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Introduction générale (version
française)

1 Motivations

On rencontre dans la nature de nombreuses sociétés animales ou groupes d’animaux
qui sont le siège de phénomènes collectifs impliquant une coordination très précise des
activités individuelles. Ainsi les déplacements collectifs en formation comme les vols
d’oiseaux, les bancs de poissons et les migrations d’ongulés conduisent à la formation
de structures spatio-temporelles parfois très complexes et donnent lieu à des specta-
cles saisissants [9, 16]. La question qui se pose est alors de comprendre comment se
coordonne le groupe, qu’est-ce qui permet l’apparition de ces structures ? Or pour les
vols d’oiseaux ou les bancs de poissons, l’organisation au sein du groupe ne se fait pas
de manière centralisée, il n’y a pas de leader qui coordonne le groupe. C’est unique-
ment au travers d’interactions locales entre congénères que se fait la coordination de
l’ensemble du groupe. Dès lors, il est naturel de se demander quelles sont les règles qui
gouvernent les interactions entre individus et qui permettent la coordination de leurs
comportements [25].

Devant la multitude des réponses possibles à cette question, certains biologistes
ou physiciens ont parfois recours à la modélisation pour tester différentes hypothèses
de règles d’interactions et étudier différents scénarios. La plupart des modèles utilisés
sont des modèles individus centrés qui décrivent le comportement de chaque individu
séparément. Pour faire une analogie avec la physique, on parle aussi de modèles mi-
croscopiques. Il est généralement difficile de prédire quelle va être le comportement
collectif du groupe à partir d’un modèle individu centré. Pour répondre à cette ques-
tion, on utilise des simulations numériques des modèles individus centrés afin d’observer
le comportement du groupe.

L’approche qui est développée dans cette thèse est différente, nous essayons de
comprendre les déplacements collectifs en introduisant des modèles macroscopiques.
L’idée principale est de pouvoir dériver des modèles macroscopiques à partir des mod-
èles microscopiques ce qui nous permet d’établir un lien analytique entre dynamique
individuelle et dynamique collective.
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2 Modèles de déplacements en biologie

Le comportement collectif des sociétés animaux reste bien souvent un phénomène mys-
térieux. Il est très difficile de déterminer quelles sont les mécanismes individuels qui
permettent l’apparition de structures au niveau collectif. Cette difficulté provient d’une
part que les individus peuvent avoir des comportements différents et d’autre part que
la multitude des interactions provoquent des effets non-linéaires. L’apport des mod-
èles pour étudier les déplacements collectifs réside alors dans le fait de pouvoir tester
différentes hypothèses sur les mécanismes d’interactions entre individus. Un modèle
pourra alors dans certains cas “valider” certaines hypothèses sur les interactions si
la dynamique collective observée reproduit certaines caractéristiques de la dynamique
collective. Dans d’autres cas, le modèle permettra d’infirmer certaines hypothèses si
la dynamique collective obtenue est sensiblement différente de la dynamique collective
observée. Néanmoins, il faut garder en mémoire que le but d’un modèle n’est pas
de reproduire fidèlement la réalité mais plus modestement d’aider à la compréhension
d’un phénomène observé1.

2.1 Modèles et expériences

On peut distinguer deux types d’approches pour modéliser les déplacements en biolo-
gie. Une première approche consiste à se baser d’abord sur les phénomènes collectifs
observés. On propose ensuite un modèle d’interactions pour reproduire la dynamique
collective. Les hypothèses faites sur les règles d’interactions entre individus sont déter-
minées a priori. Beaucoup de modèles, en particulier pour les bancs de poissons, re-
posent sur cette approche. L’apparition des ordinateurs et l’utilisation de simulations
numériques ont beaucoup contribué au développement de cette méthode.

L’intérêt principal de cette approche est de montrer qu’à partir de règles simples, on
peut reproduire des phénomènes collectifs complexes. Néanmoins, le principal incon-
vénient est qu’il est difficile de montrer que le modèle proposé correspond bien aux lois
d’interactions entre individus. Plusieurs modèles se basant sur des règles d’interactions
différentes peuvent aboutir à des comportements collectifs similaires. Dès lors, com-
ment déterminer quelles sont les véritables règles d’interactions ?

Une autre approche pour modéliser les phénomènes collectifs consiste à étudier et
modéliser le comportement des individus à partir des expériences dédiées à cet effet.
On cherche alors à construire un modèle pas à pas à partir des données expérimentales.
C’est une approche plus ambitieuse que la méthode précédente mais aussi plus délicate.
D’une part les résultats expérimentaux peuvent varier d’une expérience sur l’autre et
par conséquent les mesures effectuées peuvent fluctuer sensiblement. D’autre part, on
dispose d’un nombre limité d’expériences alors qu’un modèle nécessite de nombreux
paramètres. Des exemples de ce type d’approche ont été utilisés pour modéliser le
déplacement des blattes [13], des fourmis [23, 2] et des piétons [37].

1“Essentially, all models are wrong, but some are useful.” George E. P. Box
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2.2 Des exemples de modèles pour les déplacements collectifs

Dans cette partie, on introduit des modèles standards utilisés pour modéliser le dé-
placement collectif de groupes d’animaux en séparant ces modèles en deux catégories.
On distingue tout d’abord les modèles individus centrés, appelées aussi “modèles mi-
croscopiques”. Ces derniers décrivent le déplacement de chaque individu séparément.
Un autre type de modèle consiste à décrire le déplacement d’un groupe d’individus
dans son ensemble. On regarde l’évolution d’une masse d’individus indiscernables. On
parle alors de “modèles macroscopiques”.

2.2.1 Modèles individus centrés

Dans les modèles individus centrés, on décrit le déplacement de chaque individu sé-
parément. Un individu est représenté par certaines variables comme sa position, sa
vitesse et son accélération. Le modèle décrit alors l’évolution de ces variables dans
le temps, cette évolution pouvant être décrite de manière continue ou discrète. Le
comportement d’un individu ne pouvant être décrit de façon déterministe, les mod-
èles individus centrés possèdent pour la plupart une part d’aléatoire. Autrement dit,
mathématiquement, l’évolution dans le temps des variables est décrite par des proces-
sus stochastiques.

Pour décrire les règles d’interactions entre individus, un modèle doit tout d’abord
décrire le déplacement d’un individu isolé. Un modèle standard consiste à segmenter la
trajectoire des individus par des droites. La vitesse des individus est alors décrite par
des changements brusques de direction. Les différents paramètres de ce modèle peuvent
être mesurés expérimentalement. Ce modèle est notamment utilisé pour décrire le
déplacement des fourmis et des blattes [13, 23, 2]. Un autre modèle couramment
utilisé décrit l’évolution de la vitesse non pas par des changements brusques mais par
une succession de petites perturbations [8, 5]. On parle de marche aléatoire corrélée.
Mathématiquement, on dira que le premier modèle est un processus de sauts sur la
vitesse, alors que le deuxième modèle est un processus de diffusion. Un des travaux de
cette thèse a été d’étendre la modélisation de déplacement individuel pour décrire des
trajectoires courbes que ne permettent pas ces deux modèles.

De nombreux modèles individus centrés sont utilisés pour décrire les déplacements
collectifs [42, 16]. On se propose ici simplement de donner un bref aperçu de modèles
présents dans la littérature. Ces modèles ont comme avantage de reposer sur des règles
d’interactions simples, mais ils ont comme inconvénient de ne pas être basés sur des
données expérimentales.

Un premier modèle générique pour décrire les interactions entre individus est le
modèle de Vicsek [53]. Dans ce modèle, les individus s’alignent à chaque pas de temps
avec la vitesse moyenne de leurs voisins (voir figure 1). Á partir de cette dynamique,
on observe l’apparition d’un déplacement collectif global dans lequel les individus se
déplacent dans une même direction. Dans le modèle, une perturbation est aussi ajoutée
sur la vitesse des individus à chaque pas de temps. Si la perturbation est importante,
l’alignement global des individus sera très faible. Beaucoup de travaux ont été con-
sacrées sur la dépendance de l’alignement global avec l’intensité de la perturbation
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[53, 26, 39, 13]. D’autres travaux portent sur les conditions suffisantes pour que les
vitesses de tous les individus convergent vers une même direction [18, 28]. D’un point
de vue modélisation, le modèle de Vicsek est souvent vu comme un modèle sur les vols
d’oiseaux mais il a été aussi utilisé récemment pour étudier le déplacement de crick-
ets [7]. De part son aspect minimal, d’autres règles d’interactions peuvent aisément
lui être rajoutées [27, 26]. Dans le cadre du projet Starflag [11, 12], une autre façon
d’implémenter le modèle a été proposée. Pour calculer la vitesse moyenne, chaque in-
dividu prendra en compte ses 6 ou 7 plus proches voisins, quelque soit leur distance [2].
Cette nouvelle façon d’implémenter la règle d’alignement permet d’obtenir au niveau
collectif des structures plus stables face à des perturbations.

wk

R

xk

Figure 1: Le modèle de Vicsek : chaque particule renouvelle sa vitesse en s’alignant
avec la vitesse moyenne des particules autour d’elle. Le disque de rayon R détermine
quelles sont les particules prisent en compte pour évaluer cette moyenne.

Pour les déplacements de bancs de poissons, les modèles généralement utilisés re-
posent sur 3 règles d’interactions, à savoir l’attraction, l’alignement et la répulsion.
Chacune de ces règles comportementales est représentée par une zone autour du pois-
son (voir figure 2). Suivant la position relative d’un voisin, le poisson aura comme
réaction soit de se rapprocher de son congénère (zone d’attraction), soit de s’aligner
(zone d’orientation), soit de s’éloigner (zone de répulsion). Le premier modèle utilisant
cette description est le modèle d’Aoki [1]. Dans ce modèle, le poisson considère unique-
ment ces 4 plus proches voisins et pour renouveler sa vitesse l’algorithme consiste à
faire une moyenne de l’influence des 4 plus proches voisins. Les simulations numériques
de ce modèle permettent d’observer la formation d’un groupe compact avec un mouve-
ment plus ou moins coordonné suivant les paramètres du modèle. Cette étude a permis
de développer l’idée qu’il n’y avait pas besoin de leader pour avoir un groupe cohérent
se déplaçant de façon homogène. Ce modèle a ensuite été repris par Huth & Wissel
[31] en modifiant la sommation des influences (un poids supplémentaire est rajouté
aux plus proches voisins). Dans cette étude, les auteurs observent que la moyenne des
influences permet d’obtenir une cohérence du groupe plus grande que si l’on ne prend
en compte que le plus proche voisin.
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Plus récemment, un modèle simplifié des 3 zones a été introduit par Couzin et al [17].
Les vitesses des poissons sont supposées constantes en module (elles étaient distribuées
selon une loi gamma dans les modèles précédents), pour renouveler les vitesses on
effectue une moyenne de vecteurs (dans le modèle d’Aoki, on construit d’abord une
certaine loi de probabilité pour ensuite générer un nombre aléatoire). En revanche, les
simulations numériques sont réalisées avec un plus grand nombre d’individus (100 au
lieu de 8 pour le modèle d’Aoki). Suivant les paramètres du modèles, on observe alors la
formation de 3 types de configuration spatial pour le groupe. Les poissons peuvent soit
rester groupés sans cohésion (formation essaim), soit tourner autour d’un axe virtuel
(formation en vortex), ou bien encore se déplacer dans une même direction (formation
alignée). Le modèle de Couzin et al. a été étendu par [30], les auteurs considèrent
une zone d’interaction R qui va dépendre de la densité de poissons. Lorsque la densité
d’individus autour du poisson est grande, le rayon d’interaction R diminue. Cette idée
se rapproche du modèle proposé dans le projet Starflag on l’on ne prend en compte
que les 6 ou 7 plus proches voisins.

L’étude des modèles à 3 zones est toujours un domaine de recherche actif. On
trouvera par exemple des travaux sur des modèles où les zones d’interaction changent
graduellement avec la distance du poisson [54, 34]. Pour avoir une vue d’ensemble
des différents modèles sur la modélisation des déplacements de poissons, on pourra se
référer aux articles [43, 44].

Attraction

Alignement

Répulsion

Figure 2: Le modèle des 3 zones décrivant l’interaction d’un poisson avec ces con-
génères. À courte distance, les poissons se repoussent, à une distance intermédiaire,
les poissons s’alignent et à une distance plus éloignée, les poissons s’attirent.

Enfin, une autre approche très populaire pour les modèles individus centrés est
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d’interpréter le déplacement des individus comme une particule soumise à des “champs
de forces”. On considère que chaque individu va agir comme une force qui va repousser
ou attirer ces voisins [36]. Ce type d’approche a par exemple été utilisée pour modéliser
les bancs de poissons [40] ou bien encore le déplacement de piétons [29]. Á la différence
des modèles précédents (modèle de Vicsek ou modèle des 3 zones), les interactions entre
individus sont des sommes linéaires ce qui permet d’obtenir des résultats analytiques
sur le comportement du système de particules [19]. Il est d’ailleurs intéressant de
constater qu’avec ce type de modèle d’attraction-répulsion, on peut observer dans
certains cas l’apparition d’un alignement global des particules [15]. Ceci est à l’encontre
des observations faites sur les modèles à 3 zones pour lesquels, si l’on enlève la zone
d’alignement, on perd l’alignement global du groupe.

2.2.2 Modèles macroscopiques

Comme dans les déplacements collectifs, on peut compter plusieurs millions d’individus,
il peut être intéressant de modéliser non pas les individus séparément mais la masse
d’individus. Les modèles macroscopiques décrivent alors l’évolution de cette masse
indiscernable d’individus [41, 38, 22]. Les modèles généralement utilisés sont des équa-
tions d’advection-diffusion. Le terme de diffusion traduit au niveau macroscopique le
comportement aléatoire des individus, alors que le terme d’advection exprime dans
quelle direction se dirige en moyenne les individus. Généralement le terme de dif-
fusion est supposé constant (indépendant de la densité), la non-linéarité du modèle
provient du terme d’advection. Différents modèles sont utilisés pour exprimer ce terme
d’advection. Par exemple, le terme d’advection peut être définit par une convolution
sur la densité [35, 21, 50, 51]. Cette convolution traduit au niveau macroscopique
l’attraction et la répulsion entre les individus. Le terme d’advection peut aussi dépen-
dre d’une quantité autre que la densité, comme la vitesse moyenne des individus qui
devient à son tour une inconnue [52]. Pour les modèles de déplacements de bactéries,
le terme d’advection va dépendre d’une quantité appelé chimioattractant. Ceci per-
met de modéliser l’attraction des bactéries vers une substance chimique. On a alors
deux équations d’évolution couplées, une pour la masse de bactérie et l’autre pour le
chimioattractant [38].

Les modèles macroscopiques ont l’avantage de pouvoir être analysés théoriquement.
On dispose d’un cadre mathématique dans lequel on peut prédire et démontrer quel va
être le comportement des solutions au modèle. Pour les modèles individus centrés, les
résultats théoriques sont peu nombreux [15]. Une majorité des travaux sont empiriques,
on observe le résultat des simulations numériques. Néanmoins dans la littérature sur
les déplacements collectifs, les modèles individus centrés sont plus fréquemment étudiés
que les modèles macroscopiques. La raison principale est que la démarche généralement
employée pour comprendre les déplacements collectifs est de se baser sur le comporte-
ment individuel, comme le font les modèles individus centrés. C’est une approche
bottom-up, on cherche à comprendre le comportement collectif à partir du comporte-
ment individuel. Or pour les modèles macroscopiques, on se place directement au
niveau du groupe. La démarche de modélisation se rapproche plus d’une méthode
top-down.
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Une façon de remédier à cette faiblesse des modèles macroscopiques est de lier
modèles individus centrés et modèles macroscopiques, c’est-à-dire que l’on cherche à
dériver un modèle macroscopique à partir d’un modèle individus centrés. Le passage
d’un modèle à un autre se fait par un changement d’échelle sur les variables de temps
et d’espace. Autrement dit, pour passer d’un modèle individus centrés à un modèle
macroscopique, on regarde la dynamique sur de grandes périodes de temps et sur
de grandes distances. Si l’on arrive ainsi à dériver un modèle macroscopique, celui-
ci aura l’avantage de pouvoir être relié à une dynamique individuelle pouvant être
mesurée expérimentalement. De plus, le modèle macroscopique dispose d’un cadre
mathématique adéquat dans lequel on peut prédire le comportement des solutions. On
cumule ainsi l’avantage des modèles individus centrés et des modèles macroscopiques.

Pour dériver un modèle macroscopique à partir d’un modèle microscopique, on
utilise généralement une description intermédiaire entre ces deux échelles appelée échelle
mésoscopique (on parle alors d’équation cinétique). Cette démarche a été utilisée par
exemple pour un modèle de chimiotaxie décrivant le déplacement de bactéries attirées
par du chimioattractant [45, 23, 24]. À l’origine, cette approche a été développée dans
le cadre de la dynamique des gaz, elle permet de passer d’un modèle de collision en-
tre particules (échelle microscopique) à des modèles de dynamique des fluides (échelle
macroscopique) [20].

Le présent mémoire s’inscrit dans cette démarche où l’on cherche à relier modèles
individus centrés et modèles macroscopiques, les modèles individus centré étant si
possible basés sur des données expérimentales (figure 3).
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Figure 3: Un schéma idéalisé pour obtenir un modèle de déplacement macroscopique.
En se basant sur une étude statistique de données expérimentales, un modèle de dé-
placement individus centrés est développé. À la suite de quoi, un modèle macroscopique
est dérivé en utilisant l’équation cinétique associée au modèle individus centrés.

3 Apport des travaux réalisés

Afin de développer un modèle de déplacement de poissons basé sur des données ex-
périmentales, des expériences ont été réalisées à la Réunion en 2002 sur une espèce
de poisson pélagique le Kuhlia mugil. Ces expériences ont abouti à la construction
d’un nouveau modèle intitulé “Persistent Turning Walker” (PTW). Une grande partie
des travaux réalisés au cours de cette thèse sont associés à l’étude de ce modèle. Une
des caractéristiques qui rend ce modèle intéressant est qu’il nécessite de prendre en
compte la dérivée troisième de la position. Or jusqu’à présent, l’ensemble des modèles
utilisés pour les déplacements individuels ne faisaient intervenir que la dérivée seconde,
c’est-à-dire l’accélération par analogie avec la physique. Ainsi, nous avons disposé de
nouvelles équations sur lesquelles travailler. De plus, les différents résultats obtenus
sur le modèle PTW ont pu ensuite être confrontés avec les données expérimentales. Les
travaux réalisés ont permis en particulier de déterminer quel était le modèle macro-
scopique associé au modèle PTW. Une des motivations de cette étude a été initiée par
nos collaborateurs biologistes qui souhaitaient connaître l’équation de diffusion asso-
ciée au modèle PTW. La dérivation du modèle macroscopique a permis de fournir une
réponse à cette interrogation.

D’une manière générale, nos travaux se sont concentrés sur la dérivation de modèles
macroscopiques à partir de modèles individus centrés. Cette démarche nous a égale-
ment permis de dériver un modèle macroscopique à partir du modèle de Vicsek. Le
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modèle que nous avons obtenu est original et la méthode utilisée pour la dérivation
est non conventionnelle. En effet, à l’origine, les méthodes de dérivation de modèles
macroscopiques sont issues de la dynamique des gaz. Elles reposent sur des lois de
conservation. Or dans le modèle de Vicsek, et plus généralement dans les modèles
individus centrés en biologie, nous n’avons pas de lois de conservation. Certes, les
modèles préservent le nombre d’individus et donc nous avons à l’échelle macroscopique
l’équation de conservation de la masse. Mais cela n’est pas suffisant pour déterminer
un modèle macroscopique. C’est pour cela qu’il a fallu généraliser les méthodes util-
isées pour dériver des modèles macroscopiques.

L’intérêt des modèles macroscopiques est tout d’abord qu’ils s’écrivent dans un
cadre unifié, celui des équations aux dérivées partielles. Ceci facilite le développement
d’une théorie et par conséquent permet de trouver des résultats analytiques. On peut
de plus comparer les modèles macroscopiques entre eux grâce à ce formalisme. Une
des faiblesses des modèles individus centrés est que bien souvent on ne peut pas les
comparer si ce n’est de façon qualitative. De plus, des modèles individus centrés basés
sur des règles d’interactions similaires peuvent aboutir à des conclusions contradic-
toires [44]. D’autre part les modèles macroscopiques s’écrivent avec des paramètres
différents des modèles individus centrés (comme par exemple le coefficient de diffu-
sion), ceci donne d’autres informations sur la dynamique du modèle. De plus, dans les
modèles individus centrés, le temps de simulation numérique grandit fortement avec le
nombre d’individus mise en jeu. Plus on a d’individus, plus la simulation numérique
nécessitera du temps de calcul. Pour les modèles macroscopiques, ce n’est pas le cas.
Le nombre d’individus est simplement représenté par une densité, le temps de calcul
ne va pas dépendre de la valeur de cette densité.

Enfin, les modèles macroscopiques peuvent aider à comprendre la formation de
structures particulières, comme par exemple les ondes de propagation ou les ondes de
choc. Dans les modèles individus centrés, nous avons uniquement une description des
trajectoires individuelles et par conséquent nous n’avons pas directement accès aux
grandeurs qui permettent de décrire les structures macroscopiques.

3.1 Le modèle Persistent Turning Walker

Comme la plupart des modèles de déplacements, le modèle PTW utilisé pour modéliser
le déplacement des poissons est un modèle stochastique, c’est-à-dire qu’il introduit une
part d’aléatoire dans le comportement du poisson. Mais à la différence des modèles
utilisés jusqu’à présent, l’aléa est ici porté par la courbure de la trajectoire du poisson et
non pas par la vitesse. L’idée originale qui a aboutit à ce modèle est d’avoir considéré le
déplacement des poissons non pas comme une succession de lignes droites mais comme
une succession d’arcs de cercle. Par conséquent, la trajectoire est décrite par une
série de courbures. Ceci explique pourquoi l’aléa dans le modèle PTW est porté sur
la courbure et non pas sur la vitesse. Ce modèle permet en particulier d’obtenir des
trajectoires qui sont davantage régulières. On retrouve ainsi une des caractéristiques
des trajectoires expérimentales (figure 4).

La méthode utilisée pour dériver un modèle macroscopique à partir du modèle
PTW repose sur un changement d’échelle. Ceci nous permet d’observer la dynamique
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Figure 4: Deux exemples de trajectoires individuelles avec à gauche le déplacement
d’une fourmi (genre messor) et à droite le déplacement d’un poisson (espèce Kuhlia
mugil). La fourmi a dans cet exemple une trajectoire rectiligne ponctuée de brusques
changements de direction alors que la trajectoire du poisson est beaucoup plus arrondie.
Les cercles représentent la position de la fourmi (figure gauche) et du poisson (figure
droite) au cours du temps. Nous disposons de 8 positions à la seconde pour la figure
de gauche et de 12 images par secondes pour la figure de droite.

du modèle dans des variables macroscopiques. Dans le cas du modèle PTW, nous
avons effectué un changement d’échelle diffusif. Il nous a permis de dériver une équa-
tion de diffusion pour laquelle nous avons pu trouver une expression explicite pour
le coefficient de diffusion. Des simulations numériques du modèle PTW ont permis
d’illustrer les résultats analytiques obtenus. En particulier, nous avons pu par les sim-
ulations numériques du modèle individus centrés estimer le coefficient de diffusion et
les mesures effectuées s’accordent avec la valeur théorique du coefficient de diffusion
du modèle macroscopique.

Pour étudier le modèle PTW, plusieurs points de vue sont possibles. Tout d’abord,
nous pouvons regarder le modèle comme une équation aux dérivées partielles. L’objet
de l’étude est alors la densité de distribution des poissons. L’autre point de vue con-
siste à regarder le modèle d’un point de vue probabiliste, on se place alors dans le
cadre des équations différentielles stochastiques. De ce point de vue, une trajectoire
d’un poisson représente la réalisation d’un processus stochastique. Les deux angles
d’approche utilisent des outils différents, les cadres mathématiques ne sont pas les
mêmes. Fort heureusement, les conclusions auxquelles nous avons abouti en utilisant
les deux approches sont identiques. Dans les deux cas, nous avons, à partir du modèle
PTW, dérivé une équation de diffusion avec le même coefficient de diffusion. Pour
la version probabiliste, il s’agissait de montrer qu’à l’échelle macroscopique le modèle
PTW devenait simplement un mouvement brownien.

La vision probabiliste a aussi permis de calculer de façon analytique le déplacement
carré moyen des trajectoires du modèle PTW. Cette mesure statistique peut également
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se calculer dans les expériences menées sur les poissons. Ainsi nous avons obtenu des
résultats analytiques pouvant être comparés avec des données expérimentales.

Dans un tout autre contexte, le modèle PTW a aussi permis d’étendre un modèle
utilisé dans le cadre d’un problème industriel pour la fabrication de fibres composites.
Le modèle décrit le mouvement des fibres sous l’influence de turbulences. Ce modèle in-
troduit de l’aléa sur la dérivée seconde des trajectoires. En s’inspirant du modèle PTW
nous avons alors développé un nouveau modèle où l’aléa est introduit sur la dérivée
troisième. En utilisant ce nouveau modèle nous obtenons des trajectoires qui ressem-
blent davantage aux trajectoires réelles des fibres. Un des défauts de l’ancien modèle
utilisé était la non-régularité des trajectoires. Ce problème disparaît avec le nouveau
modèle. Nous avons également montré que dans un certain régime de paramètres le
nouveau modèle introduit se ramène au modèle initial.

3.2 Le modèle de Vicsek : dérivation d’un modèle macro-
scopique

La seconde partie des travaux a été consacrée à l’étude du modèle de Vicsek. Con-
trairement au modèle PTW, le modèle de Vicsek n’est pas basé sur des données expéri-
mentales. Cependant de part sa simplicité, il est utilisé dans de nombreux domaines,
c’est en quelque sorte un modèle universel.

Plusieurs problèmes restaient en suspens avec ce modèle. D’une part, il est écrit
sous la forme d’un algorithme itératif, par conséquent ce n’est pas une dynamique
continue dans le temps. Différentes tentatives ont été menées dans le but d’obtenir
une version continue de ce modèle [48, 47, 33]. D’autre part, il n’existait pas de mod-
èle macroscopique associé à la dynamique microscopique du modèle de Vicsek. Des
travaux ont été initiés dans ce sens en se basant sur une version différente du modèle
de Vicsek [4].

Le premier travail accompli a été de trouver une version continue du modèle de
Vicsek. Lorsque nous discrétisons la version continue, nous retrouvons exactement
le modèle original de Vicsek, à condition de respecter une hypothèse sur la discréti-
sation. Ensuite concernant la dérivation d’un modèle macroscopique, nous avons du
faire face à un obstacle particulier. Le nombre de quantités indépendantes conservé
par l’interaction est de dimension strictement inférieure à la dimension de la variété
des équilibres thermodynamiques. Cela pose un problème pour la détermination du
modèle macroscopique qui se trouve sous-déterminé. Ce problème a été résolu par
l’introduction d’un nouveau concept d’invariants collisionnels qui possède une grande
généralité et ouvre une voie nouvelle en théorie cinétique. Le modèle macroscopique
obtenu est un système hyperbolique non-conservatif avec une contrainte sur la vitesse
qui doit être de norme 1 en tout point.

Dans la littérature, il existe d’autres modèles hyperboliques avec contraintes mais
ces modèles sont généralement conservatifs [14]. Pour le modèle macroscopique que
nous avons obtenu, toute l’étude analytique reste ouverte. Pour le moment, nous nous
sommes concentrés sur l’étude numérique du modèle macroscopique où de nouvelles



22 Introduction générale

méthodes numériques doivent être développées. Les simulations numériques montrent
que la structure des solutions est plus complexe que ce qui était attendu.

4 Présentation des résultats

Les travaux se sont essentiellement portés sur deux axes de recherche.
Tout d’abord, un premier axe de recherche s’est concentré sur un nouveau modèle

appelé “Persistent Turning Walker” (PTW). Ce modèle est issu d’une étude statistique
sur le déplacement du poisson Kuhlia mugil (chapitre 1). Nous nous sommes intéressés
à la dynamique à grande échelle de ce modèle menant à une équation de diffusion.
Cette étude s’est faite d’abord avec des outils issus des équations aux dérivées partielles
(chapitre 2) puis avec des outils probabilistes (chapitre 3). Le modèle PTW a aussi
permis une extension d’un modèle décrivant le dépôt de fibres utilisé dans le cadre
d’un problème industriel pour la fabrication de fibres composites (chapitre 4). En
vue d’étendre le modèle PTW pour inclure des interactions entre poissons, nous avons
menés une première analyse des données expérimentales du poisson Kuhlia mugil en
groupe (chapitre 5).

Dans la perspective d’étudier un modèle d’interactions entre poissons, nous nous
sommes consacrés dans une deuxième partie sur l’étude d’un modèle minimal d’interactions
introduit par Vicsek. Nous avons tout d’abord dériver un modèle macroscopique à par-
tir de ce modèle en nous basant sur une formulation continue en temps (chapitre 6).
Ensuite, nous avons étudié numériquement le modèle macroscopique obtenu en le com-
parant au modèle microscopique initial (chapitre 7).

Enfin, dans un cadre différent, nous avons étudié un problème d’homogénéisation
stochastique provenant de l’étude des déformations de matériaux (chapitre 8). Le
lien entre ce problème et la thématique abordée jusqu’alors provient des outils proba-
bilistes utilisés dans cette méthode, l’approche probabiliste étant très répandue pour la
modélisation de comportements animaux [6, 46]. De plus, ce problème ouvre de nou-
velles perspectives dans la modélisation de déplacement collectif à savoir l’utilisation
de modèles macroscopiques probabilistes. Dans la littérature, la plupart des modèles
macroscopiques sont déterministes.

4.1 Le modèle PTW

4.1.1 Chap. 1 : Analyzing Fish Movement as a Persistent Turning Walker

Ce chapitre introduit l’analyse des trajectoires du poisson Kuhlia mugil se déplaçant
dans un bassin. Les expériences montrent que contrairement aux modèles utilisés
jusqu’à présent, le déplacement du Kuhlia mugil ne peut être vu comme une succession
de segments de droites. En effet, nous observons que le déplacement s’effectue sur
des trajectoires courbes. D’après ces observations, une nouvelle façon de modéliser
le déplacement du Kuhlia mugil est introduite. Le modèle se base sur l’analyse de
l’évolution de la vitesse angulaire du poisson dans les expériences. L’évolution de
cette quantité est alors modélisée par une équation différentielle stochastique (équation
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d’Ornstein-Uhlenbeck) :

dW (t) = −1
τ
W (t)dt+ σdB(t) (4.1)

où W est la vitesse angulaire du poisson, B(t) est le mouvement brownien, τ et σ sont
deux paramètres du modèle. Comme le modèle suppose que la vitesse du poisson est
constante en module, cette équation peut aussi s’écrire sur la courbure de la trajectoire
du poisson. Ce modèle a été appelé “Persistent Turning Walker” (PTW). Par une
analyse statistique des données expérimentales, les paramètres du modèle ont pu être
estimés. Pour cela, il a fallu modéliser l’influence du bord du domaine sur la vitesse
angulaire du poisson. Ceci a permis de comparer les trajectoires du modèle avec les
trajectoires expérimentales. En particulier, une comparaison a été faites sur le calcul
du déplacement carré moyen de la position du poisson (figure 5).
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Figure 5: Déplacement carré moyen pour le modèle (trait plein continu) et les don-
nées expérimentales (trait pointillé). Pour le modèle, l’estimation a été faites par une
méthode de Monte-Carlo. Pour les données expérimentales, nous avons représenté un
intervalle de confiance à 95% ainsi qu’une moyenne sur les expériences.

4.1.2 Chap. 2 : Large scale dynamics of the Persistent Turning Walker
model of fish behavior

Dans ce chapitre, nous avons étudié la dynamique à grande échelle du modèle PTW
introduit pour décrire le déplacement de poissons. Ce modèle s’écrit sous la forme
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d’une équation différentielle stochastique :

d~x

dt
= ~τ (θ),

dθ

dt
= κ, (4.2)

dκ = −κ dt+ α dBt,

où ~x = (x1, x2) ∈ R2 est le vecteur position du poisson, ~τ (θ) = (cos θ , sin θ) est la
direction de la vitesse du poisson avec l’angle θ ∈ Π = R/2πZ qui est mesuré à partir
de la direction x1, κ ∈ R est la courbure de la trajectoire du poisson et Bt est le mou-
vement brownien standard.

Pour étudier la dynamique à grande échelle, nous avons eu recours à deux méthodes
différentes. Une première méthode consiste à étudier l’équation différentielle stochas-
tique qui décrit le modèle. Nous nous sommes en particulier intéressés à la variance de
la position, nous avons montré que celle-ci se comporte comme une fonction linéaire
pour une grande échelle de temps. Le coefficient de diffusion associé au modèle PTW
peut être assimilé à la pente de cette fonction linéaire. Ceci nous a permis de trouver
une formule explicite pour ce coefficient de diffusion :

Var{~x(t)} t→+∞∼ 2D t, avec D =
∫ ∞

0
exp

(
−α2(−1 + s+ e−s)

)
ds, (4.3)

où Var représente la variance.
La deuxième méthode se base sur l’équation de Kolmogorov forward associée au modèle
PTW. C’est une équation aux dérivées partielles qui décrit l’évolution de la densité de
distribution de poisson, notée f , au cours du temps. Elle est donnée par la formule
suivante :

∂tf + ~τ · ∇~xf + κ∂θf − ∂κ(κf)− α2∂κ2f = 0. (4.4)

Pour étudier la dynamique à grande échelle à partir de cette équation, nous avons
utilisé un changement d’échelle diffusif dans les variables de temps et d’espace. Pour
cela nous introduisons un petit paramètre ε et l’on définit de nouvelles variables de
temps et d’espace :

t′ = ε2t ; ~x′ = ε~x. (4.5)

Le passage d’une échelle microscopique à une échelle macroscopique est obtenu lorsque ε
tend vers zéro. En utilisant ce changement d’échelle, nous avons montré que l’équation
(4.4) est ramenée à une équation de diffusion à l’échelle macroscopique. Nous montrons
que la fonction de distribution f converge vers un certain état “d’équilibre thermody-
namique”, qui est une distribution gaussienne en courbure et une distribution uniforme
pour la direction de la vitesse. L’équilibre dépend alors seulement de la densité, celle-ci
vérifie une équation de diffusion.

Afin de lier les deux approches développées précédemment, nous avons montré que
le tenseur de diffusion présent dans la deuxième méthode peut être représenté par une
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formule qui introduit la solution de l’équation différentielle stochastique présent dans
la première méthode. Ceci nous a permis de trouver la formule explicite du tenseur de
diffusion, qui correspond exactement à ce qui a été démontré à partir de la première
méthode (voir 4.3).

4.1.3 Chap. 3 : Long time fluctuation and diffusion limit for the Persistent
Turning Walker Model

Dans ce chapitre, nous étudions la limite de diffusion du modèle PTW. À la différence
du chapitre précédent, nous utilisons dans cette étude uniquement des outils proba-
bilistes.

Pour obtenir une équation de diffusion à partir du modèle PTW, nous utilisons
seulement l’équation différentielle stochastique donnée par le système (4.2). En util-
isant le changement d’échelle diffusif (voir équation 4.5), le modèle PTW devient avec
les notations probabilistes :





d~xt = ε~τ(θt) dt

dθt = κt
dt

ε2

dκt = −κt
dt

ε2
+
√

2α
dBt
ε
,

(4.6)

où l’on a repris les notations du chapitre 4.1.2 (voir équation 4.2). L’étude consiste à
étudier la limite lorsque ε tend vers zéro de ce système.

Cette étude se fait en deux étapes. Tout d’abord, nous étudions la dynamique du
processus (θt, κt). Pour cela, nous analysons le générateur infinitésimal L de ce proces-
sus. Nous montrons grâce à l’utilisation d’une fonction de Lyapunov que le générateur
satisfait une inégalité de Poincaré. Ceci entraîne la convergence exponentielle du pro-
cessus (θt, κt) vers une mesure stationnaire. En particulier, nous prouvons l’existence
d’une solution à l’équation elliptique associée à l’opérateur L.

Dans une deuxième étape, nous étudions le vecteur position ~xt. Celui-ci est don-
née simplement par l’intégrale du vecteur vitesse ~τ(θt). En utilisant, la solution de
l’équation elliptique associé à l’opérateur L, nous obtenons une nouvelle formulation
de l’intégrale satisfaite par ~xt. Il ne nous reste plus qu’à utiliser des outils standards en
probabilité comme la formule d’Itô pour montrer que le processus ~xt est dans la limite
ε→ 0 un mouvement brownien.

4.1.4 Chap. 4 : A smooth model for fiber lay-down processes and its
diffusion approximations

Dans ce chapitre, nous introduisons un nouveau modèle développé pour décrire le
mouvement de fibres sous l’influence de turbulences. Ce modèle est utilisé dans le
cadre d’un problème industriel pour la fabrication de matériaux composites.

Le modèle original pour modéliser les trajectoires de fibres possède une lacune à
savoir la non-régularité des trajectoires. Pour palier à ce problème, nous avons intro-
duit un nouveau modèle inspiré du modèle PTW. Ce modèle est donné par l’équation
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différentielle stochastique suivante :

d~xt = ~τ(θt) dt

dθt = κt dt (4.7)

dκt = λ(κ0 − κ) dt+ µdBt,

où l’on a repris les notations du chapitre 4.1.2 (voir équation 4.2), avec de plus un
terme de rappel vers l’origine κ0 donné par

κ0 = b(|~xt|) sin(θt − φ), (4.8)

avec b(.) une fonction positive, φ la direction du vecteur position ~xt c’est-à-dire ~τ (φ) =
~xt
|~xt| . Afin de faire le lien entre ce nouveau modèle et les modèles existants, nous nous
sommes alors intéressés à étudier la limite de l’équation (4.7) dans différents régimes.

Dans un premier temps, nous avons étudié la limite de l’équation (4.7) lorsque les
deux paramètres λ et µ vérifiaient :

λ′ = ε2λ ; µ′ = ε2µ (4.9)

avec ε << 1. Dans la limite ε → 0, nous obtenons le modèle original utilisé pour
modéliser les trajectoires de fibres.

Ensuite, nous avons étudié un autre asymptotique à savoir :

λ′ = ελ ; µ′ = ε3/2µ. (4.10)

Dans cette asymptotique, l’équation (4.7) devient à la limite ε → 0 une équation
d’advection-diffusion.

Cette étude nous permet d’avoir un schéma complet liant 3 types de modèle pour
d’écrire les trajectoires de fibres. Des simulations numériques du nouveau modèle
introduit dans les différents régimes (4.9-4.10) viennent illustrer la théorie développée.

4.1.5 Chap. 5 : Statistical analysis of the trajectories of Kuhlia Mugil fish

Ce chapitre a pour but d’étudier les données expérimentales sur le poisson Kuhlia mugil
en groupe. Cette étude constitue une première étape dans la construction d’un modèle
de poissons en interactions qui sera une extension du modèle PTW.

Nous disposons de données expérimentales pour les trajectoires de poissons pour
différentes tailles de groupe. Des expériences ont été menées avec 2, 5, 10, 15 et 30
poissons. Pour étudier ces trajectoires, nous avons mené une étude statistique en nous
basant sur 3 points de vue différents.

Tout d’abord, nous avons analysé les trajectoires prises individuellement en fonction
de la taille du groupe. Nous remarquons en particulier que les trajectoires individuelles
possèdent une caractéristique commune quelque soit la taille du groupe (voir figure 6).
L’autre point de vue adopté est de regarder le déplacement du groupe de poissons dans
son ensemble. Nous étudions pour cela la densité de poissons d’une part et la vitesse
du groupe de poissons dans le bassin d’autre part. Nous observons en particulier que
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Figure 6: Les distributions de vitesse angulaires W des trajectoires individuelles des
poissons pour différentes tailles de groupe. Les distributions ont une forme gaussienne
centrée avec une variance voisine de .7 (1/s2).

pour certaines expériences une structure spécifique se dessine. Au niveau collectif, un
phénomène inattendu se produit : plus la taille du groupe augmente, moins le groupe
est aligné. Ce phénomène est à l’opposé de ce que prédit par exemple le modèle de
Vicsek [53].

Enfin, nous avons regardé comment un individu se positionne au sein du groupe.
Pour cela, nous analysons différentes caractéristiques d’un poisson (vitesse, accéléra-
tion) en fonction de la position de ses voisins. Par exemple, nous avons regardé quelle
était la position des voisins dans le référentiel d’un poisson. Nous observons alors dans
les expériences à deux poissons que les poissons sont préférentiellement l’un devant
l’autre. Nous pouvons aussi observer que l’alignement des poissons est maximal à une
certaine distance caractéristique (correspondant à environ deux fois la taille du corps
du poisson) quelle que soit la taille du groupe.

Cette étude nous apporte des mesures statistiques que nous pourrons par la suite
utilisés pour valider un modèle d’interactions entre poisson.

4.2 Le modèle de Vicsek

4.2.1 Chap. 6 : Continuum limit of self-driven particles with orientation
interaction

Ce chapitre est consacré à la dérivation d’un modèle macroscopique à partir du modèle
de Vicsek.

Dans le modèle de Vicsek, nous considérons des particules se déplaçant à vitesse
constante en module et qui interagissent de manière à augmenter leur alignement. En
notant ~xnk la position de la particule k au temps n∆t avec ∆t un pas de temps et ωnk
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la vitesse, cette dynamique est décrite par les équations suivantes :

~xn+1
k = ~xnk + c ωnk∆t, (4.11)

ωn+1
k = ω̄k + εn, (4.12)

où c est la vitesse des particules, εn est une variable aléatoire indépendante représentant
le bruit dans le système et ω̄k est la moyenne des vitesses autour de la particule ~xk
défini par

ω̄k =
Jnk
|Jnk |

, Jnk =
∑

j, |~xnj −~xnk |≤R
ωnj . (4.13)

où R est le rayon de perception.
Dans ce travail, nous avons tout d’abord dérivé à partir de cette dynamique discrète

une dynamique continue. Celle-ci s’écrit sous la forme d’une équation différentielle
stochastique :

d~xk
dt

= c ωk, (4.14)

dωk = (Id− ωk ⊗ ωk)(ν ω̄k dt+
√

2d dBt), (4.15)

où Bt est le mouvement brownien,
√

2d est l’intensité du bruit, ν est la fréquence
d’interaction. L’opérateur de projection (Id − ωk ⊗ ωk) permet de garantir que la
vitesse reste de module 1 (voir figure 7).
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w̄k

w
⊥
k

Figure 7: La projection du vecteur ω̄k sur l’orthogonal de ωk permet de garantir que
la vitesse des particules reste de module 1.

Pour dériver un modèle macroscopique à partir de la dynamique continue, nous nous
sommes servi de l’équation cinétique associé à cette dynamique. Comme les particules
sont en interaction, le passage de la dynamique particulaire à l’équation cinétique est
uniquement formel. Pour être prouvé rigoureusement, ce passage nécessite l’hypothèse
de propagation du chaos qui reste à démontrer. Une fois l’équation cinétique posée,
pour dériver un modèle macroscopique, nous nous servons d’un changement d’échelle
hydrodynamique :

t′ = εt ; ~x′ = ε~x. (4.16)
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Dans les variables (t′, x′), la densité de distribution f ε satisfait l’équation cinétique
suivante :

ε(∂tf ε + ω · ∇xf ε) = Q(f ε) +O(ε2), (4.17)

avec :

Q(f ε) = −∇ω · (F [f ε]f ε) + d∆ωf ε (4.18)

F [f ε] = ν (Id− ω ⊗ ω)Ω[f ε], (4.19)

Ω[f ε] =
j[f ε]
|j[f ε]| , et j[f ε] =

∫

υ∈S2

υ f ε(x, υ, t) dυ. (4.20)

Pour obtenir la limite ε→ 0, nous déterminons l’ensemble des états d’équilibre de
cette équation cinétique :

E = {ρMΩ(ω) | ρ ∈ R+, Ω ∈ S2}, (4.21)

avec MΩ(ω) = C exp
(
ν

d
ω · Ω

)
où Ω est la direction du flux et C est une constante

tel que MΩ soit une densité de distribution. Les états d’équilibre E forment ainsi une
variété de dimension 3. Or les seuls invariants collisionnels pour l’opérateur Q sont les
fonctions constantes qui sont de dimension 1. Le modèle macroscopique va donc être
sous-déterminé. C’est pour cela que nous introduisons une nouvelle notion plus faible
d’invariant collisionnel qui nous permet de récupérer d’autres invariant collisionnel que
l’on dit “généralisé”. Ceux-ci nous permet de déterminer la limite macroscopique de
notre équation cinétique. À la limite ε→ 0, nous obtenons un système d’équation sur
la densité ρ et le vecteur direction Ω du flux :

∂tρ+∇x · (c1ρΩ) = 0, (4.22)

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id− Ω⊗ Ω)∇xρ = 0, (4.23)

où c1, c2 sont les vitesses de convection distinctes et λ est une constante positive.
Le modèle macroscopique obtenu est hyperbolique mais non-conservatif à cause de la
contrainte sur le vecteur Ω qui doit être de norme 1 (|Ω| = 1), ce qui en fait un modèle
original non étudié jusqu’à présent dans la littérature.

4.2.2 Chap. 7 : Numerical studies of the CVA models

Le but de ce chapitre est de valider le modèle macroscopique développé dans le chapitre
précédent en le comparant par des simulations numériques avec le modèle micro-
scopique.

Pour réaliser cette analyse, nous devons mieux connaître le modèle macroscopique.
Celui-ci est non-conservatif et possède une contrainte géométrique qui en font un mod-
èle non standard ne relevant pas d’une théorie préalable. Nous proposons deux ap-
proches différentes pour étudier théoriquement et numériquement le modèle macro-
scopique. Tout d’abord, nous reformulons le modèle sous une forme conservative parti-
culièrement simple qui semble être la formulation conservative naturelle pour ce prob-
lème. Ensuite, nous proposons une autre écriture du modèle macroscopique s’écrivant
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comme limite de relaxation d’un modèle conservatif avec un terme source raide mod-
élisant la contrainte de norme 1. Ces deux approches donnent alors deux méthodes
numériques différentes, appelé respectivement méthode conservative et méthode split-
ting.

Or les simulations du modèle microscopique dans un régime dense de particules
s’accordent avec les résultats de la méthode splitting alors la méthode conservative
donnent des résultats différents. Ceci montre d’une part que nous avons un accord
entre le modèle microscopique et le modèle macroscopique. D’autre part, la bonne
formulation du modèle macroscopique est donnée par l’intermédiaire de la limite de
relaxation.

4.3 Homogenization theory

4.3.1 Chap. 8 : Random integrals and correctors in homogenization

Le but de ce chapitre est d’étudier théoriquement et numériquement l’homogénéisation
stochastique d’une équation elliptique. Cette étude n’est pas directement relié avec
la modélisation en biologie puisqu’il s’agit d’étudier un modèle de déformation de
matériaux. Néanmoins, les outils probabilistes utilisés dans cette étude (mouvement
brownien, intégrale stochastique, processus d’Ornstein-Uhlenbeck) sont très largement
repris dans les travaux précédents.

La déformation d’un matériaux lorsqu’il est mélangé avec d’autres composants est
modélisé par l’équation elliptique suivante :

− d

dx

(
a
(
x

ε
, ω
)
d

dx
uε
)

= f(x), 0 ≤ x ≤ 1,

uε(0, ω) = 0, uε(1, ω) = q.

