

Thresholds for entanglement criteria in quantum information theory

Joint results with Nicolae Lupa, Ion Nechita and David Reeb
Toulouse 2015

Content

- Entanglement via positive maps approach
- Reduction Criterion (RED)
- Absolute Reduction Criterion (ARED)
- Approximations of (A)SEP
- Thresholds for RED and ARED
- Comparing entanglement criteria via thresholds

Introduction: Entanglement versus separability

Entanglement=inseparability

Separable state:

$$
\rho=\sum_{i} p_{i} e_{i} e_{i}^{*} \otimes f_{i} f_{i}^{*}, p_{i} \geq 0, \sum_{i} p_{i}=1, e_{i} \in \mathbb{C}^{n}, f_{i} \in \mathbb{C}^{k}
$$

Goal: efficient methods to characterize entangled states
PPT criterion: ${ }^{1}$ if a state is separable, then the partial transpose respect to one of the subsystems is positive-semidef.

$$
S E P:=\left\{\rho_{A B}: \rho_{A B}-s e p\right\} \subset P P T=\left\{\rho_{A B} / \rho^{\ulcorner } \geq 0\right\}
$$

Tool to detect entanglement: if the partial transpose is not positive-semidefinite, then the state is entangled Question: exists other postive maps φ such that (id $\otimes \varphi)(\rho) \nsupseteq 0$, for some ρ entangled state

[^0]
Separability criteria based on positive maps approach

Mathematical formulation ${ }^{2}$:

$$
\begin{gathered}
\rho \in \mathcal{M}_{n} \otimes \mathcal{M}_{k} \text { separable iff } \\
\rho^{\varphi}:=[\operatorname{id} \otimes \varphi](\rho) \geq 0, \forall \varphi \geq 0, \varphi: \mathcal{M}_{k} \rightarrow \mathcal{M}_{m}, \text { all positive } \\
\text { integers } m \in \mathbb{N} \\
\text { SEP }: \subset\left\{\rho: \rho^{\varphi} \geq 0\right\}
\end{gathered}
$$

- transposition map $\varphi \Rightarrow$ Positive Partial Transposition (PPT)
- reduction map: $\varphi(X):=\mathrm{I} \cdot \operatorname{Tr} X-X \Rightarrow$

Reduction Criterion (RC) ${ }^{3}$:

$$
\begin{equation*}
\rho_{A B}-\operatorname{sep} \Rightarrow \rho_{A} \otimes I_{B}-\rho_{A B} \geq 0 \quad, I_{A} \otimes \rho_{B}-\rho_{A B} \geq 0 \tag{1}
\end{equation*}
$$

$\rho_{A}=[i d \otimes \operatorname{Tr}]\left(\rho_{A B}\right)$ partial trace over the second subsystem
${ }^{2}$ Horodecki M, Separability of mixed states: necessary and sufficient conditions, Phys. Lett A, 1996
${ }^{3}$ Horodecki and all.'99, Cerf and all. '99

Separability via Reduction Criterion

- SEP $\subset R E D:=\left\{\rho: \rho^{\text {red }}:=\rho_{A} \otimes I_{B}-\rho_{A B} \geq 0\right\}$
- $\rho_{A B}$ rank one entangled state, then $\rho^{\text {red }} \not \geq 0$
- $\rho^{\Gamma} \geq 0 \Rightarrow \rho^{\text {red }} \geq 0,(P P T \subset R E D)$
- If $\operatorname{dim} B=2$, then $\mathrm{PPT}=\mathrm{RC}$
- RC connected to entanglement distillation: all states that violate RC are distillable.

$$
S E P \subset P P T \subset R E D
$$

Absolutely Separable States

Knill's question ${ }^{4}$: given an self-adjoint positive semi-definite operator ρ, which are the conditions on the spectrum of ρ such that ρ is separable respect to any decomposition?

