $s/(nk) \to c$.

Unbalanced asymptotics, second case: (\exists) c > 0 such that

$$n \to \infty$$
; $k - \text{fixed}$; $s \to \infty$, $s/(nk) \to c$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Asymptotics regimes: balanced and unbalanced, first case

Balanced asymptotics: : the spectrum of the reduced Wishart matrix *R* becomes trivial when $n \to \infty$, in the sense that $R/(ks) \approx I$. **Unbalanced asymptotics: first case**: the spectrum of the reduced Wishart matrix *R* becomes trivial when $k \to \infty$, in the

sense that $R/(ks) \approx I$.

Asymptotically, all random quantum states satisfy the reduction criterion ($c_{red} = 0$).

Three asymptotics regimes: unbalanced, second case

Theorem

The moments of the rescaled random matrix R converge to the following combinatorial quantity:

$$\forall p \ge 1, \quad \lim_{n \to \infty} \mathbb{E} \frac{1}{nk} \operatorname{Tr} \left(\frac{R}{n} \right)^p = \sum_{\alpha \in NC(p)} \prod_{b \in \alpha} c \left[(1-k)^{|b|} + k^2 - 1 \right].$$
(6)
Therefore, the empirical eigenvalue distribution μ_n of $\frac{R}{n}$
converges, in moments, to a compound free Poisson
distribution $\mu_{k,c} = \pi_{\nu_{k,c}}$, where

$$\nu_{k,c}=c\delta_{1-k}+c(k^2-1)\delta_1.$$

Moreover, the above convergence holds in a strong sense: the extremal eigenvalues converge, almost surely, to the edges of the support of the limiting measure $\mu_{k,c}$.

Its support is positive if and only if $c > c_{red} := \frac{(1+\sqrt{k+1})^2}{k(k-1)}$.

Thresholds for RED in different asymptotics regimes

1. Unbalanced asymptotics, second case ¹¹ : $(n \rightarrow \infty, k \text{ fixat}, s \sim cnk)$,

$$c_{red} = rac{(\sqrt{k+1}+1)^2}{k(k-1)}$$

2. Balanced asymptotics¹²: ($n, k_n \rightarrow \infty, s \sim cn$)

$$c_{red} = 1;$$

3. Unbalanced asymptotics, first case ¹²: $(k \rightarrow \infty, n, s \text{ fixed})$

$$c_{red} = n.$$

¹¹M.A. Jivulescu, N. Lupa, I. Nechita, On the reduction criterion for random quantum states, Journal of Mathematical Physics, 2014

¹²M.A. Jivulescu, N. Lupa, I. Nechita, Thresholds for reduction-related entanglement criteria in quantum information theory, Quantum Information and Computation, 2015:

Spectrum of Wishart matrices

Theorem

Let $\{\lambda_i\}, \lambda_i \ge 0$ the eigenvalues of a Wishart matrix (d, s). Then, when $d \to \infty$ and $s = s_d \sim cd$ for some constant c > 0,

1. The empirical eigenvalue distribution $\mu_d = \frac{1}{d} \sum_{i=1}^d \delta_{d^{-1}\lambda_i}$ converges to Marčenko-Pastur distribution

$$\pi_{c} = \max(1-c,0)\delta_{0} + \sqrt{4c - (x-1-c)^{2}} \mathbf{1}_{[(\sqrt{c}-1)^{2},(\sqrt{c}+1)^{2}]}(x)dx;$$

2. For any function $j_d = o(d)$, almost surely, as $d \to \infty$, the rescaled eigenvalues $\tilde{\lambda}_i = d^{-1}\lambda_i$ have the following limits¹³

$$ilde{\lambda}_{d}, ilde{\lambda}_{d-1}, \dots, ilde{\lambda}_{d-j_d+1}
ightarrow a_{c} = egin{cases} 0, & \mbox{if } c \leq 1, \ (\sqrt{c}-1)^2, & \mbox{if } c > 1, \end{cases}$$

and

$$ilde{\lambda}_1, ilde{\lambda}_2, \dots, ilde{\lambda}_{j_d}
ightarrow b_c = (\sqrt{c}+1)^2;$$