(4.24)

où f est la force appliquée sur le matériaux, a(x, ω) est le coefficient d’élasticité modélisé
par un processus stochastique stationnaire. Sous certaines hypothèses, nous pouvons
démontrer que la solution uε(x,Ω) de cette équation elliptique converge lorsque ε tend
vers zéro vers la solution déterministe ū(x) de l’équation suivante :

− d

dx

(
a∗

d

dx
ū
)

= f(x), 0 ≤ x ≤ 1,

ū(0) = 0, ū(1) = q.

(4.25)

où le coefficient d’élasticité a∗ est donnée par a∗ =
(
E{a−1(0, ·)}

)−1
, avec E l’espérance

mathématique selon ω. L’équation (4.25) est appelée équation homogénéisée. Nous
nous intéressons alors à la différence entre la solution uε de l’équation (4.24) et la solu-
tion homogénéisée u∗. Nous distinguons deux cas suivant que la fonction d’autocorrélation
du processus a(x, ω) soit intégrable ou pas. Dans le premier cas, la différence uε et
u∗ converge vers un processus stochastique s’écrivant à partir du mouvement brown-
ien standard. Dans le cas non-intégrable, cette différence s’écrit avec un mouvement
brownien fractionnaire. Nous prouvons alors rigoureusement ces deux convergences si
le coefficient d’élasticité a(x, ω) est donnée par une certaine expression. Des simulations
numériques viennent ensuite illustrer la théorie.
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General Introduction (English
version)

1 Motivations

In the nature, many animals societies or group of animals exhibit complex collective
phenomena involving precise coordination of the individual activities. For example, the
collective displacement of a flock of birds or a shoal of fish leads sometimes to complex
spatiotemporal organization and gives spectacular shows [9, 16]. The main question
is to understand how such groups manage to coordinate, how could a global structure
emerge? In a fish school or in a flock of birds, there is no leader to coordinate the
group. It is only through local interactions between individuals that the group manage
to coordinate itself [25]. Therefore, it is natural to ask what are these interaction rules
which govern their behavior.

Since there are many answers to this questions, some biologists and physicists
use models to test different hypotheses for the interaction rules and explore different
scenarios. Most of the models used are individual based models which describe how
each individual behaves according to its neighbors. To make an analogy with physics,
these models are called “microscopic models”. It is generally difficult to predict the
collective behavior of the group when we use an individual based model. A partial
answer is given by numerical simulations. It allows to observe the global dynamics of
the models with different parameters.

The approach developed in this manuscript is different, we try to understand the
collective behavior using macroscopic models. The main challenge is to connect indi-
vidual behavior and macroscopic models which enables to link analytically individual
and global dynamics.

2 Models of displacement in biology

Collective behavior in animal societies remains a mystery phenomenon. It is very
hard to identify what are the individual mechanisms which enables the emergence
of collective behavior. One reason is the high degree of variability in the individual
behavior. The other reason is the multitude of interactions involved which induce non-
linear effects. The interesting aspect of models is to be able to test different hypotheses
on the individual mechanism. A model may in some cases “validate” some assumptions



34 General Introduction

on the interactions if the collective behavior within the model produces some features
observed. On the contrary, a model could invalidate some hypothesis if the collective
behavior obtained is very different from the experiments. Nevertheless, we have to
keep in mind that the aim of a model is not to reproduce the reality, its purpose is to
help the understanding of the observed phenomenon2.

2.1 Models and experiments

We can distinguish two types of approaches to model collective displacement in biology.
One approach is based on the observation of the global dynamics. The purpose is to find
the rules of interactions which reproduce the global dynamics. The assumptions made
about the rules between individuals are determined a priori. Many models, especially
for fish, are based on this approach. The development of computers has popularized
this approach.

The main interest of this approach is to show that from simple rules we can re-
produce complex collective phenomena. However, the drawback of this approach is
the difficulty to prove that the interaction rules within the model corresponds to real
mechanisms of individuals. Several models based on different interaction rules may
lead to similar collective behavior. Therefore, how could we determine what are the
real interaction rules?

Another approach to model the collective displacement consists in measuring and
modeling individual behavior from experiments. We try to build a model step by step
using experimental data. It is a more ambitious approach than the previous method
but also more delicate. First, the experimental results may vary from one experience to
another and therefore measurements can fluctuate a lot. Secondly, we have a limited
number of experiments while a model requires many parameters. Examples of this
type of approach have been used to model the motion of cockroaches [13], ants [23, 2]
and pedestrians [37].

2.2 Examples of models for collective displacement

In this part, we introduce standard models used for the collective displacements of
animals. We distinguish between two types of model. A first class of models are the
individual based models, also called “microscopic models”. They describe how each
individual moves according to its neighbors. The other type of model describes the
displacement of the group of individual as a whole, we have an indistinguishable mass
of individuals which evolves in time. We also call these type of models “macroscopic
models”.

2.2.1 Individual based models

In the individual based model, we describe the motion of each individual separately.
An individual is represented by some variables such as its position, its velocity and its

2“Essentially, all models are wrong, but some are useful.” George E. P. Box
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acceleration. The model describes how these variables evolve in time. The evolution
could be discrete or continuous in time. The individual behavior could be described
by deterministic models, therefore we generally have a stochastic component in indi-
vidual based models. Mathematically, this means that the evolution of the variables is
described by stochastic process.

To model collective displacements, an individual based model must first describe the
motion of a single individual. A standard model consists in segmenting the trajectory
of the displacement by lines. The velocity of the individual is described by sudden
changes in the direction of the velocity. The various parameters of this model can be
measured experimentally. This model is used to describe the movement of ants and
cockroaches [13, 23, 2].

Another model commonly used is the correlated random walk. In this model,
instead of jumps on the velocity, there is a succession of small perturbations [8, 5].
Mathematically, we would say that the first model is a jump process on the velocity,
while the second model is a diffusion process. In this manuscript, we study an extension
of the correlated random walk in order to model smooth trajectories.

There are many individual based models which describe collective displacements
[42, 16]. Here, we simply give a short overview of some models in the literature.
The interaction rules in these models are relatively simple but they are not based on
experimental data.

A generic model to describe interactions between individuals is the Vicsek model
[53]. In this model, individuals align with their neighbors at each time step. To do
so, the velocity of each individual is update with the average velocity of its neighbors
(see figure 8). From this individual dynamics, we observe the emergence of a collective
movement in which individuals move in the same direction. In the model, a noise is also
added on the individual velocity at each time step. If the noise is important, the global
alignment of individuals will be very low. Many studies have been done to understand
the dependence of the group polarization with the intensity of the noise [53, 26, 39, 13].
Other type of works study the necessary conditions to have the convergence of all the
individual velocities to a common direction [18, 28].

From a modeling perspective, the Vicsek model is usually seen as a model for
flocks of birds but it has also been recently used to model the movement of locusts
[7]. Due to its simplicity, other interaction rules can easily be added [27, 26]. In
the Starflag project [11, 12], another way to implement the interaction rules has been
proposed. To calculate the average velocity, each individual takes into account its 6 or
7 nearest neighbors, whatever the distances they are [2]. This new way to implement
the alignment rule makes the collective motion more stable.

The models commonly used to describe fish motion are based on 3 interaction
rules, namely the attraction, the alignment and the repulsion. Each of these rules is
represented by an area around the fish (see figure 9). Depending on the relative position
of a neighbor, the fish will either tend to move closer to its congener (attraction area),
or align (alignment area) or move away (repulsion area). The first model using this
description is the model of Aoki [1]. In this model, a fish only takes into account
its 4 nearest neighbors. To update the velocity, the algorithm consists in making an
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Figure 8: The Vicsek model: each particle updates its velocity with the average velocity
of the particles around it. The disc with radius R determines which are the particles
taken into account in the estimation of the average velocity.

average of the influence of the 4 nearest neighbors. In the numerical simulations of this
model, we observe the formation of a compact group with a collective movement more
or less coordinated according to the parameters of the model. This model enabled to
develop the idea that it is not necessary to have a leader to generate a coordinated
group motion. This model is studied again by Huth & Wissel [31] where they change
the summation rule (an additional weight is added to nearest neighbors). In this study,
authors observe that the group is more stable when fish take an average influence of
their neighbors instead of taking into account only their nearest neighbor.

More recently, a simplified version of the 3 “zone-based” model was introduced by
Couzin et al. [17]. The speeds of the fish are assumed to be constant (they were
distributed according to a Gamma distribution in the previous models), to update the
velocities, we simply take an average of vectors (in the model of Aoki, we first construct
a certain law of probability and then we generate a random number according to its
law). On the other hand, numerical simulations are performed with a larger number
of fish (100 instead of 8 in the work of Aoki and Huth & Wissel). Depending on the
parameters of the model, the spatial configuration of the group can be in three different
formations. Fish can form a compact group without cohesion (swarm formation), or
turn around a virtual axis (torus formation), or move in one direction (highly parallel
group).

The study of “zone-based” is still an active research field. For example, the model
of Couzin et al. has been recently extended in [30]. The authors consider a zone of
interaction which depends on the density of fish. When the density around the fish
is large, the radius of interaction R decreases. This idea is connected to the model
proposed in the Starflag project where individual takes into account the 6 or 7 nearest
neighbors. There are also others extensions of the “zone-based” where the interaction
zones change gradually with the distance [54, 34]. For an overview of the different
models for fish behavior, we refer to the articles [43, 44].
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Figure 9: The 3 “zone-based” model describing the interaction of a fish with its con-
geners.

Another very popular approach to model individual behavior consists in interpret-
ing the movement of individuals as a particle submitted to a “force field”. In this
type of models, each individual will act as a force that will push or attract the other
neighbors [36]. This type of approach has for example been used to model fish schools
[40] or pedestrians movement [29]. One the main difference between this approach
and previous models (Vicsek model or “zone-based” models) is the summation of the
interactions. In the models with forces, the interaction is a linear summation of pair-
wise interaction which is not the case in the previous models. That is why we could
obtain analytical results more easily with these type of models [19]. It is interesting to
notice that models of attraction-repulsion can produce a global alignment of particles
[15]. We do not observe this phenomenon in the “zone-based” model, if we remove the
alignment zone, there is no global alignment for the group.

2.2.2 Macroscopic models

For the modeling of large fish schools or flock of birds, it may be more efficient to use
macroscopic models which describe the evolution of macroscopic variables such as mean
density and mean velocity. In a macroscopic model, we do not describe the evolution
of each individual displacement, we rather describe the evolution of a mass of indistin-
guishable individuals [41, 38, 22]. The models generally used are advection-diffusion
equations. The diffusion term expresses at the macroscopic level the random behavior
of the individuals, while the advection term expresses in which direction individual are
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moving in average. Usually the diffusion term is assumed to be constant (indepen-
dent of the density), the non-linearity of the model comes from the advection term.
Different models are used to express this advection term. For example, the advection
term can be defined by a convolution of the density [35, 21, 50, 51]. The convolution
expresses at a macroscopic level the attraction and repulsion between individuals. The
advection term may also depend on another quantity different from the density, as the
average speed of individuals which becomes another unknown in the model [52]. In
the models of bacteria displacement, the advection term depends on a quantity called
chemo-attractant. This allows to model the attraction of bacteria to a chemical sub-
stance. The models are therefore given by two coupled evolution equations, one for
the mass of bacteria and the other for the chemo-attractant [38].

One of the advantages of the macroscopic models is the possibility to analyze them
theoretically. There is a well established mathematical framework in which we can
predict and demonstrate what will be the solutions of our models. For individual
based models, there are few theoretical results [15]. Most of the works are empirical
studies, we observe and measure the results of numerical simulations. However in the
literature on collective displacement, individual based models are more frequently used
than the macroscopic models. In the individual based models, the collective dynamics
is explained by individual dynamics. It is a bottom-up approach. In the macroscopic
models, we look directly at the group level. The modeling approach is more similar to
a top-down approach.

To overcome this weakness of the macroscopic models, a solution is to link individual
based models with macroscopic model, which means that we would like to derive
macroscopic equations from individual based models. The methodology used consists
in changing the time and space scales in the individual based models. So the dynamics
are studied over longer periods of time and larger distances. If we manage to derive a
macroscopic model with this method, then the model obtained would be linked with the
individual dynamics that can be measured experimentally. In addition, the macroscopic
model would combine the advantages of individual based modes and has an adequate
mathematical formulation for which we can predict the behavior of solutions.

To derive a macroscopic model from a microscopic model, we use an intermediate
description between the micro and macro scale, called mesoscopic scale. Originally, this
multi-scale approach has been developed in gas dynamics. The method enables to pass
from a model of collision between particles (microscopic scale) to mathematical models
of fluids dynamics (macroscopic scale) [20]. Nowadays this approach is widely used in
many research fields. For example, the kinetic approach has been used in models
of chemo-taxis describing the movement of bacteria attracted by chemio-attractant
[45, 23, 24]. We refer to [3] for a overview of kinetic modeling in biology.

In this manuscript, we use this approach to link individual based models with
macroscopic models. The individual based models are ideally based on experimental
data (figure 10).
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Figure 10: An idealized diagram for a model of macroscopic displacement. Based on a
statistical analysis of experimental data, an individual based model is developed. After
that, a macroscopic model is derived using the kinetic equation associated with the
individual based model.

3 Main contributions

To build a model for fish displacement based on experimental data, experiments were
conducted at the Reunion in 2002 on a species of fish named Kuhlia mugil. These
experiments led to the construction of a new model called “Persistent Turning Walker”
(PTW). Much of the work done during this thesis is related to the study of this model.
One of the characteristics that makes this model interesting is the necessity to take into
account the third derivative of the position with respect to time. So far, all the models
only involve the second derivative, which is the acceleration of the fish. Therefore, we
have new equations to work with. Moreover, the different results in the PTW model
could be compared with experimental data.

In particular, the work done enabled to determine what is the macroscopic model
associated with the PTW model. One of the motivations of this study was initiated
by our biologist colleagues, they wanted to know what was the diffusion equation
associated with the PTW model. The derivation of the macroscopic model has provided
an answer to this question.

Broadly speaking, our work focused on the derivation of macroscopic models from
individual based models. This approach also allowed us to derive a macroscopic model
from the Vicsek model. The model we have obtained is original and the method used
in the derivation is not conventional. Indeed, originally the method used to derive
macroscopic models comes from gas dynamics. The method is based on conservation
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laws. But in the Vicsek model and more generally in individual based models in
biology, we do not have any conservation. At least, the models preserve the number of
individual and therefore we have at the macroscopic level the equation of conservation
of mass. But this is not sufficient to determine a macroscopic model. That is why we
have to generalize the method used so far to derive macroscopic equations.

The interest of macroscopic methods is first to be written in a unified framework,
the partial differential equations. This facilitates the development of a theory and it
also allows to compare the macroscopic models between them. A weakness of individual
based models is the difficulty to compare the models, we only compare the results of
numerical simulations.

On the other hand, macroscopic models are written with different parameters than
individual based models (e.g. diffusion coefficient), this gives different information on
the dynamics. Moreover, in individual based models, the time of the numerical simula-
tion grows significantly with the number of individuals involved in the simulation. The
more there are individuals in the simulation, the more it takes time for the computer
to make the numerical simulation. For macroscopic models, it is not the case. The
number of individuals is simply the density and the computation time does not depend
on the value of this density.

Finally, the macroscopic models can help to understand the formation of structures
such as wave propagation and shock waves. In individual based models, we have only
a description of individual trajectories and therefore we have no direct access to these
quantities which describe the macroscopic structures.

3.1 The Persistent Turning Walker Model

Like many displacement models, the PTW model which describes the motion of fish
has a stochastic component in its formulation, it introduces a random part in the
behavior of the fish. But unlike the models used so far, randomness is introduced on
the curvature of the fish and not on its velocity. Therefore, the trajectories obtained
with this model are more regular, it is one of the properties of the real trajectories of
fish (figure 11). The main idea behind this model is to consider the trajectories as a
succession of arcs rather than a succession of straight lines.

The method used to derive a macroscopic model from PTW model is based on a
rescaling approach. We study the dynamics in macroscopic variables. For the PTW
model, we use a diffusive scaling for the macroscopic variables. With this approach,
we derived a diffusive equation from the PTW model and moreover we found an ex-
plicit expression for the diffusion coefficient. Numerical simulations of the PTW model
illustrate the analytical results obtained. In particular, we were able to estimate nu-
merically the diffusion coefficient in the individual based model and the measurement
agrees with the theoretical value.

To study the PTW model, several point of view are possible. First, we can consider
the model as a partial differential equation. The purpose of the study is the density
distribution of fish. The other point of view is to consider the individual trajectories.
Each trajectory of fish is considered as a realization of a stochastic process. The two
methods use different tools, the mathematical frameworks are not the same. Fortu-
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Figure 11: Two examples of individual trajectories with left displacement of an ant
(genus Messor) and right-moving fish (Mugil species Kuhlia). The ant has in this
instance a straight path punctuated by abrupt changes in direction while the trajectory
of the fish is much more rounded. The circles represent the position of the ant (Figure
left) and fish (picture right) over time. We have 8 positions per second for the left
figure and 12 frames per second for the right figure.

nately, the conclusions we obtained using both approaches are identical. In both cases
we obtained, from the PTW model, a diffusion equation with the same diffusion coef-
ficient. From the probabilistic viewpoint, we prove that the PTW model converges in
the diffusive scaling to a Brownian motion.

3.2 The Vicsek model: derivation of a macroscopic model

The second part of this manuscript is devoted to the study of the Vicsek model. Unlike
the PTW model, the Vicsek model is not based on experimental data. However because
of its simplicity, it is used in many fields, it is a kind of universal model.

Several outstanding issues remain with this model. First, the Vicsek model is a
discrete model in time. It is an iterative algorithm, we do not have a continuous
dynamics over time. Various attempts have been made to obtain a continuous version of
this model [48, 47, 33]. On the other hand, there was no macroscopic model associated
with the microscopic dynamics of the Vicsek model. Work has been initiated in this
direction using a different version of the Vicsek model [4].

The first work done was to find a continuous version of the Vicsek model. When we
discretize the continuous model, we recover exactly the original Vicsek model, provided
that we respect an assumption on the discretization. To derive a macroscopic model,
there is a main difficulty. The dimension of conserved quantities is strictly less than
the dimension of the thermodynamic equilibrium. Therefore, the macroscopic model is
under-determined. This problem was solved by introducing a new concept of collisional
invariant that has great generality and opens new perspective in kinetic theory.
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The macroscopic model obtained is a hyperbolic non-conservative equation with a
geometric constraint. The norm of vector field is 1 at any points. In literature there are
other models with hyperbolic constraints but these models are generally conservative.
For the macroscopic model that we obtained, all the analytical studies remain open.
For the moment, we focused on the numerical simulation of the macroscopic model
where new numerical methods have been developed. The numerical simulations show
that the structure of the solutions are more complex than we could expect.

4 Presentation of results

The works were based around two research areas. First,a line of research was based
on a new model called "Persistent Turning Walker (PTW). This model is derived
from a statistical study on the movement of the fish Mugil Kuhlia (chapter 1). We
are interested in large-scale dynamics of this model leading to equation diffusion.This
study was made primarily with tools from partial differential equations (chapter 2) and
then with probabilistic tools (chapter 3). The PTW model also allowed an extension
of a model describing the displacement of fiber used in an industrial problem in the
manufacture of composite (chapter 4). In order to extend the PTW model to include
interactions between fishes, we conducted a preliminary analysis of experimental data
of the fish Mugil Kuhlia group (chapter 5) .

This study has not yet led to a model of interaction, we then concentrated in a
second part on the study of a minimum of interaction model introduced by Vicsek. We
first derive a macroscopic model from this model based on a formulation in continuous
time (chapter 6). Then we study numerically the macroscopic model obtained by
comparing the original microscopic model (chapter 7).

Finally, in a different context we consider a stochastic homogenization problem
involving Brownian motion and fractional standard (chapter 8). These two processes
stochastic are used for modeling in biology displacement.

4.1 The PTW model

4.1.1 Chap. 1 : Analyzing Fish Movement as a Persistent Turning Walker

This chapter introduces the data analysis of the trajectories of the Kuhlia mugil fish
swimming in a circular tank. The experiments show that unlike the models used so far,
the movement of the fish cannot be described as a succession of straight line. Indeed,
we observe that the trajectories of the fish are curbed. From these observations, a new
model for the fish displacement is introduced. The model is based on the analysis of the
evolution of the angular velocity of the fish in the experiments. The evolution of the
angular speed is then model by a stochastic differential equation (Ornstein-Uhlenbeck
equation):

dW (t) = −1
τ
W (t)dt+ σdB(t) (4.1)

where W is the angular velocity of the fish, B(t) is the Brownian motion, τ and σ are
two parameters of the model. Since we assume in the model that the speed of the fish
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is constant, this equation can also be written for the curvature of the trajectory of the
fish. We call this model “Persistent Turning Walker” (PTW). The statistical analysis
of the experimental data enables to estimate the parameters of the model. Since the
fish swim in a bounded domain, they are influenced by the wall, it is necessary to
model also the effect of the wall on the angular velocity. This allowed to compare the
trajectories of the PTW with experimental trajectories. In particular, we compare the
mean square displacement within the experiments and in the PTW model (figure 12).
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Figure 12: Average square displacement for the model (continuous solid line) and
experimental data (dotted line). For the model,the estimation was made by a method
of Monte-Carlo. For experimental data, we represented a confidence interval of 95%
and an average over the experiments.

4.1.2 Chap. 2 : Large scale dynamics of the Persistent Turning Walker
model of fish behavior

In this chapter we study the large-scale dynamic of the PTW model introduced to de-
scribe the fish movement. This model is described by the following systems of stochastic
differential equations:

d~x

dt
= ~τ (θ),

dθ

dt
= κ, (4.2)

dκ = −κ dt+ α dBt,

where ~x = (x1, x2) ∈ R2 is the (two-dimensional) position vector of fish, ~τ(θ) =
(cos θ , sin θ) is the director of the velocity vector with the angle θ ∈ Π = R/2πZ



44 General Introduction

measured from the x1 direction, κ ∈ R is the curvature of the trajectory and Bt is the
standard Brownian motion.

To study the dynamics on a large scale, we use two different methods. One ap-
proach is to study directly the stochastic differential equation. We manage to compute
explicitly the variance of the position vector ~x. We then prove that the variance of ~x
growths linearly in time asymptotically. In particular, the slope of the linear growth
can be view as the diffusion coefficient associated with the PTW model. Therefore we
have an explicit formula for the diffusion coefficient :

Var{~x(t)} t→+∞∼ 2D t, with D =
∫ ∞

0
exp

(
−α2(−1 + s+ e−s)

)
ds, (4.3)

The second method is based on the forward Kolmogorov equation associated with
the PTW model. This is a partial differential equation which describes the evolution in
time of the density distribution of fish, noted f . The equation is given by the following
formula:

∂tf + ~τ · ∇~xf + κ∂θf − ∂κ(κf)− α2∂κ2f = 0. (4.4)

To study this equation at large scale, we change the scale of the variables in time and
space. To do so, we introduce a small parameter ε and we define macroscopic variables:

t′ = ε2t ; ~x′ = ε~x. (4.5)

The transition from a microscopic scale to a macroscopic scale is obtained when ε
tends to zero. Using this change of scale, we prove that the equation (4.4) reduces
to a diffusive equation at the macroscopic scale. For this, we prove that the density
distribution function f converges to an “equilibrium state”, where the distribution
of curvature is given by a Gaussian distribution and an uniform distribution for the
direction of speed. The equilibrium only depends on the density which satisfy a diffusive
equation with a non-explicit diffusion tensor.

To link the two approaches above, we prove that the diffusion tensor involved in
the second method can be represented as the mean expectation of a stochastic process.
It allows us to find an explicit formulation for the diffusion tensor and moreover we
recover the same expression for the diffusion coefficient as in the first method (see 4.3).

4.1.3 Chap. 3 : Long time fluctuation and diffusion limit for the Persistent
Turning Walker Model

In this chapter, we study the asymptotic behavior of the PTW model. Unlike the
previous chapter, we use in this work only probabilistic tools. To obtain a diffusion
equation from the PTW model, we use only the stochastic differential equation given
by the system (4.2). Using the diffusion rescaling (see equation 4.5), the PTW model
becomes with probabilistic notations :





d~xt = ε~τ(θt) dt

dθt = κt
dt

ε2

dκt = −κt
dt

ε2
+
√

2α
dBt
ε
,

(4.6)
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where we use the same notations as in chapter 4.1.2 (see equation 4.2). The study
consists to determine the limit of this system when ε tends to zero.

This study is done in two steps.
First we study the dynamics of the process (θt, κt). To do, we analyze the in-

finitesimal generator L of this process. We prove using a Lyapunov function that the
generator satisfies a Poincaré inequality. This leads to an exponential convergence of
the process (θt, κt) to a stationary distribution. Moreover, we use this convergence to
prove the existence of a solution to the elliptic equation associated with the operator
L.

In a second step, we study the position vector ~xt. The vector is simply given by
the integral of the velocity ~τ(θt) in time. Using the solution of the elliptic equation
associated with the operator L, we obtain a new integral formula for ~xt. Then we only
have to use standard tools in probability such as the Itô formula to prove that the
process ~xt converge in the limit ε→ 0 to Brownian motion.

4.1.4 Chap. 4 : A smooth model for fiber lay-down processes and its
diffusion approximations

In this chapter we introduce a new model developed to describe the movement of fibers
under the influence of turbulence. This model is used in an industrial problem in the
manufacture of composite materials.

The original model used to describe the trajectories of fibers has a drawback since
the paths are non-differentiable. The real physical process gives more regular trajec-
tories. To overcome this problem, we introduce a new model for fiber which is an
extension of the PTW model. The new model is given by the following stochastic
differential equation:

d~xt = ~τ(θt) dt

dθt = κt dt (4.7)

dκt = λ(κ0 − κ) dt+ µdBt,

where we use the same notations as in chapter 4.1.2 (see equation 4.2) with a second
term κ0 given by:

κ0 = b(|~xt|) sin(θt − φ), (4.8)

where b(.) is a positive function, φ is the direction of the position vector ~xt e.g. ~τ (φ) =
~xt
|~xt| . To make the connection between this new model and existing models, we study
the limit of equation (4.7) in different regimes.

As a first step, we study the limit of equation (4.7) when the two parameters λ and
µ satisfy:

λ′ = ε2λ ; µ′ = ε2µ (4.9)

with ε << 1. In the limit ε → 0, we obtain the original model used to model the
trajectories of fiber.

Then we used another asymptotic namely:

λ′ = ελ ; µ′ = ε3/2µ. (4.10)
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In this asymptotic, the equation (4.7) becomes in the limit ε→ 0 a diffusion-advection
equation.

This study allows to have a full schema between three types of model to describe
the trajectories fibers (original model, generalized PTW model and advection-diffusion
equation). Numerical simulations of the new model introduced at different regimes
(4.9-4.10) illustrate the theory developed.

4.1.5 Chap. 5 : Statistical analysis of fish movements

This chapter is devoted to the statistical analysis of experimental data on the Kuhlia
mugil fish in group. This study is a first step to build a relevant model for fish behavior
in interaction.

We have experimental data for different group size of fish. Experiments were con-
ducted with 2, 5, 10, 15 and 30 fish. To study the trajectories obtained, we start a
statistical analysis of the data using two different view-point.

First, we measure several characteristics for the group of fish such as the density
and the group polarization. In particular, we observe an unexpected phenomenon: the
bigger the group is, the less the group is aligned. It is exactly the opposite that we
observe in some individual based models such as the Vicsek model [53].

Then, we study the individual trajectories depending on the size of the group. We
note in particular that the individual trajectories have some common feature regardless
of the size of the group (see figure 13). To understand how individuals are positioned
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Figure 13: The distributions of angular velocity W of the individual trajectories of the
fishes for different size of group. Distributions have a Gaussian shape with a variance
.7 (1/s2).

within the group, we look at the correlation of different quantities (velocity, accelera-
tion,...) between fish. For example, we observe that the fish tend to swim one in front
of the other in the experiments with 2 fish, whereas in others experiments the position
of the neighbors around a fish are isotropic. Others measures at the individual level
explain why the group is less polarized when the number of fish increases.
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This study provides statistical measures that we will thereafter use to validate a
model of interaction between fish.

4.2 The Vicsek model

4.2.1 Chap. 6 : Continuum limit of self-driven particles with orientation
interaction

This chapter is devoted to the derivation of a macroscopic model from the Vicsek
model.

In the Vicsek model, we consider particles moving at constant speed which interact
between each other in order to increase their alignment. Noting ~xnk the position of the
kth particle at time n∆t with ∆t a time step and ωnk the velocity, the dynamics are
described by the following equations:

~xn+1
k = ~xnk + c ωnk∆t, (4.11)

ωn+1
k = ω̄k + εn, (4.12)

where c is the speed, εn is an independent random variable representing the noise in
the system and ω̄k is the average velocity around the particle ~xk defined by:

ω̄k =
Jnk
|Jnk |

, Jnk =
∑

j, |~xnj −~xnk |≤R
ωnj . (4.13)

where R is the radius of perception.
In this work, we first derive from this discrete dynamic a continuous dynamics.

This dynamics is written as stochastic differential equation:

d~xk
dt

= c ωk, (4.14)

dωk = (Id− ωk ⊗ ωk)(ν ω̄k dt+
√

2d dBt), (4.15)

where Bt is the Brownian motion,
√

2d is the intensity of noise, ν is the frequency of
interaction. The projection operator (Id− ωk ⊗ ωk) ensures that the speed remains of
module 1 (see figure 14).

To derive a macroscopic model from this continuous equation, we use the kinetic
equation associated with this particle dynamics. Since the particles are interacting,
the transition between the particle dynamics to the kinetic equation is only formal. To
prove rigorously the derivation of the kinetic equation, we need to prove the assumption
of the propagation of chaos and it is still an open problem. Once we have the kinetic
equation, we use an hydrodynamics scaling in order to derive a macroscopic model.
More precisely, we introduce the new macroscopic variables:

t′ = εt ; ~x′ = ε~x. (4.16)

In the variables (t′, x′), the density distribution of f ε satisfies the following kinetic
equation:

ε(∂tf ε + ω · ∇xf ε) = Q(f ε) +O(ε2), (4.17)
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Figure 14: The projection of the vector ω̄k on the orthogonal of ωk guarantees that the
velocity of each particle remains constant.

with:

Q(f ε) = −∇ω · (F [f ε]f ε) + d∆ωf ε (4.18)

F [f ε] = ν (Id− ω ⊗ ω)Ω[f ε], (4.19)

Ω[f ε] =
j[f ε]
|j[f ε]| , and j[f ε] =

∫

υ∈S2

υ f ε(x, υ, t) dυ. (4.20)

To find the limit when ε → 0, we first prove that the equilibrium of this kinetic
equation are given by:

E = {ρMΩ(ω) | ρ ∈ R+, Ω ∈ S2}, (4.21)

with MΩ(ω) = C exp
(
ν

d
ω · Ω

)
where Ω is the velocity director and C is a constant

such that MΩ is a density distribution. The equilibrium ensemble E is a three di-
mensional manifold. But the collision operator Q has only a one-dimensional set of
collisional invariants (corresponding to constant function). Therefore we can not de-
rive a macroscopic equation. This is why we introduce a new concept of generalized
collisional invariant which enables to introduce collisional invariants. With this new
concept, we manage to determine the macroscopic limit of our kinetic equation. At
the limit ε→ 0, we obtain an equation for the density ρ and the velocity director Ω:

∂tρ+∇x · (c1ρΩ) = 0, (4.22)

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id− Ω⊗ Ω)∇xρ = 0, (4.23)

where c1, c2 are the convection speed and λ is a positive constant. The macroscopic
model obtained is hyperbolic but not conservative because of the constraint on the
vector Ω who must have a constant norm (|Ω| = 1). This properties makes the model
original.

4.2.2 Chap. 7 : Numerical studies of the CVA models

The purpose of this chapter is to validate the macroscopic model developed in the
previous chapter by comparing numerical simulations with the microscopic model. To
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perform this analysis, we must better understand the macroscopic model. Since it is is
non-conservative equation with a geometric constraint, we do not have theory that we
could refer on. We propose two different approaches to study theoretically and numer-
ically the macroscopic equation. First, we reformulate the model in a simple conserva-
tive form which appears to be the natural conservative formulation for this problem.
Then, we propose an other formulation for the macroscopic equation where we replace
the constraint on the vector field Ω by a relaxation operator.These two approaches give
two different numerical methods, called conservative and splitting method. However,
the numerical simulations of the microscopic model in a dense regime of particles are
only in good agreement with the splitting method, the conservative method gives dif-
ferent results. This shows that first we have an agreement between the microscopic
model and the macroscopic model and secondly that the correct formulation of the
macroscopic model is given by the formulation with a stiff relaxation operator.

4.3 Homogenization theory

4.3.1 Chap. 8 : Random integrals and correctors in homogenization

The purpose of this chapter is to study theoretically and numerically stochastic ho-
mogenization of an elliptic equation. This study is not directly connected with biology,
since the equation models a deformation of a material under some constraints. Never-
theless, the probabilistic tools used in this study (Brownian motion, stochastic integral,
Ornstein-Uhlenbeck process) are widely used in previous work.

The deformation of a material when it is mixed with other components is modeled
by the following elliptic equation:

− d

dx

(
a
(
x

ε
, ω
)
d

dx
uε
)

= f(x), 0 ≤ x ≤ 1,

uε(0, ω) = 0, uε(1, ω) = q.

(4.24)

where f is the force applied to the materials, a(x, ω) is the coefficient of elasticity
given by a stationary stochastic process. Under several assumptions, we can prove
that the solution uε(x,Ω) of the elliptical equation converges when ε tends to zero to
the deterministic solution ū(x) of the following equation:

− d

dx

(
a∗

d

dx
ū
)

= f(x), 0 ≤ x ≤ 1,

ū(0) = 0, ū(1) = q.

(4.25)

where the coefficient of elasticity a∗ is given by a∗ =
(
E{a−1(0, ·)}

)−1
with E the

mathematical expectation. Equation (4.25) is called the homogenized equation. We
are interested in the difference between the solution uε of the equation (4.24) and
the homogenized solution u∗. We distinguish two cases depending on whether the
autocorrelation function of the process a(x, ω) is integrable or not. In the first case,
the difference between uε and u∗ converges to a stochastic process which is written
with the standard Brownian motion. In the non-integrable case, the difference involves
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the fractional Brownian motion. We then prove rigorously these convergences when
the elastic coefficient a(x, ω) is given by a certain expression. Numerical simulations
illustrate the theory.



Bibliography

[1] I. Aoki. A simulation study on the schooling mechanism in fish. Bulletin of the
Japanese Society of Scientific Fisheries (Japan), 1982.

[2] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,
V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, et al. Interaction ruling animal
collective behavior depends on topological rather than metric distance: Evidence
from a field study. Proceedings of the National Academy of Sciences, 105(4):1232,
2008.

[3] N. Bellomo. Modeling complex living systems: a kinetic theory and stochastic
game approach. 2007.

[4] E. Bertin, M. Droz, and G. Gregoire. Boltzmann and hydrodynamic description for
self-propelled particles (4 pages). PHYSICAL REVIEW-SERIES E-, 74(2):22101,
2006.

[5] P. Bovet and S. Benhamou. Spatial analysis of animals’ movements using a cor-
related random walk model. Journal of theoretical biology, 131(4):419–433, 1988.

[6] D.R. Brillinger, H.K. Preisler, A.A. Ager, J.G. Kie, and B.S. Stewart. Employing
stochastic differential equations to model wildlife motion. Bulletin of the Brazilian
Mathematical Society, 33(3):385–408, 2002.

[7] J. Buhl, DJT Sumpter, ID Couzin, JJ Hale, E. Despland, ER Miller, and SJ Simp-
son. From disorder to order in marching locusts, 2006.

[8] C. Calenge, S. Dray, and M. Royer-Carenzi. The concept of animals’ trajectories
from a data analysis perspective. Ecological Informatics, 2008.

[9] S. Camazine, JL Deneubourg, NR Franks, J. Sneyd, G. Theraulaz, and
E. Bonabeau. Princeton University Press; Princeton, NJ: 2001. Self-organization
in biological systems.

[10] E. Casellas, J. Gautrais, R. Fournier, S. Blanco, M. Combe, V. Fourcassie,
G. Theraulaz, and C. Jost. From individual to collective displacements in hetero-
geneous environments. Journal of Theoretical Biology, 250(3):424–434, 2008.



52 BIBLIOGRAPHY

[11] A. Cavagna, I. Giardina, A. Orlandi, G. Parisi, and A. Procaccini. The starflag
handbook on collective animal behaviour: 2. three-dimensional analysis. Arxiv
preprint arXiv:0802.1674, 2008.

[12] A. Cavagna, I. Giardina, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and
V. Zdravkovic. The starflag handbook on collective animal behaviour: 1. empirical
methods. Animal Behaviour, 76(1):217–236, 2008.

[13] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud. Collective motion of self-
propelled particles interacting without cohesion. Physical Review E, 77(4):46113,
2008.

[14] GQ Chen, CD Levermore, and TP Liu. Hyperbolic conservation laws with sti
relaxation and entropy. Comm. Pure Appl. Math, 47:787, 1994.

[15] Y. Chuang, M.R. D’Orsogna, D. Marthaler, A.L. Bertozzi, and L.S. Chayes. State
transitions and the continuum limit for a 2d interacting, self-propelled particle
system. Physica D: Nonlinear Phenomena, 232(1):33–47, 2007.

[16] I.D. Couzin and J. Krause. Self-organization and collective behavior in vertebrates.
Advances in the Study of Behavior, 32(1), 2003.

[17] I.D. Couzin, J. Krause, R. James, G.D. Ruxton, and N.R. Franks. Collective
memory and spatial sorting in animal groups. Journal of Theoretical Biology,
218(1):1–11, 2002.

[18] F. Cucker and S. Smale. Emergent behavior in flocks. IEEE TRANSACTIONS
ON AUTOMATIC CONTROL, 52(5):852, 2007.

[19] MR D Orsogna, YL Chuang, AL Bertozzi, and LS Chayes. Self-propelled parti-
cles with soft-core interactions: patterns, stability, and collapse. Physical review
letters, 96(10):104302, 2006.

[20] P. Degond. Macroscopic limits of the Boltzmann equation: a review. Modeling and
computational methods for kinetic equations, P. Degond, G. Russo, L. Pareschi
(eds), Birkhauser, 2004.

[21] L. Edelstein-Keshet. Mathematical models of swarming and social aggregation.
In Proceedings of the 2001 International Symposium on Nonlinear Theory and Its
Applications, Miyagi, Japan, pages 1–7, 2001.

[22] L. Edelstein-Keshet. Mathematical models in biology. 2005.

[23] F. Filbet, P. Laurençot, and B. Perthame. Derivation of hyperbolic models for
chemosensitive movement. Journal of Mathematical Biology, 50(2):189–207, 2005.

[24] F. Filbet and C. Shu. Approximation of hyperbolic models for chemosensitive
movement. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 27(3):850, 2006.



BIBLIOGRAPHY 53

[25] S. Garnier, J. Gautrais, and G. Theraulaz. The biological principles of swarm
intelligence. Swarm Intelligence, 1(1):3–31, 2007.

[26] G. Grégoire and H. Chaté. Onset of collective and cohesive motion. Physical
Review Letters, 92(2):25702, 2004.

[27] G. Grégoire, H. Chaté, and Y. Tu. Moving and staying together without a leader.
Physica D: Nonlinear Phenomena, 181(3-4):157–170, 2003.

[28] S.Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions
of flocking. Arxiv preprint arXiv:0806.2182, 2008.

[29] Dirk Helbing and Péter Molnár. Social force model for pedestrian dynamics. Phys.
Rev. E, 51(5):4282–4286, May 1995.

[30] C.K. Hemelrĳk and H. Hildenbrandt. Self-Organized Shape and Frontal Density
of Fish Schools. Ethology, 114(3):245–254, 2008.

[31] A. HUTH and C. WISSEL. The simulation of the movement of fish schools.
Journal of theoretical biology, 156(3):365–385, 1992.

[32] R. Jeanson, S. Blanco, R. Fournier, J.L. Deneubourg, V. Fourcassié, and G. Ther-
aulaz. A model of animal movements in a bounded space. Journal of Theoretical
Biology, 225(4):443–451, 2003.

[33] VL Kulinskii, VI Ratushnaya, AV Zvelindovsky, and D. Bedeaux. Hydrodynamic
model for a system of self-propelling particles with conservative kinematic con-
straints. Europhysics Letters, 71(2):207–213, 2005.

[34] V. Mirabet, P. Auger, and C. Lett. Spatial structures in simulations of animal
grouping. Ecological Modelling, 201(3-4):468–476, 2007.

[35] A. Mogilner and L. Edelstein-Keshet. A non-local model for a swarm. Journal of
Mathematical Biology, 38(6):534–570, 1999.

[36] A. Mogilner, L. Edelstein-Keshet, L. Bent, and A. Spiros. Mutual interactions, po-
tentials, and individual distance in a social aggregation. Journal of Mathematical
Biology, 47(4):353–389, 2003.

[37] M. Moussaid, S. Garnier, A. Johansson, D. Helbing, and G. Theraulaz. Experi-
mental measurements of human interactions in space and time.

[38] J.D. Murray. Mathematical biology. 2003.

[39] M. Nagy, I. Daruka, and T. Vicsek. New aspects of the continuous phase transi-
tion in the scalar noise model (SNM) of collective motion. Physica A: Statistical
Mechanics and its Applications, 373:445–454, 2007.

[40] H.S. Niwa. Newtonian dynamical approach to fish schooling. Journal of Theoret-
ical Biology, 181(1):47–63, 1996.



54 BIBLIOGRAPHY

[41] A. Okubo. Dynamical aspects of animal grouping: swarms, schools, flocks, and
herds. Adv Biophys, 22:1–94, 1986.

[42] J.K. Parrish and W.M. Hamner. Animal Groups in Three Dimensions. Cambridge
University Press, 1997.

[43] J.K. Parrish and S.V. Viscido. Traffic rules of fish schools: a review of agent-based
approaches. Self-organisation and Evolution of Social Systems, 2005.

[44] J.K. Parrish, S.V. Viscido, and D. Grunbaum. Self-organized fish schools: an
examination of emergent properties. Biological Bulletin, Marine Biological Labo-
ratory, Woods Hole, 202(3):296–305, 2002.

[45] B. Perthame. Transport equations in biology. 2007.

[46] H.K. Preisler, D.R. Brillinger, A.A. Ager, J.G. Kie, and R.P. Akers. Stochas-
tic differential equations: a tool for studying animal movement. Proceedings of
IUFRO4, 11:25–29, 2001.

[47] VI Ratushnaya, D. Bedeaux, VL Kulinskii, and AV Zvelindovsky. Collective be-
havior of self-propelling particles with kinematic constraints: The relation between
the discrete and the continuous description. Physica A: Statistical Mechanics and
its Applications, 381:39–46, 2007.

[48] VI Ratushnaya, VL Kulinskii, AV Zvelindovsky, and D. Bedeaux. Hydrodynamic
model for the system of self propelling particles with conservative kinematic con-
straints; two dimensional stationary solutions. Physica A: Statistical Mechanics
and its Applications, 366:107–114, 2006.

[49] G. Theraulaz, E. Bonabeau, S.C. Nicolis, R.V. Sole, V. Fourcassie, S. Blanco,
R. Fournier, J.L. Joly, P. Fernandez, A. Grimal, et al. Spatial patterns in ant
colonies. Proceedings of the National Academy of Sciences, 99(15):9645, 2002.

[50] C.M. Topaz and A.L. Bertozzi. Swarming patterns in a two-dimensional kinematic
model for biological groups. SIAM Journal on Applied Mathematics, 65(1):152–
174, 2005.

[51] C.M. Topaz, A.L. Bertozzi, and M.A. Lewis. A nonlocal continuum model for
biological aggregation. Bulletin of Mathematical Biology, 68(7):1601–1623, 2006.

[52] Y. Tyutyunov, I. Senina, and R. Arditi. Clustering due to acceleration in the
response to population gradient: a simple self-organization model. The American
Naturalist, 164(6):722–735, 2004.

[53] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of
phase transition in a system of self-driven particles. Physical Review Letters,
75(6):1226–1229, 1995.

[54] S.V. Viscido, J.K. Parrish, and D. Grünbaum. Factors influencing the structure
and maintenance of fish schools. Ecological Modelling, 206(1-2):153–165, 2007.



Part I

The Persistent Turning Walker model





Chapter 1

Analyzing Fish Movement as a
Persistent Turning Walker

This chapter has given an article in the Journal of Mathematical Biology: J. Gautrais,
C. Jost, M. Soria, A. Campo, S. Motsch, R. Fournier, S. Blanco and G. Theraulaz,
Analyzing fish movement as a persistent turning walker, J. Math Biology, 58 (2009),
no. 3, 429–445.

Abstract. The trajectories of Kuhlia mugil fish swimming freely in a tank are an-
alyzed in order to develop a model of spontaneous fish movement. The data show that
Kuhlia mugil displacement is best described by turning speed and its auto-correlation.
The continuous-time process governing this new kind of displacement is modelled by a
stochastic differential equation of Ornstein-Uhlenbeck family: the Persistent Turning
Walker. The associated diffusive dynamics are compared to the standard persistent
random walker model and we show that the resulting diffusion coefficient scales non-
linearly with linear swimming speed. In order to illustrate how interactions with other
fish or the environment can be added to this spontaneous movement model we quantify
the effect of tank walls on the turning speed and adequately reproduce the character-
istics of the observed fish trajectories.

Key words. Fish displacement model, Stochastic model, Ornstein-Uhlenbeck pro-
cess.
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1 Introduction

The highly coordinated displacement of hundreds or thousands of fishes in so-called
fish schools has been the focus of many theoretical and some experimental studies.
The spatial group cohesion, unless it is ensured by a confining environment, must be
the result of interactions between the animals. As in any collective behaviour, these
interactions should be considered as individual decision processes that synchronise the
behavioural outputs [12].

Many authors have tried to understand these collective behaviours from a theoret-
ical perspective. They propose biologically plausible (but nevertheless hypothetical)
interactions that lead to a synchronization of the fish headings (moving directions),
see [18, 61] and references therein. The interactions are implemented as a set of
neighbour-dependent rules that modify a null-model of spontaneous and independent
fish displacement. Such a null-model may gain particular importance in the case of
fish groups with clearly identified leaders that swim rather independently ahead of the
group, their null-model may therefore dominate the landscape of the collective patterns
[60, 18, 19, 24].

In most of these studies this null-model is a random walk, that is the animal path
is characterized by a series of straight moves separated by reorientation behaviour. In
some cases, the new heading is simply uniformly distributed and the time series of
headings obeys a Markov process of order 0 (pure random walk). More often, the new
heading is a small deviation from the previous headings and the null-model corresponds
to a correlated random walk or persistent random walker [34]. In this case, the time
series of headings obeys a Markov process of order 1 (consecutive headings are auto-
correlated) , and the time series of the turning angles obeys a Markov process of order
0 (consecutive turning angles are independent).

However, most of these studies are only loosely linked to biological data. In or-
der to move towards a biological validation some experimental studies have attacked
the quantitative description of the collective swimming behaviour [36, 49, 3] and its
comparison to model predictions. Only very few studies have directly addressed the
experimental identification and quantification of the underlying interactions between
individuals [26, 46], and they all used the pure random walk as the null-model.