ASEP: states that remain separable under any unitary transformation

$$
A S E P_{n, k}=\bigcap_{U \in \mathcal{U}_{n k}}{U \operatorname{SEP}_{n, k} U^{*}}^{*}
$$

Goal= conditions on the spectrum such that to be separable!

$$
A P P T_{n, k}:=\left\{\rho \in \mathcal{D}_{n, k} / \forall U \in \mathcal{U}_{n k}:\left(U_{\rho} U^{*}\right)^{\Gamma} \geq 0\right\}=\bigcap_{U \in \mathcal{U}_{n k}} U^{\Gamma} P P T_{n, k} U^{*}
$$

$$
\left.\underline{A R E D_{n, k}:=\left\{\rho \in \mathcal{D}_{n, k} / \forall U \in \mathcal{U}_{n k}\right.}:\left(U_{\rho} U^{*}\right)^{r e d} \geq 0\right\}=\bigcap_{U \in \mathcal{U}_{n k}} U^{\text {RED }}{ }_{n, k} U^{*}
$$

${ }^{4}$ Open Problems in Quantum Information Theory, http://www. imaph.tu-bs.de/qi/problems

Absolutely PPT states

- necessary and sufficient conditions ${ }^{5}$ on the spectrum under which the absolute PPT property holds
- the condition is to check the positivity of an exponential number of Hermitian matrices (the number of LMI is bounded above by $\left.e^{2 p / n p(1+o(1))}, p=\min (n, k)\right)$
- if $\rho \in \mathcal{H}_{2 n}=\mathcal{H}_{2} \otimes \mathcal{H}_{n}$, then $\rho \in$ APPT iff

$$
\lambda_{1} \leq \lambda_{2 n-1}+2 \sqrt{\lambda_{2 n} \lambda_{2 n-2}}
$$

- if $\rho \in \mathcal{H}_{3 n}=\mathcal{H}_{3} \otimes \mathcal{H}_{n}$, then $\rho \in$ APPT iff

$$
\begin{align*}
& \left(\begin{array}{ccc}
2 \lambda_{3 n} & \lambda_{3 n-1}-\lambda_{1} & \lambda_{3 n-2}-\lambda_{2} \\
\lambda_{3 n-1}-\lambda_{1} & 2 \lambda_{3 n-3} & \lambda_{3 n-4}-\lambda_{3} \\
\lambda_{3 n-2}-\lambda_{2} & \lambda_{3 n-4}-\lambda_{3} & 2 \lambda_{3 n-5}
\end{array}\right) \geq 0 \\
& \left(\begin{array}{ccc}
2 \lambda_{3 n} & \lambda_{3 n-1}-\lambda_{1} & \lambda_{3 n-3}-\lambda_{2} \\
\lambda_{3 n-1}-\lambda_{1} & 2 \lambda_{3 n-2} & \lambda_{3 n-4}-\lambda_{3} \\
\lambda_{3 n-3}-\lambda_{2} & \lambda_{3 n-4}-\lambda_{3} & 2 \lambda_{3 n-5}
\end{array}\right) \geq 0 \tag{2}
\end{align*}
$$

[^1]
Absolutely Reduced pure states

$$
\begin{equation*}
\operatorname{ARED}_{n, k}:=\left\{\rho \in D_{n, k} \mid \forall U \in \mathcal{U}_{n k}:\left(U_{\rho} U^{*}\right)^{r e d} \geq 0\right\} \tag{3}
\end{equation*}
$$