¹³Bai, Yin, Ann. Probab. 1993

Comparing entanglement criteria via thresholds

		$m = \min(n, k)$ fixed,		
	$n, k ightarrow \infty$	$\max(n,k) o \infty$		
SEP ¹⁴	$n^3 \lesssim s \lesssim n^3 \log^2 n$	mnk \lesssim s \lesssim n	$mnk \lesssim s \lesssim mnk \log^2(nk)$	
15 PPT	$m{s}\simm{cnk}$	$s\sim cnk$		
111	<i>c</i> = 4	c = 2 + 2	$\sqrt{1 - \frac{1}{m^2}}$	
16 PIN	s \sim cnk	<i>s</i> fixed		
KLIV	$c = (8/3\pi)^2$	S =	m^2	
RED	$s\sim cn$	m = n, s is fixed	m = k, s = cnk	
	<i>c</i> = 1	s = n	$C = \frac{(1+\sqrt{k+1})^2}{k(k-1)}$	

Conclusion: RLN is weaker than PPT (asymptotically);

¹⁴Aubrun, G., Szarek, S.J., and Ye, D. *Entanglement thresholds for random induced states.* Comm. Pure Appl. Math. (2014).

¹⁵Aubrun, G. *Partial transposition of random states and non-centered semicircular distributions*. Random Matrices: Theory Appl. (2012).

16 Aubrun, G. and Nechita, I. Realigning random states, J.M.P. (2012). 💿 🤊 👁

Thresholds for ARED in different asymptotics regimes¹⁷

1. Unbalanced asymptotics, first case :

 $(k \rightarrow \infty, n - \textit{fixed}, s \sim \textit{ck})$

$$c_{ared} = n - 2$$

2. Balanced asymptotics: $(n, k_n \rightarrow \infty, s \sim cnk)$

$$c_{ared} = 1;$$

3. Unbalanced asymptotics, second case : $(n \rightarrow \infty, k \text{ fixed}, s \sim cnk)$,

$$c_{ared} = (1 + \frac{2}{k} + \frac{2}{k}\sqrt{k+1})^2$$

¹⁷M.A. Jivulescu, N. Lupa, I. Nechita, Thresholds for reduction-related entanglement criteria in quantum information theory, QIC, 2015: = + (= +) = -) <

Comparing entanglement criteria via thresholds

			$m = \min(n, k)$ fixed	
		$n, k ightarrow \infty$	$\max(n,k) o \infty$	
	18 Дррт	$s \sim c \min(n, k)^2 nk$	$s\sim cnk$	
	71111	<i>c</i> = 4	$c = \left(m + \sqrt{m^2 - 1} ight)^2$	
GI	GER	$s \sim c \min(n, k)^2 nk$	$s\sim cnk$	
	OLK	<i>c</i> = 4	$c = \left(m + \sqrt{m^2 - 1} ight)^2$	
	ARED	s \sim cnk	$m=n, s \sim ck$	m = k, s = cnk
		<i>c</i> = 1	<i>c</i> = <i>n</i> – 2	$c = \left(\frac{(2+k+2)\sqrt{k+1}}{k}\right)^2$

 the thresholds for GER and APPT are the same, strenghting the claim that GER is a good approximation of APPT

¹⁸Collins, B., Nechita, I., and Ye, D. *The absolute positive partial transpose property for random induced states.* Random Matrices: Theory Appl. 01, 1250002 (2012).

Thresholds for related sets

	$d = nk o \infty$				
SEDBALI	$s\sim {\it Cd}^2$				
SEI DALL	<i>c</i> = 1				
	$s\sim cd$				
LSp	$p \ge 2$ fixed	$1 \ll p = o(d)$	$p = \lfloor td \rfloor$		
	$c = \left(1 + rac{2}{\sqrt{p}-1} ight)^2$	<i>c</i> = 1	c = 1 - t		

- both sets depend on the product *d* = *nk*, so it is sufficient to consider one asymptotic regim *d* → ∞
- SEPBALL case: the size of the environment s_d scales like the square of the total system d = nk

Perspectives

- description of ARLN and to find thresholds for ARLN
- integrate into the theory the recent results about thresholds for k-extendibility criterion¹⁹
- validate/invalidate the conjecture that ASEP=APPT²⁰

²⁰Arunachalam, S., Johnston, N., and Russo, V. *Is absolute separability determined by the partial transpose?* Quantum Inform_Comput. 2015

¹⁹Lancien C. k-extendibility of high-dimensional bipartite quantum states, arxiv: 1504. 06459

Thank you for your attention!

This work is part of the project Romania-France (UEFISCDI-ANR)

"Random Matrix Tehniques in Quantum Information Theory",

University Politehnica Timişoara and Laboratoire de Physique Théorique, Université de Toulouse, Paul Sabatier

(ロ) (同) (三) (三) (三) (○) (○)