It is important to note that the estimation of interaction parameters depends cru-
cially on the choice of the null-model. The prerequisite for such an estimation is the
existence of a validated null-model of spontaneous displacement since interactions are
detected as the departures from such a null-model. We therefore advocate that a prior
step to interaction analysis is to quantify this spontaneous behavior experimentally and
to check whether the random walk model indeed holds for an isolated fish. Otherwise a
better grounded spontaneous model must be developped. To be applicable, this model
should work as much as possible at the same space and time scale as the suspected
interactions.

To address this question, we quantify in the present chapter the experimental tra-
jectories of nine isolated fish that swim in a circular tank. The fish were Barred flagtail
(Kuhlia mugil), a 20-25 cm pelagic fish that lives in schools along the coral reefs in
La Réunion Island. In a data-driven approach we first develop a stochastic kinematic
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model of their swimming behavior in the form of stochastic differential equations (sde):
the persistent turning walker (PTW). This model is characterised by a constant swim-
ming speed and an autocorrelation of the angular speed (turning angle per unit time)
rather than autocorrelation of the heading as in the correlated random walk. The
exploration of the model properties will help to identify the major differences to the
random walk model, in particular the expected collective behaviour when many in-
dividuals move according to this null-model. In a second step we will also explore
how to add interactions to this null-model by quantifying the interaction between the
fish and the tank walls. This interaction takes the form of an additional term in the
stochastic differential equation that bends the fish trajectory away from the wall. The
extended model will be used to compare directly the net squared displacement between
experimental and simulated trajectories.

2 Data collection

In the experiments described in [53], nine fish were filmed while swimming alone in a
circular tank of radius R = 2 m, depth 1.2 m and filled with still clean sea water. The
limited water depth ensured that the fish were swimming on a planar level, that is in
two dimensions.

For each individual, two minutes were extracted from digital video recordings and
the position of the individual’s head was tracked every 1/12 second (1440 points per
trajectory). Perspective errors were corrected, and oscillations of periods shorter or
equal to 8/12 s that are due to the beating mode of swimming were removed using
wavelet filtering with Daubechies bank of length 10 (Wave++ package [22]). This
filtering procedure yielded the trajectory of the fish body and was never farther than
2 cm from the tracked head (for a fish of length 20 cm). These trajectories appeared
rather winding (spiral course) with no well-defined points of directional changes as
would be expected in standard correlated random walks (Fig. 1.1). Some fish exhib-
ited some kind of thigmotactic behaviour (wall following / attraction, see fishes 1, 4
and 5) whereas the others displayed simple wall avoidance type patterns.

Cartesian 2D coordinates are arbitrary with respect to the origin and orientation
of the axis, they are therefore badly suited to analyze movement. To adopt the fish
point of view they were converted into the intrinsic coordinates along the trajectories.
Starting from the initial point P (0) at t = 0, intrinsic coordinates (S(t), ϕ(t)) denote
respectively the curvilinear abcissa and the heading at time t when the fish is at
position P (t). The curvilinear abcissa S(t) is the length of the trajectory since t = 0
when S(0) = 0. Correspondingly, the heading ϕ(t) is computed relative to the initial
heading ϕ(0) at t = 0 (see Fig. 1.2). The time derivatives of these intrinsic coordinates
are respectively the swimming (tangent) speed V (t) (m.s−1, which is the norm of the
speed vector ~V (t)) and the turning speed W (t) (rad.s−1).

To minimize the error due to time discretization, we estimated the intrinsic co-
ordinates at each point Pi = P (i∆t), i = 1, .., 1338, by fitting a circle to the three
consecutive points Pi−1, Pi, Pi+1. We then recovered ∆si and ∆ϕi (counter-clockwise
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coded as positive) for each middle point Pi as shown in Fig. 1.2. The instantaneous
swimming speed Vi and turning speed Wi were then estimated by:

V̂i =
∆s
2∆t

(2.1)

Ŵi =
∆ϕ
2∆t

(2.2)

The curvilinear abcissa Si and heading ϕi at point Pi were recovered by integrating
the corresponding speeds over time, starting from the second point of the series (P1 =
P (∆t)), according to the equations

Ŝi =
∫

∆t<t<i∆t

dS(t) ≃
i−1∑

j=1

V̂j∆t (2.3)

ϕ̂i =
∫

∆t<t<i∆t

dϕ(t) ≃
i−1∑

j=1

Ŵj∆t (2.4)

Note that this procedure yields a heading value ϕi which is relative to the heading
at the starting point P1 and can fluctuate away from the standard trigonometric limits
[−π.. + π] because ϕi is not taken modulo 2π (e.g. three complete counter-clockwise
revolutions would yield a ϕ-shift of 3 ∗ 2π). Such a definition of heading is the most
relevant one when dealing with rotational diffusion [9, 11, 47] because it is consistent
with the continuous evolution of the heading (no artificial jumps at the transitions
between −π and π).

3 Kinematic model

3.1 Rationale for the model

The time evolution of S(t) indicated that the swimming speeds could be considered as
constant for each fish (Fig. 1.3a: constant slopes with some residual tracking noise)
but different across fishes. As for the time evolution of the heading, we found that the
autocorrelation of the turning speed 〈Wi,Wi+h〉 was significant over several seconds
(Fig. 1.3b). Contrastingly, an essential property of random walks is that consecutive
changes of heading are independent. Therefore, the autocorrelation of the turning
speeds, defined as

〈(ϕi − ϕi−1)/∆t, (ϕi+1 − ϕi)/∆t〉 = 〈Wi,Wi+1〉, (3.5)

would be negligible. This is obviously not the case in our data. Hence, the random
walk model, whether correlated or not, could not account for the persistence of the
turning speed in our fish and would be inadequate. Data rather suggest a process
based on a correlated turning speed [1, 2] with constant swimming speed. Following
the terminology of the persistent random walker (PRW) which denotes the random
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walk with an autocorrelation of the heading, we shall hereafter call the persistent
turning walker (PTW) this new kind of random walk with an autocorrelation of the
turning speed. In its simplest form, this model states:

Vi = V (constant swimming speed) (3.6)

Wi = aWi−1 + bi (3.7)

where bi is a random gaussian variable of mean 0 and variance s2, and a the one-step
correlation coefficient of Wi.

Equation 3.7 is an auto-regressive process of order 1 (AR(1) in the statistics liter-
ature). Its parameters a and s can be estimated from a time series (N points sampled
every ∆t) by the standard equations

â =
∑N−1
i WiWi+1∑N−1
i Wi

(3.8)

ŝ2 =
1
N

N−1∑

i

(Wi+1 − âWi)2 . (3.9)

For a continuous signal such as a moving fish, a and s depend on the discretization
time step ∆t, but this dependency can be resolved by computing their continuous-time
equivalents α and σ:

α = − log(a)
∆t

(3.10)

σ2 = s2 2α
1− e−2α∆t

. (3.11)

α expresses the inverse of the autocorrelation time τ (that is τ = 1/α) and a = e−∆t/τ .
Since W (t) is a continuous-time process, (3.7) ought to be understood as the discretized
solution over [(i− 1)∆t..i∆t] of the stochastic differential equation (sde):

dW (t) = −1
τ
W (t)dt+ σdB(t) (3.12)

with B(t) representing a Brownian process (white noise). This is known in statistical
physics as the Ornstein-Uhlenbeck (OU) process [59] and as the Vasicek model in the
financial economics literature [7]. In the stationary regime, this equation leads to a
Gaussian random process of the turning speed with zero mean, variance τσ2/2 and an
exponentially decaying autocorrelation function with decay rate α.

3.2 Parameter estimation

In order to estimate the parameter values of this spontaneous moving behavior from
the fish trajectories in Fig. 1.1 we had to take the confining effect of the wall into
account. Taken a constant swimming speed for granted, this effect can only operate on
the turning speed, acting as an external field which skews the turning speeds towards
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repulsive moves (for further details see next section). This might have biased the
estimates of the autocorrelation time lag. Hence, we restricted this estimation by using
only positions farther than 1 m from the wall (Fig. 1.4) and censored, i.e. treated as
unknown values, the trajectories when the fish was outside the innermost 1 m wide disk.
Those estimates are reported for each fish on Fig. 1.5 (black dots, •). They were rather
homogeneous across the fish, except for the individuals 1 and 4 that were identified
above as exhibiting a strong attraction towards the wall with a rythmic pattern to and
from the wall (Fig. 1.1). To estimate the confidence interval of the parameters, we
produced repeated simulated series of W using (3.7) with a common set of parameters
(τ ⋆ = 0.6 s and σ⋆ = 1.5 rad.s−0.5, same time step ∆t), and applied to each fish the
same censoring filter as to the original data. We then computed the corresponding
mean and confidence interval at the 95% level (percentile method, estimated from
100,000 simulations each). These confidence intervals show that all fish have a τ -value
that is not significantly different from a common autocorrelation time around τ ⋆. As
expected, the outlier fish 1 and 4 depart clearly from the others (and their confidence
intervals are much larger because of a lack of data in the inner 1-m disk). The individual
variances σ2 seemed more contrasted and were significantly less homogeneous than the
correlation times. However, it is unlikely that these slight deviations from σ⋆ would
actually raise significant differences at the level of the trajectories.

4 Properties of the spontaneous model

4.1 Macroscopic prediction

Degond & Motsch [20] have analysed the large time scale behaviour of a similar model
(with an autocorrelation of the curvature instead of the turning speed). They have
shown by a space-time rescaling technique that their model leads to a diffusion process
at the macroscopic scale. Since our fish swim at constant speed, an autocorrelation
of the curvature is equivalent to an autocorrelation of the turning speed, so their
conclusion holds also for the PTW model and the mean square displacement scales
linearly with time at large scale:

V ar
[−−→
x(t)

]
t→+∞−−−−→ 2Dt (4.13)

where
−−→
x(t) denotes the vector from the starting point to the position at time t. The

diffusion coefficient D indicates how fast the fish spreads out from its initial position
across the 2D-space.

Figure 1.6 reports the dependence of the associated macroscopic diffusion coeffi-
cient D on the swimming speed V and the autocorrelation time of the turning speed
τ . An analytical derivation of this dependance is under study. In contrast to the
macroscopic version of the random walk, the diffusion coefficient in the PTW model
is not proportional to the swimming speed, but rather increases non linearly as the
swimming speed increases. For a given speed V , an increase of the autocorrelation
time of the turning speed τ yields a lower diffusion coefficient. This happens because
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the fish is more often trapped in a high value of turning speed and for a longer time,
so it turns around more locally.

5 Inclusion of wall avoidance

The kinematic model presented above only applies to fish behavior in unconstrained
open water. As an example of how additional components can be integrated into this
model and quantified from data we added the wall avoidance behavior. Focusing on
the fastest fish (Fish 9) we found that the wall had a salient effect only when the fish
was close to and heading towards the wall. We consequently reconstructed the effect
of wall repulsion as a function of the distance Dc before collision with the wall (if
heading were not changed), i.e. the distance between the fish and the intersection of
the heading line with the wall.

We assumed that the repulsive effect of the wall made the fish tend towards a
turning speed F (Dc) which bends its trajectory away from the wall. In order to keep
the model independent of the time step, we adopted the sde formalism of equation
(3.12) and introduced the new term F (Dc(t)) as:

dW (t) = −1
τ

(W (t)− F (Dc(t))) dt + σdB(t) (5.14)

If the wall effect were constant over time (e.g. F (Dc(t)) = F ⋆) process (5.14) should
be understood as a relaxation of W (t) towards the equilibrium value F ⋆. Of course,
since the fish position and its heading change over time, so does F (Dc(t)).

Over a small time step ∆t however, we can assume that F (Dc(t)) ≃ F (Di) (with
t = (i− 1)∆t) is constant, and the discrete version of (5.14) is given in [7] by

Wi+1 = aWi + c F (Di) + bi (5.15)

where c = (1 − e−∆t/τ ), and a and bi are defined as in (3.7). Given a from the
spontaneous model we reconstructed F (Dc) based on

F̂ (Di) =
Wi+1 − aWi

c
(5.16)

plotted against Di.
Finally, since the repulsive effect of the wall has to induce a change of the turning

speed in the correct direction, we corrected the sign of F̂ (Di) such that positive values
corresponded to a fish steering away from the wall (Fig. 1.7a). Following [9], we used a
nonparametric locally weighted regression procedure (loess, [17]) to estimate the decay
of this wall effect as the distance to collision increases. This decay could be adequately
modeled by the parametric function F (Dc) ≃ 3 e−1.5Dc (Fig.1.7a).

We finally simulated the complete model, using the discrete version (5.15), and
checked the simulated trajectories against the experimental one. A typical example
is shown in Fig.1.7b. Note in particular that the wall avoidance results from the
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time integration of the wall effect quantified above, with no ad-hoc correction in case
of collisions (which do not happen with sufficiently small ∆t). As a final test of
the relevance of this model, we compared the experimental and the expected mean
squared displacement (MSD). Both agreed perfectly well up to 6 seconds (i.e. 3.6
m, which is of the same order of magnitude as the tank width of 4 m) despite the
fact that the statistical quantifications of the model were done on the turning speed
fluctuations (third derivative of the position) whereas this test is performed directly
with the integrated time series of the fish positions.

6 Discussion

6.1 Why a new kind of random walk model is needed

Random walks and the associated diffusion models were originally developed in biology
to describe the movements of single cells [44, 45]. Later they were adopted by ecologists
to model the displacement of animals [35, 56], and particular attention was paid to
the underlying behavioral mechanisms and how they are modulated by environmental
conditions. Inspired from the model of gas particles that travel straight ahead between
collisions, random walk models break the path into a series of consecutive straight
moves, separated by random reorientation behavior. The biological rules determine,
for each move, a direction, a duration and a length that can depend on the preceeding
move (in the case of the correlated random walk) but also on the animal’s state and
goals and the environmental conditions (including the presence of conspecifics). Most
often, these discrete random walk models have equivalent continuous time formulations,
either at the population level (macro-scale diffusion models) or at the individual level
(stochastic differential equations and Langevin theory of Brownian motion [16]). They
are especially useful when the focus is put on the interplay between the behavior and
the environment at large time and space scales (e.g. how ovipositing butterflies respond
to changes in the dispersion of their food plants [34]). More generally, simple random
walks have proved to be appropriate to quantify the movement of animals or cells which
exhibit clear bouts of straight moves separated by reorientation behaviour (e.g. in ants
[14, 13], cockroaches [32] or E. coli [2]).

Our fish in the tank did not exhibit such clear bouts of straight moves nor clear
reorientation behaviour. They are rather characterized by smooth variations of their
heading. Of course, it would still have been possible to approximate their trajectory as
a series of straight segments at some fine scale. This would have required a subtle choice
where to break up the path, with a trade-off between inappropriate lumping of small
displacements and excessive splitting of long ones. Excessive splitting yields series
of headings that are still highly autocorrelated which complicates statistical factor
analyses and the translation of individual movements into population dispersal models
[34, 57]. To avoid this, Tourtellot advocates for instance to sub-sample trajectories of
cockroaches in order to enhance the discrimination between "gait noise" (lateral, side-
to-side wobble) and course changes [55]. Accordingly, Turchin suggests to resample
the path at a lower rate until the autocorrelation structure disappears [56, 58, 6].
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Such a procedure applied to our fish has led to an overly rough approximation of the
true path, impeding accurate predictions of the fish trajectory at the short time scale.
At finer scales, not only was the heading highly autocorrelated from one segment
to the next (one-step correlation as in the correlated random walk model), but the
heading change itself was autocorrelated, because the circular-shaped trajectories imply
sustained changes of the heading towards the same clock-wise sign. Modelling such a
moving behaviour with straight moves separated by an ad hoc tortuous reorientation
behaviour (e.g. a Markov process of higher order as in [27]) would have been unduly
complicated.

We adopted a more parsimonious approach in which the random fluctuations act
directly on the turning speed (the derivative of the heading) rather than on the heading
itself. This led us to the persistent turning walker (PTW) model. Using this model,
there were still two alternatives to express the random process at the individual scale,
either as a discrete process or as a continuous process. We followed the two approaches
and quantified the associated model parameters from experimental data. In the discrete
alternative, the trajectory is split into a series of circular segments of random length
(constant turning speed over a random time length), separated by a renewal process of
the turning speed drawn from a Gaussian distribution. The associated quantification
procedure yielded convincing results, but it involved the prior validation of method-
ological prerequisites, in particular the detailed development of the proper algorithm of
path segmentation. It will be the subject of a future report. In the continuous alterna-
tive that is reported in the present chapter, the fish path is considered as a curvilinear
track whose parameters are continuously updated by the animal. The renewal process
of the turning speed leads to a description by stochastic differential equations [48, 10]
where the turning speed follows an Ornstein-Uhlenbeck (OU) process. We used the
discrete-time sampling of the path to estimate its parameters. This formalism allows
predictions at any time scale.

Beyond the formalism, the experimental data have clearly shown that the classical
random walk models (adjustments of headings) are inappropriate for the spontaneous
movement of the fish species under study in which the steering process is based on ad-
justments of the turning speed. Obviously, this result has to be confirmed for other fish
species and arguably in other experimental set-ups (e.g. varying the tank diameter). It
is however a highly plausible model for many fishes that travel at constant swimming
speed [23, 54]. The model used to quantify this behaviour may also be considered to
analyze movements in other animals that exhibit some circularity in their displacement
(e.g. the desert isopod searching for its burrow [28, 29] or the carabid beetles [51]) and
to derive their properties at the macroscopic scale. Schimansky-Geier et al. showed for
instance that the intensity of research associated with a noisy constant turning speed
is higher than possible with a piecewise linear random walk [37, 52].

6.2 Towards the quantification of fish interactions

The principal aim of this study was to establish a biologically grounded model of
the spontaneous displacement of a fish against which the interactions with neighbors
can be quantified. Since the null-model is directly based on the turning speed it is



66 Analyzing Fish Movement as a Persistent Turning Walker

reasonable to address interactions also from this point of view. The presence of a
neighbor would simply make a fish turn more or less quickly, either to avoid, to align
with or to approach it. In this case the interactions should not be modeled as attraction
or repulsion forces (in the Newtonian sense, which would affect the swimming and the
turning speeds), but rather as attraction or repulsion torques (which would affect the
turning speed only).

To illustrate this idea and as a first step towards an ad-hoc methodology to quantify
fish interactions we addressed the interaction of isolated fish with the tank wall. This
takes the form of an additional term in the stochastic differential equation governing
the turning speed process (W (t)). The repulsive effect of the wall has been formally
described as an OU process relaxing W (t) towards F (Dc(t)) (which represents a mean
turning speed away from the wall, Dc(t) being the distance before wall collision if the
heading were not changed) rather than towards 0 (which represents a mean turning
speed that is independent of the wall as in the open space case). For an animal inter-
acting with its environment, steering away might be the most natural mean to avoid
obstacles since it can work without altering swimming speed (accelerate and decelerate
might be more costly than just steering away). The estimated intensity of F (Dc(t))
displayed an exponential decay as the distance to collision with the wall increased.
The simulations of the model showed that its integration over time is sufficient to
avoid collisions in the normal regime. Some fish (1,4,5) failed to be correctly modeled
within this simple framework since their trajectory clearly showed a tendency to be not
just repulsed but also attracted by the wall (which is sometimes labeled thigmotactism
[32]). This attractive effect may be due to the stress induced by isolation or represent
a natural behavior in the fishes’ usual habitat in coral reefs. We did not further inves-
tigate this special case since we were not interested to model the effect of the wall per
se, but simply used it to illustrate that interactions can actually be taken into account
by a simple additional term in the W (t) process.

The focus of the present chapter on changing rates of rotation evokes the use of
gyroscopic forces in control theory that were recently applied in the context of bio-
inspired swarm robotics [50, 5, 38, 25, 31, 41, 40, 33, 4]. Especially the theoretical
studies of systems with constrained speed capabilities (nonholonomic mobiles) [8, 42,
39, 21] or the studies that explore the minimal design that allow such coordination [15,
43, 30] may prove interesting for further insights into the modeling of fish interactions.

7 Conclusion

We showed that the fish Kuhlia mugil follows in the experimental tank a particular
kind of random walk: the persistent turning walker (PTW). Even if this result has
to be confirmed for other species and biological contexts, our results suggest that
the standard null-models (random walks) that are used in interaction studies and in
models of collective fish movements might be less representative than suggested by
their predominance in the literature.
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Figure 1.1: Nine fish trajectories in the water tank. The trajectories are displayed
ranked by the fish speed, from the slowest (Fish 1, mean speed 0.16 m/s) to the fastest
(Fish 9, mean speed 0.56 m/s). The outer circle indicates the tank wall and axis units
are in m.
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was superimposed on the actual fish trajectory . Pi denotes P (ti), that is the position
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Figure 1.6: Diffusion coefficient D for the PTW model as a function of the swimming
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N : τ = 4τ ⋆). Each value was estimated by the Monte-Carlo method, with 10,000
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regression from the mean square displacement restricted to the time interval [600..1200]
s in order to avoid the ballistic part of the curve. Bars denote the 0.95 confidence
interval for the case • : τ = τ ⋆.
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Chapter 2

Large scale dynamics of the
Persistent Turning Walker model of
fish behavior

This chapter has given an article written in collaboration with P. Degond and published
in Springer Journal of Statistical Physics: Large Scale Dynamics of the Persistent
Turning Walker Model of Fish Behavior, J. Stat. Physics, 131, no. 6, 989–1021.

Abstract. This chapter considers a new model of individual displacement, based
on fish motion, the so-called Persistent Turning Walker (PTW) model, which involves
an Ornstein-Uhlenbeck process on the curvature of the particle trajectory. The goal is
to show that its large time and space scale dynamics is of diffusive type, and to provide
an analytic expression of the diffusion coefficient. Two methods are investigated. In
the first one, we compute the large time asymptotics of the variance of the individual
stochastic trajectories. The second method is based on a diffusion approximation of
the kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-
Planck type equation posed in an extended phase-space involving the curvature among
the kinetic variables. We show that both methods lead to the same value of the diffusion
constant. We present some numerical simulations to illustrate the theoretical results.

Key words: Individual based model, Fish behavior, Persistent Turning Walker
model, Ornstein-Uhlenbeck process, Kinetic Fokker-Planck equation, Asymptotic anal-
ysis, Diffusion approximation
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1 Introduction

This chapter considers a new model of individual displacement, the so-called ’Persistent
Turning Walker’ (PTW) model, which has recently been introduced to describe fish
behavior [27]. The fish evolves with a velocity of constant magnitude and its trajectory
is subject to random turns (i.e. random changes of curvature) on the one hand and to
curvature relaxation to zero on the other hand. The random changes of curvature can
be interpreted as a way for the fish to explore its surroundings while relaxation to zero
curvature just expresses that the fish cannot sustain too strongly curved trajectories
and when the curvature becomes too large, it gets back to a straight line trajectory.
The combination of these two antagonist behaviors gives rise to an Ornstein-Uhlenbeck
process on the curvature. The curvature is the time derivative of the director of the
velocity, while the velocity itself is the time derivative of position. The PTW process
collects all these considerations into a system of stochastic differential equations.

This model is, to the knowledge of the authors, original, and has appeared for
the first time in the works by Gautrais, Theraulaz, and coworkers [27]. The present
paper considers the large time and space scale dynamics of a two-dimensional particle
subject to this PTW process. It rigorously shows (in the mathematical sense) that, at
large scales, the dynamics of the particle can be described by a diffusion process and it
provides a formula for the diffusion coefficient. To prove this result, two methods are
considered.

In the first method, the stochastic differential system itself is considered and the
variance of the position is shown to behave, at large times, like a linear function of
time. The diffusion coefficient is identified as the slope of this linear function. Because
the curvature and the velocity angle can be explicitly computed, an explicit formula
for the diffusion coefficient, involving some special functions, can be obtained.

The second method considers the forward Kolmogorov equation of the stochastic
process. This equation gives the evolution of the probability distribution function of the
particle in the extended phase space (position, velocity angle, curvature) as a function
of time. It is a Fokker-Planck type equation. The passage from the microscopic to the
macroscopic scales relies on a rescaling of the Kolmogorov equation. This rescaling de-
pends on a small parameter ε≪ 1, which describes the ratio of the typical microscopic
to macroscopic space units. After this rescaling, the problem has the typical form of
the diffusion approximation of a kinetic problem (see references below). The goal is
then to study the behaviour of the solution as ε→ 0. It is shown that the solution con-
verges to some ’thermodynamical equilibrium’ which is a Gaussian distribution of the
curvature and a uniform distribution of the velocity angle. The equilibrium depends
parametrically on the density which satisfies a spatial diffusion equation.

Finally, the connection between the two methods is made by showing that the
diffusion tensor in the second approach can be represented by a formula involving the
solution of the stochastic differential equation of the first approach. Additionally, this
representation leads to explicit computations which show that the two formulas for
the diffusion coefficient actually coincide. This seemingly innocuous result is actually
quite powerful. Indeed, the diffusion approximation method leads to a non-explicit
expression of the diffusion coefficient, involving the moments of a particular solution
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of a stationary equation involving the leading order operator of the Fokker-Planck
equation. That this non-explicit formula is equivalent to the explicit formula given by
the stochastic trajectory method is by far not obvious. In this respect, the stochastic
trajectory method is more powerful than the diffusion approximation approach, because
it directly leads to the most simple expression of the diffusion constant.

A third route could have been taken and has been dismissed. This third method
would actually use the stochastic differential equation itself to perform the diffusion
approximation in the forward Kolmogorov equation. We have preferred to use partial
differential equation techniques. One reason for this choice is that these techniques
can be more easily extended to more complex situations. One typical example of
these more complex situations are the nonlinear systems which are obtained when
interactions between individual are included. The inclusion of interactions between
individuals within the PTW model is actually work in progress.

From the biological viewpoint, one should not restrict the content of the paper
to the sole expression of the diffusion coefficient. Indeed, once interactions between
individuals will be included in the PTW model, it is not clear at all that the explicit
computations which led to this expression will still be tractable. In the absence of
an explicit solution of the stochastic differential system, there is little grasp to get
information about the large scale behaviour of the system. By contrast, the diffusion
approximation approach gives a systematic tool to study the large scale behavior of
such systems, in all kinds of situations, be they linear or nonlinear. By its flexibility
and its versatility, the diffusion approximation approach is the method of choice to
study these problems.

One of the most popular models to describe fish behavior is the discrete Couzin-
Vicsek algorithm (CVA) [1, 14, 30, 50] (see also [2, 10, 25, 38, 41, 42] for related models).
For a large scale modeling of fish behavior, it is efficient to look at continuum models,
which use macroscopic variables such as mean density, mean velocity and so on. Several
such models based on phenomenological observations, exist (see e.g. [26, 37, 48, 49]).
Several attempts to derive continuum models from the CVA model are also reported
in the literature [35, 45, 46]. In [21, 22], a derivation of a continuum model from a
kinetic version of the CVA model is proposed. However, few Individual Based Models
for fish have been validated against experimental data with a comparable care as in
[27] for the PTW process. As such, the continuum model derived in this paper has
a firm experimental basis, although further work needs certainly to be done to fully
validate its biological foundations. Additional references on swarm aggregation and
fish schooling can be found in [11]. Among other types of animal societies, insects, and
in particular ants [34, 47] or cockroaches [33] have been the subject of a vast literature
(see references therein).

The derivation of macroscopic models from particle behavior has been initiated by
the seminal works of Boltzmann, and later Hilbert, Chapman and Enskog. We refer
to [13] for a mathematical perspective and to [16] for an introduction to the subject
from a modeling perspective. More recently, the derivation of macroscopic models from
microscopic behavior has been very productive in other context like traffic [4, 32] or
supply-chains [3]. Diffusion approximation problems for kinetic equations have been
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widely studied in the literature, in the context of neutron transport (see e.g. [6, 8]),
semiconductors [7, 23, 28, 44], plasmas [17, 19, 20] or polymeric fluids [18].

The outline of the paper is as follows : in section 2, the PTW process is introduced
and the main results are stated. In section 3 the diffusion coefficient is obtained by
direct inspection of the trajectories of the stochastic differential system. In section
4, the diffusion approximation of the forward Kolmogorov equation of the stochastic
process is performed. Section 5 is devoted to proving that the trajectory method
and the diffusion approximation method give rise to the same value of the diffusion
coefficient. In section 6, the theoretical results are illustrated by and complemented
with some numerical simulations. A conclusion is drawn in section 7. Several proofs
of auxiliary results, which are inessential for the main discussion are collected in three
appendix (A, B and C).

2 The Persistent Turning Walker model: presenta-
tion and main results

The starting point of the present work is a new model of fish motion based on experi-
mental data taken from experiments run in La Réunion islands during years 2001 and
2002 [27]. The studied species is a pelagic fish named Kuhlia Mugil. Its typical size
ranges between 20 and 25 cm. The first experiments have been made with a single fish
in a basin of 4 meters diameter during two minutes. A video records the positions of
the fish every 12-th of a second (see figure 2.1). Then the data have been statistically
analyzed and a model has been extracted [27].
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Figure 2.1: One trajectory of a Kuhlia Mugil fish

The conclusion of the statistical analysis is that the trajectories are well described
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by the following systems of stochastic differential equations:

d~x

dt
= c~τ (θ), (2.1)

dθ

dt
= cκ, (2.2)

dκ = −aκ dt+ b dBt, (2.3)

where ~x = (x1, x2) ∈ R2 is the (two-dimensional) position vector of the (centroid
of the) fish, ~τ(θ) = (cos θ , sin θ) is the director of the velocity vector with the angle
θ ∈ Π = R/2πZ measured from the x1 direction, κ ∈ R is the curvature of the trajectory
and dBt is the standard Brownian motion. The magnitude of the velocity is constant
and denoted by c > 0. The constant a is a relaxation frequency and b quantifies the
intensity of the random curvature jumps. b has the dimension of 1/(L

√
T ) where L

and T stand for the dimensions of length and time.

The κ-dynamics is a standard Ornstein-Uhlenbeck process. The term “b dBt” mod-
els a diffusion process in curvature space while the term “−aK dt” expresses the ten-
dency of the individual to return to a straight line trajectory. The curvature cannot
increase endlessly as a consequence of the diffusion process, but rather, must relax to
zero and the relaxation is stronger as the curvature gets larger. This model has been
called the Persistent Turning Walker model (PTW) because it allows large excursions
of the curvature towards positive or negative values, during which the spinning of the
trajectory persists for a certain time.

We stress the difference with more standard diffusion processes (such as those suf-
fered by photons in a diffusive medium), in which the Brownian motion acts on the
velocity itself (or, in the case of a velocity of constant magnitude, on the angle θ). In
this case, the diffusion process acts on the second derivative of the particle positions,
and the associated kinetic equation is of Fokker-Planck type. This model of photon
diffusion is also relevant for a certain number of animal species [40].

In the PTW model, the diffusion process acts on the curvature, i.e. on the third
derivative of the position vector. An intuitive justification of the relevance of this
model for animal behaviour is by considering the non-differentiability of the Brownian
motion. Because of this feature, the photon diffusion process involves infinite second
derivatives of the position, i.e. infinite forces. However, an animal body can only exert
finite forces and the muscles act only in such a way that the velocity angle undergoes
smooth variations. The PTW model precisely presents this feature of having smooth
second order derivatives, i.e. smooth forces.

Our goal in the present work is to study the large-scale dynamics of the stochastic
differential system (2.1)-(2.3). This is best done in scaled variables, where the di-
mensionless parameters of the model are highlighted. We use t0 = a−1 as time unit,
x0 = ca−1 as space unit, and κ0 = x−1

0 as curvature unit, and we introduce the di-
mensionless time, space and curvature as t′ = t/t0, x′ = x/x0 and κ′ = κ/κ0. For
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simplicity, we omit the primes. In scaled variables, the PTW model is written:

d~x

dt
= ~τ(θ), (2.4)

dθ

dt
= κ, (2.5)

dκ = −κ dt+
√

2αdBt, (2.6)

where the only dimensionless parameter left is α such that

α2 =
b2c2

2a3
, (2.7)

The meaning of α2 is the following: b/
√
a is the amplitude of a curvature change during

a relaxation time a−1, while c/a is obviously the distance travelled by the particle during
this time. The product of these two quantities is dimensionless and is equal to

√
2α.

It quantifies the strength of the curvature jumps relative to the other phenomena.
The individual dynamics can be translated in terms of a probability distribution

f(t, ~x, θ, κ) d~x dθ dκ of finding particles at times t with position in small neighborhoods
d~x dθ dκ of position ~x, velocity angle θ and curvature κ. The link between the individual
dynamics and the evolution of the probability distribution f is given by the forward
Kolmogorov equation :

∂tf + ~τ · ∇~xf + κ∂θf − ∂κ(κf)− α2∂κ2f = 0. (2.8)

This equation is an exact transcription of the individual dynamics, where the initial
value f0 at time t = 0 is given by the probability distribution of the initial conditions
of the stochastic differential system (2.4)-(2.6). For more detailed considerations about
the forward Kolmogorov equation and its link with stochastic differential systems, we
refer the reader to [39, 5].

In order to capture the macroscopic dynamics, two possible routes can be taken,
using either the stochastic differential system (2.4)-(2.6) or the partial differential equa-
tion (2.8). In this work, we follow both routes and verify that they lead to the same
large-scale behaviour. The advantage of working directly on the stochastic system is
that it is simpler and it leads to explicit formulas. However, as soon as the system
gets more complicated, and in particular nonlinear, explicit solutions can no longer
be found and this methodology can hardly be pursued. On the other hand, the PDE
approach, which, in the present case is more complicated, is also more systematic and
more general. In particular, it is generally usable in the more complex nonlinear cases
(see e.g. [21, 22]). A particular important complex situation is the case of many in-
teracting fish. In future work, we plan to extend the PTW model to populations of
interacting fish and to use the PDE approach to extract the large-scale dynamics of
the system.

From the analysis of the individual trajectories, explicit exact expressions for κ
and θ in terms of stochastic integrals can be found. Unfortunately, there is no such
explicit result for the position ~x(t), but we can calculate the first two moments of the
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probability distribution of ~x(t) explicitly, using the expressions of κ and θ. We show
that the mean of the position vector stays at the origin: E{~x(t)} = (0, 0) (where E

denotes the expectation over all sources of randomness, in the initial data and in the
stochastic process) and that the variance grows asymptotically linearly in time. More
exactly, we prove:

Theorem 2.1 Under assumptions on the initial conditions that will be specified later
on (see (3.1)-(3.4)), the solution of system (2.4)-(2.6) satisfies:

Var{~x(t)} t→+∞∼ 2D t, with D =
∫ ∞

0
exp

(
−α2(−1 + s+ e−s)

)
ds. (2.9)

The notation Var is for the variance over all sources of randomness. The asymptotic
linear growth of the variance (2.9) suggests that the dynamics of the system is of
diffusive type at large times with diffusion coefficient D. We can find an expression of
D in terms of special functions. Indeed, we have

Proposition 2.2 The following expression holds true:

D =
( e
α2

)α2

γ(α2, α2), (2.10)

where γ(z, u) is the incomplete gamma function:

γ(z, u) =
∫ u

0
e−t tz−1 dt. (2.11)

D has the following series representation:

D = eα
2
∞∑

n=0

(−1)nα2n

n! (n+ α2)
. (2.12)

It is a decreasing function of α which has the following asymptotic behavior:

D ∼ 1
α2

as α→ 0, D ∼
√
π

2
1
α

as α→∞. (2.13)

To investigate the large scale dynamics of the solution of the kinetic equation (2.8)
(the existence of which can be easily proved, see proposition 4.2), we need to rescale the
variables to the macroscopic scale. Indeed, in eq. (2.8), all the coefficients are supposed
to be of order unity. This means that the time and space scales of the experiment are
of the same order as the typical time and length scales involved in the dynamics, such
as, the relaxation time or the inverse of the typical random curvature excursions. Of
course, in most experiments, this is not true, since the duration of the experiment and
the size of the experimental region are large compared with the time and length scales
involved in the dynamics.

To translate this observation, we change the space unit x0 to a new space space
unit x′0 = x0/ε, where ε≪ 1 is a small parameter. This induces a change of variables
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x′ = εx. We make a similar operation on the time unit t′0 = t0/η, t′ = ηt with η ≪ 1.
Now, the question of linking η to ε is a subtle one and is largely determined by the
nature of the asymptotic regime which is achieved by the system. In the present case,
we expect that the asymptotic regime will be of diffusive nature, in view of theorem
2.1 and so, we will investigate the so-called ’diffusion approximation’ which involves a
quadratic relationship between η and ε: η = ε2.

For this reason, we introduce the diffusive rescaling:

t′ = ε2t ; ~x′ = ε~x, (2.14)

and we make the following change of variable in the distribution f :

f ε(t′, ~x′, θ, κ) =
1
ε2
f

(
t′

ε2
,
~x′

ε
, θ, κ

)
.

The scaling of the magnitude of the distribution function is unnecessary, since the
problem is linear. However, it is chosen in order to preserve the total number of
particles. Introducing (2.14) into (2.8) leads to the following problem for f ε:

ε∂tf
ε + ~τ · ∇~xf ε +

1
ε

[ κ∂θf ε − ∂κ(κf ε)− α2∂κ2f ε ] = 0 (2.15)

In order to analyze the large-scale dynamics of (2.15), we need to investigate the limit
ε → 0. We show that f ε converges to an equilibrium distribution function (i.e. a
function which cancels the O(ε−1) term of (2.15)) f 0 which depends parametrically on
the particle density n0(x, t) and n0 evolves according to a diffusion equation. More
precisely, we prove:

Theorem 2.3 Under hypothesis 4.1 on the initial data to be precised below, the so-
lution f ε of (2.15) converge weakly in a Banach space also to be specified below, (see
(4.21)) X:

f ε
ε→0
⇀ n0 M(κ)

2π
in X weak star, (2.16)

where M is a Gaussian distribution of the curvature with zero mean and variance α2

(see 4.4) and n0 = n0(x, t) is the solution of the system:

∂tn
0 +∇~x · J0 = 0, (2.17)

J0 = −D∇~xn0, (2.18)

where the initial datum n0
0 and the diffusion tensor D will be defined later on (see

(4.31) and (4.28) respectively).

The following theorem connects the two methods by showing that the tensor D is
related to D given by (2.9):
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Theorem 2.4 The tensor D defined by (4.28) satisfies :

D =
D
2

Id, (2.19)

where D is given by (2.9) and Id denotes the 2× 2 identity tensor.

This theorem confirms that the trajectory method and the asymptotic PDE method
are equivalent. The factor 2 between the two coefficients comes from the dimension of
the problem. Indeed, D is the average of |x|2 = |x1|2 + |x2|2 while D is the diffusion
coefficient in a given direction.

The graphical representation of D is given in figure 2.2. The expression D0 of the
diffusion coefficient in ’physical’ variables is obtained by multiplying the dimensionless
expression D by the appropriate scaling units. The scaling unit for a diffusion coefficient
is the square of the space scale divided by the time scale. Therefore, in the present
case, its value is c2/a. Therefore, we find:

D0 =
c2

a
D
(
b2c2

2a3

)
. (2.20)

Expression (2.20) and the fact thatD(α) is a decreasing function of α shows that the
diffusion coefficient is decreasing with respect to b for fixed a and c. This is explained by
the fact that, with an increasing noise intensity, the trajectory has a larger probability
to reach strong curvatures (in magnitude). Therefore, the trajectory spins more, and
the distance travelled in straight line is shorter.

On the other hand, the monotonicity of D0 with respect to a and c is unclear.
Still, we can investigate the asymptotic limits and find that for c → ∞ or b → ∞ or
a → 0, (each limit being taken with the other two parameters kept fixed), we have
D0 ∼

√
π
√
a c/b. In particular, for large c or small a, the diffusion increases with

respect to both c and a. Conversely, if c → 0 or b → 0 or a → ∞, (again, each limit
being taken with the other two parameters kept fixed), we have D0 ∼ 2a2/b2. Here,
the diffusion is increasing with a but is independent of c.

The increase of D0 with a is easily explained: with a stronger relaxation parameter
a, the curvature is more likely to be small, and the trajectory resembles more a straight
line.

On the other hand, the diffusion D0 is independent of the velocity c when c is
small. This is somehow paradoxical since one would expect that, as the particle moves
faster, it travels larger distances. However, as c increases, the spinning of the trajectory
increases, because the particle moves along a circle before undergoing a random change
of curvature or a relaxation. Therefore, the average linear distance from the origin does
not increase so much when the velocity is increased, at least for small velocities. For
large velocities, the intuitive feeling that the diffusion should increase with the velocity
is actually true: the diffusion is asymptotically proportional c for large values of c.
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Figure 2.2: Scaled diffusion coefficient D as a function of α2 in log-log scale (solid line).
Asymptotic behavior of D as α→ 0 or α→∞ (dashed lines): D ∼ α−2 as α→ 0 and
D ∼

√
π
2
α−1 as α→∞.

3 Large-scale dynamics of the PTW model by the
trajectory method

In this section, we want to show theorem 2.1 and proposition 2.2. We first specify the
initial conditions. First, we fix the starting point of the particle at the origin :

~x(t = 0) = (0, 0). (3.1)

We suppose that the initial velocity angle is uniformly distributed on the one-dimensional
sphere, i.e. :

dP{θ|t=0 = θ} =
dθ

2π
. (3.2)

For the curvature, we make the following observation: eq. (2.6) predicts that the
process κ(t) converges exponentially fast to its stationary state, which is a Gaussian
distribution with zero mean and variance equal to α2 [39]. We denote such a Gaussian
distribution by N (0, α2). For this reason, we suppose:

dP{κ|t=0 = κ} = N (0, α2)(κ). (3.3)

The last hypothesis on the initial conditions is the following:

The processes θ(t = 0), κ(t = 0) and Bt are independents. (3.4)

We stress that this choice of initial conditions is for simplicity only. Completely
arbitrary initial conditions would lead to the same large time behaviour, but the com-
putation would be slightly more complicated. Since we are mainly interested in the
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explicit expression of D, a choice of initial conditions which simplifies the calculations
is legitimate.

We begin by proving the following proposition:

Proposition 3.1 The solution of the stochastic differential equation (2.4)-(2.6) with
initial condition given by (3.1)-(3.4) satisfies :

E{~x(t)} = (0, 0) , ∀ t ≥ 0, (3.5)

Var{~x(t)} = 2
∫ t

s=0
(t− s) exp

(
−α2

(
−1 + s+ e−s

))
ds. (3.6)

To prove this proposition, we first establish explicit formulae for the solutions of
(2.5) and (2.6). The proof is deferred to appendix A.

Lemma 3.2 The solution of the stochastic differential system (2.5), (2.6) with initial
conditions (3.2)-(3.4) is given by:

θ(t) = θ0 + κ0 − κ(t) +
√

2αBt, (3.7)

κ(t) = e−tκ0 +
√

2αe−t
∫ t

0
es dBs. (3.8)

Additionally,

θ(t) = θ0 +Kt0, (3.9)

where Kt0 is a Gaussian random variable independent of θ0 with zero mean and variance
β2
t given by :

β2
t = Var{Kt0} = 2α2(−1 + t+ e−t). (3.10)

Proof of proposition 3.1: Using Lemma 3.2, we can compute the first two mo-
ments of ~x(t). Let us start with the computation of the mean. If we write ~x(t) =
(x1(t) , x2(t)), we have :

x1(t) =
∫ t

0
cos θ(s) ds , x2(t) =

∫ t

0
sin θ(s) ds,

and, computing the mean :

E{x1(t)} = E

{∫ t

0
cos θ(s) ds

}
=
∫ t

0
E {cos θ(s)} ds.

Now, we can develop θ(s) using (3.9):

E {cos θ(s)} = E {cos(θ0 +Ks0)} = E {cos θ0 cosKs0 − sin θ0 sinKs0} .

By the independence of θ0 and Ks0 we finally have:

E {cos θ(s)} = E{cos θ0}E{cosKs0} − E{sin θ0}E{sinKs0} = 0,



88 Large scale dynamics of the PTW model

since the expectations of cos θ0 and sin θ0 over the uniform probability distribution on
θ0 are zero. Finally, we have E{x1(t)} = 0, and similarly for x2. This proves (3.5).

Now for the variance of ~x(t), we write:

Var{~x(t)} = E{x2
1(t) + x2

2(t)} = 2E{x2
1(t)}. (3.11)

by the isotropy of the problem. Then,

E{x2
1(t)} = E

{(∫ t

0
cos θ(s) ds

)2
}

=
∫ t

0

∫ t

0
E{cos θ(s) cos θ(u)} dsdu

= 2
∫ t

0
du
∫ u

0
ds E{cos θ(s) cos θ(u)}.

Since u ≥ s, we can write θ(u) as follows :

θ(u) = θ0 +
∫ s

0
κ(z) dz +

∫ u

s
κ(z) dz = θ0 +Ks0 +Kus ,

where Ks0 and Kus are Gaussian random variables independent of θ0 with zero mean and
variances β2

s and β2
u−s respectively, thanks to (3.10). Then, using standard identities

for trigonometric functions, we get

E{cos θ(s) cos θ(u)} = E{cos(θ0 +Ks0) cos(θ0 +Ks0 +Kus )}
=

1
2

(cos(2θ0 + 2Ks0 +Kus ) + cos(−Kus )).

But since θ0 is independent of Ks0 and Kus we have E{cos(2θ0 + 2Ks0 +Kus )} = 0 since
the mean of a cos(θ0 +C) over the uniform distribution of θ0 is zero whatever the value
of C. Then :

E{cos θ(s) cos θ(u)} =
1
2

E{cos (−Kus )}

=
1
2

∫

R

cos(y)
1√

2πβu−s
e
− y2

2β2
u−s dy

=
1
2

e−
1

2
β2
u−s.

Indeed, an elementary computation shows that for any Gaussian random variable Z
with zero mean and variance σ2, one has

E{cos(Z)} = exp(−σ2/2). (3.12)

Thus,

E{x1(t)2} =
∫ t

u=0

∫ u

s=0
exp

(
−α2

(
−1 + |u− s|+ e−|u−s|

))
dsdu.
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Using the change of unknowns w = u − s and y = u and inverting the order of
integration we find :

E{x1(t)2} =
∫ t

w=0
(t− w) exp

(
−α2

(
−1 + w + e−w

))
dw.

Using (3.11), we finally find (3.6), which ends the proof of the proposition.

In order to prove 2.1, we investigate the behavior of the variance Var{~x(t)} (given
by (3.6)) when t→ +∞.

End of proof of Theorem 2.1: We write, thanks to (3.6):

Var{~x(t)} − 2Dt = −2
∫ t

s=0
se−α

2(−1+s+e−s) ds− 2
∫ ∞

s=t
te−α

2(−1+s+es) ds.

We have to show that the difference is bounded independently of t. For the first term,
we have: ∣∣∣∣

∫ t

s=0
se−α

2(−1+s+e−s) ds
∣∣∣∣ ≤

∫ t

0
eα

2

se−α
2s ds,

and integrating by parts, we find :

∣∣∣∣
∫ t

s=0
se−α

2(−1+s+es) ds
∣∣∣∣ ≤

eα
2

α2

[
−te−α2t − e−α

2t

α2
+

1
α2

]
≤ C1.

For the second term, we have:

∣∣∣∣
∫ ∞

s=t
te−α

2(−1+s+es) ds
∣∣∣∣ ≤ t

∫ ∞

t
eα

2

e−α
2s ds ≤ teα2 e−tα

2

α2
≤ C2.

This proves that the difference is Var{~x(t)} − 2Dt is bounded independently of t and
completes the proof.

We now prove Proposition 2.2 which gives an explicit approximation of the diffusion
coefficient. This approximation is useful for practical simulations.