Reduction of pure state ${ }^{6}$:
Given a vector $\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{k}$ with Schmidt coefficients $\left\{x_{i}\right\}_{i=1}^{r}$, the eigenvalues of the reduced matrix $\left(\psi \psi^{*}\right)^{\text {red }}$ are
$\operatorname{spec}\left(\left(\psi \psi^{*}\right)^{r e d}\right)=(\underbrace{x_{1}, \ldots, x_{1}}_{k-1 \text { times }}, \eta_{1}, x_{2}, \ldots, \eta_{r-1}, \underbrace{x_{r}, \ldots, x_{r}}_{k-1 \text { times }}, \underbrace{0, \ldots, 0}_{(n-r) k \text { times }}, \eta_{r})$
where $x_{i} \geq \eta_{i} \geq x_{i+1}$ for $i \in[r-1]$ and $\eta_{r}=-\sum_{i=1}^{r-1} \eta_{i} \leq 0$. The set $\left\{\eta_{i}\right\}_{i=1}^{r} \backslash\left\{x_{i}\right\}_{i=1}^{r}$ is the set of solutions $\eta \in \mathbb{R} \backslash\left\{x_{i}\right\}_{i=1}^{r}$ of the equation

$$
\sum_{i=1}^{r} \frac{x_{i}}{x_{i}-\eta}=1
$$

${ }^{6}$ M.A. Jivulescu, N. Lupa, I. Nechita, D. Reeb, Positive reduction from spectra, Linear Algebra and its Applications, 2014

Characterizing Absolutely Reduced states

$$
\begin{equation*}
\operatorname{ARED}_{n, k}=\left\{\rho \in D_{n, k}: \forall x \in \Delta_{\min (n, k)},\left\langle\lambda_{\rho}^{\downarrow}, \hat{x}^{\uparrow}\right\rangle \geq 0\right\} \tag{4}
\end{equation*}
$$

where $\lambda_{\rho}^{\downarrow}$ is the vect. of the eigenvalues of ρ and \hat{x}^{\uparrow} is the vector of Schmidt coefficients.
$\hat{x}:=(\underbrace{x_{1}, \ldots, x_{1}}_{k-1 \text { times }}, \eta_{1}, \underbrace{x_{2}, \ldots, x_{2}}_{k-1 \text { times }}, \ldots, \eta_{r-1}, \underbrace{x_{r}, \ldots, x_{r}}_{k-1 \text { times }}, \underbrace{0, \ldots, 0}_{(n-r) k \text { times }}, \eta_{r})$,
η_{i} are the solutions of the equation $F_{x}(\lambda):=\sum_{i=1}^{q} \frac{m_{i} x_{i}}{x_{i}-\lambda}-1=0$.

- necessary and sufficient condition on the spectrum as family of linear inequalities in terms of the spectrum of reduced of a pure state
- given $\rho \in M_{2}(\mathbb{C}) \otimes M_{k}(\mathbb{C})$, then $\rho \in \mathrm{ARED}_{2, k}$ if and only if

$$
\lambda_{1} \leq \lambda_{k+1}+2 \sqrt{\left(\lambda_{2}+\cdots+\lambda_{k}\right)\left(\lambda_{k+2}+\cdots+\lambda_{2 k}\right)}
$$

Approximations of SEP

$\operatorname{SEPBALL}_{n, k}=\left\{\rho \in D_{n, k} \left\lvert\, \operatorname{Tr}\left(\rho^{2}\right) \leq \frac{1}{n k-1}\right.\right\}$

- largest Euclidian ball ${ }^{7}$ inside $D_{n, k}$, centered at $\frac{1}{n k}$
- contains states on the boundary of $D_{n, k}$
- all states within SEPBALL are separable
- depends only on the spectrum, i.e. SEPBALL $_{n, k} \subset$ ASEP
- it is smaller than other sets
$\operatorname{GER}_{n, k}=\left\{\lambda \in \Delta_{n k}: \sum_{i=1}^{r-1} \lambda_{i}^{\downarrow} \leq 2 \lambda_{n k}^{\downarrow}+\sum_{i=1}^{r-1} \lambda_{n k-i}^{\downarrow}\right\}$
- the defining equation ${ }^{8}$ represents the sufficient condition provided by Gershgorin's theorem for all Hildebrand APPT matrix inequalities to be satisfied
- lower approximation of APPT, since $G E R_{n, k} \subset A P P T_{n, k}$
- provides easily-checkable sufficient condition to be APPT, much simpler that Hildebrand's conditions
${ }^{7}$ Gurvitz L., PRA 2002
${ }^{8}$ M.A. Jivulescu, N. Lupa, I. Nechita, D. Reeb, Positive reduction from spectra, Linear Algebra and its Applications, 2014

Approximations of (A)SEP

$\mathrm{LS}_{p}:=\left\{\lambda \in \Delta_{n k}: \lambda_{1}^{\downarrow} \leq \lambda_{n k-p+1}^{\downarrow}+\lambda_{n k-p+2}^{\downarrow}+\cdots+\lambda_{n k}^{\downarrow}\right\}$

- $L S_{P}$-the sets of eigenvalue vectors for which the largest eigenvalue is less or equal than the sum of the p smallest (arbitrary $p \in[n k]$)
- For $n, k \geq 3, \mathrm{APPT} \subseteq \mathrm{LS}_{3} \subseteq \mathrm{LS}_{k} \subseteq \mathrm{ARED}_{n, k} \subseteq \mathrm{LS}_{2 k-1}$.

Threshold concept

Threshold=the value c of the parameter, giving an scaling of the environment, value at which a sharp phase transition of the system occurs!

Mathematical characterisation ${ }^{9}$:
Consider a random bipartite quantum state $\rho_{A B} \in M_{n}(\mathbb{C}) \otimes M_{k}(\mathbb{C})$, obtained by partial tracing over \mathbb{C}^{s} a uniformly distributed, pure state $x \in \mathbb{C}^{n} \otimes \mathbb{C}^{k} \otimes \mathbb{C}^{s}$.
When one (or both)of the system dimensions n and k are large, a threshold phenomenon occurs:
if $s \sim c n k$, then there is a threshold value c_{0} such that

1. for all $c<c_{0}$, as dimension nk grows, $P\left(\rho_{A B}\right.$ satisfies the entangled criterion) $=0$;
2. for all $c>c_{0}$, as dimension nk grows, $P\left(\rho_{A B}\right.$ satisfies the entangled criterion) $=1$;
[^2]
Reduction Criterion: RMT approach

$W=X X^{*} \in M_{d}(\mathbb{C})$-Wishart matrix of parmeters d and s.
Wishart matrices - physically reasonable models for random density matrices on a tensor product space.

The spectral properties of $\rho^{\text {red }} \rightarrow$ reduced matrix

$$
R=W^{\text {red }}:=W_{A} \otimes \mathrm{I}_{k}-W_{A B}
$$

where $W_{A B}$ is a Wishart matrix of parameters $n k$ and s, W_{A} is its partial trace with respect to the second subsystem B. Issues:

- study the distribution of the eigenvalues of the random matrix $R=W^{\text {red }}$
- evaluating the probability that R is positive semidefinite

Moment formula for R

Theorem
The moments of the random matrix
$R=W^{\text {red }}=W_{A} \otimes \mathrm{I}_{k}-W_{A B} \in M_{n k}(\mathbb{C})$ are given by ${ }^{10}$
$\forall p \geq 1, \quad \mathbb{E} \operatorname{Tr}\left(R^{p}\right)=\sum_{\alpha \in \mathcal{S}_{p}, f \in \mathcal{F}_{p}}(-1)^{\left|f^{-1}(2)\right|} s^{\# \alpha} n^{\#\left(\gamma^{-1} \alpha\right)} k^{1_{f \equiv 1}+\#\left(P_{f}^{-1} \alpha\right)}$,
(\# -number of cycles of $\alpha, f:\{1, \ldots, p\} \rightarrow\{1,2\}$).
Examples:

$$
\begin{gathered}
\mathbb{E} \operatorname{Tr}(R)=n k(k-1) s \\
\mathbb{E} \operatorname{Tr}\left(R^{2}\right)=(k-2)\left[(k s)^{2} n+k s n^{2}\right]+n k s^{2}+(n k)^{2} s
\end{gathered}
$$