Proof of Proposition 2.2: The change of variables t = α2e−s in the integral (2.9)
leads to (2.10). The series representation (2.12) follows from a similar series represen-
tation of the incomplete gamma function (see e.g. formula (8.354) of [29]). The series
representation can also be found by expanding the exponential in the integral (2.11) in
power series (this point is left to the reader). That D is a decreasing function of α fol-
lows from (2.9) and the fact that the function g(s) = −1 + s+ exp(−s) is non-negative
for s ≥ 0. The behavior of D for α → 0 (first formula (2.13)) is obtained by keeping
only the zero-th order term in the series expansion (2.12). From (2.9), the behaviour
of D for α → ∞ is controled by the behaviour of g(s) near s = 0. Since g(s) ∼ s2/2,
we find D ∼ ∫∞0 exp(−α2s2/2) ds, which leads to the second formula (2.13), and ends
the proof.
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4 Large-scale dynamics of the PTW model through
the diffusion approximation of the associated ki-
netic equation

4.1 Formal asymptotics

In this section, for the reader’s convenience, we give a formal proof of theorem 2.3. We
write (2.15) as follows:

ε∂tf
ε + ~τ · ∇~xf ε +

1
ε
Af ε = 0 (4.1)

where we define the operator A acting on functions u(θ, κ) as follows:

Au = κ∂θu− ∂κ(κu)− α2∂κ2u. (4.2)

The formal investigation of the limit ε→ 0 usually starts by considering the Hilbert
expansion (see e.g. [16] for the general theory or [20] for an application in the context
of Fokker-Planck equations):

f ε = f 0 + εf 1 +O(ε2), (4.3)

with fk being independent of ε and inserting it into (4.1). Then, collecting all the the
terms of comparable orders with respect to ε, we are led to a sequence of equations.
The first one, corresponding to the leading O(ε−1) term is Af 0 = 0, which means that
f 0 lies in the kernel of A. In section 4.3, we show that the kernel of A is composed
of functions of the form f 0(t, ~x, θ, κ) = n0(t, ~x)M(κ)/(2π) where M(κ) is a normalized
Gaussian with zero mean and variance α2:

M(κ) =
1√

2πα2
e−

κ2

2α2 , (4.4)

and n0(t, ~x) is a function still to be determined.
In order to determine n0, we first integrate (4.1) with respect to (θ, κ) ∈ Π×R and

use that
∫
Au dθ dκ = 0. Defining the density nε(t, ~x) and the flux Jε(t, ~x) by

nε(t, ~x) =
∫

θ,κ
f ε dκ dθ, Jε(t, ~x) =

∫

θ,κ

f ε

ε
~τ(θ) dκdθ, (4.5)

we find:

∂tn
ε +∇~x · Jε = 0. (4.6)

We note that this continuity equation is valid for all values of ε. Then, letting ε→ 0,
we formally have nε → n0. If we prove that J0 given by (2.18) is the limit of Jε, as
ε→ 0, then, we can pass to the limit in (4.6) and find (2.17).

System (2.17) and (2.18) is a diffusion system, which completely determines n0(t, ~x),
given its initial datum n0

0(~x). Here, for simplicity, we assume that the initial datum for
(4.1) is of the form f ε(0, ~x, θ, κ) = n0(~x)M(κ)/(2π) and the resulting initial condition
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for n0 is therefore n0
0 = n0 (in this formal convergence proof, we admit the functions

and the convergences are as smooth as required).
So, the only points left in the proof are the existence of a limit for Jε and the

validity of (2.18) for J0. Note that the existence of a limit is not obvious because of
the factor ε at the denominator of the integral (4.5) defining Jε. To prove that the
limit exists, we use the Hilbert expansion (4.3) again and compute f 1. Since A is
linear, collecting the terms of order O(ε0) leads to:

− Af 1 =
M(κ)

2π
~τ · ∇~xn0 . (4.7)

Again using the linearity of A and the fact that it operates only with respect to the
(θ, κ) variables, we can write the solution of (4.7) as f 1 = −~χ·∇~xn0, where ~χ = (χ1, χ2)
is a solution of the problem

A~χ =
M(κ)

2π
~τ . (4.8)

This equation must be understood componentwise (i.e χ1 is associated with τ1 = cos θ
and χ2 with τ2 = sin θ). Since the right-hand side of (4.8) has zero average with respect
to (θ, κ), proposition 4.5 below shows that it has a unique solution, up to an element
of the kernel of A. We can single out a unique solution by requesting that ~χ has zero
average with respect to (θ, κ) as well. Then, all solutions f 1 to (4.7) can be written as

f 1 = −~χ · ∇~xn0 + n1(t, ~x)
M(κ)

2π
, (4.9)

where the second term of (4.9) is an arbitrary element of the kernel of A. We shall see
that the determination of n1 is unnecessary.

Now, inserting the Hilbert expansion (4.3) into the integral (4.5) defining Jε, we
find:

Jε(t, ~x) =
1
ε

∫

θ,κ
f 0 ~τ (θ) dκdθ +

∫

θ,κ
f 1 ~τ(θ) dκdθ +O(ε)

= 0 +
∫

θ,κ
f 1 ~τ (θ) dκdθ +O(ε), (4.10)

because f 0 is independent of θ and
∫
~τ(θ) dθ = 0. Therefore, Jε has a limit when ε→ 0

and this limit is given by

J0(t, ~x) =
∫

θ,κ
f 1 ~τ(θ) dκdθ. (4.11)

To compute J0 we insert expression (4.9) into (4.11) and find

J0(t, ~x) =
∫

θ,κ
(−~χ · ∇~xn0 + n1M

2π
)~τ(θ) dκdθ. (4.12)

The second term vanishes and the first one can be written

J0(t, ~x) = −
(∫

θ,κ
~τ ⊗ ~χ dθ dκ

)
∇~xn0, (4.13)
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which is nothing but formula (2.18) with the diffusivity tensor D given by (4.28).
This shows the formal convergence of the solution of the Fokker-Planck equation

(2.15) to that of the diffusion system (2.17), (2.18).
Now, to make this proof rigorous, we need to justify all the formal convergences.

In the framework of the Hilbert expansion, this requires to work out the regularity
of the various terms of the expansion. This is doable and actually leads to stronger
convergences than the one we are going to prove, but this is a bit technical (see e.g.
[20]).

What we are going to do instead is proving a convergence result in a weaker topology
without using the Hilbert expansion technique. The method is close to the so-called
moment method, which consists in integrating the equation against suitable test func-
tions. This convergence proof is developed in section 4.3, but before that, we state an
existence result for the original Fokker-Planck equation (4.1).

4.2 Functional setting and existence result

We define the differential operator D acting on smooth functions f(κ) by :

Df = ∂κ(κf) + α2∂κ2f. (4.14)

We state some properties of D, the proofs of which are easy and left to the reader.
We recall that M(κ) denotes the normalized Gaussian with zero mean and variance α2

(4.4).

Proposition 4.1 Let f and g be smooth functions decreasing at infinity. The following
identities hold true:

Df = α2 ∂

∂κ

(
M

∂

∂κ

f

M

)
, (4.15)

∫

R

Df g
dκ

M
= −α2

∫

R

M ∂κ

(
f

M

)
∂κ

(
g

M

)
dκ =

∫

R

f Dg
dκ

M
, (4.16)

∫

R

Df f
dκ

M
= −α2

∫

R

M

∣∣∣∣∣∂κ

(
f

M

)∣∣∣∣∣

2

dκ ≤ 0, (4.17)

Df = 0⇔ ∃c ∈ R, f = cM. (4.18)

The first identity translates the fact that M is the stationary measure of the
Ornstein-Uhlenbeck process. The second one that D is formally self-adjoint with re-
spect to the measure dκ/M . The third one shows that D is dissipative. The same in-
equality holds with any non-decreasing function η(f), indeed,

∫
D(f) η(f)M−1 dκ ≤ 0.

If η is the logarithm function, the corresponding quantity would be the relative en-
tropy dissipation of f with respect to M . Entropy plays an important role in kinetic
theory (see [13] for a review). Finally, the last quantity states that the kernel of D is
one-dimensional and spanned by M .
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Proposition 4.1 shows that the natural L2 norm associated with this operator has
a weight M−1 and that the natural H1 semi-norm is given by the right-hand side of
(4.17). This motivates the introduction of the following functional spaces, endowed
with their naturally associated Hilbert structures and norms:

H = {u : Πθ × Rκ → R /
∫

θ,κ
|u(θ, κ)|2 dθdκ

M
< +∞}, (4.19)

V =

{
u ∈ H /

∫

Π,R
M

∣∣∣∣∂κ
(
u

M

)∣∣∣∣
2

dκdθ < +∞
}
, (4.20)

L2
M = L2(R2

~x, H), X = L2([0, T ]× R2
~x, V ). (4.21)

Identifying H with its dual, with have a Hilbertian triple V ⊂ H ⊂ V ′, where V ′ is
the dual of V and all injections are continuous. They are not compact because V does
not bring any regularity with respect to θ.

The existence proof follows closely the existence proof of [15] (see appendix A of
this reference) and for this reason, is omitted (see also [20]). The proof relies on an
existence theorem due to J. L. Lions [36].

Proposition 4.2 Let ε > 0. We assume that f0 belongs to L2
M defined by (4.21).

Then there exists a unique solution f ε to (2.15) with initial datum f 0 in the class of
functions Y defined by :

Y =
{
f ∈ X / ∂tf + ε−1~τ · ∇~xf + ε−2κ∂θf ∈ X ′

}
.

Moreover, we have the inequality for any T > 0:

||f ε(T )||2L2
M

+
α2

ε2

∫ T

0

∫

~x,θ,κ
M

∣∣∣∣∣∂κ

(
f ε

M

)∣∣∣∣∣

2

dκ dθ d~x dt = ||f ε(0)||2L2
M
. (4.22)

Estimate (4.22) is obtained via a Green and a trace formula for functions belonging
to Y which can be deduced from the one proved in [15].

4.3 Rigorous asymptotics

We first study operator A given by (4.2), i.e. Af = κ∂θf − Df and state some
properties which will be proved in appendix B. We view A as an unbounded operator
on the Hilbert space H with domain D(A) given by:

D(A) = {u(θ, κ) ∈ V /Au ∈ H} .

Lemma 4.3 Operator A is maximal monotone. Moreover its kernel (or Null-space)
is given by:

Ker(A) = {cM , c ∈ R}, (4.23)

with M defined by (4.4).
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Lemma 4.4 The adjoint A∗ of A in H is given by A∗f = −κ∂θf − Df . It is a
Maximal monotone operator with domain D(A∗) = D(A) and Ker(A∗) = Ker(A).

Proposition 4.5 Let g ∈ H. Then, there exists u ∈ D(A) such that

Au = g, (4.24)

if and only if g satisfies the following solvability condition:
∫

θ,κ
g(θ, κ) dθdκ = 0. (4.25)

Moreover, the solution u is unique up to a constant times M . A unique solution can
be singled out by prescribing the condition

∫

θ,κ
u(θ, κ) dθdκ = 0. (4.26)

The same lemma applies to the equation A∗u = g.

As an application of this lemma, let ~χ be the solution of :

A~χ = ~τ (θ)
M

2π
, (4.27)

with ~τ (θ) = (cos θ , sin θ). Since τ has zero average over θ and κ, ~χ is well-defined and
unique thanks to Proposition 4.5. Then, we define the tensor D by:

D =
∫

θ,κ
~τ(θ)⊗ ~χ dθdκ. (4.28)

Note that, since
∫
θ,κ ~τ (θ)M(κ) dθdκ = 0, it would not change the value of D to add

any element of Ker(A) to ~χ.

Lemma 4.6 Let R denote the reflection operator u(θ, κ) → Ru(θ, κ) = u(θ,−κ).
Then, ~χ∗ = R~χ is the unique solution (satisfying (4.26)) of

A∗~χ∗ = ~τ(θ)
M

2π
, (4.29)

and we have
D =

∫

θ,κ
~τ(θ)⊗ ~χ∗ dθdκ. (4.30)

Proof: Obviously, D commutes with R: DR = RD while κ∂θ anticommutes with R:
κ∂θ(Ru) = −R(κ∂θu). Therefore, RA = A∗R. Since the right-hand side of (4.27) is
invariant by R, applying R to both sides of (4.27) leads to (4.29). Then, the change of
variables κ′ = −κ in the integral at the right-hand side of (4.30) shows that it is equal
to D.

To study the limit ε→ 0, we make the following hypothesis on the initial conditions.
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Hypothesis 4.1 We suppose that the initial condition f ε0 is uniformly bounded in L2
M

and converges weakly in L2
M to f 0

0 as ε→ 0.

We can now prove theorem 2.3. The initial datum for the diffusion system (2.17, (2.18)
will be shown to be:

n0
t=0 = n0

0 =
∫

θ,κ
f 0

0 (~x, θ, κ) dκdθ. (4.31)

Proof of theorem 2.3: By hypothesis 4.1 inequality (4.22) implies :

||f ε(T )||2L2
M

+
α2

ε2

∫ T

0

∫

~x,θ,κ
M

∣∣∣∣∣∂κ

(
f ε

M

)∣∣∣∣∣

2

dκ dθ d~x dt ≤ C , (4.32)

with C independent of ε. So (f ε)ε is a bounded sequence in L∞(0, T, L2
M) and satisfies

∫ T

0

∫

~x,θ,κ
M

∣∣∣∣∣∂κ

(
f ε

M

)∣∣∣∣∣

2

dκ dθ d~x dt ≤ Cε2 , (4.33)

for any time interval T (by the diagonal process, we will eventually be able to take
an increasing sequence of times T tending to infinity, so that the result will be valid
on the whole interval t ∈ (0,∞)). Therefore, there exists f 0 ∈ L∞(0, T, L2

M) and a
subsequence, still denoted by f ε, satisfying :

f ε
ε→0
⇀ f 0 in L∞(0, T, L2

M) weak star .

Furthermore, with (4.33), we deduce that f 0 = C(~x, θ, t)M(κ). Then, letting ε→ 0 in
(2.15), we get that Af 0 = 0 in the distributional sense. This implies that C(~x, θ, t) is
independent of θ and we can write

f 0(t, ~x, θ, κ) = n0(t, ~x)
M(κ)

2π
, (4.34)

the quantity n0(t, ~x) =
∫
f 0(t, ~x, θ, κ) dθ dκ being the density associated with f 0.

Our next task is to show that n0 satisfies the diffusion model (2.17), (2.18) with
initial condition (4.31). We first note that f ε is a week solution of (2.15) with initial
condition f ε0 in the following sense: f ε satisfies:

∫ T

0

∫

~x,θ,κ
f ε(−ε∂tϕ− ~τ · ∇~xϕ+

1
ε
A∗(ϕ))

dκdθd~x

M
dt = ε

∫

~x,θ,κ
f ε0ϕt=0

dκdθd~x

M
, (4.35)

for all test functions ϕ in the space C2
c ([0, T )× R2

~x × Πθ × Rκ) of twice continuously
differentiable functions with compact support in [0, T ) × R2

~x × Πθ × Rκ. Again, the
trace at t = 0 has a meaning, thanks to a trace formula for functions in Y which is
proven in [15].

We recall the definition of the flux (4.5). We prove that Jε has a weak limit
as ε → 0. To this aim, in the weak formulation (4.35), we take as a test function
ϕ = ~φ(t, ~x) · ~χ∗(θ, κ) with ~χ∗ the auxiliary function defined as the solution to (4.29)
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and ~φ is a smooth compactly supported vector test function of (~x, t). Although ϕ does
not have a compact support, a standard truncation argument (which is omitted here)
can be used to bypass this restriction. This allows us to write:
∫ T

0

∫

~x,θ,κ
[f ε(−ε∂t −(~τ ·∇~x))(~φ ·~χ∗)+

1
ε
f ε~τ

M

2π
· ~φ]

dκdθd~x

M
dt = ε

∫

~x,θ,κ
f ε0
~φt=0 ·~χ

dκdθd~x

M
.

Taking the limit ε→ 0, we find :

lim
ε→0

∫ T

0

∫

~x
Jε · ~φ d~xdt = 2π

∫ T

0

∫

~x,θ,κ
f 0(~τ · ∇~x)(~φ · ~χ∗)

dκdθd~x

M
dt

=
∫ T

0

∫

~x
n0∇~x ·

((∫

θ,κ
~χ∗ ⊗ ~τ dκdθ

)T
~φ

)
d~xdt,

where the exponent T denotes the transpose of a matrix. Using (4.30) and taking the
limit ε → 0 shows that Jε converges weakly (in the distributional sense) towards J0

satisfying
∫ T

0

∫

~x
J0 · ~φ d~xdt =

∫ T

0

∫

~x
n0∇~x ·

(
(D)T ~φ

)
d~xdt.

This last equation is the weak form of eq. (2.18).
Finally, to prove (2.17), we apply the weak formulation (4.35) to a test function

of the form ϕ = φ(t, ~x)M(κ), where again, φ(x, t) is a scalar, smooth and compactly
supported test function of (~x, t) in R2 × [0, T ). This gives :

−
∫ T

0

∫

~x,θ,κ
f ε ((ε∂t + (~τ · ∇~x))ϕ) dκdθd~xdt = ε

∫

~x,θ,κ
f ε0φt=0 dκdθd~x.

Dividing by ε and taking the limit ε→ 0, we get :

−
∫ T

0

∫

~x
(n0∂tϕ+ J0 · ∇~xφ) d~xdt =

∫

~x
n0

0φt=0 d~x,

where n0
0 is defined by (4.31). This last equation is exactly the weak formulation of

equation (2.17), with initial datum n0
0. This concludes the proof.

5 Equivalence of the two methods

In this section, we show that both methods lead to the same value of the diffusion
coefficient (theorem 2.4).

The first step is to show that we can approximate the solution of equation (4.24)
by the solution of the associated evolution equation. More precisely, in appendix C,
we prove the following lemma :

Lemma 5.1 Let g in H satisfying (4.25) and u∞ in D(A) be the solution of (4.24)
satisfying (4.26). Let u0 ∈ D(A) satisfying (4.26). Then, the solution u(t) of the
evolution problem:

∂tu = −Au + g , ut=0 = u0, (5.1)

weakly converges to u∞ in H as t tends to ∞.
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With this lemma we can explicitly calculate the tensor D and prove the theorem
2.4 :

Proof of theorem 2.4: Let ~χ(t) be the solution of

∂t~χ = −A~χ + ~τ (θ)
M(κ)

2π
, ~χ(t = 0) = 0. (5.2)

Thanks to Lemma 5.1, ~χ(t) weakly converges to ~χ in H when t→∞. It follows that :
∫

κ,θ
~χ(t)⊗ ~τ dκdθ t→+∞−→

∫

κ,θ
~χ⊗ ~τ dκdθ. (5.3)

Let us consider the first component of ~χ(t), which we denote by u(t) and the
integrals∫
κ,θ u(t) cos θ dκdθ and

∫
κ,θ u(t) sin θ dκdθ . Because u satisfies (5.2), it admits the

following representation (see the proof of lemma 5.1):

u(t) =
∫ t

0
Ts

(
cos θ

M(κ)
2π

)
ds,

where Tt is the semi-group generated by −A (see [43]). With this expression, we
evaluate the integral of u(t) against cos θ :

∫

κ,θ
u(t) cos θ dκdθ =

∫

κ,θ

∫ t

0
Ts

(
cos θ

M(κ)
2π

)
ds cos θ dκ dθ

=
∫ t

0

∫

κ,θ
cos θ

M(κ)
2π

T ∗s (cos θ) dκ dθ ds,

where T ∗ is the adjoint operator of T in L2(θ, κ) generated by −A∗, where

A∗(f) = −κ∂θf + κ∂κf − α2∂κ2f.

Note that we are referring here to the adjoint in the standard L2 sense and not in
the weighted space H . This is why A∗ does not coincide with A∗ defined in Lemma
4.4. The semi-group T ∗t admits a probabilistic representation: for all regular functions
f(θ, κ)

T ∗t (f)(θ, κ) = E{f(θ(t), κ(t))|θ0 = θ, κ0 = κ},
where (κ(t), θ(t)) is the solution of the stochastic differential equation (2.5), (2.6).
Using this representation, we have :

∫

κ
M(κ)T ∗s (cos θ) dκ =

∫

κ
M(κ) E{cos θs|θ0 = θ, κ0 = κ} dκ

= E{cos θs|θ0 = θ, κ0 = Z},

where Z is a random variable independent of Bt with density M . Using lemma 3.2, we
have :

E{cos θs|θ0 = θ, κ0 = Z} = E{cos(θ + Ys)},
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with Ys a Gaussian random variable with zero mean and variance β2
s given by (3.10).

Then:
E{cos(θ + Ys)} = E{cos θ cosYs − sin θ sinYs} = cos θ E{cos Ys},

because the density of Ys is even and implies that E{sin Ys} = 0. Finally using (3.12),
we have: ∫

κ
M(κ)T ∗s (cos θ) dκ = cos θ e−

β2
s

2 .

Then, the first integral is given by:

∫

κ,θ
u(t) cos θ dκ dθ =

∫ t

0

∫

θ

cos θ
2π

cos θ e−
β2
s

2 dθ ds =
∫ t

0

1
2

e−
β2
s

2 ds.

We can proceed similarly to evaluate the integral of u(t) against sin(t). This gives:

∫

κ,θ
u(t) sin θ dκdθ =

∫ t

0

∫

θ

cos θ sin θ
2π

E{cosYs} dθds = 0.

It remains to evaluate the integrals involving the second component of vector ~χ(t)
which we denote by v(t). By the same method as for u(t), we get :

∫

κ,θ
v(t) cos θ dκ dθ = 0 and

∫

κ,θ
v(t) sin θ dκ dθ =

∫ t

0

1
2

e−
β2
s

2 dt.

Collecting these formulae, we can write:

∫

κ,θ
~χ(t)⊗ ~τ dκdθ =

D(t)
2

Id,

with D(t) =
∫ t

0 e−α
2(−1+u+e−u) du. Taking the limit t→ +∞ and using equation (5.3),

shows that (2.19) holds true and completes the proof of the theorem.

6 Numerical simulation

We simulate individual trajectories satisfying equation (2.4)-(2.6) with initial condi-
tions given by (3.1)-(3.4). If we fix a time step ∆t, using (3.7), (3.8), we have :




κ(n+1)∆t = γκn∆t +G(n+1)

θ(n+1)∆t = θ0 + κ0 − κ(n+1)∆t +
√

2αB(n+1)∆t

with γ = e−∆t and G(n+1) a Gaussian random variable with zero mean and variance
2α2

(
1− e−2∆t

)
independent of κn∆t. With this formula, we can simulate recursively

the process (κn∆t, θn∆t)n exactly (in the sense that it has the same law as the exact
solution). To generate the Brownian motion, we just compute the increments B(n+1)∆t−
Bn∆t since they are Gaussian and independent of Bn∆t. On the other hand, these
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increments are not independent of G(n+1). Fortunately, we can compute the covariance
matrix of the Gaussian vector (G(n+1), B(n+1)∆t − Bn∆t) :


 G(n+1)

B(n+1)∆t −Bn∆t


 ∼ N (0, C)

where N (0, C) is a two-dimensional Gaussian vector with zero mean and covariance
matrix C given by:

C =




2α2
(
1− e−2∆t

) √
2α(1− e−∆t)

√
2α(1− e−∆t) ∆t


 .

Knowing this covariance matrix, we can simulate the Gaussian vector (G(n+1), B(n+1)∆t−
Bn∆t) using the Cholesky method : we generate (X1, X2) a vector of two independent
normal law, and take

√
C(X1, X2)T as realization of the Gaussian vector.

Now for the position ~x, since we do not have any explicit expression, we use a
discrete approximation scheme of order O((∆t)2). For example, the first component
x1 of ~x is approximated by:

x1((n+ 1)∆t) = x1(n∆t) +
∫ (n+1)∆t

n∆t
cos θ(s) ds

≈ x1(n∆t) +
∆t
2

(cos θ(n∆t) + cos θ((n + 1)∆t)).

We present four trajectories obtained with different values of the parameter α in
figure 2.3. As the parameter α increases, the excursions towards large positive or
negative curvatures become larger. As a consequence, the spinning of the trajectory
around itself increases and, from almost a straight line when α = 0.1, the trajectory
shrinks and looks closer and closer to a wool ball. In this way, we can visualize the
decay of D with respect to α.

To illustrate theorem 2.1, we use a Monte-Carlo method to simulate the variance of
the process ~x. We simulate N independent trajectories and we compute the variance
of the sample at each time step. In figure (2.4), we compare the result obtained with
N = 2000 and the theoretical prediction given by the (3.6). The figure shows an excel-
lent agreement between the computation and the theoretical prediction. Additionally,
after an initial transient, the growth of the variance is linear, in accordance with the
theoretical result (2.9).
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Figure 2.3: Four trajectories simulated with different value of α: α = 0.1 (top left),
α = 0.5 (top right), α = 1. (bottom left) and α = 2. (bottom right). The simulation is
run during 120 time units with a time step dt = 0.05 time unit

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000
Variance of the process (α=0.1)

times

Simulation
Theoretical

0 20 40 60 80 100 120
0

50

100

150

200
Variance of the process (α=2)

times

Simulation
Theoretical

Figure 2.4: Variance of the process ~x(t): comparison between the numerical simulation
(points) and the theoretical prediction (solid line) for two values of α : α = 0.1 (left)
and α = 2 (right).
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We can use the slope of the asymptotically linear part of the curve to give a numer-
ical estimate of the diffusion coefficient D. Fro this purpose, we fit a straight line (in
the mean-square sense) between times T/2 and T . We remove the data between 0 and
T/2 because the initial transient is not linear and including them would deteriorate
the accuracy of the measurement. We compare the slope of the fitted line with the
theoretical value (2.9). We report the result of this comparison for two values of α
(α = 0.1 and α = 2., with T = 1200 time units in Table 2.1). The approximation is
quite good, with an error comprised between 2 and 3%, which can be attributed to
numerical noise and to an unsufficient approximation of the asymptotic state.

D simulation D theoretical relative error

α = 0.1 98.5 101 2.5 %

α = 2 0.708 0.725 2.4 %

Table 2.1: Diffusion coefficient: comparison of the numerical estimate obtained by
fitting the numerical values with a straight line over the time interval [T/2, T ] with the
theoretical prediction (2.9). T = 1200 units of time.

To illustrate the influence of the initial transient, we take T = 120 time units in
the case α = 0.1 and report the result in Table 2.2. There, the approximation is quite
poor, because the asymptotic state has not yet been reached.

D simulation D theoretical relative error

α = 0.1 58.8 101 72 %

Table 2.2: Same as Table 2.1 but with T = 120 units of time. The agreement is poor
because the asymptotic state is not reached.

In order to illustrate theorem 2.3, we plot the spatial density n(t, ~x) of the distri-
bution f(t, ~x, θ, κ) using a Monte-Carlo algorithm for α = 2 and T = 30 time units on
figure 2.5. We see that the density has the Gaussian shape of the solution of a diffusion
equation, in accordance with the prediction of the theorem.

To make a more quantitative comparison, we compare it with the asymptotic pre-
diction, i.e. the solution of the diffusion equation (2.17), (2.18), by computing the
difference in L1 norm. The results are reported in figure 2.6. We plot the L1 norm of
the difference for α = 1. and for four values of the parameter ε : 1, 1

2
1
5

and 1
10

. As
expected, the agreement is better as ε is smaller. However, at large times, all solutions
are eventually close to the solution of the diffusion equation. Roughly speaking, the
time at which the solution of the diffusion equation starts to be a good approximation
of the solution of the kinetic equation scales like ε. This means that, after an initial
transient the duration of which may depend on ε, the solution is close to that of the
diffusion equation, no matter the value of ε.



102 Large scale dynamics of the PTW model

−30
−20

−10
0

10
20

30

−30

−20

−10

0

10

20

30
0

0.5

1

1.5

2

2.5

3

x 10
−3

Figure 2.5: The spatial distribution n for α = 2 at time T = 30 time units.
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Figure 2.6: L1 norm of the difference between nε(t, ) =
∫
f ε(t, ·, θ, κ) dθ dκ and its

asymptotic limit n0(t) as a function of time t, with α = 1 and N = 104 simulation
particles.
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7 Conclusion

In this paper, the large-scale dynamics of the ’Persistent Turning Walker’ (PTW) model
of fish behavior has been analyzed. It has been shown, by two different methods, that
the large scale limit of this model is of diffusion type, and an explicit formula for the
diffusion coefficient has been provided. While the direct analysis of the stochastic tra-
jectories provides a direct route to the value of the diffusion constant, the diffusion
approximation of the associated forward Kolmogorov equation, which is of Fokker-
Planck type, gives a more systematic way to extend the theory to more complex non-
linear cases. Such a nonlinear situation will be encountered when, in the near future,
the nonlinear interactions between the individuals will be introduced within the PTW
model. We expect that, in this context, the diffusion approximation methodology will
have to be exploited thoroughly to allow access to the large scale behaviour of the
system.
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Appendix A : Proofs of section 3.

Proof of Lemma 3.2: Formula (3.8) is standard in the theory of Ornstein-Uhlenbeck
processes [39]. To obtain (3.7), we integrate κ(t) with respect to time:

∫ t

0
κ(s) ds = (1− e−t)κ0 +

√
2α
∫ t

0

∫ s

0
e−seu dBuds.

Interchanging the order of integrations and integrating with respect to s, we deduce:
∫ t

0
κ(s) ds = (1− e−t)κ0 +

√
2α
∫ t

0
(1− e−(t−u)) dBu.

Then we develop the integral :
∫ t

0
κ(s) ds = (1− e−t)κ0 +

√
2αBt − (κ(t)− e−tκ0).

This formula can be rewritten:
∫ t

0
κ(s) ds = κ0 − κ(t) +

√
2αBt,

which easily leads to (3.7).
We now calculate the mean and the variance of Kt0 =

∫ t
0 κ(s) ds. Since κ(s) is of

zero mean, its integral Kt0 is also of zero mean: E{Kt0} = 0. Now for the variance of
Kt0, we can write :

Var{Kt0} = E

{(
(1− e−t)κ0 −

√
2αe−t

∫ t

0
es dBs +

√
2αBt

)2
}
.

Using that κ0 and Bs are independent, we can develop the square and get:

Var{Kt0} = (1− e−t)2E{κ2
0}+ 2α2E

{(
−e−t

∫ t

0
es dBs +Bt

)2
}
.

Let us consider the second term. By Ito’s formula, we have

E

{(
−e−t

∫ t

0
es dBs +Bt

)2
}

= e−2tE

{(∫ t

0
es dBs

)2
}
− 2e−tE

{
Bt

∫ t

0
es dBs

}
+ E

{
B2
t

}

= e−2t
∫ t

0
e2s ds− 2e−tE

{
Bt(etBt −

∫ t

0
esBs ds)

}
+ t,

where the Ito correction term is zero due to the fact that exp s is a deterministic
process. We can simplify this expression again since E{BtBs} = min(t, s) and get:

E

{(
−e−t

∫ t

0
es dBs +Bt

)2
}

=
1− e−2t

2
− 2e−t

(
ett−

∫ t

0
ess ds

)
+ t

=
1− e−2t

2
− 2

(
1− e−t

)
+ t.

Using also that E{κ2
0} = α2, the variance of Kt0 is written:

Var{Kt0} = (1− e−t)2α2 + 2α2

(
1− e−2t

2
− 2

(
1− e−t

)
+ t

)
.

Developing and simplifying the expression, we find (3.10), which ends the proof.
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Appendix B : Proofs of section 4.

Proof of Lemma 4.3: Let u ∈ D(A). Then, κ∂θu ∈ V ′ and Lemma A1 of [15]
shows that the Green formula for functions u ∈ V such that κ∂θu ∈ V ′ is legitimate.
Therefore, taking the inner product of A(u) against u, we find:

< A(u), u >H=
∫

θ,κ
α2M

∣∣∣∣∂κ
(
u

M

)∣∣∣∣
2

dθdκ ≥ 0. (7.1)

So, A is a monotone operator in H . To show that A is maximal monotone, we prove
that for any g ∈ H , there exists u ∈ D(A) such that :

u+ Au = g. (7.2)

Taking the inner product of (7.2) against a test function ϕ in the space D(Πθ × Rκ)
of infinitely differentiable and compactly supported functions on Πθ ×Rκ leads to the
variational problem :

∫

κ,θ
[u (ϕ− κ∂θϕ)

1
M

+ M∂k

(
u

M

)
∂k

(
ϕ

M

)
] dθdκ =

∫

θ,κ
gϕ

dκdθ

M
. (7.3)

Again, the same theory as in the appendix A of [15] (based the result by J. L. Lions
in [36]) applies to prove the existence of a solution to (7.3) with u in V such that
κ∂θu ∈ V ′. From there, it immediately follows that u ∈ D(A).

It is immediate to see that any function of the form u(θ, κ) = CM(κ) for any
constant C belongs to the kernel of A. Conversely, suppose that u ∈ KerA. Then, by
(7.1), there exists a function C(θ) ∈ L2(Π) such that u(θ, κ) = C(θ)M(κ). But again,
A(u) = 0 implies that κ ∂θC(θ)M = 0. So C(θ) is a constant, which proves (4.23).

Proof of Proposition 4.5: The ’only if’ part of the theorem is obvious since, using
Green’s formula (again, obtained by adapting that of appendix B of [15], we have∫
Au dθ dκ = 0).

To prove the ’if’ part, we borrow a method from (for instance) [12]. To find a
solution to (4.24), we look at a perturbed equation :

λu+ Au = g, (7.4)

with λ > 0. Since A is maximal monotone in H (Lemma 4.3), eq. (7.4) admits a
solution uλ for all positive λ ([9]). To prove the existence of a solution to (4.24), we
want to extract a subsequence, still denoted by (uλ) which converges weakly in H . For
this purpose, it is enough to show that there exists a bounded subsequence.

We proceed by contradiction, supposing that the (full) sequence Nλ = ‖uλ‖H λ→0→
+∞. We define Uλ = uλ

Nλ
. Uλ satisfies ‖Uλ‖H = 1 for all λ and

λUλ + AUλ =
g

Nλ
. (7.5)
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Since (Uλ)λ is a bounded sequence in H , we can extract a subsequence (still denoted
by Uλ) such that Uλ ⇀ U in H weak as λ→ 0. Taking the limit λ→ 0 in (7.5), gives
A(U) = 0. If we take the inner product of (7.5) with Uλ and then pass to the limit
λ → 0, we also find that U belongs to V . So Lemma 4.3 applies and gives U = cM
with a constant c ∈ R. Using (4.25), we also have :

< λUλ + AUλ,M >H=<
g

Nλ
,M >H= 0.

So
∫
κ,θ Uλ dθdκ = 0 for all λ. Taking the limit λ → 0 leads to

∫
κ,θ U dθdκ =∫

κ,θ CM(κ) dθdκ = 2πC = 0, which implies U = 0. This proves:

Uλ ⇀ 0 in H weak . (7.6)

To get a contradiction, we now prove that the convergence is strong.
To this aim, we introduce a decomposition of the space H into two orthogonal

subspaces. Let L be the closed subspace of H defined by :

L = {c(θ)M / c(θ) ∈ L2(Πθ)},

with M defined by (4.4). So H = L
⊥⊕ L⊥. We also define the orthogonal projector P

of H onto L such that Pf = (
∫
κ f(κ, θ) dκ)M . Using this projection, we decompose

the sequence (Uλ)λ as follows:

Uλ = cλ(θ)M + vλ, (7.7)

with vλ ∈ L⊥, i.e.
∫
κ vλ dκ = 0. To demonstrate that Uλ

λ→0−→ 0 in H strongly, we first
demonstrate that vλ

λ→0−→ 0 in H strongly.
Taking the inner product of the equation satisfied by Uλ (7.5) with Uλ gives :

λ‖Uλ‖2H +
∫

θ,κ
M
∣∣∣∣∂κ

Uλ
M

∣∣∣∣
2

dθdκ =
1
Nλ

< g, Uλ >H .

Since ∂κ UλM = ∂κ
vλ
M

and ‖Uλ‖H = 1, we get by taking the limit λ→ 0 :

∫

θ,κ
M
∣∣∣∣∂κ

vλ
M

∣∣∣∣
2

dθdκ
λ→0−→ 0. (7.8)

Now Gross inequality [31] gives, for any v ∈ V :

α2
∫

R

∣∣∣∣∣∂κ

(
f

M

)∣∣∣∣∣

2

M dκ ≥
∫

R

|f |2 dκ
M
−
(∫

R

f dκ
)2

. (7.9)

Then, since
∫
κ vλ dκ = 0, we deduce:

α2
∫

R

∣∣∣∣∂κ
vλ
M

∣∣∣∣
2

M dκ ≥
∫

R

|vλ|2
M

dκ.
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Integrating this inequality with respect to θ and using (7.8), we find:

‖vλ‖H λ→0−→ 0, in H strong. (7.10)

To prove the convergence of cλ, we define the bounded operator T : H → L2(Πθ)
such that Tf =

∫
κ κf dκ. Having T acting on (7.5) and taking the limit λ → 0, leads

to:
T AUλ

λ→0−→ 0 in L2(Πθ) strong. (7.11)

If we develop the left-hand side, we find:

T AUλ =
∫

κ
κ2∂θUλ dκ−

∫

κ

[
κ∂κ(κUλ)− α2κ∂κ2Uλ

]
dκ

=
∫

κ
κ2∂θUλ dκ+

∫

κ
κUλ dκ.

But using the decomposition Uλ = cλM + vλ (7.7), we have:
∥∥∥∥
∫

κ
κUλ dκ

∥∥∥∥
L2(θ)

=
∥∥∥∥
∫

κ
κvλ dκ

∥∥∥∥
L2(θ)

λ→0−→ 0.

So, (7.11) leads to :
∫

κ
κ2∂θUλ dκ

λ→0−→ 0 in L2(Πθ) strong. (7.12)

If we define hλ(θ) =
∫
κ κ

2Uλ dκ, (7.12) is equivalent to saying that ‖∂θhλ‖L2(θ)
λ→0−→ 0.

Using the Poincare-Wirtinger inequality [9], there exists a constant C0 such that:

‖hλ − h̄λ‖L2(θ) ≤ C0‖∂θhλ‖L2(θ), (7.13)

with h̄λ = 1
2π

∫ 2π
0 hλ(θ) dθ. Then, we develop h̄λ. We get:

h̄λ =
1

2π

∫ 2π

0

∫

κ
κ2Uλ dκdθ =< Uλ,Mκ2 >H

λ→0−→ 0 in R,

since Uλ converges weakly to zero (see (7.6)). So, (7.13) leads to hλ
λ→0−→ 0 in L2(Πθ)

strong. If we develop hλ we find:

hλ(θ) =
∫

κ
κ2(cλ(θ)M + vλ) dκ = α2cλ(θ) +

∫

κ
κ2vλ dκ.

Now,
∫
κ κ

2vλ dκ converges to zero in L2(θ) strong because of (7.10) and we finally have
:

cλ(θ)
λ→0−→ 0 in L2(θ) strong.

Using the convergence of cλ and vλ, we can now prove the strong convergence of
Uλ to 0 in H :

‖Uλ‖2H = ‖cλM‖2H + ‖vλ‖2H = ‖cλ‖2L2(θ) + ‖vλ‖2H
λ→0−→ 0,
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which contradicts the fact that Uλ has unit norm in H . This shows that there exists a
bounded subsequence in the sequence uλ. In fact, since the same proof can be applied
to any subsequence, this shows that the whole sequence uλ is bounded, but this is
useless for our purpose.

We conclude the proof of Proposition 4.5 as follows: there exists a subsequence uλ
and a function u in H such that uλ ⇀ u in H weak. Taking the limit of (7.4) as λ→ 0,
we deduce that Au = g in the sense of distributions. However, since g ∈ H , eq. Au = g
also holds in H . Moreover if we take the inner product of (7.4) with uλ and pass to
the limit λ → 0, we find that u belongs to V . So u belongs to D(A), which ends the
proof of the ’if’ part of the statement.

Finally, to prove uniqueness, we just remark that, two solutions of (4.24) differ from
an element of the kernel of A and we apply (4.23). This ends the proof.
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Appendix C : Proofs of section 5.

Proof of Lemma 5.1: The proof borrows some ideas from [24], but is simpler, due
to the linear character of the problem. The difficulty is getting some compactness in
time. Here, instead of considering time translates of the solution as in [24], we will
consider time integrals over a fixed interval length ∆t.

Since operator A is maximal monotone on H (see Lemma 4.3), operator −A gen-
erates a semi-group of contractions Tt on H . Moreover the solution of (5.1) is given
by:

u(t) = Tt(u0) +
∫ t

0
Ts(g) ds.

We define f(t) = u(t)− u∞ which satisfies :

∂tf = −Af, ft=0 = f0, (7.14)

with f0 = u0 − u∞ and
∫
κ f0(κ) dκ = 0. To prove the weak convergence of u(t) to u∞,

we have to prove that f(t) converges to zero weakly in H .
To this aim, we make an orthogonal decomposition of f(t) as in the proof of Propo-

sition 4.5: f(t) = c(t)M + v(t), with c(t) ∈ L2(Πθ), v(t) ∈ H and
∫
κ v(t) dκ = 0.

Taking the inner product of (7.14) with f , we get :

1
2
∂t‖f‖2H = −

∫

κ,θ
α2M

[
∂κ

(
f

M

)]2

dκdθ.

Using the decomposition of f(t) and noticing that ∂κ
(
f
M

)
= ∂κ

(
v
M

)
, this equality

becomes:

1
2
∂t
(
‖c(t)‖2L2 + ‖v(t)‖2H

)
= −

∫

κ,θ
α2M

[
∂κ

(
v(t)
M

)]2

dκdθ. (7.15)

If we apply the Gross inequality (7.9), we get:

1
2
∂t
(
‖c(t)‖2L2 + ‖v(t)‖2H

)
≤ −‖v(t)‖2H .

Since c(t) is bounded by ‖f0‖2H , by integrating with respect to time, we have :

1
2
‖v(t)‖2H ≤ −

∫ t

0
‖v(s)‖2H ds+ C.

Using the Gronwall lemma, we deduce that v(t) decays exponentially fast to zero
strongly in H :

v(t) t→+∞−→ 0 in H strong.

It remains to prove the convergence of c(t) to zero. We integrate (7.14) with respect
to κ. This gives, using that

∫
κM(κ) dκ = 1 and

∫
κ v(t) dκ = 0 :

∂tc(t) = ∂θ

∫

κ
κv(t) dκ. (7.16)
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Now if we pre-multiply by κ before integrating with respect to κ, we obtain :

∂t

∫

κ
κv(t) dκ = α2∂θc(t) + ∂θ

∫

κ
κ2v(t) dκ−

∫

κ
κv(t) dκ. (7.17)

We fix a time interval ∆t and integrate (7.17) over this time interval. This leads to:
∫

κ
κ(v(t+ ∆t)− v(t)) dκ = α2∂θ

∫ t+∆t

t
c(s) ds+ ∂θ

∫

κ
κ2
∫ t+∆t

t
v(s) ds dκ

−
∫

κ
κ
∫ t+∆t

t
v(s) ds dκ.

Since v(t) converges to zero in H , we have, in the sense of distributions:

α2∂θ

∫ t+∆t

t
c(s) ds t→+∞

⇀ 0. (7.18)

Since c belongs to L∞((0,∞)t, L2(Πθ)) (see (7.15)), we have
∫ t+∆t
t c(s) ds which belongs

to
L∞((0,∞)t, L2(Πθ)). So there exists a subsequence such that

∫ t+∆t
t c(s) ds is weakly

convergent in L2(Πθ). Actually, (7.18) implies that there exists a constant function
with respect to θ, depending on ∆t and denoted by L(∆t) such that

∫ t+∆t

t
c(s) ds t→+∞

⇀ L(∆t).

To deduce the convergence of c(t), we have to control the derivative of c(t) in time.
For this purpose, we rewrite :

∫ t+∆t

t
c(s) ds =

∫ ∆t

0

(
c(t) +

∫ s

0
∂tc(t+ z) dz

)
ds

= ∆t c(t) +
∫ ∆t

0

∫ s

0
∂θ

∫

κ
κv(t+ z) dκ dzds.

Using again the convergence of v(t) to zero, we find :

∆t c(t) t→+∞
⇀ L(∆t),

or defining the constant C = L(∆t)
∆t

, we have c(t) t→+∞
⇀ C in L2(Πθ) weak.

To complete the proof, it remains to prove that C is equal to zero. Now, since eq.
(7.14) is mass preserving i.e.:

∂t

∫

κ,θ
f(t) dκdθ = −

∫

κ,θ
Af(t) dκdθ = 0,

we have
∫
κ,θ f(t) dκdθ =

∫
κ,θ f(0) dκdθ = 0. Also :

∫

κ,θ
f(t) dκdθ =

∫

κ,θ
(c(t)M + v(t)) dκdθ t→+∞

⇀
∫

θ
C dθ = 2πC.

So C = 0. This proves f(t) t→+∞
⇀ 0 in H weak and completes the proof.
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Chapter 3

Long time fluctuation and diffusion
limit for the Persistent Turning
Walker Model

This chapter has been written in collaboration with P. Cattiaux and D. Chafaï, it has
been submitted to the journal Asymptotic Analysis.

Abstract. The Persistent Turning Walker Model (PTWM) was introduced by
Gautrais et al in Mathematical Biology for the modelling of fish motion. It involves
a nonlinear pathwise functional of a non-elliptic hypo-elliptic diffusion. This diffusion
solves a kinetic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian pro-
cess. The long time “diffusive” behavior of this model was recently studied by Degond
& Motsch using partial differential equations techniques. This model is however in-
trinsically probabilistic. In the present paper, we show how the long time diffusive
behavior of this model can be essentially recovered and extended by using appropriate
tools from stochastic analysis. The approach can be adapted to many other kinetic
“probabilistic” models. Beyond the mathematical results, the aim of this short paper
is also to contribute to the diffusion of stochastic techniques in the domain of partial
differential equations.

Key words: Mathematical biology, animal behavior, hypo-elliptic diffusions,
kinetic Fokker-Planck equations, Poisson equation, invariance principles, central limit
theorems, Gaussian and Markov processes.
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1 Introduction

Different types of models are used in Biology to describe individual displacement. For
instance, correlated/reinforced random walks are used for the modelling of ant, see
e.g. [2, 23], and cockroaches, see e.g. [13] and [4] for a review. On the other hand, a
lot of natural phenomena can be described by kinetic equations and their stochastic
counterpart, stochastic differential equations. The long time behavior of such models
is particularly relevant since it captures some “stationary” evolution. Recently, a new
model, called the Persistent Turning Walker model (PTWM for short), involving a
kinetic equation, has been introduced to describe the motion of fish [9, 5]. The natural
long time behavior of this model is “diffusive” and leads asymptotically to a Brownian
Motion.

The diffusive behavior of the PTWM has been obtained in [5] using partial differ-
ential equations techniques. In the present work, we show how to recover this result
by using appropriate tools from stochastic processes theory. First, we indicate how
the diffusive behavior arises naturally as a consequence of the Central Limit Theorem
(in fact an Invariance Principle). As expected, the asymptotic process is a Brown-
ian Motion in space. As a corollary, we recover the result of [5] which appears as a
special case where the variance of the Brownian Motion can be explicitly computed.
We finally extend our main result to more general initial conditions. We emphasize
that the method used in the present paper is not restricted to the original PTWM.
In particular, the hypotheses for the convergence enables to use more general kinetic
models than the original PTWM.

The present paper is organized as follows: in Section 2, we recall the PTWM and
its main properties, and we give the main results. Section 3 is dedicated to the proofs.

2 Main results

In the PTWM, the motion is described using three variables: position x ∈ R2, velocity
angle θ ∈ R, and curvature κ ∈ R. For some fixed real constant α, the probability
distribution p(t, x, θ, κ) of finding particles at time t in a small neighborhood of (x, θ, κ)
is given by a forward Chapman-Kolmogorov equation

∂tp+ τ.∇xp + κ∂θp− ∂κ(κp)− α2 ∂2
κ2p = 0 (2.1)

with initial value p0, where

τ(θ) = (cos θ, sin θ) = e
√
−1 θ.

The stochastic transcription of (2.1) is given by the stochastic differential system (t ≥
0) 




dxt = τ(θt) dt

dθt = κt dt

dκt = −κt dt +
√

2α dBt

(2.2)
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where (Bt)t≥0 is a standard Brownian Motion on R2. The probability density function
p(t, x, θ, κ) of (xt, θt, κt) with a given initial law p0 dx dθ dκ is then solution of (2.1).
Also, (2.1) is in fact a kinetic Fokker-Planck equation. Note that (κt)t≥0 is an Ornstein-
Uhlenbeck Gaussian process. The formula

θt = θ0 +
∫ t

0
κs ds

expresses (θt)t≥0 as a pathwise linear functional of (κt)t≥0. In particular the process
(θt)t≥0 is Gaussian and is thus fully characterized by its initial value, together with
its time covariance and mean which can be easily computed from the ones of (κt)t≥0

conditional on θ0 and κ0. The process (θt)t≥0 is not Markov. However, the pair
(θt, κt)t≥0 is a Markov Gaussian diffusion process and can be considered as the solution
of a degenerate stochastic differential equation, namely the last two equations of the
system (2.2). Additionally, the process (xt)t≥0 is an “additive functional” of (θt, κt)t≥0

since
xt = x0 +

∫ t

0
τ(θs) ds = x0 +

∫ t

0
τ
(
θ0 +

∫ s

0
κu du

)
ds. (2.3)

Note that xt is a nonlinear function of (θs)0≤s≤t due to the nonlinear nature of τ ,
and thus (xt)t≥0 is not Gaussian. The invariant measures of the process (θt, κt)t≥0 are
multiples of the tensor product of the Lebesgue measure on R with the the Gaussian law
of mean zero and variance α2. These measures cannot be normalized into probability
laws. Since τ is 2π-periodic, the process (θt)t≥0 acts in the definition of xt only modulo
2π, and one may replace θ by θ ∈ S1 := R/2πZ. The Markov diffusion process

(yt)t≥0 = (θt, κt)t≥0

has state space S1×R and admits a unique invariant law µ which is the tensor product
of the uniform law on S1 with the Gaussian law of mean zero and variance α2, namely

dµ(θ, κ) =
1√

2πα2
1S1(θ) exp

(
− κ2

2α2

)
dθdκ.

Note that (yt)t≥0 is ergodic but is not reversible (this is simply due to the fact that the
dynamics on observables depending only on θ is not reversible). The famous Birkhoff-
von Neumann Ergodic Theorem [15, 21, 12, 16, 6] states that for every µ-integrable
function f : S1 × R→ R and any initial law ν (i.e. the law of y0), we have,

P

(
lim
t→∞

(1
t

∫ t

0
f(ys) ds−

∫

S1×R

f dµ
)

= 0
)

= 1. (2.4)

Beyond this Law of Large Numbers describing for instance the limit of the functional
(2.3), one can ask for the asymptotic fluctuations, namely the long time behavior as
t→∞ of

σt

(1
t

∫ t

0
f(ys) ds−

∫

S1×R

f dµ
)

(2.5)

where σt is some renormalizing constant such that σt →∞ as t→∞. By analogy with
the Central Limit Theorem (CLT for short) for reversible diffusion processes (see e.g.
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[8, 16]), we may expect, when f is “good enough” and when σt =
√
t, a convergence in

distribution of (2.5) as t→∞ to some Gaussian distribution with variance depending
on f and on the infinitesimal dynamics of (yt)t≥0. This is the aim of Theorem 2.1
below, which goes actually further by stating a so called Invariance Principle, in other
words a CLT for the whole process and not only for a fixed single time.

Theorem 2.1 (Invariance Principle at equilibrium) Assume that y0 = (θ0, κ0)
is distributed according to the equilibrium law µ. Then for any C∞ bounded f : S1 ×
R→ R with zero µ-mean, the law of the process

(zεt )t≥0 :=

(
ε
∫ t/ε2

0
f(ys) ds, yt/ε2

)

t≥0

converges as ε → 0 to Wf ⊗ µ⊗∞ where Wf is the law of a Brownian Motion with
variance

Vf = −
∫
gLg dµ = 2α2

∫
|∂κg|2 dµ

where L = α2∂2
κ−κ∂κ+κ ∂θ acts on 2π-periodic functions in θ, and g : S1×R→ R is

g(y) = −E

(∫ ∞

0
f(ys) ds

∣∣∣∣∣ y0 = y

)
.

In other words, for any fixed integer k ≥ 1, any fixed times 0 ≤ t1 < · · · < tk, and any
bounded continuous function F : (R× S1 × R)k → R, we have

lim
ε→0

E
[
F (zεt1 , . . . , z

ε
tk

)
]

= E
[
F ((W ft1 , Y1), . . . , (W

f
tk , Yk))

]

where Y1, . . . , Yk are independent and equally distributed random variables of law µ and
where (W ft )t≥0 is a Brownian Motion with law Wf , independent of Y1, . . . , Yk.

Theorem 2.1 encloses some decorrelation information as ε goes to 0 since the limiting
law is a tensor product (just take for F a tensor product function). Such a convergence
in law at the level of the processes expresses a so called Invariance Principle. Here the
Invariant Principle is at equilibrium since y0 follows the law µ. The proof of Theorem
2.1 is probabilistic, and relies on the fact that g solves the Poisson1 equation Lg = f .
Note that neither the reversible nor the sectorial assumptions of [8] are satisfied here.

Theorem 2.1 remains valid when f is complex valued (this needs the computation
of the asymptotic covariance of the real and the imaginary part of f). The hypothesis
on f enables to go beyond the original framework of [5]. For instance, we could add the
following rule in the model: the speed of the fish decreases as the curvature increases.
Mathematically, this is roughly translated as:

f(y) = f(θ, κ) = c(|κ|)(cos θ, sin θ) (2.6)

where s 7→ c(s) is a regular enough decreasing function, see Figure 3.1 for a simulation.

1It is amusing to remark that “poisson” means “fish” in French. . . .
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Figure 3.1: An example of the trajectory t 7→ xt = (x1
t , x

2
t ) of the PTWM where

the speed of the fish decreases with higher curvature (eq. 2.6). Here α = 1 and
c(|κ|) = 1/(1 + 2|κ|). The simulation is run during 10 time units, we plot a point each
.1 time unit.

The following corollary is obtained from Theorem 2.1 by taking roughly f = τ
and by computing Vτ explicitly. In contrast with the function f in Theorem 2.1, the
function τ is complex valued. Also, an additional argument is in fact used in the proof
of Corollary 2.2 to compute the asymptotic covariance of the real and imaginary parts
of the additive functional based on τ (note that this seems to be missing in [5]).

Corollary 2.2 (Invariance Principle for PTWM at equilibrium) Assume that
the initial value y0 = (θ0, κ0) is distributed according to the equilibrium µ. Then the
law of the process (

ε
∫ t/ε2

0
τ(θs) ds, yt/ε2

)

t≥0

(2.7)

converges as ε → 0 to Wτ ⊗ µ⊗∞ where Wτ is the law of a 2-dimensional Brownian
Motion with covariance matrix DI2 where

D =
∫ ∞

0
e−α

2(s−1+e−s) ds.

It can be shown that the constant D which appears in Corollary 2.2 satisfies to

D = lim
t→∞

1
t
Var(x1

t ) = lim
t→∞

1
t
Var(x2

t ) where (x1
t , x

2
t ) = xt =

∫ t

0
τ(θs) ds
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Figure 3.2: Convergence of t−1Var(xt) to the constant D. Here α = 1.

see e.g. Figure 3.2. Corollary 2.2 complements a result of Degond & Motsch [5,
Theorem 2.2] which states – in their notations – that the probability density function

pε(t, x, θ, κ) =
1
ε2
p
(
t

ε2
,
x

ε
, θ, κ

)

converges as ε→ 0 to the probability density

1√
2π

n0(t, x)M(κ)

where M is the Gaussian law with zero mean and variance α2, and n0 solves the
equation

∂tn
0 − 1

2
D∆xn0 = 0

where D is as in Corollary 2.2. Convergence holds in a weak sense in some well chosen
Banach space, depending on the initial distribution. The meaning of pε is clear from
the stochastic point of view: it is the probability density function of the distribution
of the rescaled process (recall that x is two-dimensional)

(
εxt/ε2 , yt/ε2

)
t≥0

=
(
εxt/ε2 , θt/ε2 , κt/ε2

)
t≥0
.

In other words, the main result of [5] captures the asymptotic behavior at fixed time
of the process (2.7) by stating that for any t, and as ε→ 0, the law of this process at
time t tends to the law of (

√
DWt, θ,M) where (Wt)t≥0, and (θ,M) are independent,

(Wt)t≥0 being a standard Brownian Motion, and (θ,M) a random variable following
the law µ. This result encompasses what is expected by biologists i.e. a “diffusive
limiting behavior”.

Starting from the equilibrium, Corollary 2.2 is on one hand stronger and on the
other hand weaker than the result of [5] mentioned above. Stronger because it is
relative to the full law of the process, not only to each marginal law at fixed time t.
In particular it encompasses covariance type estimates at two different times. Weaker
because it is concerned with the law and not with the density. For the density at time
t we recover a weak convergence, while the one obtained in [5] using partial differential
equations techniques is of strong nature. We should of course go further using what is
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called “local CLTs”, dealing with densities instead of laws, but this will require some
estimates which are basically the key of the analytic approach used in [5].

Our last result concerns the behavior when the initial law is not the invariant law
µ.

Theorem 2.3 (Invariance Principle out of equilibrium) The conclusion of Corol-
lary 2.2 still holds true when y0 = (θ0, κ0) is distributed according to some law ν such
that dνs0/dµ belongs to Lq(µ) for some s0 ≥ 0 and q > 1, where νs0 is the law of ys0.
This condition is fulfilled for instance if dν/dµ belongs to Lq(µ) or if ν is compactly
supported.

3 Proofs

The story of CLTs and Invariant Principles for Markov processes is quite intricate
and it is out of reach to give a short account of the literature. The reader may find
however a survey on some aspects in e.g. [8, 14, 25, 16]. Instead we shall exhibit some
peculiarities of our model that make the long time study an (almost) original problem.
First of all, as mentioned in Section 2, the underlying diffusion process (θt, κt)t≥0 with
state space R2 is not ergodic: its invariant measures are multiples of the Lebesgue
measure times a Gaussian law. This process is also degenerate in the sense that its
infinitesimal generator

L = α2 ∂2
κ2 − κ ∂κ + κ ∂θ (3.8)

is not elliptic. Fortunately, the operator ∂t + L is Hörmander hypo-elliptic since the
“diffusion” vector field X = (0, α2) and the Lie bracket [X, Y ] = XY − Y X of X with
the “drift” vector field Y = (κ,−κ) generate the full tangent space at each (θ, κ) ∈ R2.
The drift vector field Y is always required, so that the generator is “fully degenerate”.
This degeneracy of L has two annoying consequences:

1. any invariant measure ν of L is not symmetric, i.e.
∫
fLg dν 6= ∫

gLf dν for some
nice functions f and g in L2(ν), for instance only depending on θ.

2. the carré du champ of L given here by Γf = 1
2
L(f 2) − fLf = 2α2|∂κf |2 is

degenerate, so that one cannot expect to use any usual functional inequality
such as the Poincaré inequality (spectral gap) in order to study the long time
behavior of the process.

This situation is typical for kinetic models. In the more general framework of homog-
enization, a slightly more general version of this model has been studied in [10], see
also the trilogy [18, 19, 20] for similar results from which one can derive the result in
[5]. The main ingredient of the proof of Theorem 2.1 is the control of the “rate of
convergence” to equilibrium in the Ergodic Theorem (2.4), for the process (θt, κt)t≥0

instead of (θt, κt)t≥0. We begin with a simple lemma which expresses the propagation
of chaos as ε goes to 0.
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Lemma 3.1 (Propagation of chaos) Assume that y0 = (θ0, κ0) is distributed ac-
cording to the equilibrium law µ. Then the law of the process (yε)t≥0 =

(
yt/ε2

)
t≥0

converges as ε → 0 to µ⊗∞. In other words, for any fixed integer k ≥ 1, any fixed
times 0 ≤ t1 < · · · < tk, and any bounded continuous function F : (S1 × R)k → R, we
have

lim
ε→∞

E
[
F (yεt1, . . . , y

ε
tk

)
]

= E[F (Y1, . . . , Yk)]

where Y1, . . . , Yk are independent and equally distributed random variables of law µ.

Proof of Lemma 3.1: Let us denote by L the operator (3.8) acting this time on
2π-periodic functions in θ, i.e. on functions S1 × R → R. This operator L generates
a non-negative contraction semi-group (Pt)t≥0 = (etL)t≥0 in L2(µ) with the stochastic
representation Ptf(y) = E[f(ys)|y0 = y] for all bounded f . We denote by L∗ the
adjoint of L in L2(µ) generating the adjoint semi-group P ∗t , i.e.

L∗ = α2∂2
κ − κ∂κ − κ∂θ

acting again on the same functions. The function H(y) = H(θ, κ) = 1 + κ2 satisfies

L∗H = −2H + 2(α2 + 1) ≤ −H + 2(α2 + 1)1|κ|≤√2α2+1 (3.9)

so H is a Lyapunov function in the sense of [1, Def. 1.1]. Since C = S1 × {|κ| ≤√
2α2 + 1} is compact and the process (yt)t≥0 is regular enough, C is a “petite set”

in the terminology [1, Def. 1.1] of Meyn & Tweedie. Accordingly we may apply [1,
Th. 2.1] and conclude that there exists a constant K2 > 0 such that for all bounded f
satisfying

∫
fdµ = 0,

‖Ptf‖L2(µ) ≤ K2 ‖f‖∞e−t. (3.10)

We shall give a proof of the Lemma for k = 2, the general case k ≥ 2 being heavier but
entirely similar. We set s = t1 < t2 = t. It is enough to show that for every bounded
continuous functions F,G : S1 × R→ R, we have the convergence

lim
ε→0

E[F (yεs)G(yεt )] = E[F (Y )]E[G(Y )]

where Y is a random variable of law µ. Since y0 follows the law µ, we can safely assume
that the functions F and G have zero µ-mean, and reduce the problem to show that

E[F (yεs)G(yεt )] =
∫
Ps/ε2(FP(t−s)/ε2G) dµ =

∫
FP(t−s)/ε2Gdµ −→

ε→0
0.

Now since µ is a probability measure, we have L2(µ) ⊂ L1(µ) and thus
∣∣∣∣
∫
FP(t−s)/ε2Gdµ

∣∣∣∣ ≤
∥∥∥FP(t−s)/ε2G

∥∥∥
1
≤
∥∥∥FP(t−s)/ε2G

∥∥∥
2
≤ ‖F‖∞

∥∥∥P(t−s)/ε2G
∥∥∥

2
.

The desired result follows then from the L2 − L∞ bound (3.10) since
∥∥∥P(t−s)/ε2G

∥∥∥
2
≤ K2‖G‖∞e−(t−s)/ε2 −→

ε→0
0.

Proof of Theorem 2.1: The strategy is the usual one based on Itô’s formula, Poisson
equation, and a martingale CLT. However, each step involves some peculiar properties
of the stochastic process. For convenience we split the proof into small parts with
titles.
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Poisson equation

Let L, L∗, and (Pt)t≥0 be as in the proof of Lemma 3.1. Since f is bounded and satisfies∫
fdµ = 0 (i.e. f has zero µ-mean), the bound (3.10) ensures that

g = −
∫ ∞

0
Psf ds ∈ L2(µ).

Furthermore, the formula Ptg − g =
∫ t

0 Psf ds ensures that

lim
t→0

1
t
(Ptg − g) = f strongly in L2(µ).

It follows that g belongs to the L2(µ)-domain of L and satisfies to the Poisson equation:

Lg = f in L2(µ).

Since µ has an everywhere positive density with respect to the Lebesgue measure on
S1 ×R, we immediately deduce that g belongs to the set of Schwartz distributions D′
and satisfies Lg = f in this set. Since L is hypo-elliptic (it satisfies the Hörmander
brackets condition) and f is C∞, it follows that g belongs to C∞. Hence we have solved
the Poisson equation Lg = f in a strong sense. Remark that since g ∈ L2(µ) and f is
bounded, we get

Eµ[2α2 |∂κ g|2] = −Eµ[gLg] = −Eµ[gf ] <∞.

Itô’s formula

Since g is smooth, we may use Itô’s formula to get

g(yt)− g(y0) =
∫ t

0
α
√

2 ∂κg(ys) dBs +
∫ t

0
Lg(ys) ds almost surely

which can be rewritten thanks to the Poisson equation Lg = f as

∫ t

0
f(ys) ds = g(yt)− g(y0)− α

√
2
∫ t

0
∂κg(ys) dBs almost surely. (3.11)

This last equation (3.11) reduces the CLT for the process
(
ε
∫ t/ε2

0
f(ys) ds

)

t≥0

to showing that (ε(g(yt/ε2) − g(y0)))t≥0 goes to zero as ε → 0 and to a CLT for the
process (

αε
√

2
∫ t/ε2

0
∂κg(ys) dBs

)

t≥0

.

For such, we shall use the initial conditions and a martingale argument respectively.
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Initial condition

Since the law µ of y0 is stationary, Markov’s inequality gives for any constant K > 0,

P(|g(yt/ε2)| ≥ K/ε) = P(|g(y0)| ≥ K/ε) ≤
Varµ(g) ε2

K2
−→
ε→0

0.

It follows that any n-uple of increments

ε (g(yt1)− g(yt0), . . . , g(ytn)− g(ytn−1
))

converges to 0 in probability as ε→ 0. Thanks to (3.11), this reduces the CLT for
(
ε
∫ t/ε2

0
f(ys) ds

)

t≥0

to the CLT for

(Mεt )t≥0 :=

(
εα
√

2
∫ t/ε2

0
∂κg(ys) dBs

)

t≥0

.

Martingale argument

It turns out that ((Mεt )t≥0)ε>0 is a family of local martingales. These local martingales
are actually L2 martingales whose brackets (increasing processes)

〈Mε〉t = ε22α2
∫ t/ε2

0
|∂κg|2(ys) ds

converge almost surely to

2α2tEµ[|∂κ g|2] = t Vf as ε→ 0

thanks to the Ergodic Theorem (2.4). According to the CLT for L2-martingales due
to Rebolledo, see e.g. [11] for an elementary proof, it follows that the family (Mεt )t≥0

converges weakly (for the Skorohod topology) to Vf (Bτt )t≥0 where (Bτt )t≥0 is a standard
Brownian Motion. Consequently, we obtain the desired CLT for the process

(
ε
∫ t/ε2

0
f(ys) ds

)

t≥0

.

Namely, its increments are converging in distribution as ε→ 0 to the law of a Brownian
Motion with variance Vτ . It remains to obtain the desired CLT for the process (zεt )t≥0.

Coupling with propagation of chaos and asymptotic independence

By the result above and Lemma 3.1, the CLT for (zεt )t≥0 will follow if we show that

(
ε
∫ t/ε2

0
f(ys) ds

)

t≥0

and (yt/ε2)t≥0 = (θt/ε2 , κt/ε2)
t≥0
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are independent processes as ε→ 0. It suffices to establish the independence as ε→ 0
for an arbitrary k-uple of times 0 = t0 < t1 < · · · < tk = t. To this end, let us introduce
a bounded continuous function h and the smooth bounded functions

hj(u) = e
√
−1bju

where 1 ≤ j ≤ k for given real numbers b1, . . . , bk. Let us define

Aε = Eµ


h(yt/ε2)

k∏

j=1

hj

(
ε
∫ tj/ε2

tj−1/ε2
f(ys) ds

)


Introduce tε = (t/ε2) − (t/
√
ε) and sε = t/

√
ε. For ε small enough, tε > (tk−1ε

2), so
that using the Markov property at time tε we get

Aε = Eµ



k−1∏

j=1

hj

(
ε
∫ tj/ε2

tj−1/ε2
f(ys) ds

)
Eµ

[
h(yt/ε2)hk

(
ε
∫ tk/ε2

tk−1/ε2
f(ys) ds

) ∣∣∣∣∣Ftε
]


The conditional expectation in the right hand side is equal to

hk

(
ε
∫ tε
tk−1/ε2

f(ys) ds

)
E

[
h(ysε)hk

(
ε
∫ sε

0
f(ys) ds

∣∣∣∣∣ y0 = ytε

)]

and the second term can be replaced by

E

[
h(ysε)

∣∣∣∣∣ y0 = ytε

]

up to an error less than
ε‖h‖∞‖f‖∞sε

going to 0 as ε→ 0. It thus remains to study

Eµ



k−1∏

j=1

hj

(
ε
∫ tj/ε2

tj−1/ε2
f(ys) ds

)
hk

(
ε
∫ tε
tk−1/ε2

f(ys) ds

)
E

[
h(ysε)

∣∣∣∣∣ y0 = ytε

]
.

Conditioning by ytε, this can be written in the form

∫
H(ε, y)Psεh(y)µ(dy)

with a bounded H , so that using the convergence of the semi-group, we may again
replace Psεh by

∫
hdµ up to an error term going to 0. It remains to apply the previously

obtained CLT in order to conclude to the convergence and asymptotic independence.
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Remark 3.1 (More general models) The proof of Theorem 2.1 immediately ex-
tends to more general cases. The main point is to prove that g solves the Poisson
equation in L2(µ). In particular it is enough to have an estimate of the form

‖Ptf‖L2(µ) ≤ α(t) ‖f‖∞
for every t ≥ 0 with a function α satisfying

∫ ∞

0
α(s) ds <∞.

According to [1], a sufficient condition for this to hold is to find a smooth increasing
positive concave function ϕ such that the function α defined by

α(t) =
1

(ϕ ◦G−1
ϕ )(t)

where Gϕ(u) =
∫ u

1

1
ϕ(s)

ds

satisfies the integrability condition above, and a Lyapunov function H ≥ 1 such that
∫
H dµ <∞ and L∗H ≤ −ϕ(H) +O(1C)

for some compact subset C. In particular we may replace the Ornstein-Uhlenbeck
dynamics for κ by a more general Kolmogorov diffusion dynamics of the form

dκt = −∇V (κt)dt+
√

2 dBt.

The invariant measure of (κt, θt)t≥0 is then e−V (κ)dκdθ. We refer for instance to [7, 1]
for the construction of Lyapunov functions in this very general situation. For example,
in one dimension, one can take V ′(x) = |x|p for large |x| and 0 < p ≤ 1. Choosing
H(y) = |κ|q for large κ furnishes a polynomial decay of any order by taking q as large
as necessary. Actually, in this last situation, the decay rate is sub–exponential, see e.g.
[7, 1].

Remark 3.2 (Asymptotic covariance) It is worth noticing that if the asymptotic
variance

(AV )f = lim
t→∞

1
t

Eµ

[(∫ t

0
f(ys) ds

)2
]

exists, then Vf = (AV )f . Similarly we may consider complex valued functions f and
replace the asymptotic variance by the asymptotic covariance matrix which takes into
account the variances and the covariance of the real and imaginary parts of f .

Proof of Corollary 2.2: We may now apply the previous theorem and the previous
remark to the 2-dimensional smooth and µ-centered function τ . The only thing we
have to do is to compute the asymptotic covariance matrix. To this end, first remark
that elementary Gaussian computations furnishes the following explicit expressions

κt = e−t κ0 +
√

2α
∫ t

0
es−t dBs , (3.12)

θt = θ0 + (1− e−t) κ0 +
√

2α
∫ t

0
(1− es−t) dBs . (3.13)
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Since x1
t =

∫ t
0 cos θs ds and x2

t =
∫ t

0 sin θs ds, Markov’s property and stationarity yield

Eµ[x1
t x

2
t ] = Eµ

[∫ t

0
(x1
s sin θs + x2

s cos θs) ds
]

(3.14)

= Eµ

[∫ t

0

∫ s

0
(cos θu sin θs + sin θu cos θs) du ds

]

=
∫ t

0

∫ s

0
Eµ[sin(θu + θs)] du ds

=
∫ t

0

∫ s

0
Eµ

[
sin

(
2θ0 + 2(1− eu−s)κ0 +

√
2α
∫ s−u

0
(1− ev−(s−u)) dB′v

)]
du ds

where (B′t)t≥0 is a Brownian Motion independent of (κ0, θ0). Since κ0 and θ0 are also
independent (recall that µ is a product law), we may first integrate with respect to θ0

(fixing the other variables), i.e. we have to calculate Eµ(sin(2θ0 +C)) which is equal to
0 since the law µ of θ0 is uniform on [0, 2π[. Hence the µ-covariance of (x1

t , x
2
t ) is equal

to 0 (since this is a Gaussian process, both variables are actually independent), and
similar computations show that the asymptotic covariance matrix is thus DI2 where

D =
∫ ∞

0
e−α

2(s−1+e−s) ds.

Proof of Theorem 2.3: We assume now that y0 ∼ ν instead of y0 ∼ µ. We may
mimic the proof of Theorem 2.1, provided we are able to control Eν(g2(ys)). Indeed
the invariance principle for the local martingales (Mεt )t≥0 is still true for the finite-
dimensional convergence in law, according for instance to [12, Th. 3.6 p. 470]. The
Ergodic Theorem ensures the convergence of the brackets. The first remark is that
these controls are required only for s ≥ s0 ≥ 0 where s0 is fixed but arbitrary. Indeed
since τ is bounded, the quantity

ε
∫ s0

0
τ(θs) ds

goes to 0 almost surely, so that we only have to deal with
∫ t/ε2
s0

so that we may replace
0 by s0 in all the previous derivation. Thanks to the Markov property we thus have to
control Eνs0 (g2(ys)) for all s > 0, where νs0 denote the law of ys0. This remark allows
us to reduce the problem to initial laws which are absolutely continuous with respect
to µ. Indeed thanks to the hypo-ellipticity of ∂

∂t
+L we know that for each s0 > 0, νs0

is absolutely continuous with respect to µ. Hence we have to control terms of the form

Eµ

[
dνs0
dµ

(y0) g2(ys)

]
.

The next remark is that [1, Theorem 2.1] immediately extends to the Lp framework
for 2 ≤ p < ∞, i.e. there exists a constant Kp such that for all bounded f satisfying∫
fdµ = 0,

‖Ptf‖Lp(µ) ≤ Kp ‖f‖∞ e−t. (3.15)
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Since the function f is bounded and satisfies
∫
fdµ = 0, the previous bound ensures

that g belongs to Lp(µ), for all p < ∞. In particular, as soon as dνs0/dµ belongs to
Lq(µ) for some 1 < q, g(ys) belongs to L2(Pν) for all s ≥ s0. Additionally, these bounds
allow to show without much efforts that the “propagation of chaos” of Lemma 3.1 still
holds when the initial law is such a ν. To conclude we thus only have to find sufficient
condition for dνs0/dµ to belong to one Lq(µ) (q > 1) for some s0 ≥ 0. Of course, a
first situation is when this holds for s0 = 0. But there are many other situations.

Indeed recall that for non-degenerate Gaussian laws η1 and η2 the density dη2/dη1

is bounded as soon as the covariance matrix of η1 dominates (in the sense of quadratic
forms) the one of η2 at infinity, i.e. the associated quadratic forms satisfy q1(y) > q2(y)
for |y| large enough. According to (3.12) and (3.13) the joint law of (κt, θt) starting
from a point (κ, θ) is a 2-dimensional Gaussian law with mean

mt = (e−tκ, θ + (1− e−t)κ)

and covariance matrix Dt = α2 At with

At =


 1− e−2t (1− e−t)2

(1− e−t)2 2t− 3 + 4e−t − e−2t


 .

Note that if the asymptotic covariance of (κt, θt) is not 0, the asymptotic correlation
vanishes, explaining the asymptotic “decorrelation” of both variables. It is then not
difficult to see that if ν = δy is a Dirac mass, then dνs/dµ is bounded for every s > 0.
Indeed for t small enough, At is close to the null matrix, hence dominated by the
identity matrix. It follows that dνt/dη is bounded, where η is a Gaussian variable with
covariance matrix α2I2. The result follows by taking the projection of θ onto the unit
circle. A simple continuity argument shows that the same hold if ν is a compactly
supported measure.

Remark 3.3 Once obtained such a convergence theorem we may ask about explicit
bounds (concentration bounds) in the spirit of [3] (some bounds are actually contained
in this paper). One can also ask about Edgeworth expansions etc. However, our aim
was just to give an idea of the stochastic methods than can be used for models like the
PTWM.

Remark 3.4 The most difficult point was to obtain Lp(µ) estimates for ∂κg. Spe-
cialists of hypo-elliptic partial differential equations will certainly obtain the result by
proving quantitative versions of Hörmander’s estimates (holding on compact subsets
U):

‖∂κg‖p ≤ C(U) (‖g‖p + ‖Lg‖p).
We end up the present paper by mentioning an interesting and probably difficult

direction of research, which consists in the study of the long time behavior of interacting
copies of PTWM–like processes, leading to some kind of kinetic hypo-elliptic mean-
field/exchangeable Mac Kean-Vlasov equations (see e.g. [22, 17] and references therein
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for some aspects). At the Biological level, the study of the collective behavior at
equilibrium of a group of interacting individuals is particularly interesting, see for
instance [24].
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Chapter 4

A smooth model for fiber lay-down
processes and its diffusion
approximations

This chapter has been written in collaboration with M. Herty, A. Klar and F. Olawsky,
it has been submitted to the journal Kinetic and Related Models (KRM).

Abstract. In this chapter we improve and investigate a stochastic model and its
associated Fokker-Planck equation for the lay-down of fibers on a conveyor belt in the
production process of nonwoven materials which has been developed in [2]. The model
is based on a stochastic differential equation taking into account the motion of the
fiber under the influence of turbulence. In the present chapter we remove an obvious
drawback of the model, namely the non-differentiability of the paths of the process. We
develop a model with smoother trajectories and investigate the relations between the
different models looking at different scalings and diffusion approximations. Moreover,
we compare the numerical results to simulations of the full physical process.

Keywords. Fiber dynamics, Stochastic diffential equation, Fokker-Planck equa-
tions, diffusion approximation
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1 Introduction

Nonwoven materials / fleece are webs of long flexible fibers that are used for composite
materials (filters) as well as in the hygiene and textile industries. They are produced
in melt-spinning operations: hundreds of individual endless fibers are obtained by the
continuous extrusion of a molten polymer through narrow nozzles that are densely and
equidistantly placed in a row at a spinning beam. The viscous / viscoelastic fibers are
stretched and spun until they solidify due to cooling air streams. Before the elastic
fibers lay down on a moving conveyor belt to form a web, they become entangled and
form loops due to the highly turbulent air flows. The homogeneity and load capacity
of the fiber web are the most important textile properties for quality assessment of
industrial nonwoven fabrics. The optimization and control of the fleece quality require
modeling and simulation of fiber dynamics and lay-down; in addition, it is necessary
to determine the distribution of fiber mass and directional arrangement in the web.

The software FIDYST, developed at the Fraunhofer ITWM, Kaiserslautern, enables
numerical simulation of the spinning and deposition regime in the nonwoven production
processes. The interaction of the fiber with the turbulent air flows is described by a
combination of deterministic and stochastic forces in the momentum equation, which
is derived, analyzed and experimentally validated in [8]. Due to the huge amount of
physical details incorporated in FIDYST, the simulations of the fiber spinning and lay-
down usually require an extremely large computational effort. Hence the optimization
and control of the full process with several hundreds of fibres, and of the quality of
the fleece, are difficult. Thus, a simplified stochastic model for the fiber lay-down
process has been presented in [1, 2]. The model describes the position of the fiber
on the transport belt by a stochastic differential system containing parameters that
characterize the process. The reduced model can be used to calculate fast and efficiently
the performance of hundreds of long fibers for fleece production. The case of large
turbulence noise has been investigated in the above papers. In this case the probability
density of the fiber becomes rapidly independent of the angle between the fiber and
the direction of the conveyor’s motion and the angle between the fiber and the position
vector of its tip, respectively. In particular, the limit processes turn out to be Ornstein–
Uhlenbeck type stochastic processes. Further analytical and numerical investigations
can be found in [6, 7].

Although this model describes already several features of the full physical process
correctly, it has an obvious drawback, namely the non-differentiability of the paths of
the process. This is not true for the physical process and can also be seen, comparing
simulation results of the full physical model and of the simplified model explained
above, see Section 3.2. Thus, the purpose of the present chapter is to develop a model
with smoother trajectories, compare the results with the full process and investigate
the relations of this new model with the model described above and its simplifications.

The outline of this chapter is as follows: In Section 2, we introduce the new model
and we investigate different scalings leading to the original model and to the reduce
model. In section 3, we explore numerical simulation of the smooth model with dif-
ferent scales which illustrate the results of Section 2. We also compare the numerical
simulation with the full physical model.
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2 The new model with smooth trajectories

In the following we describe the original model in more detail. Consider a slender,
elastic, non-extensible and endless fiber in a lay-down regime. The motion of the fiber
on the belt is parameterized by its position ~x(t) and its velocity c~τ (θ), where c is the
magnitude of the velocity:

~τ(θ) =


 cos θ

sin θ




and θ is the angle between the x-axis and the vector speed (see figure 4.1). Choosing
arc-length parameterization, the non-extensibility condition gives c = 1. With ~τ⊥(θ) =
(− sin θ, cos θ)T the original model [1, 2] for the process is given by

d~xt = ~τ(θt) dt,

dθt = −b(|~xt|)
~xt
|~xt|
· ~τ⊥(θt) dt+ AdBt.

(2.1)

~xt θt

φt

0

Figure 4.1: The description of the fiber process.

The function b denotes the effect of an external force which makes the fiber goes
back to the origin, AdBt express the stochasticity of the system due to the airflow.
Another way to see the effect of the force is to look at the system in polar coordinates.
Let’s define ~x = r~τ(φ) then the force can be expressed as :

−b(|~x|) ~x|~x| · ~τ
⊥(θ) = −b(r)~τ (φ) · ~τ⊥(θ)

= −b(r) (− cosφ sin θ + sinφ cos θ)

= −b(r) sin(φ− θ)



136 A smooth model for fiber lay-down processes

I.e. another form of the model is :

d~xt = ~τ (θt) dt,

dθt = b(rt) sin(π + φt − θt) dt+ AdBt.
(2.2)

The equation on θ express the fact that θ is going to relax to π+φ which is the direction
of the origin at the position ~x.

For large value of noise A, we will see that the dynamic of equation (2.2) could be
reduced to the simple equation

d~xt = − 1
A2

b(|~xt|)
|~xt|

~xtdt+

√
2
A
dBt. (2.3)

(see Section 2.2). We call equation (2.2) the reduced model.
In order to get smoother fiber trajectories, we change the original model (2.1). To

this aim, we add the white noise term in the differential equation not on the level of
the velocity equation but on the second derivative, the curvature. We propose the
following model:

d~xt = ~τ(θt) dt

dθt = κt dt (2.4)

dκt = λ(κ0 − κ) dt+ µdBt,

where κ0(~xt, θt) = b(rt) sin(θt − φ). Here, the new parameter λ describes the inverse
stiffness of the fiber and is related to the inverse elasticity module. The smaller λ the
stiffer is the fiber. µ or better µ

λ
describes the influence of the turbulent airflow on the

curvature.
In the next subsection (Section 2.1), we are going to prove that the smooth model

given by equation (2.4) leads to the original model (2.1) in a certain asymptotic scaling.
Combining this with the large noise asymptotic (Section 2.2), one can jump from the
smooth model to the original model and then to the reduced model (2.2). In the
last subsection (Section 2.3), we will directly derive the reduced model (2.3) from the
smooth model (2.4) with another asymptotic.

2.1 White noise limit: connection to the original model

In this part, we are going to prove that the smooth model leads under the appropriate
scaling to the original model.

Proposition 2.1 The following rescaling for equation (2.4):

λ′ = ε2λ ; µ′ = ε2µ (2.5)

together with a rescaling of the curvature

κ′ = εκ (2.6)

leads to the original model (2.1) with the diffusion coefficient A = µ
λ
.



2 The new model with smooth trajectories 137

Proof. If we insert the rescaling given by (2.5) into the smooth model for the fiber,
we obtain :

d~xt = ~τ(θt) dt

dθt = κt dt

dκt =
λ′

ε2
(κ0 − κ) dt+

µ′

ε2
dBt

To facilitate the reading, we drop off the tilde. If we want to look at the limit when ε
goes to zero, we have to make a change of variable for the κ-variable:

κ′ = εκ.

The dynamics for the fiber are then described by

d~xt = ~τ (θt) dt

dθt =
1
ε
κt dt

dκt =
λ

ε2
(εκ0 dt− κ) dt+

µ

ε
dBt

The equations for θ and κ describe a process of Ornstein–Uhlenbeck type, the above
scaling is the so called White-noise scaling of the Ornstein–Uhlenbeck process, see e.g.
[4]. In terms of the Fokker-Planck equation, this gives after multiplication with ε

∂tf
ε + ~τ(θ) · ∇~xf ε +

1
ε

(κ∂θf ε + λκ0∂κf
ε) =

1
ε2

(
λ∂κ(κf ε) +

µ2

2
∂κ2f ε

)
(2.7)

We use an Hilbert expansion for f ε (f ε = f 0 + εf 1 + . . . ) in order to find the limit
equation as ε goes to zero. At order ε−1, we have :

ε−1 : λ∂κ(κf 0) +
µ2

2
∂κ2f 0 = 0.

This equation implies that f 0 is Gaussian in κ-variable. More exactly, if we define
pε =

∫
κ f
ε dκ, we then could write :

f 0 = p0(~x, θ)
1√

πµ2/λ
e
− κ2

µ2/λ .

At the order ε0 in equation (2.7), we have :

ε0 : κ∂θf
0 + λκ0∂κf

0 = λ∂κ(κf 1) +
µ2

2
∂κ2f 1.

Although an explicit expression for f 1 is not available, we can integrate this equation
against κ. This gives :

µ2

2λ
∂θp0 − λκ0 p0 = −λ

∫

κ
κf 1 dκ.
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Now we go back to the original equation on f ε and we integrate in κ :

ε(∂tpε + ~τ (θ) · ∇~xpε) + ∂θ

∫

κ
κf ε dκ+ 0 = 0,

But now we can compute the integral at order 1 :
∫

κ
κf ε dκ =

∫

κ
κ(f 0 + εf 1) dκ+O(ε2)

= 0 + ε
∫

κ
κf 1 dκ+O(ε2)

= ε

(
κ0 p0 −

µ2

2λ2
∂θp0

)
+O(ε2).

So finally we have at the limit ε→ 0 :

∂tp
0 + ~τ(θ) · ∇~xp0 + ∂θ(κ0p0) =

µ2

2λ2
∂θ2p0.

We recover our initial Fokker-Planck equation for the fiber-process with A = µ
λ
.

2.2 Large diffusion for the original model

Now we connect the original model with the reduced model looking at the large noise
regime in the equation:

d~xt = ~τ(θt) dt,

dθt = b(rt) sin(θt − φt) dt+ AdBt.

Since the proof is very similar to the previous one (proposition 2.1), we defer the proof
in the appendix. See also [2] for another proof.

Proposition 2.2 Considering the dynamics given by equation (2.1) and the rescaling

t′ = εt , A′ =
√
εA (2.8)

leads to the reduced equations

d~xt = − 1
A2
b(rt)~τ(φt)dt+

√
2
A
dBt,

or

d~xt = − 1
A2

b(|~xt|)
|~xt|

~xtdt+

√
2
A
dBt. (2.9)

In terms of the density distribution n(t, ~x) the Fokker-Planck equation reads:

∂tn−
1
A2
∇~x · (b(r)~τ(φ)n) =

1
A2

∆~xn (2.10)
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2.3 Large diffusion limit of the smooth model

In this Section, we derive the reduced model (2.3) directly from the smooth model
(2.4).

Proposition 2.3 The following rescaling for the dynamic given by equation (2.4) :

λ′ = ελ ; µ′ = ε3/2µ (2.11)

together with a rescaling of time and curvature

t′ = εt ; κ′ = εκ (2.12)

lead to a reduced model of the form

∂tn
0 − λ2

µ2
∇~x ·

(
~τ(φ)b(r)n0

)
=

1
2λ
D(

µ2

2λ3
)∆~xn0, (2.13)

Proof. As for the proof of proposition 2.1, we have to rescale κ if we want to find a
limit when ε goes to zero. Once again, we use :

κ′ = εκ.

Therefore, using (2.11) the equation for the fiber is :

d~xt = ~τ (θt) dt

dθt =
1
ε
κt dt

dκt =
λ′

ε
(εκ0 − κ) dt+

µ′√
ε
dBt.

The associated Fokker-Planck equation is after the time rescale:

ε∂tf
ε + ~τ (θ) · ∇~xf ε + λκ0∂κf

ε =
1
ε

(
−κ∂θf ε + λ∂κ(κf ε) +

µ2

2
∂κ2f ε

)
. (2.14)

Let’s denote by Q the operator on the right-hand side :

Q(f) = −κ∂θf + λ∂κ(κf) +
µ2

2
∂κ2f.

Making an Hilbert expansion for f ε, we have at order ε−1 :

ε−1 : Q(f) = 0.

This equation is solved by :

f 0 = n0(t, ~x)
M(κ)

2π
,
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where M(κ) is a Gaussian with mean zero and variance µ
2

2λ
.

At order ε0, we have :

ε0 : ~τ(θ) · ∇~xf 0 + λκ0∂κf
0 = Q(f 1).

This equation could not be solved explicitly for f 1. But since the equation is linear
and only involved (θ, κ) variable which is decoupled in f 0, we can express f 1 as :

f 1 = ~χ1 · ∇~xn0 + b(r)n0~χ2 ·


 − sin φ

cosφ




where ~χ1(θ, κ) and ~χ2(θ, κ) satisfy :

~τ (θ)
M

2π
= Q(~χ1) (2.15)

λ~τ(θ)∂κ
(
M

2π

)
= Q(~χ2). (2.16)

Now we can look at the order ε1. We first integrate equation (2.14) over (θ, κ), this
gives :

∂tn
ε +∇~x · Jε = 0, (2.17)

with :
Jε =

1
ε

∫

θ,κ
~τ (θ)f ε dθdκ.

The smaller λ the stiffer is the fiber.
Using the Hilbert expansion on f ε, we then have :

Jε = 0 +
∫

θ,κ
~τ(θ)f 1 dθdκ+O(ε)

=
∫

θ,κ
~τ(θ)


~χ1 · ∇~xn0 + b(r)n0 ~χ2 ·


 − sin φ

cosφ





 dθdκ

= −A1∇~xn0 − A2


 − sin φ

cosφ


 b(r)n0 + O(ε),

with :

A1 = −
∫

θ,κ
~τ(θ)⊗ ~χ1 dθdκ (2.18)

A2 = −
∫

θ,κ
~τ(θ)⊗ ~χ2 dθdκ. (2.19)

Finally, we replace Jε by this last expression in equation (2.17) :

∂tn
ε +∇~x ·


−A1∇~xn0 − A2


 − sin φ

cosφ


 b(r)n0


 = O(ε).
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At the limit ε goes to zero, we have :

∂tn
0 −∇~x ·


A2



− sin φ

cosφ


 b(r)n0


 = ∇~x ·

(
A1∇~xn0

)
. (2.20)

To end the proof, we have to calculate the two tensors A1, A2. We give the result as a
lemma :

Lemma 2.4 The two tensors A1 and A2 given by equation (2.18) and equation (2.19)
respectively are equal to :

A1 =
1

2λ
D(

µ2

2λ3
)Id2 , A2 =

λ2

µ2




0 −1

1 0


 ,

where : D(θ2) =
∫∞

0 exp (−θ2(−1 + s+ e−s)) ds and Id2 is the identity tensor in IR2.

Using this lemma, we have :

∂tn
0 − λ2

µ2
∇~x ·

(
~τ(φ)b(r)n0

)
=

1
2λ
D(

µ2

2λ3
)∆~xn0, (2.21)

which ends the proof.

Proof Lemma 2.4. To compute the tensor A1, we use the result established in [3]
which we summarize here : let χ̃ be the solution of

~τ (θ)
Mσ
2π

= κ∂θχ̃+ ∂κ(κχ̃) + σ2∂κ2χ̃, (2.22)

with Mσ the Gaussian with mean zero and variance σ2. Then we have :

−
∫

θ,κ
~τ(θ)⊗ χ̃ dθdκ =

D(σ2)
2

Id2, (2.23)

where D(σ2) =
∫∞

0 exp (−σ2(−1 + s+ e−s)) ds.
We want to express ~χ1 (solution of equation (2.15) ) with χ̃. In this aim, we make

the change of unknowns λκ′ = κ in (2.18). The Gaussian M is then transformed as

M(κ′) =
1√

2πµ2/2λ
e
− κ

2/λ2

2µ2/2λ =
1
λ
M ′(κ′),

where M ′ is a Gaussian with mean zero and variance µ2/2λ3. With the notation
~χ′1 = ~χ1(θ, λκ), the full equation (2.18) is written

~τ (θ)
1
λ

M ′

2π
= λκ′∂θ ~χ′1 + λ∂κ′(κ′ ~χ′1) +

µ2

2λ2
∂κ2

~χ′1

or again

~τ(θ)
1
λ2

M ′

2π
= κ′∂θ ~χ′1 + ∂κ′(κ′ ~χ′1) +

µ2

2λ3
∂κ2 ~χ′1.
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Therefore, we have ~χ′1 = 1
λ2 χ̃, with χ̃ the solution of (2.22) with σ2 = µ2

2λ3 . Now we
can compute the tensor A1 using the change of unknowns λκ′ = κ :

A1 = −
∫

θ,κ
~τ (θ)⊗ ~χ1 dθdκ = −

∫

θ,κ′
~τ (θ)⊗ ~χ′1 λ dθdκ

′

= −
∫

θ,κ′
~τ(θ)⊗ 1

λ2
χ̃ λ dθdκ′ =

1
λ

D( µ
2

2λ3 )
2

Id2,

using the result of equation (2.23).
The calculus of the tensor A2 is simpler since we can find explicitly a solution to

equation (2.16) :

~χ2 = −2λ2

µ2


 sin θ

− cos θ



M

2π

as we have :

Q(~χ2) = κ∂θ~χ2 + 0 = −2λ2

µ2
κ


 cos θ

sin θ



M

2π

= λ~τ(φ)∂κ
(
M

2π

)
.

Therefore the computation of A2 is straightforward :

A2 = −
∫

θ,κ
~τ (θ)⊗


−2λ2

µ2




sin θ

− cos θ



M

2π


 dθdκ.

=
2λ2

µ2

∫

θ,κ




cos θ sin θ − cos2 θ

sin2 θ − sin θ cos θ



M

2π
dθdκ

=
λ2

µ2




0 −1

1 0


 .

Remark 2.1 Obviously the limit equations obtained in Lemma 2.3 are not exactly
the reduced model (2.3) obtained in Section 2.1. However, also the scaling used in this
section is still not equivalent to the combination of the scalings used in Sections 2.1.
Compared to a combination of these scalings we have to rescale the coefficients λ and
µ in this section once more using

λ′ = ελ, µ′ = εµ

This leads to a constant value of λ
2

µ2 and a scaled value

ε

2λ
D(

µ2ε

2λ3
)
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for the diffusion coefficient. According to [3] we have the following asymptotic for D :

D(σ2) σ
2→0∼ 1

σ2
.