${ }^{10}$ M.A. Jivulescu, N. Lupa, I. Nechita, On the reduction criterion for random quantum states, Journal of Mathematical Physics, Volume: 55, Issue: 11, 2014

Moment formula

The proof is based on

- the development of R^{p} using the non-commutative binomial formula $R^{p}=\sum_{f \in \mathcal{F}_{p}}(-1)^{\mid f-1}(2) \mid R_{f}$
- $f:\{1, \ldots, p\} \rightarrow\{1,2\}$ encodes the choice of the term (choose the $f(i)$-th term) in each factor in the product

$$
R^{p}=\left(W_{A} \otimes \mathrm{I}_{k}-W_{A B}\right)\left(W_{A} \otimes \mathrm{I}_{k}-W_{A B}\right) \cdots\left(W_{A} \otimes \mathrm{I}_{k}-W_{A B}\right)
$$

- R_{f} denotes the ordered product

$$
R_{f}=R_{f(1)} R_{f(2)} \cdots R_{f(p)}=\overrightarrow{\prod_{1 \leq i \leq p}} R_{f(i)}
$$

for the two possible values of the factors
$R_{1}=W_{A} \otimes \mathrm{I}_{k}, R_{2}=W_{A B}$.

- Wick graphical calculus to compute $\mathbb{E} \operatorname{Tr} R_{f}$;

Three asymptotics regimes

We aim to study the behavior of the combinatorial powers of n, k and s (dominant term) from the moment formula in three asymptotics regimes:

Balanced asymptotics: (\exists) $\quad c, t>0$ such that

$$
n \rightarrow \infty ; k \rightarrow \infty, \quad k / n \rightarrow t ; s \rightarrow \infty, \quad s /(n k) \rightarrow c .
$$

Unbalanced asymptotics, first case: (\exists) $c>0$ such that

$$
n \text { - fixed; } k \rightarrow \infty ; s \rightarrow \infty, \quad s /(n k) \rightarrow c .
$$

Unbalanced asymptotics, second case: (\exists) $c>0$ such that

$$
n \rightarrow \infty ; k \text { - fixed; } s \rightarrow \infty, \quad s /(n k) \rightarrow c .
$$

Asymptotics regimes: balanced and unbalanced, first case

Balanced asymptotics: : the spectrum of the reduced Wishart matrix R becomes trivial when $n \rightarrow \infty$, in the sense that $R /(\mathrm{ks}) \approx \mathrm{I}$.
Unbalanced asymptotics: first case: the spectrum of the reduced Wishart matrix R becomes trivial when $k \rightarrow \infty$, in the sense that $R /(k s) \approx \mathrm{I}$.

Asymptotically, all random quantum states satisfy the reduction criterion ($c_{\text {red }}=0$).

Three asymptotics regimes: unbalanced, second case

Theorem

The moments of the rescaled random matrix R converge to the following combinatorial quantity:
$\forall p \geq 1, \quad \lim _{n \rightarrow \infty} \mathbb{E} \frac{1}{n k} \operatorname{Tr}\left(\frac{R}{n}\right)^{p}=\sum_{\alpha \in N C(p)} \prod_{b \in \alpha} c\left[(1-k)^{|b|}+k^{2}-1\right]$.
Therefore, the empirical eigenvalue distribution μ_{n} of $\frac{R}{n}$ converges, in moments, to a compound free Poisson distribution $\mu_{k, c}=\pi_{\nu, c}$, where

$$
\nu_{k, c}=c \delta_{1-k}+c\left(k^{2}-1\right) \delta_{1} .
$$

Moreover, the above convergence holds in a strong sense: the extremal eigenvalues converge, almost surely, to the edges of the support of the limiting measure $\mu_{k, c}$.
Its support is positive if and only if $c>c_{\text {red }}:=\frac{(1+\sqrt{k+1})^{2}}{k(k-1)}$.