Therefore since µ
2ε

2λ3 goes to 0 as ε goes to 0, the diffusive coefficient behaves like :

ε

2λ
D(

µ2ε

2λ3
) ∼ 1

2λ
2λ3

µ2
=
λ2

µ2
,

which is exactly the diffusive coefficient we have obtained by making the big noise limit
in two steps from the smooth model to the original one and then from the original model
to the reduced model.

Remark 2.2 (Overview over models and scalings)
The three models discussed in this chapter are

Smooth Original Reduced

d~xt = ~τ(θt) dt d~xt = ~τ(θt) dt d~xt = −a1b(r)~τ (φ)dt+ a2dBt

dθt = κt dt dθt = κ0 dt+AdBt

dκt = λ(κ0−κ) dt+µdBt

where
κ0 = b(r) sin(π + φ − θt), ~x = r~τ(φ). (2.24)

The links between them are shown in Figure (4.2).

3 Numerical simulation of the model

3.1 The smooth model for different parameters

In this section we investigate the smooth model numerically. In particular, small and
large values of the two parameters, λ related to the inverse elasticity module and
turbulence amplitude A = µ

λ
are investigated.

We first have to developp a numerical scheme to approximate the solution of the
smooth model (eq. 2.4). All we have to to is to find an accurate scheme for the
evolution of the curvature κ. After that we simply have to integrate in order to have
the speed ~τ(θ) and the position ~x of the fiber.

A method to solve the equation on the curvature is simply to use an Euler scheme
(see [5]). But since this equation is an Ornstein–Uhlenbeck process, we can use a more
accurate method. Integrating the quantity d(eλtκt), we have the explicit expression:

κt = e−λtκ0 + λeλt
∫ t

0
κ0(s)eλs ds+ µe−λt

∫ t

0
eλs dBs
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-

?
?

-

Smooth
λ , µ A =

µ

λ

Original

Reduced Reduced

A′ =
√
εA

ε

0

ε

0
↓

ε→ 0

a2 = 1
2λ
D(µ2/2λ3)

a1 = λ2

µ2 a1 = 1/A2

a2 =
√

2/A

λ′ = ε2λ , µ′ = ε2µ , κ′ = εκ

λ′ = ελ , µ′ = εµ

κ′ = εκ

λ′ = ελ

t′ = εt t′ = εt

↓µ′ = ε3/2µ

Figure 4.2: Diagram of the different scaling limits

Denoting by ∆t the time step of our numerical scheme, this formulation lead at first
order to the algorithm:

κtn+1
= e−λ∆tκtn + (1− e−λ∆t)κ0(tn) +Gtn

where κtn is the curvature at time tn, κ0 is the effect of the external force (eq. 2.24),
Gn is a Gaussian random variable independant of κtn with mean 0 and variance µ

2

λ
(1−

e−2λ∆t).
After computing the new value of the curvature κtn , we simply integrate to update

the angle speed and the position using the trapezoidal rule:

θtn+1
= θtn + ∆t

κtn + κtn+1

2

~xtn+1
= ~xtn + ∆t

~τ(θtn) + ~τ(θtn+1
)

2

where ~τ(θ) = (cos θ, sin θ)T .
In a first series of figures (4.3) the paths of the fibers for small stiffness (λ = 100)

and different values of A are plotted. These plots are qualitatively the same as those
for the original model. In all simulations we have chosen b(r) = r.

In a second series of figures (4.4) the case of moderate values of λ (λ = 1) is
considered for different A. One clearly observes the smoother nature of the trajectories.

3.2 Comparison with numerical experiments

In this section the above results are qualitatively compared to the results of a numerical
simulation of the full physical process developed in the software package FIDYST, see,
for example [8, 9]. A more detailed quantitative comparison is planned for future work.
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Figure 4.3: The smooth model near to the original model (λ = 100) for different values
of A.
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Figure 4.4: The smooth model with λ = 1 and different value of A
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With FIDYST a single fiber in a spunbond process for nonwoven production is
simulated. The fluid dynamic computations required for FIDYST are performed using
the CFD tool FLUENT. For the simulation of the fiber dynamics the deterministic
aerodynamic forces due to the mean stream and the stochastic forces due to turbulence
are computed by means of the fluid dynamic results. The fiber is simulated for the full
physical process between the exit nozzle and the conveyor belt including the lay-down
process on the belt using a typical configuration of parameters. The fiber dynamics is
given by a Newtonian equation of motion

σ~̈x = ∂s(T (∂s~x)− EI∂ssss~x+ f grav + fair

‖∂s~x‖ = 1,

where the vector ~x(s, t) denotes the central line of the fibre.
Here, σ denotes the line density, T is a Lagrange parameter, I is the geometrical

moment of inertia and E is the elasticity module. f grav describes the influence of
gravity and fair = fairdet + Dfairstoch give the deterministic and stochastic aerodynamic
forces. In the present simulations the conveyor belt velocity is zero and a fixed distance
between the nozzle and the conveyor belt is assumed. The inlet velocity of the fiber at
the nozzle and the fiber length are also fixed. Only the fiber on the conveyor belt is
shown. In the follwoing simulations we change the paramter E abd D.

In Figure 4.5 (upper left) a reference simulation is shown using an elasticity module
E = Eref and a stochastic force with the parameter D = Dref .

In Figure 4.5 (upper right) the stochastic forces are reduced by the factor 0.6, i.e.
D = 0.6Dref , leading to a more compact fiber lay-down.

Figure 4.5 (lower left) shows simulations with the original stochastic force and an
increased elasticity module E = 100Eref . This modification leads to larger loops of
the fiber.

Figure 4.5 (lower right) finally shows results for reduced stochastic forces and in-
creased elasticity module.

The paths in the upper two figures in Figure 4.5 showing a physical situation with
moderate elasticity module E are qualitatively well approximated by simulations of
the above stochastic model with values of A of size 3 and 2 and values of λ of size 5.

The paths in the lower two figures in Figure 4.5 showing situations with large
elasticity module E. are qualitatively well approximated by simulations of the above
model with values of A as above and values of λ of size 1.

4 Summary and Conclusions

In the present chapter we did remove a drawback of the model developed in [2], i.e.
the non-differentiability of the paths of the process. A model with smoother trajec-
tories is developed by introducing a relaxation approximation. This is equivalent to
an approximation of the White-noise process involved in the original model by an
Ohrnstein-Uhlenbeck process. The relations of the different models are investigated
analytically looking at different scalings and using diffusion approximations. We also
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Figure 4.5: Experimental results with small stochastic force (upper right), large elas-
ticity module (lower left) and small stochastic force and large elasticity module (lower
right).
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Figure 4.6: The approximation of the experimental result using the smooth model.
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included a qualitative numerical comparison of the paths of the models for different
parameters. The results show the improvement of the approximation of the paths
compared to the original model.

Future work will be, in particular, devoted to the identification of the parameters
µ and λ in the smooth model using data generated by the simulation of the full fibre
spinning process.

Appendix

Proof of Proposition 2.2. Let’s take the Fokker-Planck equation associated with
the equation (2.1) using the rescaling given by (2.8) :

ε∂tf
ε + ~τ (θ) · ∇~xf ε + ∂θ (b(r) sin(θ − φ)f ε) =

A2

2ε
∂θ2f

ε. (4.25)

Using a Hilbert expansion for f ε (f ε = f 0 + εf 1 + . . . ), we find :

ε−1 : ∂θ2f
0 = 0,

that means f 0(t, ~x, θ) = n0(t, ~x) 1
2π

. For the term in ε0 we have:

ε0 : ~τ (θ) · ∇~xf 0 + ∂θ
(
b(r) sin(θ − φ)f 0

)
=
A2

2
∂θ2f

1.

This equation can be explicitly solved since f 0 doesn’t depend on θ. Integrating twice
in θ, we have :

f 1 =
2
A2

1
2π

[
−~τ (θ) · ∇~xn0 − b(r) cos(θ − φ)n0

]
.

Finally, integrating the original equation for f ε in θ, we have :

ε−1 : ε∂tn
ε +∇~x ·

(∫ 2π

0
~τ (θ) f ε dθ

)
= 0.

Replacing f ε by its Hilbert expansion, we have :

∂tn
0 +∇~x ·

(∫ 2π

0
~τ (θ) f 1 dθ

)
= O(ε). (4.26)

Then by some easy computations, we can evaluate the integral :
∫ 2π

0
~τ (θ) f 1 dθ =

1
2π

2
A2

∫ 2π

0

[
∇~xn0 ~τ (θ)⊗ ~τ (θ)− b(r) cos(θ − φ)~τ(θ)n0

]
dθ

= − 1
πA2

[∇~xn0 π − b(r)n0
∫ 2π

0
cos(θ − φ)~τ(θ) dθ].

Or we can develop the cosines of (θ − φ), this gives :
∫ 2π

0
cos(θ − φ)~τ(θ) dθ =

∫ 2π

0
(cos θ cosφ+ sin θ sin φ)~τ(θ) dθ

= π


 cos φ

sinφ


 .
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Therefore, we have :

∫ 2π

0
~τ (θ) f 1 dθ = − 1

A2
[∇~xn0 − b(r)n0~τ(φ)].

Now if we go back to equation (4.26), we have at the limit ε goes to zero :

∂tn
0 − 1

A2
∇~x ·

(
b(r)~τ (φ)n0

)
=

1
A2

∆~xn0.
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Chapter 5

The effect of group sizes on the
displacement of the Kuhlia mugil
fish

This chapter is a work in progress in collaboration with J. Gautrais, C. Jost and G.
Theraulaz.

Abstract. In the experiments realized on the Kuhlia mugil fish, we observe a loss
of cohesion of the group when the density of fish increases. In this work in progress,
we develop different tools to measure this effect.

The different characteristics obtained would be used in the future to compare the
experiments with an effective model for interacting fish.
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1 Introduction

The formation of fish school is a very impressive phenomenon which is hard to un-
derstand. The main question is to link the individual behavior of fish with the global
dynamic of the group. What is the key element of the fish to enable the group to
self-organized?
There is a lot of literature about individual based model where authors manage to
produce global alignment with simples between fish. Nevertheless, models do not give
answer about the mechanics underlying animal groups. Different models could give
the same pattern for the group. This is why it is necessary to measure how fish behave
in real experiments.

Here, we are interested in the density effect on the fish behavior at the individual
and global level. In the experiments realized on the Kuhlia mugil fish, we observe a
loss of cohesion when the density of fish increases. Simple model like the Vicsek model
[20] have a different behavior: when we increase the density of particles, the cohesion
of the group grows. How could we measure and explain this loss at cohesion at the
global and individual level in the experiments?

To answer this question, we group together experiments with the same number of
fish. To observe the difference and the common points of the fish dynamics depending
on the group size, we analyze the data collected at two different levels. First at the
group level, we observe the main phenomena. As the group size increases, the cohesion
of the group decreases. But other differences are also observed, the spatial distribution
of fish are different depending on the group size.

Then, we would like to understand how the global behavior of the group emerge
from the individual behavior. Therefore, we have to observe how the individual fish
behave. We first look at the individual behavior looking at fish separately. We do
observe common and different statistics. To connect the individual behavior with the
global dynamics, we finally look at an intermediate level, we measure the pair-wise
proximities/cohesion between fish. We observe similarities in the position of neighbors
for different group size. But as the group size increase, the pairwise cohesion decreases.

2 Data collection

The fish species studied is the Kuhlia mugil, a pelagic fish living in the Indian and
Pacific ocean. The size of this fish is around 22-25 centimeters. The experiments
realized consist in letting the fish swim in a circular tank and recording their position.
The diameter of the tank used is 4 meters and the depth of the water is 1.2 meter.
A camera is placed above the basin to record the planar coordinate of the fish. Once
we have the trajectories, a wavelet filtering is used to remove the beating mode of
swimming (see [11] for more details about the wavelet filtering and [18] for the device
used).

We finally have 2 minutes of recording for several experiments with 12 frames per
second. There are 9 experiments with isolated fish, 6 experiments with 2 and 5 fish
and 5 experiments with 10, 15, 30 fish.
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The experiments with isolated fish [11] led to a new model (the Persistent Turning
Walker model) where fish are supposed to move with a constant speed and their angular
speeds satisfy a stochastic differential equation. In the following, we focus our analysis
on the experiments with several fish.

3 Global behavior

One of the main characteristic of fish school is that the group is highly polarized, fish
tend to swim in the same direction. To analyze this collective behavior, a common
measure is the group polarization. This quantity denoted by ϕ is defined as the average
of all the (normalized) velocity of fish:

ϕ(t) =

∣∣∣∣∣
1
N

N∑

i=1

~v(t)
|~v(t)|

∣∣∣∣∣ , (3.1)

where N is the number of fish, ~vi the velocity of the ith fish. The group is highly
polarized when ϕ is around 1 and unpolarized when ϕ is around zero. To observe how
the group polarization depends on the number of fish, we group together experiments
with the same number of fish. Then we compute the distribution of the parameter ϕ
during these experiments (figure 5.3). As we can see, the group polarization decreases
as the number of fish increases. We can also observe this decreasing when we compute
the average value of the group polarization (table 5.1). We cannot deduce from this

2 fish 5 fish 10 fish 15 fish 30 fish

E[ϕ] 0.884 0.612 0.387 0.304 0.225

Table 5.1: The mean value of the parameter order ϕ (eq. 3.1) for different group sizes.

decrease of the group polarization that the group is more disorganized. Fish could
also be in “torus formation” which means they turn around a virtual center. In this
formation, the group polarization is very low. To infirm or confirm this hypothesis, we
compute the angular momentum of the group. If ~xc is the center of the group (~xc =
1
N

∑N
i=1 ~xi with N the number of fish and ~xi their position), the angular momentum is

defined as:.

Lc =
1
N

N∑

i=1

(~xi − ~xc) ∧
~vi
|~vi|

, (3.2)

where ∧ is the cross product. If fish are in a vortex formation, the absolute value of
the angular momentum |Lc| would have an higher value. But as we see in the figure 5.4
and table 5.2, the angular momentum decreases as the group size increases. Therefore,
there is no vortex formation in the experiments. According to the mean velocity ϕ and
the angular momentum, the fish are less coordinated when the density increases.

Remark 3.1 We have to take care that ϕ is not independent of the number of indi-
viduals N . If individuals are independent (~vi are independent), ϕ is zero when N is
large. But for small value of N , ϕ has an higher value (figure 5.5).
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2 fish 5 fish 10 fish 15 fish 30 fish

E[|Lc|] 0.141 0.0556 0.0239 0.0116 0.00568

Table 5.2: The mean value of absolute angular momentum |Lc| (eq. 3.2) for different
group sizes.

Group polarity and angular momentum are only two indications about the group
formation. The spatial distribution of fish and the flux give more precise information
about the dynamics of the group. More precisely, we introduce:

◦ ρ(t, ~x) the density distribution of finding fish at time t with position in a small
neighborhood of ~x,

◦ J(t, ~x) the flux of fish at time t with position in a small neighborhood of ~x.

In the experiments, since the number of fish is low, we have to take a mean in time
of the density distribution, otherwise, the granular effect on the distribution would be
too strong. For example, with the spatial distribution of fish, we introduce:

ρ̄(~x) =
1
T

∫ T

0
ρ(t, ~x) dt. (3.3)

Numerically, we use Particle-In-Cell method to estimate the distribution [10, 13]. In
figure 5.6, we plot the spatial distribution ρ̄ for different group sizes. All the distribu-
tions have a maximum value at the center of the domain (see figure 5.6) and decreases
near the boundary. This observation confirms the repulsive effect of the wall on fish
measured for isolated fish [11]. Ants and cockroaches have another behavior, they tend
to follow the wall (thigmotactism) [3, 15]. We also observe that the density is more
spread out for the experiments with 2 and 30 fish.

For the flux J , the average in time is more problematic. Usually, the mean value
obtained is around zero, since there is no reason for the fish to move at a certain point
in a certain direction. Nevertheless, for some experiments where the cohesion of the
group is important, we do observe a pattern for the flux 5.7. The persistence of this
pattern over time is due to the group dynamics. For isolated fish, we could not observe
this phenomenon.

4 Individual behavior

4.1 Individual characteristics

To quantify the individual behavior of fish, we analyze three different variables, the
position ~x of the fish, its velocity ~v and its acceleration ~a. In this part we introduce
different tools to analyze them. In order to detect the effect of the group size, in the
following we group together the experiments with the same number of fish.

In the experiments with isolated fish, the speed of each fish is approximately con-
stant [11]. But the speed differs between experiments. Therefore it is not surprising
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that in the experiments with several fish, the distribution of speed is not concentrated
around one single value (figure 5.8). Moreover, we can observe that each speed distri-
bution has two main values. These two peaks coincide with two different behaviors for
fish, they can be at rest or “active”. Another information contained in the distribution
is that fish in the experiments with 2 and 30 fish are faster, the proportion of active
fish is higher.

The distributions of angular speed are much more homogeneous (figure 5.9). All
the distributions have a Gaussian shape with zero mean and a variance around 0.8 s−2.
This characteristic is important since it does not depend on the group size.

The distributions of speed and angular speed give information about the average
behavior of the fish. To observe the evolution in time of velocity and angular speed,
we compute the autocorrelation function. The autocorrelation is defined as

R(t) = Cor[X(.+ t) , X(.)] (4.4)

where X is a random variable and Cor(X, Y ) is the correlation coefficient between
two random variables. The autocorrelation gives information on how long a variable
is correlated in time. The faster R decreases, the faster the variable decorrelates. In
figure 5.10, we compute the autocorrelation of θ (the angle of the velocity vector ~v) and
the autocorrelation of W the angular speed. We first observe that the decorrelation of
θ and W is faster in the experiments with 2 and 30 fish. Since fish are faster in these
experiments, we deduce from these graphics that the speed increases the variation in
the fish behavior. But the autocorrelation of W is very noisy because we have to
compute the second derivative of the position ~x to have W . Nevertheless, we can see
that RW has a strong decrease during 1 second and a slower decrease after that.

A common measure to analyze the vector position ~x is the Mean Square Displace-
ment (MSD). This measure expresses how far a fish is from its original position at a
certain time t. The MSD is defined by the following formula:

MSD(t) = E[|~x(. + t)− ~x(.)|2] =< |~x(. + t)− ~x(.)|2 > . (4.5)

where |.| is the Euclidean norm. The MSD has been used in [11] for isolated fish to
compare the PTW model with experiments. Typically, the MSD has an asymptotically
linear growth when individuals are isolated:

MSD(t) t→∞−→ Dt (4.6)

where D is the so-called diffusion coefficient. When fish are interacting, the asymptotic
behavior of the MSD could be different, we could have a power law growth different from
1/2 (see for example [12], where authors obtained different power law growth for the
mean square displacement with models of self-propelled particles). In the experiments
with the Kuhlia mugil fish, the domain is bounded, the fish could cover the basin in less
than 8 seconds. Therefore, it is hard to detect the asymptotic behavior of the MSD.
Nevertheless, as we can see in figure 5.11, we have a linear growth at the beginning
of the MSD. The slope has a higher value within the experiments with 2 and 30 fish.
This could be explained by the difference of speed between groups (figure 5.8).
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2 fish 5 fish 10 fish 15 fish 30 fish

Diffusion coefficient 0.374 0.153 0.143 0.201 0.405

Table 5.3: Diffusion coefficient (m2/s) estimated for different group sizes.

For a large period of time, the MSD oscillates with a certain frequency. This
behavior can be explained in this way: fish have a tendency to turn inside the basin
(figure 5.7), therefore after a certain period of time τ , it is more likely that fish get
back to their original position. During the period of time τ , the MSD would have a
large value at time τ/2 and a smaller one at time τ .

The long time behavior of the MSD gives another information. The maximum value
of the MSD is higher in the experiments with 2 and 30 fish. But we have already seen
that the spatial distribution of fish is more spread out in these experiments (figure 5.6).
Therefore, it is not surprising that the MSD reaches higher values with 2 and 30 fish.
In the experiments with 5, 10 and 15 fish since fish stay in the middle of the domain,
the distance between two different positions |~x(.+ t)− ~x(.)| can not be large.

4.2 Individual and its neighbors

To connect the individual and collective behaviors of fish, we need to understand how
fish interact with its neighbors. Usually, fish models assert three different behaviors
for fish (repulsion-alignment-attraction) depending on the relative position of theirs
neighbors. In this part, we would like to measure in the experiments how fish are
influence by theirs congeners depending on their relative position.

As a first step, we first measure how the inter-individual distance is distributed,
then we observe how this distance influenced the coherence between fish.

4.2.1 Distribution of inter-individual distance

The distance is an important characteristic of the group. The distribution of inter-
individual distance, also called Radial Distribution Function (RDF), can measure what
is the comfort distance between fish.

Mathematically, the RDF is the probability to find two fish at a certain distance
r. In figure 5.12, we estimate the RDF for the different group sizes. We observe that
the maximum value of all the distribution is at a distance around 0.3 meter which
corresponds to approximately with one body length. This information is interesting
because it does not depend on the group size. This measure could be used to determine
zone of interaction, in particular the zone where fish reach their comfort position.

When we estimate the RDF, we compute the distance between fish (i.e. |~xj − ~xi|).
Therefore, we loose information on the relative position of fish. For example, we do not
take into account if the fish Pj is at the left side or the right side of Pi. To incorporate
this information, we compute the relative position of Pj in the frame of reference of
Pi. This means that we calculate the position of Pj from the point of view of the fish
Pi (figure 5.1).
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~x2 − ~x1

~x2

~x1

~v1

θ

Figure 5.1: The relative position of a neighbor Pj in the frame of reference of Pi.

Mathematically, this vector is defined as :

R−θi(~xj − ~xi) (4.7)

where θi is the direction of the velocity of the fish Pi. In figure 5.13, we estimate the
probability to find a neighbor at different position around a fish. In the experiments
with two fish, we observe that fish have a tendency to be in front of the other one. For
the other experiments, the distributions become isotropic as the group size increases.
Nevertheless, we observe a small region around the fish where the density is low. The
maximum value of the distribution is obtained at a distance around 0.3 meter as the
radial distribution function suggests (figure 5.12).

4.2.2 Distance and alignment

In a shoal of fish, individual are aligned with their closed neighbors. The question
is how far fish remain aligned. In this part, we want to measure how the alignment
between fish depends on their relative distance.

To measure alignment between two fish, we take the scalar product of their normal-
ized vector velocity (figure 5.2). Fish are polarized when the scalar product is around 1
and unpolarized when the scalar product is around 0. After that, we take all the pairs
of fish that have a relative distance r (i.e. |~xj − ~xi| = r) and we estimate the mean
value of the scalar product of their velocity. We call the quantity obtained the velocity
correlation function (VCF). As expected, the VCF has higher value for small distance
r (fish are aligned) and decrease to zero for long distance (figure 5.14). Moreover the
VCF is not simply a decreasing function: for short distance, the function increases.
This means that fish need a certain distance to be aligned. But the main information
contains in the figure 5.14 is that the VCF decreases drastically as the number of fish
increases. This means that single fish becomes less coordinate with its neighbors. We
already have seen that the group is less coordinated as the number of fish increases,
the new information is that there is also a loss of coordination between fish locally.
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Pj

Pi

~vj

~vi
~vj

Figure 5.2: To measure the alignment between two fish, we compute the scalar product
of their normalized velocity.

When we take the distance between fish, we loose information on the relative po-
sition of the neighbors. To include this element, we use as in figure .. the relative
position of neighbors in the frame of reference of a fish. In more details, for a given
pair of fish P1 and P2, we compute the mean velocity of P2 in the frame of reference
of P1. In figure 5.15, we plot the vector field obtained for the experiments with 2, 5,
15 and 30 fish. We observe a region around the fish where the vectors are aligned.

4.2.3 Distance and acceleration

In the basin, fish have a tendency to turn around in the same direction. As the conse-
quence, the angular speed of fish are correlated. We can measure this tendency as we
have done for the alignment. We simply take the scalar product of the accelerations for
each pair fish and we express the mean value of this quantity depending on the distance
between fish. The distribution obtained is called acceleration correlation function.

But the estimation of the acceleration is very noisy as we have already seen for the
angular speed (figure 5.9). Therefore, the acceleration correlation function will fluctu-
ate a lot. To reduce this effect, we use a large step size to estimate it (∆r = 20 cm).
In figure 5.16, we plot the angular speed correlation for different group size. For short
distance, we observe a positive correlation for the angular speed in the experiments
with 2 and 5 fish.

For example, in the experiments with 2 fish, we plot the acceleration of one fish,
noted P2, in the frame of reference of its neighbor, noted P1. At short distance, we do
not detect any clear correlation between the relative position of P2 around P1 and the
acceleration of P2 (figure 5.17). Then we distinguish between two situations whether
P1 turns to the left or to the right. We clearly see that the acceleration of P2 is mainly
determine by the acceleration of P1 at short distance (figure 5.18). These graphics
confirm that the acceleration of fish are correlated when the fish are closed (figure
5.16).
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4.2.4 Nearest neighbors

As we have seen in the previous part, the distance has a strong influence on the
alignment between fish. But it has been observed for flocks of birds [2] that the
influence of a congener does not depend only on the distance, it also depends if a
congener is the nearest neighbors or the second nearest neighbors and so on. In this
part, we compute once again the previous index (distance, alignment, angular speed
correlation) but this time with respect to nearest neighbors. In term of probability, we
would say that we conditionate by the position order (nearest neighbor, second nearest
neighbor,...) instead of conditioning by the distance r.

We first measure the mean distance of the nearest neighbor. To do so, we proceed
as follows: for each fish, we compute the distance of every neighbors and we order the
distance obtained. Then, we take the mean of the distance for the nearest one, the
second nearest one, etc. As we observe in figure 5.19, the mean distances decrease as
the number of fish increases. But there is no clear relationship between the density
of fish in the basin and the mean distance of nearest neighbors. For example, it is
surprising that the mean distance for the four nearest neighbors are the same within
experiments with 15 and 30 fish. One explanation could be that fish in the experiments
with 30 fish are more spread out in the domain which increase the distance between
fish. This could compensate the increase of the density which has the opposite effect
to reduce the distance between fish.

Concerning the relative position of the nearest neighbors, we have to compute the
angle direction of the neighbors, denoted by α (see figure 5.1). Then, we can take the
density distribution of the angle α. As it could be expect, in the experiments with two
fish, the density distribution of α has a strong anisotropy (see figure 5.20). There is
an higher probability to have a fish in front or behind the other one. The anisotropy
on the distribution of α completely disappears for the other group sizes (figure 5.20).
The distribution of α is uniform for every group size whatever the nearest neighbors
we take. To be exact, there is anisotropy for the distribution of the farthest neighbors
within experiments with 30 fish (figure 5.21). This is due to the shape of the basin.
When fish are near the boundary, they are usually aligned with the wall, therefore it
is more likely that the farthest neighbors would be sidelong (figure 5.21).

The computation of the density distribution of α (the angle direction of the nearest
neighbors) is motivated by the work [2] on birds where they observe a strong anisotropy
of the 6th or 7th nearest neighbors. We do not have this phenomenon in our experi-
ments with fish, except in the experiments with 2 fish.

To measure the alignment between a fish and its nearest neighbor, we take once
again the scalar product of their normalized velocity vector. We plot the mean value
of this scalar product in figure 5.22. As we could expect, the alignment decreases as we
take into account farther neighbors. We also observe that the alignment with the first
and second nearest neighbors decreases as the group size increases. The experiments
with 10 and 15 unable to go further the second nearest neighbors. As we have seen in
figure 5.19, the mean distance with the 4 nearest neighbors are similar, therefore it is
surprising that the alignment is different (alignment is weaker in the experiments with
30 fish). Two characteristics could explain this phenomena. In the experiments with
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30 fish, the fish are more likely near the boundary of the domain, therefore they are
more influenced by the boundary. But we also have seen that fish are also faster at
thirty. If fish anticipate their future positions, the avoidance effect should be stronger.

Our last graphic (figure 5.23) represents the product of the angular speed between
a fish and its nearest neighbors (WiWj). For the experiments with 2 and 5 fish, we
have positive values and the curves decrease as we look at farther neighbors. But the
interpretation of the curves is difficult for the others experiments.
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Figure 5.4: The distribution of the absolute value of the angular momentum |Lc| for
different group sizes. As the group size increases, the angular momentum decreases.
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random distribution of velocity. The group polarity depends on the group size, the
mean value decreases as the group size increases. We estimate the mean value of the
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Figure 5.10: The autocorrelation of the direction θ (up) and angular speed W (down)
in normal and semi-log plot. As for the mean square displacement, we can observe
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Figure 5.11: The mean square displacement (eq. 4.5) from 0 to 20 seconds (upper
figure) and from 0 to 120 seconds (lower figure). We observe a linear growth of the
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Figure 5.13: The relative position of neighbors in the frame of reference of a fish.
There is a preferred position in the front and at the back for the experiments with 2
fish whereas the distribution becomes isotropic with higher density of fish.
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Figure 5.15: The mean velocity of the neighbors in the frame of reference of a fish.
Vectors are normalized.
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Figure 5.16: The angular speed correlation for different group sizes. We observe a
positive correlation at short distance within the experiments with 2 fish.
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Figure 5.18: The (normalized) acceleration vector of one fish (P2) in the frame of
reference of the other one (P1). Figure on top: acceleration of P2 when P1 turns to
the left. Figure above: acceleration of P2 when P1 turns to the right. These graphics
confirm that the accelerations of fish are correlated at short distance (figure 5.16).
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Figure 5.19: The mean distance of the nearest neighbors for different group sizes.
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Figure 5.20: Angular density of nearest neighbors for different group sizes. Except in
the experiments with 2 fish, the distributions are isotropic (uniformly distributed on
the circle)
.
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Figure 5.21: Angular density of the last nearest neighbors in the experiments with 30
fish. There is a higher probability to find the farthest neighbors laterally.
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Figure 5.22: The alignment between a fish and its nearest neighbors for different group
sizes. We compute the mean of the scalar product between normalized vector speed.
The alignment decreases as we take into account farther neighbors.
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Part II

Derivation of a macroscopic equation

for the Vicsek model





Chapter 6

Continuum limit of self-driven
particles with orientation
interaction

This chapter has given an article written in collaboration with P. Degond and published
in the journal Mathematical Models and Methods in Applied Sciences: Continuum
limit of self-driven particles with orientation interaction, M3AS, 18 (2008), no. 1,
1193–1215, and a note written in collaboration with P. Degond and published in the
Comptes Rendus de l’Académie des Sciences: Macroscopic limit of self-driven particles
with orientation interaction, C. R. Math. Acad. Sci. Paris 345 (2007), no. 10,
555–560.

Abstract. We consider the discrete Couzin-Vicsek algorithm (CVA) [1, 9, 19, 36],
which describes the interactions of individuals among animal societies such as fish
schools. In this article, we propose a kinetic (mean-field) version of the CVA model
and provide its formal macroscopic limit. The final macroscopic model involves a
conservation equation for the density of the individuals and a non conservative equation
for the director of the mean velocity and is proved to be hyperbolic. The derivation is
based on the introduction of a non-conventional concept of a collisional invariant of a
collision operator.

Keywords. Individual based model, Fish behavior, Couzin-Vicsek algorithm,
Asymptotic analysis, Orientation interaction, Hydrodynamic limit, Collision invari-
ants.
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1 Introduction

The discrete Couzin-Vicsek algorithm (CVA) [1, 9, 19, 36] has been proposed as a
model for the interactions of individuals among animal societies such as fish schools.
The individuals move with a velocity of constant magnitude. The CVA model describes
in a discrete way the time evolution of the positions of the individuals and of their
velocity angles measured from a reference direction. At each time step, the angle is
updated to a new value given by the director of the average velocity of the neighbouring
particles, with addition of noise. The positions are updated by adding the distance
travelled during the time step by the fish in the direction specified by its velocity angle.

For the modeling of large fish schools which can reach up to several million indi-
viduals, it may be more efficient to look for continuum like models, which describe the
fish society by macroscopic variables (e.g. mean density, mean velocity and so on).
Several such phenomenological models exist (see e.g. [25, 34, 35]). Several attempts
to derive continuum models from the CVA model are also reported in the literature
[23, 29, 30], but the derivation and the mathematical ’qualities’ of the resulting models
have not been fully analyzed yet. One can also refer to [16, 26] for related models.
An alternate model, the Persistent Turning Walker model, has been proposed in [18]
on the basis of experimental measurements. Its large-scale dynamics is studied in [12].
Additional references on swarm aggregation and fish schooling can be found in [7].
Among other types of animal societies, ants have been the subject of numerous studies
and the reader can refer (among other references) to [21, 33], and references therein.

In this work, we propose a derivation of a continuum model from a kinetic version
of the CVA algorithm. For that purpose, we first rephrase the CVA model as a time
continuous dynamical system (see section 2). Then, we pass to a mean-field version of
this dynamical system (section 3). This mean field model consists of a kinetic equation
of Fokker-Planck type with a force term resulting from the alignment interactions
between the particles. More precisely, the mean-field model is written:

ε(∂tf ε + ω · ∇xf ε) = −∇ω · (F ε0 f ε) + d∆ωf ε +O(ε2), (1.1)

F ε0 (x, ω, t) = ν (Id− ω ⊗ ω)Ωε(x, t), (1.2)

Ωε(x, t) =
jε(x, t)
|jε(x, t)| , and jε(x, t) =

∫

υ∈S2

υ f ε(x, υ, t) dυ . (1.3)

Here f ε(x, ω, t) is the particle distribution function depending on the space variable
x ∈ R3, the velocity direction ω ∈ S2 and the time t. d is a scaled diffusion constant and
F ε0 (x, ω, t) is the mean-field interaction force between the particles which depends on an
interaction frequency ν. This force tends to align the particles to the direction Ωε which
is the director of the particle flux jε. the operators ∇ω· and ∆ω are respectively the
gradient and the Laplace-Beltrami operators on the sphere. The matrix (Id− ω ⊗ ω)
is the projection matrix onto the normal plane to ω. ε ≪ 1 is a small parameter
measuring the ratio of the microscopic length scale (the distance travelled between
two interactions) to the size of the observation domain. Here, the relevant scaling is
a hydrodynamic scaling, which means that ε also equals the ratio of the microscopic
time scale (the mean time between interactions) to the macroscopic observation time.
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The ’hydrodynamic limit’ ε → 0 provides the large-scale dynamics of the CVA
model (in its mean-field version (1.1)-(1.3)). The goal of this chapter is to (formally)
investigate this limit. More precisely, the main result of this paper is the following
theorem, which is proved in section 4:

Theorem 1.1 (formal) The limit ε → 0 of f ε is given by f 0 = ρMΩ where ρ =
ρ(x, t) ≥ 0 is the total mass of f 0 and Ω = Ω(x, t) ∈ S2 is the director of its flux:

ρ(x, t) =
∫

ω∈S2

f 0(x, ω, t) dω, (1.4)

Ω =
j

|j| , j(x, t) =
∫

ω∈S2

f 0(x, ω, t)ω dω, (1.5)

and MΩ is a given function of ω · Ω only depending on ν and d which will be specified
later on (see (4.16)). Furthermore, ρ(x, t) and Ω(x, t) satisfy the following system of
first order partial differential equations:

∂tρ+∇x · (c1ρΩ) = 0, (1.6)

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id− Ω⊗ Ω)∇xρ = 0, (1.7)

where the convection speeds c1, c2 and the interaction constant λ will be specified in the
course of the chapter (see (4.41) and (4.63)).

Hydrodynamic limits have first been developed in the framework of the Boltzmann
theory of rarefied gases. The reader can refer to [8, 11, 31] for recent viewpoints as well
as to [6, 15, 37] for major landmarks in its mathematical theory. Hydrodynamic limits
have been recently investigated in traffic flow modeling [4, 20] as well as in supply chain
research [3, 14].

From the viewpoint of hydrodynamic limits, the originality of theorem 1.1 lies in
the fact that the collision operator (i.e. the right-hand side of (1.1)) has a three dimen-
sional manifold of equilibria (parametrized by the density ρ and the velocity director
Ω) but has only a one-dimensional set of collisional invariants (corresponding to mass
conservation). Indeed, the interaction does not conserve momentum and one should
not expect any collisional invariant related to that conservation. The problem is solved
by introducing a broader class of collisional invariants, such that their integral (with
respect to ω) against the collision operator cancels only when the collision operator
is applied to a subclass of functions. Here, a generalized class of collision invariants
is associated with each direction Ω on the sphere and the corresponding subclass of
functions have their flux in the direction of Ω. We show that such generalized collision
invariants exist and that they lead to (1.7). In section 4.4, we show that this system
is hyperbolic. The detailed qualitative study of the system as well as numerical sim-
ulations will be the subject of future work. A summary of this work can be found in
[13].

An important consequence of this result is that the large-scale dynamics of the
CVA model does not present any phase transition, in contrast with the observations
of [36]. Indeed, the equilibrium is unique (for given density and velocity director).
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Therefore, the model cannot exhibit any bi-stable behavior where shifts between two
competing equilibria would trigger abrupt phase transitions, like in rod-like polymers
(see e.g. [24] and references therein). Instead, the equilibrium gradually shifts from a
collective one where all particles point in the same direction to an isotropic one as the
diffusion constant d increases from 0 to infinity. Additionally, the hyperbolicity of the
model does not allow lines of faults across unstable elliptic regions, like in the case of
multi-phase mixtures or phase transitions in fluids or solids (see e.g. the review in [22]
and references therein).

With these considerations in mind, a phenomenon qualitatively resembling a phase
transition could occur if the coefficients c1, c2 and λ have sharp variations in some small
range of values of the diffusion coefficient d. In this case, the model could undergo a
rapid change of its qualitative features which would be reminiscent of a phase transition.
One of our future goals is to verify or discard this possibility by numerically computing
these constants.

There are many questions which are left open. For instance, one question is about
the possible influence of a limited range of vision in the backwards direction. In this
case, the asymmetry of the observation will bring more terms in the limit model.
Similarly, one could argue that the angular diffusion should produce some spatial dis-
sipation. Indeed, such dissipation phenomena are likely to occur if we retain the first
order correction in the series expansion in terms of the small parameter ε (the so-called
Hilbert or Chapman-Enskog expansions, see e.g. [11]). A deeper analysis is needed in
order to determine the precise form of these diffusion terms. Another question concerns
the possibility of retaining some of the non-local effects in the macroscopic model. It
is likely that the absence of phase transition in the present model is related to the
fact that the large-scale limit cancels most of the non-local effects (at least at leading
order). The question whether retaining some non-locality effects in the macroscopic
limit would allow the appearance of phase transitions at large scales would indeed rec-
oncile the analytical result with the numerical observations. A result in this direction
obtained with methods from matrix recursions can be found in [10]. Finally, the align-
ment interaction is only one of the aspects of the Couzin model, which also involves
repulsion at short scales and attraction at large scales. The incorporation of these
effects would allow to build a complete continuum model which would account for all
the important features of this kind of social interaction.

2 A time continuous version of the discrete Couzin-
Vicsek algorithm

The Couzin-Vicsek algorithm considers N point particles in R3 labeled by k ∈ {1, . . .N}
with positions Xnk at the discrete times tn = n∆t. The magnitude of the velocity is the
same for all particles and is constant in time denoted by c > 0. The velocity vector is
written c ωnk where ωnk belongs to the unit sphere S2 = {ω s.t. |ω|2 = 1} of R3.

The Couzin-Vicsek algorithm is a time-discrete algorithm that updates the veloc-
ities and positions of the particles at every time step ∆t according to the following
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rules.

(i) The particle position of the k-th particle at time n is evolved according to:

Xn+1
k = Xnk + c ωnk∆t. (2.1)

(ii) The velocity director of the k-th particle, ωnk , is changed to the director ω̄nk of the
average velocity of the neighboring particles with addition of noise. This algorithm
tries to mimic the behaviour of some animal species like fish, which tend to align
with their neighbors. Noise accounts for the inaccuracies of the animal perception and
cognitive systems. The neighborhood of the k-th particle is the ball centered at Xnk
with radius R > 0 and ω̄nk is given by:

ω̄nk =
Jnk
|Jnk |

, Jnk =
∑

j, |Xnj −Xnk |≤R
ωnj . (2.2)

In the Couzin-Vicsek algorithm, the space is 2-dimensional and the orientations are
vectors belonging to the unit sphere S1 in R2. One can write ωnk = eiθ

n
k with θnk defined

modulo 2π, and similarly ω̄nk = eiθ̄
n
k . In the original version of the algorithm, a uniform

noise in a small interval of angles [−α, α] is added, where α is a measure of the intensity
of the noise. This leads to the following update for the phases:

θn+1
k = θ̄nk + θ̂nk , (2.3)

where θ̂nk are independent identically distributed random variables with uniform distri-
bution in [−α, α]. Then, ωn+1

k = eiθ
n+1

k . In [36], Vicsek et al analyze the dynamics of
this algorithm and experimentally demonstrate the existence of a threshold value α∗.
For α < α∗, a coherent dynamics appears after some time where all the particles are
nearly aligned. On the other hand, if α > α∗, disorder prevails at all times.

Here, we consider a three dimensional version of the Couzin-Vicsek algorithm, of
which the two-dimensional original version is a particular case. Of course, formula (2.2)
for the average remains the same in any dimension. For simplicity, we also consider a
Gaussian noise rather than a uniformly distributed noise as in the original version of
the algorithm. Therefore, our algorithm updates the velocity directors according to:

ωn+1
k = ω̂nk , (2.4)

where ω̂nk are random variables on the sphere centered at ω̄nk with Gaussian distributions
of variance

√
2D∆t where D is a supposed given coefficient. If the Gaussian noise is

discarded, the evolution of the orientations is given by

ωn+1
k = ω̄nk , (2.5)

where ω̄nk is the average defined at (2.2).
Now, we would like to take the limit ∆t → 0 and find a time-continuous dy-

namics. To do so, we first consider the deterministic algorithm (2.1), (2.5) and fol-
lowing [29], make some elementary remarks. First, because |ωnk | = |ωn+1

k |, we have
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(ωn+1
k − ωnk )(ωn+1

k + ωnk ) = 0. Therefore, defining ω
n+1/2
k = (ωn+1

k + ωnk )/2 and using
(2.5), we have the obvious relation:

ωn+1
k − ωnk

∆t
=

1
∆t

(Id− ωn+1/2
k ⊗ ωn+1/2

k )(ω̄nk − ωnk ), (2.6)

where Id denotes the Identity matrix and the symbol ⊗ denotes the tensor product
of vectors. The matrix Id − ωn+1/2

k ⊗ ωn+1/2
k is the orthogonal projector onto the

plane orthogonal to ωn+1/2
k . Relation (2.6) simply expresses that the vector ωn+1

k − ωnk
belongs to that plane.

Now, we let ∆t→ 0. Then, the positions Xk(t) and the orientations ωk(t) become
continuous functions of time. If we let ∆t → 0 in (2.6), the left-hand side obviously
tends to ∂ωk/∂t. The right hand side, however, does not seem to have an obvious limit.
This is due to an improper choice of time scale. Indeed, if we run the clock twice as
fast, the particles will interact twice as frequently. In the limit ∆t → 0, the number
of interactions per unit of time is infinite and we should not expect to find anything
interesting if we do not rescale the time. In order to have the proper time-scale for the
model, we need to replace the tick of the clock ∆t by a typical interaction frequency ν
of the particles under consideration. For instance, in the case of fish, ν−1 is the typical
time-interval between two successive changes in the fish trajectory to accommodate
the presence of other fish in the neighbourhood. Therefore, we start from a discrete
algorithm defined by

ωn+1
k − ωnk

∆t
= ν (Id− ωn+1/2

k ⊗ ωn+1/2
k )(ω̄nk − ωnk ), (2.7)

together with (2.1) and in the limit ∆t→ 0, we find the following continuous dynamical
system:

dXk
dt

= c ωk, (2.8)

dωk
dt

= ν (Id− ωk ⊗ ωk)ω̄k, (2.9)

where we have used that (Id − ωk ⊗ ωk)ωk = 0. If the Gaussian noise is retained,
then, the limit ∆t→ 0 of the discrete algorithm is the following Stochastic Differential
Equation:

dXk
dt

= c ωk, (2.10)

dωk = (Id− ωk ⊗ ωk)(ν ω̄k dt+
√

2DdBt), (2.11)

where dBt is a Brownian motion with intensity
√

2D. Of course, this ∆t→ 0 limit is
formal but the convergence proof is outside the scope of the present chapter.

We slightly generalize this model by assuming that ν may depend on the angle
between ωk and ω̄k, namely ν = ν(cos θk), with cos θk = ωk · ω̄k. Indeed, it is legiti-
mate to think that the ability to turn is dependent on the target direction. If we are
considering fish, the ability to turn a large angle is likely to be reduced compared to
small angles. We will assume that ν(cos θ) is a smooth and bounded function of cos θ.
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3 Mean-field model of the discrete Couzin-Vicsek
algorithm

We now consider the limit of a large number of particles N → ∞. We first consider
the case without Gaussian noise. For this derivation, we proceed e.g. like in [32]. We
introduce the so-called empirical distribution fN(x, ω, t) defined by:

fN(x, ω, t) =
1
N

N∑

k=1

δ(x−Xk(t)) δ(ω, ωk(t)). (3.1)

Here, the distribution ω ∈ S2 → δ(ω, ω′) is defined by duality against a smooth function
ϕ by the relation:

〈δ(ω, ω′), ϕ(ω)〉 = ϕ(ω′).

We note that δ(ω, ω′) 6= δ(ω − ω′) because the sphere S2 is not left invariant by the
subtraction operation. However, we have similar properties of δ such as δ(ω, ω′) =
δ(ω′, ω) where this relation is interpreted as concerning a distribution on the product
S2 × S2.

Then, it is an easy matter to see that fN satisfies the following kinetic equation

∂tf
N + cω · ∇xfN +∇ω · (FNfN) = 0, (3.2)

where FN(x, ω, t) is an interaction force defined by:

FN(x, ω, t) = ν(cos θN) (Id− ω ⊗ ω)ω̄N , (3.3)

with cos θN = ω · ω̄N and ω̄N(x, ω, t) is the average orientation around x, given by:

ω̄N(x, ω, t) =
JN(x, t)
|JN(x, t)| , JN (x, t) =

∑

j, |Xnj −x|≤R
ωnj . (3.4)

If, by any chance, JN is equal to zero, we decide to assign to ω̄N(x, ω, t) the value
ω (which is the only way by which ω̄N(x, ω, t) can depend on ω). In the sequel, this
convention will not be recalled but will be marked by showing the dependence of ω̄
upon ω.