Thresholds for RED in different asymptotics regimes

1. Unbalanced asymptotics, second case ${ }^{11}:(n \rightarrow \infty, k$ fixat, $s \sim c n k$),

$$
c_{r e d}=\frac{(\sqrt{k+1}+1)^{2}}{k(k-1)}
$$

2. Balanced asymptotics ${ }^{12}:\left(n, k_{n} \rightarrow \infty, s \sim c n\right)$

$$
c_{r e d}=1
$$

3. Unbalanced asymptotics, first case ${ }^{12}:(k \rightarrow \infty, n, s$ fixed)

$$
c_{r e d}=n .
$$

[^3]
Spectrum of Wishart matrices

Theorem

Let $\left\{\lambda_{i}\right\}, \lambda_{i} \geq 0$ the eigenvalues of a Wishart matrix (d, s).
Then, when $d \rightarrow \infty$ and $s=s_{d} \sim c d$ for some constant $c>0$,

1. The empirical eigenvalue distribution $\mu_{d}=\frac{1}{d} \sum_{i=1}^{d} \delta_{d^{-1}} \lambda_{i}$ converges to Marčenko-Pastur distribution

$$
\pi_{c}=\max (1-c, 0) \delta_{0}+\sqrt{4 c-(x-1-c)^{2}} \mathbf{1}_{\left[(\sqrt{c}-1)^{2},(\sqrt{c}+1)^{2}\right]}(x) d x
$$

2. For any function $j_{d}=o(d)$, almost surely, as $d \rightarrow \infty$, the rescaled eigenvalues $\tilde{\lambda}_{i}=d^{-1} \lambda_{i}$ have the following limits ${ }^{13}$

$$
\tilde{\lambda}_{d}, \tilde{\lambda}_{d-1}, \ldots, \tilde{\lambda}_{d-j_{d}+1} \rightarrow a_{c}= \begin{cases}0, & \text { if } c \leq 1 \\ (\sqrt{c}-1)^{2}, & \text { if } c>1\end{cases}
$$

and

$$
\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \ldots, \tilde{\lambda}_{j_{d}} \rightarrow b_{c}=(\sqrt{c}+1)^{2}
$$

${ }^{13}$ Bai, Yin, Ann. Probab. 1993

Comparing entanglement criteria via thresholds

	$n, k \rightarrow \infty$	$\begin{gathered} m=\min (n, k) \text { fixed } \\ \quad \max (n, k) \rightarrow \infty \end{gathered}$	
SEP ${ }^{14}$	$n^{3} \lesssim s \lesssim n^{3} \log ^{2} n$	$m n k \lesssim s \lesssim m n k \log ^{2}(n k)$	
PPT 15	$s \sim$ cnk	$s \sim$ cnk	
PPT	$c=4$	$c=2+2 \sqrt{1-\frac{1}{m^{2}}}$	
	$s \sim$ cnk	s fixed	
	$c=(8 / 3 \pi)^{2}$	$s=m^{2}$	
RED	$s \sim c n$	$m=n, s$ is fixed	$m=k, s=c n k$
	$c=1$	$s=n$	$c=\frac{(1+\sqrt{k+1})^{2}}{k(k-1)}$

Conclusion: RLN is weaker than PPT (asymptotically);
${ }^{14}$ Aubrun, G., Szarek, S.J., and Ye, D. Entanglement thresholds for random induced states. Comm. Pure Appl. Math. (2014).
${ }^{15}$ Aubrun, G. Partial transposition of random states and non-centered semicircular distributions. Random Matrices: Theory Appl. (2012).
${ }^{16}$ Aubrun, G. and Nechita, I. Realigning random states, J.M.P. (2012).

Thresholds for ARED in different asymptotics regimes ${ }^{17}$

1. Unbalanced asymptotics, first case :
($k \rightarrow \infty, n-$ fixed, $s \sim c k$)

$$
c_{\text {ared }}=n-2
$$

2. Balanced asymptotics: $\left(n, k_{n} \rightarrow \infty, s \sim c n k\right)$

$$
c_{\text {ared }}=1 ;
$$

3. Unbalanced asymptotics, second case : $(n \rightarrow \infty, k$ fixed, $s \sim c n k$),

$$
c_{\text {ared }}=\left(1+\frac{2}{k}+\frac{2}{k} \sqrt{k+1}\right)^{2}
$$

${ }^{17}$ M.A. Jivulescu, N. Lupa, I. Nechita, Thresholds for reduction-related entanglement criteria in quantum information theory, QIC, 2015:

Comparing entanglement criteria via thresholds

	$n, k \rightarrow \infty$	$\begin{gathered} m=\min (n, k) \text { fixed } \\ \max (n, k) \rightarrow \infty \end{gathered}$	
APPT^{18}	$s \sim c \min (n, k)^{2} n k$	$s \sim c n k$	
APPT	$c=4$	$c=\left(m+\sqrt{m^{2}-1}\right)^{2}$	
GER	$s \sim c \min (n, k)^{2} n k$	$s \sim c n k$	
GER	$c=4$	$c=\left(m+\sqrt{m^{2}-1}\right)^{2}$	
ARED	$s \sim c n k$	$m=n, s \sim c k$	$m=k, s=c n k$
	$c=1$	$c=n-2$	$c=\left(\frac{(2+k+2) \sqrt{k+1}}{k}\right)^{2}$

- the thresholds for GER and APPT are the same, strenghting the claim that GER is a good approximation of APPT
${ }^{18}$ Collins, B., Nechita, I., and Ye, D. The absolute positive partial transpose property for random induced states. Random Matrices: Theory Appl. 01, 1250002 (2012).

Thresholds for related sets

	$d=n k \rightarrow \infty$		
SEPBALL	$s \sim c d^{2}$		
	$c=1$		
LS_{p}	$p \geq c d$		
	$c=\left(1+\frac{2}{\sqrt{p}-1}\right)^{2}$	$c=1$	$c=1-t$
	$c=(d x e d$	$1<p=o(d)$	$p=\lfloor t d\rfloor$

- both sets depend on the product $d=n k$, so it is sufficent to consider one asymptotic regim $d \rightarrow \infty$
- SEPBALL case: the size of the enviroment s_{d} scales like the square of the total system $d=n k$

Perspectives

- description of ARLN and to find thresholds for ARLN
- integrate into the theory the recent results about thresholds for k-extendibility criterion ${ }^{19}$
- validate/invalidate the conjecture that ASEP=APPT ${ }^{20}$

[^4]
Thank you for your attention!

This work is part of the project Romania-France (UEFISCDI-ANR)
"Random Matrix Tehniques in Quantum Information Theory",
University Politehnica Timişoara and Laboratoire de Physique Théorique, Université de Toulouse, Paul Sabatier

[^0]: 'A. Peres, Separability criterion for density matrices, PRL 77,1996

[^1]: ${ }^{5}$ Hildebrand, Positive partial transpose from spectra, PRA, 2007

[^2]: ${ }^{9}$ Aubrun, G. Partial transposition of random states and non-centered semicircular distributions. Random Matrices: Theory Appl. (2012)

[^3]: ${ }^{11}$ M.A. Jivulescu, N. Lupa, I. Nechita, On the reduction criterion for random quantum states, Journal of Mathematical Physics, 2014
 ${ }^{12}$ M.A. Jivulescu, N. Lupa, I. Nechita, Thresholds for reduction-related entanglement criteria in quantum information theory, Quantum Information and Computation, 2015:

[^4]: ${ }^{19}$ Lancien C. k-extendibility of high-dimensional bipartite quantum states, arxiv: 1504. 06459
 ${ }^{20}$ Arunachalam, S., Johnston, N., and Russo, V. Is absolute separability determined by the partial transpose? Quantum Inform.Comput. 2015