We recall the expressions of the gradient and divergence operator on the sphere.
Let x = (x1, x2, x3) be a Cartesian coordinate system associated with an orthonormal
basis (e1, e2, e3) and let (θ, φ) be a spherical coordinate system associated with this
basis, i.e. x1 = sin θ cosφ, x2 = sin θ sin φ, x3 = cos θ. Let also (eθ, eφ) be the local
basis associated with the spherical coordinate system ; the vectors eθ and eφ have
the following coordinates in the Cartesian basis: eθ = (cos θ cosφ, cos θ sin φ,− sin θ),
eφ = (− sin φ, cosφ, 0). Let f(ω) be a scalar function and A = Aθeθ+Aφeφ be a tangent
vector field. Then:

∇ωf = ∂θf eθ +
1

sin θ
∂φf eφ, ∇ω · A =

1
sin θ

∂θ(Aθ sin θ) +
1

sin θ
∂φAφ.
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If the Cartesian coordinate system is such that e3 = ω̄N , then

FN = −ν(cos θ) sin θ eθ. (3.5)

Back to system (3.2)-(3.4), we note that relation (3.4) can be written

ω̄N(x, ω, t) =
JN (x, t)
|JN(x, t)| , JN(x, t) =

∫

|y−x|≤R, υ∈S2

υfN(y, υ, t) dy dυ . (3.6)

We will slightly generalize this formula and consider ω̄N(x, ω, t) defined by the following
relation:

ω̄N(x, ω, t) =
JN (x, t)
|JN (x, t)| , JN(x, t) =

∫

y∈R3, υ∈S2

K(|x− y|) υ fN(y, υ, t) dy dυ , (3.7)

where K(|x|) is the ’observation kernel’ around each particle. Typically, in formula
(3.6), K(|x|) is the indicator function of the ball centered at the origin and of radius
R but we can imagine more general kernels modeling the fact that the influence of
the particles fades away with distance. We will assume that this function is smooth,
bounded and tends to zero at infinity.

Clearly, the formal mean-field limit of the particle system modeled by the kinetic
system (3.2), (3.3), (3.7) is given by the following system:

∂tf + cω · ∇xf +∇ω · (Ff) = 0, (3.8)

F (x, ω, t) = ν(cos θ̄) (Id− ω ⊗ ω)ω̄(x, ω, t), (3.9)

ω̄(x, ω, t) =
J(x, t)
|J(x, t)| , J(x, t) =

∫

y∈R3, υ∈S2

K(|x− y|) υ f(y, υ, t) dy dυ , (3.10)

with cos θ̄ = ω · ω̄. It is an open problem to rigorously show that this convergence
holds. For interacting particle system, a typical result is as follows (see e.g. [32]).
Suppose that the empirical measure at time t = 0 converges in the weak star topology
of bounded measures towards a smooth function fI(x, ω). Then, fN(x, ω, t) converges
to the solution f of (3.8)-(3.10) with initial datum fI , in the topology of continuous
functions of time on [0, T ] (for arbitrary T > 0) with values in the space of bounded
measures endowed with the weak star topology. We will admit that such a result is
true (may be with some modified functional setting) and leave a rigorous convergence
proof to future work.

We will also admit that the mean-field limit of the stochastic particle system (2.10),
(2.11) consists of the following Kolmogorov-Fokker-Planck equation

∂tf + cω · ∇xf +∇ω · (Ff) = D∆ωf, (3.11)

again coupled with (3.9), (3.10) for the definition of F and ω̄, and where ∆ω denotes
the Laplace-Belltrami operator on the sphere:

∆ωf = ∇ω · ∇ωf =
1

sin θ
∂θ(sin θ∂θf) +

1
sin2 θ

∂φφf.
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4 Hydrodynamic limit of the Mean-field Couzin-
Vicsek model

4.1 Scaling

We are interested in the large time and space dynamics of the mean-field Fokker-Planck
equation (3.11), coupled with (3.9), (3.10).

So far, the various quantities appearing in the system have physical dimensions. We
first introduce the characteristic physical units associated with the problem and scale
the system to dimensionless variables. Let ν0 the typical interaction frequency scale.
This means that ν(cos θ) = ν0ν

′(cos θ) with ν ′(cos θ) = O(1) in most of the range of
cos θ. We now introduce related time and space scales t0 and x0 as follows: t0 = ν−1

0

and x0 = ct0 = c/ν0. This choice means that the time unit is the mean time between
interactions and the space unit is the mean distance traveled by the particles between
interactions. We introduce the dimensionless diffusion coefficient d = D/ν0. Note that
D has also the dimension of a frequency so that d is actually dimensionless. We also
introduce a scaled observation kernel K ′ such that K(x0|x′|) = K ′(|x′|). Typically,
if K is the indicator function of the ball of radius R, K ′ is the indicator of the ball
of radius R′ = R/x0. The assumption that the interaction is non local means that
R′ = O(1). In other words, the observation radius is of the same order as the mean
distance travelled by the particles between two interactions. This appears consistent
with the behaviour of a fish, but would probably require more justifications. In the
present work, we shall take this fact for granted.

Let now t′ = t/t0, x′ = x/x0 the associated dimensionless time and space variables.
Then, system (3.11), coupled with (3.9), (3.10) is written in this new system of units
(after dropping the primes for the sake of clarity):

∂tf + ω · ∇xf +∇ω · (Ff) = d∆ωf, (4.1)

F (x, ω, t) = ν(cos θ̄) (Id− ω ⊗ ω)ω̄(x, ω, t), with cos θ̄ = ω · ω̄, (4.2)

ω̄(x, ω, t) =
J(x, t)
|J(x, t)| , J(x, t) =

∫

y∈R3, υ∈S2

K(|x− y|) υ f(y, υ, t) dy dυ . (4.3)

The system now depends on only one dimensionless parameter d and two dimensionless
functions which describe the behaviour of the fish: ν(cos θ̄) and K(x), which are all
supposed to be of order 1.

Up to now, the system has been written at the microscopic level, i.e. at time and
length scales which are characteristic of the dynamics of the individual particles. Our
goal is now to investigate the dynamics of the system at large time and length scales
compared with the scales of the individuals. For this purpose, we adopt new time and
space units t̃0 = t0/ε, x̃0 = x0/ε with ε≪ 1. Then, a set of new dimensionless variables
is introduced x̃ = εx, t̃ = εt. In this new set of variables, the system is written (again,
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dropping the tildes for clarity):

ε(∂tf ε + ω · ∇xf ε) = −∇ω · (F εf ε) + d∆ωf ε, (4.4)

F ε(x, ω, t) = ν(ω · ω̄ε) (Id− ω ⊗ ω)ω̄ε(x, ω, t), (4.5)

ω̄ε(x, ω, t) =
Jε(x, t)
|Jε(x, t)| , Jε(x, t) =

∫

y∈R3, υ∈S2

K
(∣∣∣∣
x− y
ε

∣∣∣∣
)
υ f ε(y, υ, t) dy dυ . (4.6)

Our goal in this chapter is to investigate the formal limit ε→ 0 of this problem.
Our first task, performed in the following lemma, is to provide an expansion of ω̄ε

in terms of ε.

Lemma 4.1 We have the expansion:

ω̄ε(x, ω, t) = Ωε(x, t) +O(ε2) , (4.7)

where

Ωε(x, t) =
jε(x, t)
|jε(x, t)| , and jε(x, t) =

∫

υ∈S2

υ f ε(x, υ, t) dυ . (4.8)

The proof of this lemma is elementary, and is omitted. That the remainder in (4.7)
is of order ε2 is linked with the fact that the observation kernel is isotropic. If an
anisotropic kernel had been chosen, such as one favouring observations in the forward
direction, then a term of order ε would have been obtained. This additional term
would substantially change the dynamics. We leave this point to future work.

The quantity jε(x, t) is the particle flux. We will also use the density, which is
defined as a moment of f as well:

ρε(x, t) =
∫

υ∈S2

f ε(x, υ, t) dυ . (4.9)

Thanks to lemma 4.1, system (4.4)-(4.6) is written

ε(∂tf ε + ω · ∇xf ε) = −∇ω · (F ε0 f ε) + d∆ωf ε +O(ε2), (4.10)

F ε0 (x, ω, t) = ν(ω · Ωε) (Id− ω ⊗ ω)Ωε(x, t), (4.11)

Ωε(x, t) =
jε(x, t)
|jε(x, t)| , and jε(x, t) =

∫

υ∈S2

υ f ε(x, υ, t) dυ . (4.12)

We note that observing the system at large scales makes the interaction local and that
this interaction tends to align the particle velocity to the direction of the local particle
flux. This interaction term is balanced at leading order by the diffusion term which
tends to spread the particles isotropically on the sphere. Obviously, an equilibrium
distribution results from the balance of these two antagonist phenomena.

In the remainder of the chapter, we write F [f ε] for F ε0 . We introduce the operator

Q(f) = −∇ω · (F [f ]f) + d∆ωf, (4.13)

F [f ] = ν (Id− ω ⊗ ω)Ω[f ], (4.14)

Ω[f ] =
j[f ]
| j[f ] | , and j[f ] =

∫

ω∈S2

ω f dω . (4.15)
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We note that Ω[f ] is a non linear operator of f , and so are F [f ] and Q(f). In the
remainder, we will always suppose that f is as smooth and integrable as necessary.
We leave the question of finding the appropriate functional framework to forthcoming
work.

The operator Q acts on the angle variable ω only and leaves the other variables
x and t as parameters. Therefore, it is legitimate to study the properties of Q as an
operator acting on functions of ω only. This is the task performed in the following
section.

4.2 Properties of Q

We begin by looking for the equilibrium solutions, i.e. the functions f which cancel Q.
Let µ = cos θ. We denote by σ(µ) an antiderivative of ν(µ), i.e. (dσ/dµ)(µ) = ν(µ).
We define

MΩ(ω) = C exp(
σ(ω · Ω)

d
),

∫
MΩ(ω) dω = 1 . (4.16)

The constant C is set by the normalization condition (second equality of (4.16)) ; it
depends only on d and on the function σ but not on Ω.

We have the following:

Lemma 4.2 (i) The operator Q can be written as

Q(f) = d ∇ω ·
[
MΩ[f ]∇ω

(
f

MΩ[f ]

)]
, (4.17)

and we have

H(f) :=
∫

ω∈S2

Q(f)
f

MΩ[f ]

dω = −d
∫

ω∈S2

MΩ[f ]

∣∣∣∣∣∇ω
(

f

MΩ[f ]

)∣∣∣∣∣

2

dω ≤ 0. (4.18)

(ii) The equilibria, i.e. the functions f(ω) such that Q(f) = 0 form a three-dimensional
manifold E given by

E = {ρMΩ(ω) | ρ ∈ R+, Ω ∈ S2} , (4.19)

and ρ is the total mass while Ω is the director of the flux of ρMΩ(ω), i.e.
∫

ω∈S2

ρMΩ(ω) dω = ρ, (4.20)

Ω =
j[ρMΩ]
| j[ρMΩ] | , j[ρMΩ] =

∫

ω∈S2

ρMΩ(ω)ω dω. (4.21)

Furthermore, H(f) = 0 if and only if f = ρMΩ for arbitrary ρ ∈ R+ and Ω ∈ S2.

The function σ being an increasing function of µ (since ν > 0), MΩ is maximal
for ω · Ω = 1, i.e. for ω pointing in the direction of Ω. Therefore, Ω plays the same
role as the average velocity of the classical Maxwellian of gas dynamics. The role of
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the temperature is played by the normalized diffusion constant d : it measures the
’spreading’ of the equilibrium about the average direction Ω. Here the temperature
is fixed by the value of the diffusion constant, in contrast with classical gas dynamics
where the temperature is a thermodynamical variable whose evolution is determined
by the energy balance equation.

An elementary computation shows that the flux can be written

j[ρMΩ] = 〈cos θ〉M ρΩ, (4.22)

where for any function g(cos θ), the symbol 〈g(cos θ)〉M denotes the average of g over
the probability distribution MΩ, i.e.

〈g(cos θ)〉M =
∫
MΩ(ω)g(ω · Ω) dω =

∫ π
0 g(cos θ) exp(σ(cos θ)

d
) sin θ dθ

∫ π
0 exp(σ(cos θ)

d
) sin θ dθ

. (4.23)

We note that 〈g(cos θ)〉M does not depend on Ω but depends on d. In particular,
〈g(cos θ)〉M → g(1) when d → 0 while 〈g(cos θ)〉M → ḡ, the arithmetic average of
g over the sphere, when d → ∞ (with ḡ =

∫
g(ω · Ω) dω = 1

2

∫ π
0 g(cos θ) sin θ dθ).

Therefore, 〈cos θ〉M → 1 when d → 0 and 〈cos θ〉M → 0 when d → ∞. For a large
diffusion, the equilibrium is almost isotropic and the magnitude of the velocity tends
to zero while for a small diffusion, the distribution is strongly peaked in the forward
direction and the magnitude of the velocity tends to 1, which is the velocity of the
individual particles.

Proof of lemma 4.2. To prove (i), we introduce a reference frame such that e3 = Ω[f ].
In spherical coordinates, we have

MΩ[f ](ω(θ, φ)) = C exp(d−1σ(cos θ)). (4.24)

Therefore,

∇ω(lnMΩ[f ]) = ∇ω[ ln{C exp(d−1σ(cos θ)) } ]

= d−1∇ω(σ(cos θ))

= −d−1ν(cos θ) sin θ eθ
= d−1F [f ] , (4.25)

where ln denotes the logarithm and the last equality results from (3.5). Then, we
deduce that

d ∇ω ·
[
MΩ[f ]∇ω

(
f

MΩ[f ]

)]
= d ∇ω ·

[
∇ωf − f∇ω(lnMΩ[f ])

]

= d∆ωf −∇ω · (F [f ]f) = Q(f). (4.26)

(4.18) follows directly from (4.17) and Stokes theorem.
(ii) follows directly from (i). If Q(f) = 0, then H(f) = 0. But H(f) is the integral

of a non-negative quantity and can be zero only if this quantity is identically zero,
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which means f = ρMΩ[f ] for a conveniently chosen ρ. Since Ω[f ] can be arbitrary, the
result follows. The remaining statements are obvious.

Our task now is to determine the collision invariants of Q, i.e. the functions ψ(ω)
such that

∫

ω∈S2

Q(f)ψ dω = 0, ∀f. (4.27)

Using (4.17), this equation can be rewritten as

∫

ω∈S2

f

MΩ[f ]

∇ω · (MΩ[f ]∇ωψ) dω = 0, ∀f. (4.28)

Clearly, if ψ = Constant, ψ is a collisional invariant. On the other hand, there is no
other obvious conservation relation, since momentum is not conserved by the inter-
action operator. The constants span a one-dimensional function space, while the set
of equilibria is a three-dimensional manifold. So, we need to find some substitute to
the notion of collisional invariant, otherwise, in the limit ε → 0, the problem will be
under-determined, and in particular, we will lack an equation for Ω (appearing in the
expression of the equilibrium).

To solve the problem, we slightly change the viewpoint. We fix Ω ∈ S2 arbitrarily,
and we ask the problem of finding all ψ’s which are collisional invariants of Q(f) for all
f with director Ω[f ] = Ω. Such a function ψ is not a collisional invariant in the strict
sense, because (4.27) is valid for all f but only for a subclass of f . But this weaker
concept of a collisional invariant is going to suffice for our purpose. So, for fixed Ω, we
want to find all ψ’s such that

∫

ω∈S2

f

MΩ
∇ω · (MΩ∇ωψ) dω = 0, ∀f such that Ω[f ] = Ω. (4.29)

Now, saying that Ω[f ] = Ω is equivalent to saying that j[f ] is aligned with Ω[f ], or
again to

0 = Ω× j[f ] =
∫

ω∈S2

f (Ω× ω) dω. (4.30)

This last formula can be viewed as a linear constraint and, introducing the Lagrange
multiplier β of this constraint, β being a vector normal to Ω, we can restate the problem
of finding the ’generalized’ collisional invariants (4.29) as follows: Given Ω ∈ S2, find
all ψ’s such that there exist β ∈ R3 with Ω · β = 0, and

∫

ω∈S2

f

MΩ

{∇ω · (MΩ∇ωψ)− β · (Ω× ω)MΩ} dω = 0, ∀f. (4.31)

Now, (4.31) holds for all f without constraint and immediately leads to the following
problem for ψ:

∇ω · (MΩ∇ωψ) = β · (Ω× ω)MΩ. (4.32)
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The problem defining ψ is obviously linear, so that the set CΩ of generalized col-
lisional invariants associated with the vector Ω is a vector space. It is convenient to
introduce a Cartesian basis (e1, e2,Ω) and the associated spherical coordinates (θ, φ).
Then β = (β1, β2, 0) and β ·(Ω×ω) = (−β1 sin φ+β2 cosφ) sin θ. Therefore, we can suc-
cessively solve for ψ1 and ψ2, the solutions of (4.32) with right-hand sides respectively
equal to − sinφ sin θMΩ and cosφ sin θMΩ.

We are naturally looking for solutions in an L2(S2) framework, since ψ is aimed
at constructing macroscopic quantities by integration against f with respect to ω.
Therefore, one possible framework is to look for both f and ψ in L2(S2) to give a
meaning to these macroscopic quantities. We state the following lemma:

Lemma 4.3 Let χ ∈ L2(S2) such that
∫
χ dω = 0. The problem

∇ω · (MΩ∇ωψ) = χ, (4.33)

has a unique weak solution in the space
◦
H1(S2), the quotient of the space H1(S2) by

the space spanned by the constant functions, endowed with the quotient norm.

Proof. We apply the Lax-Milgram theorem to the following variational formulation
of (4.33):

∫

ω∈S2

MΩ∇ωψ · ∇ωϕdω =
∫

ω∈S2

χϕ dω, (4.34)

for all ϕ ∈
◦
H1(S2). The function MΩ is bounded from above and below on S2, so the

bilinear form at the left-hand side is continuous on
◦
H1(S2). The fact that the average of

χ over S2 is zero ensures that the right-hand side is a continuous linear form on
◦
H1(S2).

The coercivity of the bilinear form is a consequence of the Poincare inequality: ∃C > 0

such that ∀ψ ∈
◦
H1(S2):

|ψ|H1 ≥ C||ψ|| ◦
L2

:= C min
K∈R
||ψ +K||L2 , (4.35)

where |ψ|H1 is the H1 semi-norm. We note that the Poincare inequality would not
hold without taking the quotient.

So, to each of the right-hand sides χ = − sin φ sin θMΩ or χ = cosφ sin θMΩ which
have zero average on the sphere, there exist solutions ψ1 and ψ2 respectively (unique
up to constants) of problem (4.33). We single out unique solutions by requesting that
ψ1 and ψ2 have zero average on the sphere:

∫
ψk dω = 0, k = 1, 2. We can state the

following corollary to lemma 4.3:

Proposition 4.4 The set CΩ of generalized collisional invariants associated with the
vector Ω which belong to H1(S2) is a three dimensional vector space CΩ = Span{1, ψ1, ψ2}.
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More explicit forms for ψ1 and ψ2 can be found. By expanding in Fourier series
with respect to φ, we easily see that

ψ1 = −g(cos θ) sin φ, ψ2 = g(cos θ) cosφ, (4.36)

where g(µ) is the unique solution of the elliptic problem on [−1, 1]:

−(1− µ2)∂µ(eσ(µ)/d(1− µ2)∂µg) + eσ(µ)/dg = −(1− µ2)3/2eσ(µ)/d. (4.37)

We note that no boundary condition is needed to specify g uniquely since the operator
at the left-hand side of (4.37) is degenerate at the boundaries µ = ±1. Indeed, it is
an easy matter, using again Lax-Milgram theorem, to prove that problem (4.37) has a
unique solution in the weighted H1 space V defined by

V = {g | (1− µ2)−1/2g ∈ L2(−1, 1), (1− µ2)1/2∂µg ∈ L2(−1, 1)}.

Furthermore, the Maximum Principle shows that g is non-positive.
For convenience, we introduce h(µ) = (1 − µ2)−1/2g ∈ L2(−1, 1) or equivalently

h(cos θ) = g(cos θ)/ sin θ. We then define

~ψ(ω) = (Ω× ω) h(Ω · ω) = ψ1e1 + ψ2e2 . (4.38)

~ψ is the vector generalized collisional invariant associated with the direction Ω.

4.3 Limit ε→ 0

The goal of this section is to prove theorem 1.1.
Again, we suppose that all functions are as regular as needed and that all conver-

gences are as strong as needed. The rigorous proof of this convergence result is outside
the scope of this article.

We start with eq. (4.10) which can be written

ε(∂tf ε + ω · ∇xf ε) = Q(f ε) +O(ε2). (4.39)

We suppose that f ε → f when ε→ 0. Then, from the previous equation, Q(f ε) = O(ε)
and we deduce that Q(f) = 0. By lemma 4.2, f = ρMΩ, with ρ ≥ 0 and Ω ∈ S2. Now,
since Q operates on the variable ω only, this limit does not specify the dependence of
f on (x, t), and consequently, ρ and Ω are functions of (x, t).

To find this dependence, we use the generalized collisional invariants. First, we
consider the constant collisional invariants, which merely means that we integrate
(4.39) with respect to ω. We find the continuity equation

∂tρ
ε +∇x · jε = 0, (4.40)

where ρε and jε are the density and flux as defined above. It is an easy matter to
realize that the right-hand side is exactly zero (and not O(ε2)). In the limit ε → 0,
ρε → ρ and jε → j = c1ρΩ with

c1 = 〈cos θ〉M , (4.41)
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and we get

∂tρ+∇x · (c1ρΩ) = 0. (4.42)

Now, we multiply (4.39) by ~ψε = h(ω · Ω[f ε]) (Ω[f ε] × ω), integrate with respect
to ω and take the limit ε → 0. We note that Ω[f ε] → Ω and that ~ψǫ is smooth
enough (given the functional spaces used for the existence theory), and consequently,
~ψε → ~ψ = h(ω · Ω) (Ω× ω). Therefore, in the limit ε→ 0, we get:

Ω×X = 0 , X :=
∫

ω∈S2

(∂t(ρMΩ) + ω · ∇x(ρMΩ)) h(ω · Ω)ω dω. (4.43)

Saying that Ω×X = 0 is equivalent to saying that the projection of X onto the plane
normal to Ω vanishes or in other words, that

(Id− Ω⊗ Ω)X = 0 . (4.44)

This is the equation that we need to make explicit in order to find the evolution
equation for Ω.

Elementary differential geometry gives the derivative of MΩ with respect to Ω acting
on a tangent vector dΩ to the sphere as follows:

∂MΩ

∂Ω
(dΩ) = d−1ν(ω · Ω) (ω · dΩ)MΩ. (4.45)

We deduce that

∂t(ρMΩ) = MΩ (∂tρ+ d−1ν ρ (ω · ∂tΩ)), (4.46)

(ω · ∇x)(ρMΩ) = MΩ ((ω · ∇x)ρ+ d−1ν ρ ω · ((ω · ∇x)Ω)). (4.47)

Combining these two identities, we get:

∂t(ρMΩ) + ω · ∇x(ρMΩ) =

= MΩ

[
∂tρ+ ω · ∇xρ+ d−1νρ(ω · ∂tΩ + (ω ⊗ ω) : ∇xΩ )

]
, (4.48)

where the symbol ’:’ denotes the contracted product of two tensors (if A = (Aij)i,j=1,...,3

and B = (Bij)i,j=1,...,3 are two tensors, then A : B =
∑
i,j=1,...,3 AijBij) and ∇xΩ is the

gradient tensor of the vector Ω: (∇xΩ)ij = ∂xiΩj . Therefore, the vector X, is given
by:

X =
∫

ω∈S2

[
∂tρ+ ω · ∇xρ+ d−1νρ(ω · ∂tΩ + (ω ⊗ ω) : ∇xΩ )

]
ω hMΩ dω. (4.49)

The four terms in this formula, denoted by X1 to X4, are computed successively using
spherical coordinates (θ, φ) associated with a Cartesian basis (e1, e2,Ω) where e1 and
e2 are two vectors normal to Ω. In the integral (4.49), the functions h = h(cos θ),
ν = ν(cos θ) and MΩ = C exp(σ(cos θ)

d
) only depend on θ. Therefore, the integrals with

respect to φ only concern the repeated tensor products of ω.
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We first have that
∫ 2π

0 ω dφ = 2π cos θΩ, so that

X1 =
∫

ω∈S2

∂tρ ω hMΩ dω = 2π ∂tρ
∫ π

0
cos θ h(cos θ)MΩ(cos θ) sin θ dθΩ, (4.50)

and (Id− Ω⊗ Ω)X1 = 0.
Now, an easy computation shows that

∫ 2π

0
ω ⊗ ω dφ = π sin2 θ (Id− Ω⊗ Ω) + 2π cos2 θΩ⊗ Ω. (4.51)

We deduce that

X2 =
∫

ω∈S2

((ω ⊗ ω)∇xρ) hMΩ dω

= π
∫ π

0
sin2 θ hMΩ sin θ dθ (Id− Ω⊗ Ω)∇xρ+

+ 2π
∫ π

0
cos2 θ hMΩ sin θ dθ (Ω · ∇xρ) Ω, (4.52)

which leads to:

(Id− Ω⊗ Ω)X2 = π
∫ π

0
sin2 θ hMΩ sin θ dθ (Id− Ω⊗ Ω)∇xρ. (4.53)

Using (4.51) again, we find:

X3 = d−1ρ
∫

ω∈S2

((ω ⊗ ω)∂tΩ) ν hMΩ dω

= πd−1ρ
∫ π

0
sin2 θ ν hMΩ sin θ dθ (Id− Ω⊗ Ω)∂tΩ

+ 2πd−1ρ
∫ π

0
cos2 θ ν hMΩ sin θ dθ (Ω · ∂tΩ) Ω. (4.54)

The second term at the r.h.s. of (4.54) vanishes since ∂tΩ is normal to Ω (Ω being a
unit vector). For the same reason, (Id− Ω⊗ Ω)∂tΩ = ∂tΩ and we are left with:

(Id− Ω⊗ Ω)X3 = πd−1ρ
∫ π

0
sin2 θ ν hMΩ sin θ dθ ∂tΩ. (4.55)

We now need to compute the integral with respect to φ of the third tensor power
of ω. After some computations, we are left with

∫ 2π

0
ω ⊗ ω ⊗ ω dφ = π sin2 θ cos θ ((Id− Ω⊗ Ω)⊗ Ω + Ω⊗ (Id− Ω⊗ Ω)

+[(Id− Ω⊗ Ω)⊗ Ω⊗ (Id− Ω⊗ Ω)]:24)

+2π cos3 θ Ω⊗ Ω⊗ Ω, (4.56)

where the index ’: 24’ indicates contraction of the indices 2 and 4. In other words,
the tensor element (

∫ 2π
0 ω⊗ω⊗ω dφ)ijk equals π sin2 θ cos θ when (i, j, k) equals any of

the triples (1, 1, 3), (2, 2, 3), (3, 1, 1), (3, 2, 2), (1, 3, 1), (2, 3, 2), equals 2π cos3 θ when
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(i, j, k) = (3, 3, 3) and is equal to 0 otherwise. Using Einstein’s summation convention,
the following formula follows:

(
∫ 2π

0
ω ⊗ ω ⊗ ω dφ)∇xΩ =

(∫ 2π

0
ω ⊗ ω ⊗ ω dφ

)

ijk
∂xjΩk

= π sin2 θ cos θ ((Id− Ω⊗ Ω)ijΩk∂xjΩk + Ωi(Id− Ω⊗ Ω)jk∂xjΩk +

+(Id− Ω⊗ Ω)ikΩj∂xjΩk)

+2π cos3 θ ΩiΩjΩk∂xjΩk. (4.57)

But since Ω is a unit vector, Ωk∂xjΩk = 1
2
∂xj (|Ω|2) = 0 and the first and fourth terms

in the sum vanish. The expression simplifies into:

(
∫ 2π

0
ω ⊗ ω ⊗ ω dφ)∇xΩ = π sin2 θ cos θ ((Id− Ω⊗ Ω) : (∇xΩ)) Ω +

+π sin2 θ cos θ (Id− Ω⊗ Ω)((Ω · ∇)Ω). (4.58)

The first term is parallel to Ω. Besides, since Ω is a unit vector, (Ω · ∇)Ω is normal to
Ω. So, we finally get

(Id− Ω⊗ Ω)((
∫ 2π

0
ω ⊗ ω ⊗ ω dφ)∇xΩ) = π sin2 θ cos θ (Ω · ∇)Ω. (4.59)

This leads to the following formula for X4:

(Id− Ω⊗ Ω)X4 = d−1ρ (Id− Ω⊗ Ω)
(∫

ω∈S2

(ω ⊗ ω ⊗ ω)(∇xΩ) ν hMΩ dω
)

= πd−1ρ
∫ π

0
sin2 θ cos θ ν hMΩ sin θ dθ (Ω · ∇)Ω. (4.60)

Now, we insert the expressions of X1 to X4 into (4.44). Using notation (4.23), we
finally find the evolution equation for Ω:

d−1ρ 〈sin2 θ ν h〉M ∂tΩ + d−1ρ〈sin2 θ cos θ ν h〉M (Ω · ∇)Ω +

+〈sin2 θ h〉M (Id− Ω⊗ Ω)∇xρ = 0. (4.61)

By the maximum principle, the function h is non-positive. Therefore, we can define
similar averages as (4.23), substituting MΩ with sin2 θ ν hMΩ and we denote such
averages as 〈g〉(sin2 θ)νhM . With such a notation, (4.61) becomes:

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id− Ω⊗ Ω)∇xρ = 0, (4.62)

with

c2 = 〈cos θ〉(sin2 θ)νhM , λ = d
〈1
ν

〉

(sin2 θ)νhM
(4.63)

Collecting the mass and momentum eqs (4.42) and (4.62), we find the final macroscopic
model of the Couzin-Vicsek algorithm:

∂tρ+∇x · (c1ρΩ) = 0, (4.64)

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id− Ω⊗ Ω)∇xρ = 0, (4.65)

with the coefficients c1, c2 and λ given by (4.41) and (4.63). This ends the proof of
theorem 1.1.
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4.4 Hyperbolicity

The detailed study (both theoretical and numerical) of the properties of the continuum
model (1.4), (1.5), will be the subject of future work. As a preliminary step, we look
at the hyperbolicity of the model.

First, thanks to a temporal rescaling, t = t′/c1, we can replace c1 by 1, c2 by
c := c2/c1 and λ by λ′ = λ/c1. We will omit the primes for simplicity. Then, the
system reads:

∂tρ+∇x · (ρΩ) = 0, (4.66)

ρ (∂tΩ + c(Ω · ∇)Ω) + λ (Id− Ω⊗ Ω)∇xρ = 0. (4.67)

This rescaling amounts to saying that the magnitude of the velocity of the individual
particles is equal to 1/c1 in the chosen system of units.

We choose an arbitrary fixed Cartesian coordinate system (Ω1,Ω2,Ω3) and use
spherical coordinates (θ, φ) in this system (see section 3). Then, Ω = (sin θ cosφ, sin θ sin φ, cos θ).
A simple algebra shows that (ρ, θ, φ) satisfy the system

∂tρ+ ∂x(ρ sin θ cosφ) + ∂y(ρ sin θ sin φ) + ∂z(ρ cos θ) = 0, (4.68)

∂tθ + c(sin θ cosφ ∂xθ + sin θ sin φ ∂yθ + cos θ∂zθ) +

+λ (cos θ cosφ ∂x ln ρ+ cos θ sinφ ∂y ln ρ− sin θ ∂z ln ρ) = 0, (4.69)

∂tφ+ c(sin θ cosφ ∂xφ+ sin θ sinφ ∂yφ+ cos θ∂zφ) +

+λ (− sin θ sin φ ∂x ln ρ+ sin θ cosφ ∂y ln ρ) = 0. (4.70)

Supposing that ρ, θ, φ are independent of x and y amounts to looking at waves which
propagate in the z direction at a solid angle (θ, φ) with the velocity director Ω. In this
geometry, the system reads:

∂tρ+ cos θ ∂zρ− ρ sin θ ∂zθ = 0, (4.71)

∂tθ + c cos θ ∂zθ − λ sin θ ∂z ln ρ = 0, (4.72)

∂tφ+ c cos θ ∂zφ = 0. (4.73)

This is a first order system of the form



∂tρ

∂tθ

∂tφ




+ A(ρ, θ, φ)




∂zρ

∂zθ

∂zφ




= 0, (4.74)

with

A(ρ, θ, φ) =




cos θ −ρ sin θ 0

−λ sin θ
ρ

c cos θ 0

0 0 c cos θ



. (4.75)
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The eigenvalues γ± and γ0 of the matrix A(ρ, θ, φ) are readily computed and are
given by

γ0 = c cos θ, γ± =
1
2

[
(c+ 1) cos θ ±

(
(c− 1)2 cos2 θ + 4λ sin2 θ

)1/2
]
. (4.76)

Two special cases are noteworthy. The case θ = 0 (modulo π) corresponds to
waves which propagate parallel to the velocity director. In this case, two eigenvalues
are equal: γ0 = γ+ = c and γ− = 1. The eigenvectors corresponding to these three
eigenvalues are respectively the density ρ, and the angles θ and φ. So far, the relative
magnitude of c and 1 are not known. But, whatever the situation (c bigger or smaller
or even equal to 1), the matrix is diagonalizable and therefore the system is hyperbolic.

The case θ = π/2 (modulo π) corresponds to waves propagating normally to the
velocity director. In this case, γ± = ±2

√
λ are opposite and γ0 = 0. The system for

(ρ, θ) reduces to a special form of the nonlinear wave equation. The sound speed which
propagates in the medium due to the interactions between the particles has magnitude
equal to 2

√
λ.

If θ has an arbitrary value, then, a combination of these two phenomena occurs.
For the two waves associated with γ±, there is a net drift at velocity (c+ 1) cos θ and
two sound waves with velocities ((c− 1)2 cos2 θ +4λ sin2 θ)1/2. However, the speed
of the wave associated with γ0, is not equal to the drift of the two sound waves. A
disymmetry appears which is not present in the usual gas dynamics equations. The
resolution of the Riemann problem is left to future work.

5 Conclusion

In this chapter, we have studied the large-scale dynamics of the Couzin-Vicsek algo-
rithm. For that purpose, we have rephrased the dynamics as a time-continuous one
and have formulated it in terms of a kinetic Fokker-Planck equation. Then, a hy-
drodynamic scaling of this kinetic equation is introduced with small parameter ε and
the limit when ε → 0 is considered. We show that the macroscopic dynamics takes
place on a three dimensional manifold consisting of the density and director of the
mean-velocity. Using a new concept of generalized collision invariant, we are able to
derive formally the set of equations satisfied by the parameters and we prove that the
resulting system is hyperbolic.

Possible future directions involve the investigation of a limited range of vision in
the backwards direction, the computation of the order ε diffusive corrections, the in-
corporation of more non-locality effects in the asymptotics and finally, the accounting
of the other types of interactions, being of repulsive or attractive type.
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Chapter 7

Numerical simulations of a
non-conservative hyperbolic system
with geometric constraints
describing swarming behaviour

This chapter is a work in progress in collaboration with Laurent Navoret.

Abstract. The Vicsek model is a very popular individual based model which
describes collective behaviour among animal societies. A macroscopic version of the
Vicsek model has been derived from a large scale limit of this individual based model
6. In this work, we want to numerically validate this Macroscopic Vicsek model (MV).
To this aim, we compare simulations of the macroscopic and microscopic models one
with each other. The MV model is a non-conservative hyperbolic equation with a
geometric constraint. Due to the lack of theory for this kind of equation, we derive
several equivalent for this system leading to specific numerical schemes. The numerical
simulations reveals that the microscopic and macroscopic models are in good agreement
provided that we choose one of the proposed formulations based on a relaxation of the
geometric constraint. This confirms the relevance of the macroscopic equation but it
also calls for a better theoretical understanding of this type of equations.

Keywords. Individual based model, Hyperbolic systems, Non-conservative equa-
tion, Geometric constraint, Relaxation, Splitting scheme
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1 Introduction

This paper is devoted to the numerical study of a macroscopic version of the Vicsek
model which describes swarming behaviour. This macroscopic model has been derived
in [13] from the microscopic Vicsek model [28]. The goal of this work is to provide a
numerical validation of the macroscopic model by comparing it with simulations of the
microscopic model.

The Vicsek model [28] is widely used to describe swarming behaviour such as flock
of birds [3], schools of fish [2, 25, 19, 9] (in this case the model is combined with
an attractive-repulsive force) or recently the motion of locusts [5]. In this model,
individuals have a constant velocity and they tend to align with theirs neighbours.
Despite the simplicity of the model, a lot of questions remain open about it. A first
field of research concerns phase transitions within the model depending on the level of
noise in the model [28, 16, 24, 6]. Another question arises from the long time dynamics
of the model [10, 11, 17]: is there convergence to a stationary state of the system? From
another perspective, since collective displacements in natural environment can concern
up to several million individuals, it is natural to look for a macroscopic version of the
Vicsek model. On the one hand, macroscopic models constitute powerful analytical
tools to study the dynamics at large scales [23, 8, 12]. On the other hand, the related
numerical schemes are computationally much more efficient compared with particle
simulations of a large number of interacting agents. In [13], a Macroscopic Vicsek
model (MV) has been derived from a large scale limit of the “microscopic” Vicsek
model. The macroscopic model is obtained from a rigorous perturbation theory of the
original Vicsek model. Another macroscopic model is obtained in [4] based on more
phenomenological closure assumptions.

The MV model presents several specificities which make the model interesting.
First, it is a non-conservative hyperbolic system and secondly it involves a geometric
constraint. These are the consequences at the macroscopic level of two specificities of
the microscopic model: the total momentum is not conserved by the particle dynamics
and the speed of the particles is constant. The first property is an intrinsic property of
self-propelled particles and the second property is an usual assumption in the models
of collective displacements [28, 9, 15]. Up to our knowledge the theory of such systems
is almost empty. Non-conservative systems have been studied in the literature [?, 20, 7]
but none of them involve geometric constraints.

In this work, since a theoretical framework for such systems is not available, we
adopt several approaches. First, we introduce a conservative formulation for 1D prob-
lems, which is equivalent to the initial one for smooth solutions only. With this conser-
vative formulation, we can use standard hyperbolic theory to build Riemann problem
solution and shock capturing schemes [21]. The numerical scheme based on the con-
servative formulation is called conservative method. But since the equivalence with the
original formulation is only valid for smooth solutions [22], there is no guarantee that
the conservative formulation gives the right answer at shocks. For this reason, we in-
troduce another formulation of the MV model where the constraint is treated through
the relaxation limit of a unconstrained conservative system. This formulation leads to
a natural numerical scheme based on a splitting between the conservative part of the
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equation and the relaxation. This scheme will be refered to as the splitting method. For
comparison purposes, two other numerical schemes are also used, an upwind scheme
and a semi-conservative one (where only the mass conservation equation is treated in
a conservative way).

The numerical simulations of the MV model reveal that the numerical schemes all
agree on rarefaction waves but disagree on shock waves. To determine the correct
solution, we use the microscopic model in the regime where its solution is close to
that of the macroscopic model. In practice, this corresponds to regimes where the
number of particles per domain of interaction is high. The splitting method turns
out to be in good agreement with particle simulations of the microscopic model, by
contrast with the other schemes. In particular, for an initial condition with a contact
discontinuity, the solution given by the conservative form is simply a convection of the
initial condition whereas the splitting method and the particle simulations agree on a
different and more complex solution.

These results show first that the MV model well describes the microscopic model
in the dense regime. Secondly, that the correct formulation of the MV model is given
by the limit of a conservative equation with a stiff relaxation term.

The theoretical and numerical studies of the MV model highlight the specificity of
non-conservative hyperbolic models with geometric constraints. More theoretical work
is necessary in order to understand why the splitting method matches the microscopic
model whereas the other methods do not. In particular, an extension of the theory
developed in [7] to non-conservative relaxed models would be highly desirable.

The outline of the paper is as follows: first, we present the Vicsek and MV models
in section 2. Then, we analyze the MV model and give two different formulations of the
model in section 3. We develop different numerical schemes based on these formulations
and we use them to numerically solve different Riemann problems in section 4. Finally,
we compare simulations of the microscopic model with those of the macroscopic system
in the same situations in section 5. Finally, we draw a conclusion.

2 Presentation of the Vicsek and Macroscopic Vic-
sek models

At the particle level, the Vicsek model describes the motion of particles which tend to
align with theirs neighbours. We denote by xk the position vector of the kth particle
and by ωk its velocity with a constant speed (|ωk| = 1). To simplify, we suppose that
the particles moves in a plane. Therefore xk ∈ R2 and ωk ∈ S1. The Vicsek model at
the microscopic level is given by the following equations (in dimensionless variables):

dxk
dt

= ωk, (2.1)

dωk = (Id− ωk ⊗ ωk)(ω̄k dt+
√

2d dBt), (2.2)

where Id is the identity matrix and the symbol ⊗ denotes the tensor product of vectors.
d is the intensity of noise, Bt is the Brownian motion and ω̄k is the direction of mean
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velocity around the kth particle defined by:

ω̄k =
Jk
|Jk|

, Jk =
∑

j, |xj−xk|≤R
ωj, (2.3)

where R defines the radius of the interaction region. Equation (2.2) expresses the
tendency of particles to move in the same direction as their neighbours. The operator
(Id−ωk⊗ωk) is the orthogonal projector onto the plane perpendicular to ωk. It ensures
that the velocity of particles remains constant. This model is already a modification
of the original Vicsek model [28], which is a time-discrete algorithm.

The Macroscopic Vicsek model (MV) describes the evolution of two macroscopic
quantities: the density of particles ρ and the direction of the flow Ω. The evolution of
ρ and Ω is governed by the following equations:

∂tρ+∇x · (c1ρΩ) = 0, (2.4)

ρ (∂tΩ + c2(Ω · ∇x)Ω) + λ (Id− Ω⊗ Ω)∇xρ = 0, (2.5)

|Ω| = 1, (2.6)

where c1, c2 and λ are some constants depending on the noise level d. The expressions
of c1, c2 and λ are given in appendix 6. By contrast with the standard Euler system,
the two convection coefficients c1 and c2 are different. The other specificity of this
model is the constraint |Ω| = 1. The operator (Id−Ω⊗Ω) ensures that this constraint
is propagated provided that it is true at the initial time. The passage from (2.1)-(2.2)
to (2.4)-(2.5)-(2.6) is detailed in [13]. We note that vortex configurations are special
stationary solutions of this model in two dimensions (see appendix 6). Up to our
knowledge, this is the first swarming model which have such analytical solutions.

3 The Macroscopic Vicsek model

3.1 Theoretical analysis of the macroscopic model

To study model (2.4)-(2.5)-(2.6), we first use the rescaling x′ = x/c1. Then equations
(2.4)-(2.5)-(2.6) are written:

∂tρ+∇x′ · (ρΩ) = 0, (3.1)

ρ (∂tΩ + c′(Ω · ∇x′)Ω) + λ′ (Id− Ω⊗ Ω)∇x′ρ = 0, (3.2)

|Ω| = 1, (3.3)

with c′ = c2/c1 and λ′ = λ/c1. In the sequel, we drop the primes for clarity. We refer
to the appendix 6 for the computation of c and λ. We have (see figure 7.18):

1
2
< c < 1 and λ > 0, for all d > 0. (3.4)
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In two dimensions, we use a parametrization of Ω in polar coordinates: Ω =
(cos θ, sin θ)T . Therefore, equations (3.1)-(3.2) can be rewritten as:

∂tρ+ ∂x (ρ cos θ) + ∂y (ρ sin θ) = 0, (3.5)

∂tθ + c cos θ∂xθ + c sin θ∂yθ + λ

(
−sin θ

ρ
∂xρ+

cos θ
ρ

∂yρ

)
= 0. (3.6)

In this section, we suppose that ρ and θ are independent of y meaning that we are
looking at waves which propagate in the x-direction. Under this assumption, the system
reads:

∂t


 ρ

θ


+ A(ρ, θ) ∂x


 ρ

θ


 = 0, (3.7)

with

A(ρ, θ) =




cos θ −ρ sin θ

−λ sin θ
ρ

c cos θ


 . (3.8)

The characteristic velocities of this system are given by

γ1,2 =
1
2

[
(c+ 1) cos θ ±

√
(c− 1)2 cos2 θ + 4λ sin2 θ

]
(3.9)

with γ1 < γ2. Therefore, the system is strictly hyperbolic. A possible choice of right
eigenvectors is

~r1 =


 ρ sin θ

cos θ − γ1


 , ~r2 =



c cos θ − γ2

λ sin θ
ρ


 . (3.10)

The two fields are genuinely nonlinear except at θ = 0, θ = π and at the extrema
values of γp which satisfy:

tan2 θ =
1

4λ

[
((c− 1)2 − 4λ)2

(c+ 1)2
− (c− 1)2

]
.

The Riemann invariant of the system (3.7) are given by:

I1(ρ, θ) = log ρ−
∫ θ

θ0

sin s
cos s− γ1(s)

ds (3.11)

I2(ρ, θ) = log ρ−
∫ θ

θ0

c cos s− γ2(s)
λ sin s

ds. (3.12)

The integral curve w1 and w2 starting from (ρl, θl) are given by:

ρ1(θ) = ρl exp

(∫ ξ

θ0

sin s
cos s− γ1(s)

ds

)
(3.13)

ρ2(θ) = ρl exp

(∫ ξ

θ0

c cos s− γ2(s)
λ sin s

ds

)
. (3.14)

These are the rarefaction curves. To select the physically admissible rarefaction curve,
we remark that γp must grow from the left to right states. The proofs of these ele-
mentary facts are omitted. The quantities γ1,2 as functions of θ are depicted in figure
7.1.
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Figure 7.1: The two eigenvalues γ1 and γ2 depending on θ (d = 1 in this graph).
For each curve, there exists a unique extremum (θ1 and θ2) which corresponds to a
degeneracy of the system.

3.2 A conservative form of the MV model in dimension 1

For non-conservative systems, shock waves are not uniquely defined [22, 20]. However,
in the present case, a conservative formulation of the system can be found in dimension
1. Indeed, it is an easy matter to see that, if sin θ 6= 0, system (3.7) can be rewritten
in conservative form:

∂t




ρ

f1(θ)


+ ∂x




ρ cos θ

cf2(θ)− λ log(ρ)


 = 0, (3.15)

with:

f1(θ) = log

∣∣∣∣∣tan
θ

2

∣∣∣∣∣ = log

∣∣∣∣∣
sin θ

cos θ + 1

∣∣∣∣∣ , (3.16)

f2(θ) = log |sin θ| . (3.17)

However, the functions f1 and f2 are singular when sin θ = 0 which means that the
conservative form is only valid as long as θ stays away from θ = 0.

The conservative form (3.15) leads to the following Rankine-Hugoniot conditions
for shock waves: two states (ρl, θl) and (ρr, θr) are connected by a shock wave traveling
at a constant speed s if

s


 ρr − ρl
f1(θr)− f1(θl)


 =


 ρr cos θr − ρl cos θl

cf2(θr)− cf2(θl)− λ log ρr + λ log ρl


 . (3.18)

We can combine the two equations of the system (3.18) to eliminate the constant
s, we are led to the expression of the shock curve:

(ρr − ρl)(cf2(θr)− cf2(θl)− λ log ρr + λ log ρl)

= (ρr cos θr − ρl cos θl)(f1(θr)− f1(θl)). (3.19)
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This equation must be numerically solved. The entropic part of the shock curve is
determined by the requirement that γp must satisfy the Lax entropy condition. In figure
7.2, we give an example of a solution of a Riemann problem obtained by computing
the intersection of the shock and rarefaction curves.

3.3 The MV model as the relaxation limit of a conservative
system

We are going to prove that the MV model (3.1)-(3.2)-(3.3) can be seen as the relaxation
limit of a conservative hyperbolic model with a relaxation term. This link will be used
later to build a new numerical scheme. More precisely, we introduce the relaxation
model:

∂tρ
ε +∇x · (ρεΩε) = 0, (3.20)

∂t (ρεΩε) + c∇x · (ρεΩε ⊗ Ωε) + λ∇xρε =
ρε

ε
(1− |Ωε|2)Ωε. (3.21)

In this model, the constraint |Ω| = 1 is replaced by a relaxation operator. Formally, in
the limit ε→ 0, we recover the constraint |Ω| = 1. More precisely, we have:

Proposition 3.1 The relaxation model (3.20)-(3.20) converges to the MV model (3.1)-
(3.2)-(3.3) as ε goes to zero.

Proof. (Formal) We define Rε = ρε(1− |Ωε|2)Ωε. Suppose that as ε goes to zero:

ρε
ε→0−→ ρ0 , Ωε ε→0−→ Ω0. (3.22)

Then Rε ε→0−→ 0, which generically implies that |Ω0|2 = 1 (except where ρ0Ω0 = 1 which
one assume to be a negligible set). Therefore, we have:

∂tΩ0 · Ω0 = 0 , (Ω0 · ∇x)Ω0 · Ω0 = 0. (3.23)

Then since Rε × Ωε = 0, we have:

(∂t (ρεΩε) + c∇x · (ρεΩε ⊗ Ωε) + λ∇xρε)× Ωε = 0.

and consequently, when ε→ 0:

∂t
(
ρ0Ω0

)
+ c∇x ·

(
ρ0Ω0 ⊗ Ω0

)
+ λ∇xρ0 = αΩ0, (3.24)

for a real number α to be determined. Taking the scalar product of (3.24) with Ω0 and
using (3.23), we find:

α = ∂tρ
0 + c∇x · (ρ0Ω0) + λ∇xρ0 · Ω0.

Using the conservation of mass (∂tρ0 = −∇x · (ρ0Ω0)), we finally have:

α = (c− 1)∇x · (ρ0Ω0) + λ∇xρ0 · Ω0.
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Therefore, the relaxation term satisfies:

1
ε
Rε = [(c− 1)∇x · (ρ0Ω0) + λ∇xρ0 · Ω0]Ω0 + 0(ε).

Inserting in (3.20)-(3.21) and taking the limit ε→ 0, we recover the MV model (3.1)-
(3.2) at the first order in ε.

Remark 3.1 As for the MV model, we can also analyze the hyperbolicity of the left
hand side of (3.20)-(3.21). The eigenvalues are given by:

γ1 = cu−
√

∆ , γ2 = cu , γ3 = cu+
√

∆,

where u denotes the x-coordinate of Ω and ∆ = λ−(c−c2)u2. The system is hyperbolic
if and only if |u| <

√
λ
c−c2 . As we can see in figure 7.3, for u2 = 1, ∆ is positive for any

value of d. In particular, this implies that the relaxation model is hyperbolic for every
|u| ≤ 1.

4 Numerical simulations of the MV model

4.1 Numerical schemes

We propose four different numerical schemes, the first two schemes originate from the
discussions of the previous section. The two other one based on the non-conservative
form of the MV model.
We use the following notations: we fix a uniform stencil (xi)i (with |xi+1 − xi| = ∆x)
and a time step ∆t. We denote by Uni = (ρni , θ

n
i ) the value of the mass and speed angle

at the position xi and at time n∆t.

4.1.1 The conservative scheme

Here we use the conservative form of the MV model (3.15):

∂tV + ∂xF (V ) = 0, (4.25)

with V = (ρ, f1(θ))T and F (V ) = (ρ cos θ, cf2(θ)− λ log(ρ))T .
Using this formulation, we use a Roe method:

V n+1
i − V ni

∆t
+
F̂i+ − F̂i−

∆x
= 0, (4.26)

where the intermediate flux F̂i+ is given by:

F̂i+ =
F (Vi) + F (Vi+1)

2
−
∣∣∣A(V i+)

∣∣∣
Vi+1 − Vi

2
, (4.27)
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and A is the Jacobian of the flux F :

A(V ) = DF (V ) =




cos θ −ρ sin2 θ

−λ
ρ

c cos θ


 (4.28)

calculated at the mean value V i+ = Vi+Vi+1

2
.

As mentioned earlier, the conservative form is only valid when θ does not cross a
singularity θ = 0 or θ = π (i.e. sin θ = 0).
Nevertheless, numerically we can still use the formulation (4.26) when θ changes sign.
Moreover, since f1 is an even function, this only gives |θn+1|. To determine the sign
of θn+1, we use an auxiliary value θ̂ which we update with the upwind scheme (4.33).
The sign of θ is then determined using the sign of θ̂.

4.1.2 The splitting method

The next scheme uses the relaxation model (3.20)-(3.20). The idea is to split the
relaxation model in two parts, first the conservative part:

∂tρ+∇x · (ρΩ) = 0,

∂t (ρΩ) + c∇x · (ρΩ⊗ Ω) + λ∇xρ = 0.
(4.29)

and then the relaxation part:

∂tρ = 0,

∂t (ρΩ) =
ρ

ε
(1− |Ω|2)Ω.

(4.30)

We can reduce this last equation since ∂tρ = 0 to:

∂tΩ =
1
ε

(1− |Ω|2)Ω.

Since this equation only changes the vector field Ω in norm (i.e. ∂tΩ ·Ω⊥ = 0), we can
once again reduce this equation to:

1
2
∂t|Ω|2 =

1
ε

(1− |Ω|2)|Ω|2. (4.31)

Equation (4.31) can be explicitly solved:

|Ω|2 =
1

1 + C0 e−2/ε t
, (4.32)

with C0 = 1
|Ω0|2 − 1. We indeed take the limit ε→ 0 of this expression and replace the

relation term by a mere normalization: Ω→ Ω/|Ω| .
The conservative part is solved by a Roe method with a Roe matrix computed

following [22] page 156.
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4.1.3 Non-conservative schemes

We present two other numerical schemes based on the non-conservative formulation of
the MV model.

(i) Upwind scheme
The method consists to update the value of Uni with the formula:

Un+1
i − Uni

∆t
+ A+

(
Uni − Uni−1

∆t

)
+ A−

(
Uni+1 − Uni

∆t

)
= 0, (4.33)

where A+ and A− are (respectively) the positive and negative part of A, defined such
that A = A+ − A− and |A| = A+ + A− and A+, A− are computed using an explicit
diagonalization of A.

(ii) Semi-conservative scheme
One of the problem with the upwind scheme is that it does not conserve the total

mass (
∫
x ρ(x) dx). In order to keep this quantity constant in time, we use the equation

of conservation of mass (3.1) in a conservative form:

∂tρ+ ∂xH(ρ, θ) = 0, (4.34)

with H(ρ, θ) = ρ cos θ. Therefore, a conservative numerical scheme associated with
this equation would be:

ρn+1
i − ρni

∆t
+
Ĥi+1/2 − Ĥi−1/2

∆x
= 0, (4.35)

where Ĥi+ is the numerical estimation of the flux H at the interface between xi and
xi+1. To estimate numerically this flux, we use the following formula with Ui = (ρi, θi):

Ĥi+1/2 = H(Ui+1/2)− |A|ρ
(
Uni+1 − Uni

2

)
, (4.36)

where the intermediate value is given by Ui+1/2 =
Uni +Uni+1

2
and |A|ρ is the first line of

the absolute value of A.
For the estimation of the angle θ, we keep the same scheme as for the upwind

scheme.
This numerical scheme uses one conservative equation (for the mass ρ) and a non-

conservative equation (for the angle θ). It is thus referred to as the semi-conservative
scheme.

4.2 Numerical simulations

To compare the various numerical schemes, we use a Riemann problem as initial con-
dition. We choose solutions which consist of a rarefaction wave (figure 7.4) or a single
shock wave (figure 7.5-7.6).
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We take the following parameters: d = 1, the length of the domain is 10 units and
the discontinuity for the Riemann problem is at x = 5 (the middle of the domain).
The simulation is run during two time units with a time step ∆t = 2.10−2 and a space
step ∆x = 5.10−2. For these values, the Courant number (Cn) is: 0.778. We use
homogeneous Neumann conditions.

For the rarefaction wave, we take:

(ρl, θl) = (2, 1.7) , (ρr, θr) = (1.12, 0.60). (4.37)

All the numerical schemes capture well the theoretical solution (see figure 7.4).
For the shock wave, we choose:

(ρl, θl) = (1, 1.05) , (ρr, θr) = (1.432 , 1.7). (4.38)

and the shock speed is: s = −1.585. The results of the numerical simulations using the
four schemes are given in figure 7.5. The numerical solutions are in accordance with the
theoretical solution given by the conservative formulation for all the numerical schemes.
Nevertheless, the conservative scheme is in better accordance with this solution. For
the other schemes, the shock speed differs slightly.
A second example of a shock wave is computed using the following initial condition:

(ρl, θl) = (1, 0.314) , (ρr, θr) = (2, 1.54) (4.39)

The solutions given by the 4 numerical schemes are very different. Only the conserva-
tive method is in agreement with the solution given by the conservative formulation.
But the conservative formulation is not necessary the right one. Indeed, in the next sec-
tion, particle simulations show that the right solution is not given by the conservative
formulation but rather by the splitting method.



222 Numerical simulations of a non-conservative hyperbolic system

00.511.522.53

0 0.5 1 1.5 2 2.5

θ

ρ

1 − wave
2 − wave

Um

Ur

Ul
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Figure 7.4: The theoretical solution of a Riemann problem (4.37) given by a rarefaction
curve (solid line) and the numerical solutions (points), ρ (blue) and cos θ (green) as
functions of space. The simulations are run during 2 time units, with a time step
∆t = 2.10−2 and a space step ∆x = 5.10−2 (CFL=.778).
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Figure 7.5: The theoretical solution of a Riemann problem (4.38) given by a shock
wave (solid line) and the numerical solutions (points). Abscissa represents the space
domain and ordinate represents the value of the mass (blue) and the angle of the speed
θ (green). The simulations are run during 2 time unit, with time step ∆t = 2.10−2 and
space step ∆x = 5.10−2 (CFL = .778).
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Figure 7.6: The theoretical solution of a Riemann problem (4.39) given by a shock
wave (solid line) and the numerical solutions (points). Abscissa represents the space
domain and ordinate represents the value of the mass (blue) and the angle of the speed
θ (green). The simulations are run during 2 time unit, with time step ∆t = 2.10−2 and
space step ∆x = 5.10−2 (CFL = .778).
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5 The microscopic versus macroscopic Vicsek models

5.1 Local equilibrium

In this part, we would like to validate the macroscopic Vicsek model by the simulation
of the microscopic Vicsek. The model relies on the fact that the particle distribution
function is at local equilibrium given by a Von Mises distribution MΩ (see [13]):

MΩ(ω) = C exp

(
ω · Ω
d

)
(5.1)

where C is set by the normalization condition1. The goal of this section is to numer-
ically show that the particle distribution of a microscopic Vicsek formulation is close
in certain regimes to a Von Mises distribution.

To this aim, in appendix 6 we propose a numerical scheme to solve system (2.2).
The setting for our particle simulations is as follows: we consider a square box with
periodic boundary conditions. As initial condition for the position xi, we choose a
uniform random distribution in space. The velocity is initially distributed according
to a uniform distribution on the unit circle.

During the simulation, we compute the empirical distribution of the speed angle θ
and the average direction Ω of the particles. We then compare this empirical distribu-
tion with its theoretical distribution MΩ(θ) given by (5.1).

In figure 7.7, we give an example of a comparison between the distribution of speed
angle θ and the theoretical distribution MΩ predicted by the theory.

Since the distribution of speed angle converges, we have a theoretical value of the
mean velocity. We denote by ϕN the mean velocity of particles and ϕ the theoretical
value given by the stationary distribution:

ϕN =
1
N

∣∣∣∣∣
N∑

k=1

ωk

∣∣∣∣∣ , ϕ =
∣∣∣∣
∫

ω
ωMΩ(ω) dω

∣∣∣∣ . (5.2)

At least locally in x, we have that ϕN
ǫ→0−→ ϕ. In figure 7.8, we compare the two

distributions for different values of the noise d and we can see that the two distributions
are in good agreement. We also observe a smooth transition from order (ϕ ≈ 1) to
disorder (ϕ << 1) as it has been measured in the original Vicsek model [28].

The situation is different when we look at a larger system. We still have convergence
of the particle distribution to a local equilibrium ρ(x)MΩ(x)(ω), but the mean direction
Ω(x) now depends on x. Therefore the average velocity of the particles in all the domain
differs from the expected theoretical value (5.1)-(5.2). We illustrate this phenomena
in figure 7.9: we fix the density of particles and we increase the size of the box. As we
can observe, the mean velocity ϕN (5.2) has a smaller value when the size of the box
increases. This phenomena has been previously observed in [6]. The average velocity
ϕN can also differ from the expected theoretical value ϕ (5.1)-(5.2) when the density
of particles is low. In figure 7.10, we fix the size of the box (L = 10) and we increase

1explicitly given by C−1 = 2π I0(d−1) where I0 is the modified Bessel function of order 0
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Figure 7.7: Left figure: the distribution of velocities (with ω = (cos θ, sin θ)) compared
with its theoretical distribution after 6 time units of simulation. Right figure: the
corresponding particle simulation. Parameters of the simulation: Lx = 1, Ly = 1
(domain size), number of particles N = 500, ε = 1/4, R = .5, d = .2, ∆t = 2.10−3.
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Figure 7.8: The mean velocity ϕ (5.2) for different values of d. Parameters of the
simulation: Lx = 1, Ly = 1 (domain size), number of particles N = 200, radius of
interaction R = .5, duration of the simulation 180 unit time, ∆t = .02 unit time.
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the density of particles (the density is given by the number of particles inside the circle
of interaction). At low density, the mean velocity ϕN is much more smaller than the
theoretical prediction ϕ. But as the density of particles increases, the mean velocity
ϕN grows (see also [28]) and moreover ϕN converges to ϕ. Because of that, a dense
regime of particles has to be used in the following in order to numerically compare the
microscopic model with the MV model.

5.2 Microscopic versus Macroscopic dynamics

We now compare the evolution of the two macroscopic quantities ρ and Ω for the
two models. We have seen that the different schemes applied to the macroscopic
equation could give different solutions (see figure 7.6). Therefore, we expect that
particle simulations will indicate what is physically relevant solution of the macroscopic
equation.

We first briefly discuss particle simulations of a Riemann problem (see also appendix
6). First, we have to choose a left state (ρl, θl), a right state (ρr, θr) and the noise level d.
Then we distribute a proportion ρl

ρl+ρr
of the particles uniformly in the interval [0, 5] and

the remaining particles uniformly in the interval [5, 10]. Then, we generate speed angle
θ for the particles according to the distribution MΩ (5.1) with Ωl = (cos θl, sin θl)T

on the left side and Ωr = (cos θr, sin θr)T on the right side. We use the numerical
scheme given in appendix 6 to generate particle trajectories. To make the computation
simpler, we choose periodic boundary conditions. Therefore the number of particles
is conserved. As a consequence, there are two Riemann problems corresponding to
discontinuities at x = 5 and at x = 0 or 10 (which is the same by periodicity). We
use a particle-in-cell method [14, 18] to estimate the two macroscopic quantities: the
density ρ and the direction of the flux Ω (which gives θ). In order to reduce the
noise due to the finite number of particles, we take a mean over several simulations to
estimate the density ρ and θ (10 simulations in our examples).

In figure 7.11, we show a numerical solution for the following Riemann problem:

(ρl, θl) = (1, 1.5) , (ρr, θr) = (2, 1.83) , d = 0.2 (5.3)

using particle simulations and the macroscopic equation. We represent the solutions
in a 2D representation. Since the initial condition is such that the density ρ and the
direction θ are independent of the y-direction, we only represent ρ and θ along the
x-axis in the following figures.

In figure 7.12, we represent the two solutions (the particle and the macroscopic
one) with only a dependence in the x-direction. Three quantities are represented: the
density (blue), the speed angle θ (green) and the variance of the angle distribution
(red). The macroscopic model supposes that the variance of θ should be constant
everywhere. Nevertheless, we can see that the variance is larger in regions where the
density is lower. For ρ and θ, we see clearly the propagation of a shock in the middle
of the domain and a rarefaction at the boundary. The CPU time for one numerical
solution at the particle level is about 140 seconds with the parameters given in figure
7.12. For the macroscopic equation, the CPU time is about 0.1 second which represent
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Figure 7.9: The mean velocity ϕ (5.2) for different values of d. We use different
domain sizes and we keep the same density of particles. As the domain size in-
creases, the total flux ϕ decreases which means that particles are less aligned glob-
ally. Parameters of the simulations: L = 1, 2, 5, 10 (domain size), number of particles
N = 200, 800, 5000, 20000, radius of interaction R = .5, duration of the simulation
180 time units, ∆t = .02 time units.
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Figure 7.10: The mean velocity ϕ (5.2) for different values of d. We change the
density of particles (given by the mean number of neighbours in unit of radius of
interaction). When we increase the mean number of neighbours, particles are more
aligned. Parameters of the simulations: L = 10 (domain size), number of particles
N = 254, 1273, 6366, 12732, and 25464, radius of interaction R = .5, duration of the
simulation 180 time units, ∆t = .02 time unit.
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a cost reduction of four orders of magnitude compared with the particle simulations.
Since we have to take an average over many particle simulations, the cost reduction is
even larger.

In figure 7.13, we use the same Riemann problem to set the initial position as in
figure 7.6 both with d = 1 (4.39). We use a larger domain in x (L = 20 space units)
in order to avoid the effect of the periodic boundary condition. The upwind scheme
and the semi-conservative method are clearly not in accordance with the particle sim-
ulations. Moreover, the splitting method is in in better agreement with the particle
simulation since the shock speed is closer to the values given by the particle simulations
than that predicted by the conservative scheme.

Finally, our last simulations concerns a contact discontinuity. We simply initialize
with:

(ρl, θl) = (1, 1) , (ρr, θr) = (1,−1) , d = 0.2 . (5.4)

i.e. we reflect the angle with respect to the x-axis across the middle point x = 5.
A natural solution for this problem is the contact discontinuity propagating at speed
c cos(1):

ρ(t, x) = 1 , θ(t, x) = θ0(x− c cos(1)t), (5.5)

with θ0(x) = −1 when x < 5 and θ0(x) = 1 when x > 5. This is the solution provided
by the conservative scheme (figure 7.14). But surprisingly, the splitting method and
the particle simulation agree on a different solution. Indeed, the solutions given by
the particles and the splitting method are in fairly good agreement with each other,
which seems to indicate that the “physical solution” to the contact problem (5.4) is
not given by the conservative formulation (5.5) but by a much more complex profile.
The constraint of unit speed drastically changes the profile of the solution compared
with what would be found for a standard system of conservative laws.
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Figure 7.11: The particle density in space ρ computed with particle simulations (left)
and the macroscopic equations (right). We initialize with a Riemann problem (5.3).
Numerical parameters for the particle simulations: N = 2.106 particles, ∆t = .01,
ε = 1/10, R = .5, Lx = Ly = 10, we take a mean over 10 computations. Numerical
parameters for the macroscopic model: ∆t = .01, ∆x = .025 (CFL=0.416). We use
the splitting method. The simulations are run during 2 time units.
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represent the density ρ, in green the speed angle θ and in red the variance of the speed
angle distribution. The parameters are the same as in figure 7.11. We only change
the representation of the solution (1D-representation). The simulation is run during 2
time units as in figure 7.11.
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Figure 7.13: The solution of a Riemann problem (4.39) with d = 1 computed using the
macroscopic model and particle simulations of the microscopic model (see figure 7.12).
Numerical parameters for the macroscopic model: ∆t = .01, ∆x = .025 (CFL=0.778).
Numerical parameters for the particle simulation: N = 2.106 particles, ∆t = .02,
ε = .1, R = .5, Lx = 20 and Ly = 1. We take a mean over 50 simulations. The
simulations are run during 6 time units. Since d = 1, fluctuations are higher (see figure
7.9), we have to increase the density of particles to reduce this effect.
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Figure 7.14: The solution of the Riemann problem (5.4) computed with the conserva-
tive method (top), the splitting method (down) and with particle simulations (dots).
Numerical parameters for the macroscopic model: ∆t = .01, ∆x = .025 (CFL=0.416).
Numerical parameters for the particle simulations: N = 106 particles, ∆t = .01,
ε = 1/10, R = .5, Lx = 10, Ly = 1. We take a mean over 100 simulations. The
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6 Conclusion

In this work, we have numerically studied both the microscopic Vicsek model and its
macroscopic version [13]. Due to the geometric constraint that the velocity should be
of norm one, the standard theory of hyperbolic systems is not applicable. Therefore,
we have proposed several numerical schemes to solve it. By comparing the numerical
simulations of the microscopic and macroscopic equations, it appears that the scheme
based on a relaxation formulation of the model, used in conjunction with a splitting
method is in good agreement with particle simulations. The other schemes do not show
a similar good agreement. In particular, with an initial condition given by a contact
discontinuity, the splitting method and the microscopic model provide a similar solution
which turn to be much more complex than could be expected.

These results confirm the relevance of the macroscopic Vicsek model. Since the CPU
time is much lower with the macroscopic equation, the macroscopic Vicsek model is
an effective tool to simulate the Vicsek dynamics in a dense regime of particles.

Many problems are still open concerning the macroscopic Vicsek model. We have
seen that the splitting method gives results which are in accordance with particle
simulations. But, we have to understand why this particular scheme captures well
the particle dynamics better than the other schemes. Since the macroscopic equation
has original characteristics, this question is challenging. Another point concerns the
particle simulations. We have seen that the particles density has a strong effect on
the variance of the velocity distribution. When the density is low, the variance is
larger. The macroscopic equation does not capture this effect since the variance of the
distribution is constant. Works in progress aims at taking into account this density
effect.
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Appendix A : The coefficients c1, c2 and λ

The analytical expression of the coefficient c1 involved the distribution of the local
equilibrium MΩ (5.1). The two others coefficients (c2 and λ) involve also the solution
g of the following elliptic equation:

− (1− x2) ∂x[ex/d(1− x2)∂xg] + ex/dg = −(1− x2)3/2ex/d, (6.1)

on the interval x ∈ [−1, 1],
If we define the function h = g√

1−x2
and M(x) = exp(x

d
), these macroscopic coeffi-

cients can be written as:

c1 = < cos θ > |M =
∫ π

0 cos θM(cos θ) sin θ dθ
∫ π

0 M(cos θ) sin θ dθ
, (6.2)

c2 = < cos θ > |sin2 θ hM =
∫ π

0 cos θ sin2 θ h(cos θ)M(cos θ) sin θ dθ∫ π
0 sin2 θ h(cos θ)M(cos θ) sin θ dθ

, (6.3)

λ = d. (6.4)

In the above expressions, we can see that 0 ≤ c1, c2 ≤ 1.
Now we are going to explore two asymptotics of g when the parameter d is small

or large.

Lemma 6.1 Let g be the solution of equation (6.1). We have the asymptotics:

g
d→0∼ d

[
asin(x)− π

2

]
+ o(d), (6.5)

g
d→∞∼ −1

2

√
1− x2 +

1
12 d

x
√

1− x2 + o
(1
d

)
. (6.6)

Proof. Introducing the Hilbert space:

V = {g | (1− µ2)−1/2g ∈ L2(−1, 1), (1− µ2)1/2∂µg ∈ L2(−1, 1)}

we have already seen in [13] that there exists a unique solution g of (6.1). Moreover
this solution is negative.

To derive the asymptotic behaviour of g depending on d, we first develop (6.1):

∂x[(1− x2)∂xg] + (1− x2)
1
d
∂xg −

g

1− x2
= (1− x2)1/2. (6.7)

When d→ 0, we have:
∂xg = 0

on the interval [−1 + ε, 1 − ε] for all ε > 0. Since g belongs to V , we also have the
boundary condition g(−1) = g(1) = 0, so g converge to 0 when d→ 0.
To derive the next order of convergence in the limit d→ 0, we normalize g with g = dg̃,
which gives:

d ∂x[(1− x2)∂xg̃] + (1− x2)∂xg̃ − d
g̃

1− x2
= (1− x2)1/2. (6.8)
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In the limit d→ 0, we deduce that:

(1− x2)∂xg̃ = (1− x2)1/2, (6.9)

which has an explicit solution: g̃ = asin(x) + c. Since g̃ ≤ 0, we have c ≤ −π
2
.

Numerically, we in fact find that c = −π
2

but the proof is still open.
This formally proves (6.5).

When d→ +∞, (6.7) gives:

∂x[(1− x2)∂xg0]−
g0

1− x2
= (1− x2)1/2. (6.10)

A simple calculation shows that g0 = −1
2

√
1− x2 is a solution of (6.10).

To derive the next order of convergence, we look at the difference v = d(g− g0), which
satisfies (see (6.7) and (6.10)):

∂x[(1− x2)∂xv] + (1− x2)
1
d
∂xv −

v

1− x2
= −(1− x2) ∂xg0.

In the limit d→ +∞, v satisfies:

∂x[(1− x2)∂xv]− v

1− x2
= −1

2
x
√

1− x2. (6.11)

A simple calculation shows that v = 1
12
x
√

1− x2 is solution of (6.11).
Therefore we formally have the expression (6.6) in the proposition.

In figure 7.15, we numerically compute the function g (6.1). We use a finite element
method with a space step ∆x = 10−3. The two asymptotics of g when d → 0 and
d→ +∞ are computed in figure 7.16.

Proposition 6.2 The two coefficients c1 and c2 defined (resp.) by the equations (6.2)
and (6.3) satisfy the following asymptotics:

c1
d→0∼ 1− d+O(d2) (6.12)

c1
d→+∞∼ 1

3d
+O

( 1
d2

)
(6.13)

c2
d→∞∼ 1

6d
+ o

(1
d

)
. (6.14)

Proof. We have an explicit expression for the coefficient c1 using the change of
unknowns x = cos(θ):

c1 = coth
(1
d

)
− d, (6.15)

where coth(s) = es+e−s

es−e−s
. The expressions of (6.12) and (6.13) are simply deduced by a

Taylor expansion of the last expression.
For the coefficient c2, we insert the development of g (6.6) in expression (6.3).
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Remark 6.1 The behaviour of c2 when d→ 0 is more difficult to analyze. The density
probability sin θ hM used in formula (6.3) becomes singular in this limit. Nevertheless,
due to the expression of MΩ, the density converges to a Dirac delta at 0 which explains
why c2

d→0∼ 1. To capture the next order of convergence, we need to find the second
order correction of g in the limit d → 0 which is not available. However, numerically
we find that:

c2
d→0∼ 1− 2d+ o(d).

In figure 7.17 and 7.18, we numerically compute the coefficients c1, c2, c2/c1, λ/c1 and
theirs asymptotics.
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proposition 6.2) computed with ∆x = 10−3.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

c 2
/c

1

d

c2/c1
asymptotic

0

10

20

30

40

50

60

70

0 1 2 3 4 5

la
m

bd
a/

c 1

d

lambda/c1
asymptotic

Figure 7.18: The ratio c2/c1 and λ/c1 and their two asymptotics (black lines) (see
proposition 6.2) computed with ∆x = 10−3.



240 Numerical schemes for particle simulations

Appendix B : Special solution of the MV model

In this appendix, a vortex configuration is exhibited as a stationary solution of the
MV model (2.4)-(2.5)-(2.6) in dimension 2. A stationary state of the MV model has
to satisfy:

∇x · (ρΩ) = 0,

c(Ω · ∇x)Ω + λ (Id− Ω⊗ Ω)∇xρ
ρ

= 0.
(6.16)

Introducing the polar coordinates, ρ(r, θ), Ω(r, θ) = fr(r, θ)~er + fθ(r, θ)~eθ, where ~er =
(cos θ, sin θ)T and ~eθ = (− sin θ, cos θ)T , we are able to formulate the proposition:

Proposition 6.3 The following initial condition is a stationary state of the MV model
(6.16):

ρ(r) = C rc/λ , Ω = ~eθ, (6.17)

where C is a constant.

Proof. With the expression of ρ and Ω given by (6.17), the divergence of the mass is
zero and the gradient of ρ is orthogonal to Ω, therefore the system (6.16) reduces to:

c(Ω · ∇x)Ω + λ
∇xρ
ρ

= 0, (6.18)

or in polar coordinates:

c
1
r
∂θ ~eθ + λ

ρ(r)
ρ(r)

~er = 0.

Since ∂θ~eθ = −~er, we can easily check that the solution of this equation is given by:
ρ(r) = C rc/λ.

Appendix C : Numerical schemes for particle simu-
lations

In the limit ε → 0, an explicit Euler method for the differential system (2.1)-(2.2)
impose a restriction time step condition of 1

ε
∆t < 1. Therefore, we develop an implicit

scheme for this system. The idea is to go back to the original Vicsek model (see [13]).
We use the formulation:

ωn+1 − ωn
∆t

= (Id− ωn+1/2 ⊗ ωn+1/2)(ω̄n − ωn) (6.19)

where ωn+1/2 = ωn+ωn+1

|ωn+ωn+1| . When ∆t = 1, we recover exactly the original Vicsek model
[28]. (6.19) can in fact be solved explicitly. First, we have to see that ωn+1 belongs
to the unit circle (i.e. |ωn+1| = 1). Then, since ωn+1 − ωn is an orthogonal projection
of ω̃n = ∆t(ω̄n − ωn), ωn+1 and ωn are on the circle C with center B = ωn + ω̃n

2
and

radius
∣∣∣ ω̃n

2

∣∣∣. This fully defines ωn+1 since ωn and ωn+1 are the two intersection points
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of the unit circle and the circle C. Denoting θ the angle of the unit vector ω, we easily
check that we have in terms of angles:

θn+1 = θn + 2 ̂(ωn, B).

To take into account the effect of the noise, we simply add a random variable:

θn+1 = θn + 2 ̂(ωn, B) +
√

2d∆t ǫn

where ǫn is a standard normal distribution independent of θn.

Algorithm used to solve a Riemann problem with particles.
We summarize below the different steps to numerically solve a Riemann problem,

that is a discontinuity between two equilibrium states:

1. Choose a Riemann problem (ρl, θl) and (ρr, θr).

2. Initiate the particles (xk, ωk)i=1..N according to the distributions ρlMΩl and ρrMΩr .

3. Let evolve the particles in time using the time-discretization (6) of equation (2.2).

4. Compute the mass ρ and the direction of the flux Ω using Particle-In-Cell method
[18] in order to compare the simulation with the one of the MV model.
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Part III

Homogenization theory





Chapter 8

Random integrals and correctors in
homogenization

This chapter has given an article written in collaboration with G. Bal, J. Garnier and
V. Perrier, and published in the journal Asymptotic Analysis: Random integrals and
correctors in homogenization, Asymptot. Anal., 59 (2008), no. 1, 1–26.

Abstract. This chapter concerns the homogenization of a one-dimensional elliptic
equation with oscillatory random coefficients. It is well-known that the random solution
to the elliptic equation converges to the solution of an effective medium elliptic equation
in the limit of a vanishing correlation length in the random medium. It is also well-
known that the corrector to homogenization, i.e. the difference between the random
solution and the homogenized solution, converges in distribution to a Gaussian process
when the correlations in the random medium are sufficiently short-range. Moreover,
the limiting process may be written as a stochastic integral with respect to standard
Brownian motion. We generalize the result to a large class of processes with long-range
correlations. In this setting, the corrector also converges to a Gaussian random process,
which has an interpretation as a stochastic integral with respect to fractional Brownian
motion. Moreover, we show that the longer the range of the correlations, the larger is
the amplitude of the corrector. Derivations are based on a careful analysis of random
oscillatory integrals of processes with long-range correlations. We also make use of the
explicit expressions for the solutions to the one-dimensional elliptic equation.

Keywords. Homogenization, Partial Differential Equations with random coeffi-
cients, Long-range memory effects, Central limit, Gaussian processes
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1 Introduction

Homogenization theory for second-order elliptic equations with highly oscillatory co-
efficients is well developed, both for periodic and random coefficients; see e.g. [2, 6].
The analysis of correctors, which measure the difference between the heterogeneous
solution and the homogenized solution, is more limited.

In the periodic setting, the solution of so-called cell problems allow us to obtain
explicit expressions for the correctors. Denoting by ε the size of the cell of periodicity
of the oscillatory coefficients, the amplitude of the corrector for a second-order equation
is typically of order ε [2, 6].

In the random setting, the situation is complicated by the fact that the local prob-
lems are no longer defined on compact cells. And as it turns out, the amplitude of the
correctors is no longer of size ε in general, where ε now measures the correlation length
of the random heterogeneities. Relatively few general estimates are available in the
literature on the size of the correctors; see [13]. For the one-dimensional second-order
elliptic equation (see (2.1) below), much more is known because of the availability of
explicit expressions for the solutions (see (2.3) below). The analysis of correctors was
taken up in [4], where it is shown that the correctors’ amplitude is of order

√
ε provided

that the random coefficients have sufficiently short-range correlations so that, among
other properties, their correlation function is integrable. Moreover, the corrector may
be shown to converge in distribution in the space of continuous paths to a Gaussian
process, which may be written as a stochastic integral with respect to Brownian mo-
tion. This result is recalled in Theorem 2.5 below. The work [4] also proposes error
estimates for the corrector in the case of longer-range correlations, when the correlation
function of the random coefficients is no longer integrable. The limiting behavior of
the corrector is however not characterized.

This paper reconsiders the analysis of correctors for the one-dimensional equation
when the correlation function of the random coefficients is no longer integrable, and
more precisely takes the form R(τ) ∼ τ−α as τ → ∞ for some 0 < α < 1. Longer-
range correlations are modeled by smaller values of α. A prototypical example of a
continuous, stationary process with long-range correlation is a normalized Gaussian
process gx with a correlation function Rg(τ) = E{gxgx+τ} that decays as τ−α. The
random coefficients for the elliptic equation we consider in this paper are mean zero
stationary processes that can be written as ϕ(x) = Φ(gx), where Φ is a bounded
function. Under appropriate assumptions on Φ, the correlation function of ϕ also
decays as τ−α as τ →∞.

For the random coefficients described above, we show that the corrector to homog-
enization has an amplitude of order εα and converges in distribution to a Gaussian
process that may be represented as a stochastic integral with respect to a fractional
Brownian motion WHt with Hurst index H = 1 − α

2
. The limit α → 1 thus converges

to the case of integrable correlation function. Note however that in the limit of very
long-range correlations as α → 0, the influence of the corrector becomes more and
more important. The main tool in our derivation is a careful convergence analysis
in distribution of oscillatory integrals of the form

∫ 1
0 K(x, t)ε−

α
2 ϕ( t

ε
)dt to a stochastic

integral with respect to fractional Brownian motion, where K(x, t) is a known kernel
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and ϕ(t) is a random process with long-range correlations. This analysis extends weak
convergence results obtained for sums of random variables or for integrals of random
processes with long-range correlations in [12, 9].

The paper is structured as follows. Section 2 presents the heterogeneous and homo-
geneous one-dimensional elliptic equations and describes our hypotheses on the random
coefficients. The section concludes by a statement of Theorem 2.4, which is our main
result. The analysis of random oscillatory integrals of the form

∫ 1
0 F (t)ε−

α
2ϕ( t

ε
)dt is

carried out in section 3. Theorem 3.1 shows their convergence to stochastic integrals
with respect to fractional Brownian motion WHt . Section 4 shows how the results
of section 3 extend to the analysis of the processes of the form

∫ 1
0 K(x, t)ε−

α
2ϕ( t

ε
)dt

that arise in the analysis of the correctors to homogenization. The convergence in
distribution in the space of continuous paths of such processes to a Gaussian processes
is summarized in theorem 4.1. The theoretical results are backed up by numerical
simulations in section 5. After a detailed description of the construction of random
processes with given long-range correlations, we demonstrate the convergence of ran-
dom oscillatory integrals and of homogenization correctors to their appropriate limits
as stochastic integrals with respect to fractional Brownian motion. Some concluding
remarks are given in section 7.

2 One-dimensional homogenization

2.1 Homogenization problem

We are interested in the solution to the following elliptic equation with random coeffi-
cients

− d

dx

(
a
(
x

ε
, ω
)
d

dx
uε
)

= f(x), 0 ≤ x ≤ 1, ω ∈ Ω,

uε(0, ω) = 0, uε(1, ω) = q.

(2.1)

Here a(x, ω) is a stationary ergodic random process such that 0 < a0 ≤ a(x, ω) ≤ a−1
0

a.e. for (x, ω) ∈ (0, 1)×Ω, where (Ω,F ,P) is an abstract probability space. The source
term f ∈ W−1,∞(0, 1) and q ∈ R. Classical theories for elliptic equations then show
the existence of a unique solution u(·, ω) ∈ H1(0, 1) P−a.s.

As the scale of the micro-structure ε converges to 0, the solution uε(x, ω) converges
P-a.s. weakly in H1(0, 1) to the deterministic solution ū of the homogenized equation

− d

dx

(
a∗

d

dx
ū
)

= f(x), 0 ≤ x ≤ 1,

ū(0) = 0, ū(1) = q.

(2.2)

The effective diffusion coefficient is given by a∗ =
(
E{a−1(0, ·)}

)−1
, where E is mathe-

matical expectation with respect to P. See e.g. [6, 7, 10].
The above one-dimensional boundary value problems admit explicit solutions. In-
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troducing aε(x) = a(x
ε
) and F (x) =

∫ x
0 f(y)dy, we have:

uε(x, ω) = cε(ω)
∫ x

0

1
aε(y, ω)

dy −
∫ x

0

F (y)
aε(y, ω)

dy, cε(ω) =
q +

∫ 1

0

F (y)
aε(y, ω)

dy

∫ 1

0

1
aε(y, ω)

dy
,(2.3)

ū(x) = c∗
x

a∗
−
∫ x

0

F (y)
a∗

dy, c∗ = a∗q +
∫ 1

0
F (y)dy. (2.4)

Our aim is to characterize the behavior of uε − ū as ε→ 0.

2.2 Hypothesis on the random process a

In order to characterize the behavior of the corrector uε−ū as ε→ 0, we need additional
assumptions on the random process a(x, ω). Let us define the mean zero stationary
random process

ϕ(x, ω) =
1

a(x, ω)
− 1
a∗
. (2.5)

Hypothesis [H] We assume that ϕ is of the form

ϕ(x) = Φ(gx), (2.6)

where Φ is a bounded function such that
∫

Φ(g)e−
g2

2 dg = 0, (2.7)

and gx is a stationary Gaussian process with mean zero and variance one. The auto-
correlation function of g:

Rg(τ) = E
{
gxgx+τ

}
,

is assumed to have a heavy tail of the form

Rg(τ) ∼ κgτ−α as τ →∞, (2.8)

where κg > 0 and α ∈ (0, 1).

Remark 2.1 This hypothesis is satisfied by a large class of random coefficients. For
instance, if we take Φ = sgn, then ϕ models a two-component medium. If we take
Φ = tanh or arctan, then ϕ models a continuous medium with bounded variations.

The autocorrelation function of the random process a has a heavy tail, as stated in the
following proposition.

Proposition 2.1 The process ϕ defined by (2.6) is a stationary random process with
mean zero and variance V2. Its autocorrelation function

R(τ) = E{ϕ(x)ϕ(x+ τ)} (2.9)
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has a heavy tail of the form

R(τ) ∼ κτ−α as τ →∞, (2.10)

where κ = κgV
2

1 ,

V1 = E
{
g0Φ(g0)

}
=

1√
2π

∫
gΦ(g)e−

g2

2 dg , (2.11)

V2 = E
{
Φ2(g0)

}
=

1√
2π

∫
Φ2(g)e−

g2

2 dg . (2.12)

Proof The fact that ϕ is a stationary random process with mean zero and variance V2

is straightforward in view of the definition of ϕ. In particular, Eq. (2.7) implies that
ϕ has mean zero.
For any x, τ , the vector (gx, gx+τ)T is a Gaussian random vector with mean (0, 0)T and
2× 2 covariance matrix:

C =


 1 Rg(τ)

Rg(τ) 1


 .

Therefore the autocorrelation function of the process ϕ is

R(τ) = E
{

Φ(gx)Φ(gx+τ )
}

=
1

2π
√

detC

∫ ∫
Φ(g1)Φ(g2) exp

(
− gTC−1g

2

)
d2g

=
1

2π
√

1−R2
g(τ)

∫ ∫
Φ(g1)Φ(g2) exp

(
− g2

1 + g2
2 − 2Rg(τ)g1g2

2(1− R2
g(τ))

)
dg1dg2 .

For large τ , the coefficient Rg(τ) is small and we can expand the value of the double
integral in powers of Rg(τ), which gives the autocorrelation function of ϕ.

To simplify notation, we no longer write the ω-dependence explicitly and we define
ϕε(x) = ϕ(x

ε
).

2.3 Analysis of the corrector

The purpose of this section is to show that the error term uε − ū has two different
contributions: integrals of random processes with long term memory effects and lower-
order terms. The analysis of integrals of the random processes with long term memory
effects is carried out in the next sections. The following lemma, whose proof can be
found in Section 4.2, provides an estimate for the magnitude of these integrals.

Lemma 2.2 Let ϕ(x) be a mean zero stationary random process of the form (2.6).
There exists K > 0 such that, for any F ∈ L∞(0, 1), we have

sup
x∈[0,1]

E

{∣∣∣∣
∫ x

0
ϕε(t)F (t)dt

∣∣∣∣
2}
≤ K‖F‖2∞εα . (2.13)

As a corollary, we obtain the following:
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Corollary 2.3 Let ϕ(x) be a mean zero stationary random process of the form (2.6)
and let f ∈W−1,∞(0, 1). The solutions uε of (2.3) and ū of (2.4) verify that:

uε(x)− ū(x) = −
∫ x

0
ϕε(y)F (y)dy + (cε − c∗) x

a∗
+ c∗

∫ x

0
ϕε(y)dy + rε(x), (2.14)

where
sup
x∈[0,1]

E{|rε(x)|} ≤ Kεα , (2.15)

for some K > 0. Similarly, we have that

cε − c∗ = a∗
∫ 1

0

(
F (y)−

∫ 1

0
F (z)dz − a∗q

)
ϕε(y)dy + ρε, (2.16)

where
E{|ρε|} ≤ Kεα , (2.17)

for some K > 0.

Proof We first establish the estimate for cε − c. We write

cε − c∗ =

∫ 1
0 F (y)

(
1
aε(y)
− 1
a∗

)
dy

∫ 1
0

1
aε(y)

dy
+
(
q +

1
a∗

∫ 1

0
F (y)dy

)( 1
∫ 1

0
1
aε(y)

dy
− 1

1
a∗

)
,

which gives (2.16) with

ρε =
a∗

∫ 1
0

1
aε(y)

dy

[
(a∗q +

∫ 1

0
F (y)dy)

(∫ 1

0
ϕε(y)dy

)2

−
∫ 1

0
F (y)ϕε(y)dy

∫ 1

0
ϕε(y)dy

]
.

Since
∫ 1

0
1
aε(y)

dy is bounded from below a.e. by a positive constant a0, we deduce from
Lemma 2.2 and the Cauchy-Schwarz estimate that E{|ρε|} ≤ Kεα. The analysis of
uε − ū follows along the same lines. We write

uε(x)− ū(x) = cε
∫ x

0

1
aε(y)

dy −
∫ x

0

F (y)
aε(y)

dy − c∗ x
a∗

+
∫ x

0

F (y)
a∗

dy,

which gives (2.14) with

rε(x) = (cε − c∗)
∫ x

0
ϕε(y)dy = rε1(x) + rε2(x),

where we have defined

rε1(x) =
[
a∗
∫ 1

0

(
F (y)−

∫ 1

0
F (z)dz − a∗q

)
ϕε(y)dy

] [∫ x

0
ϕε(y)dy

]
,

rε2(x) = ρε
[∫ x

0
ϕε(y)dy

]
.

The Cauchy-Schwarz estimate and Lemma 2.2 give that E{|rε1(x)|} ≤ Kεα. Besides,
ϕε is bounded by ‖Φ‖∞, so |rε2(x)| ≤ ‖Φ‖∞|ρε|. The estimate on ρε then shows that
E{|rε2(x)|} ≤ Kεα.

The previous corollary shows that the error term uε(x)− ū(x) involves integrals of
random coefficients of order εα/2 up to lower-order terms of order εα.
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2.4 Homogenization theorem

The results we obtain in the following sections allow for the following characterization
of the correctors.

Theorem 2.4 Let uε and ū be the solutions in (2.3) and (2.4), respectively, and let
ϕ(x) be a mean zero stationary random process of the form (2.6). Then uε − ū is a
random process in C(0, 1), the space of continuous functions on [0, 1]. We have the
following convergence in distribution in the space of continuous functions C(0, 1):

uε(x)− ū(x)
ε
α
2

distribution−−−−−−−→
√

κ

H(2H − 1)
UH(x), (2.18)

where

UH(x) =
∫

R

K(x, t)dWHt , (2.19)

K(x, t) = 1[0,x](t)
(
c∗ − F (t)

)
+ x

(
F (t)−

∫ 1

0
F (z)dz − a∗q

)
1[0,1](t). (2.20)

Here 1[0,x] is the characteristic function of the set [0, x] and WHt is a fractional Brow-
nian motion with Hurst index H = 1− α

2
.

The proof of this theorem is postponed to Section 4.3. For the convenience of
the reader, we present a rapid overview of the integration theory with respect to a
fractional Brownian motion. The fractional Brownian motion WHt is a mean zero
Gaussian process with autocorrelation function

E{WHt WHs } =
1
2

(
|t|2H + |s|2H − |s− t|2H

)
. (2.21)

In particular, the variance of WHt is E{|WHt |2} = |t|2H . The increments of WHt are
stationary but not independent forH 6= 1

2
. Moreover, WHt admits the following spectral

representation

WHt =
1

2πC(H)

∫

R

eiξt − 1

iξ|ξ|H− 1

2

dŴ (ξ), t ∈ R, (2.22)

where

C(H) =
( 1

2H sin(πH)Γ(2H)

)1/2

, (2.23)

and Ŵ is the Fourier transform of a standard Brownian motion W , that is, a complex
Gaussian measure such that:

E
{
dŴ (ξ)dŴ (ξ′)

}
= 2πδ(ξ − ξ′)dξdξ′ .

Note that the constant C(H) is defined such that E{(WH1 )2} = 1 because we have that

C2(H) =
1

2π

∫

R

|eiξ − 1|2
|ξ|2H+1

dξ .
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The integral with respect to the fractional Brownian motion is defined for a large
class of deterministic functions F (see [11] for an extensive review). Functions in
L1(R) ∩ L2(R) are in the class of integrable functions when H ∈ (1

2
, 1), which is the

range of values of H considered in Theorem 2.4. Using the representation (2.22), we
have, in distribution, for any F ∈ L1(R) ∩ L2(R),

∫

R

F (t)dWHt =
1

2πC(H)

∫

R

F̂ (ξ)

|ξ|H− 1

2

dŴ (ξ) ,

where the Fourier transform F̂ (ξ) of a function F (t) is defined by

F̂ (ξ) =
∫

R

eitξF (t)dt . (2.24)

When F,G ∈ L1(R) ∩ L2(R), the random vector (
∫

R
F (t)dWHt ,

∫
R
G(t)dWHt ) is a

mean zero Gaussian vector with covariance

E

{ ∫

R

F (t)dWHt
∫

R

G(t)dWHt

}
=

1
2πC(H)2

∫

R

F̂ (ξ)Ĝ(ξ)
|ξ|2H−1

dξ .

As a consequence, in Theorem 2.4, the limit process UH(x) is a mean zero Gaussian
process with autocorrelation function given by

E
{
UH(x)UH(y)

}
=

1
2πC(H)2

∫

R

K̂(x, ξ)K̂(y, ξ)
|ξ|2H−1

dξ , (2.25)

where K̂(x, ξ) is the Fourier transform with respect to t of K(x, t). Finally, using the
notation ∫ x

0
F (s)dWHt =

∫

R

1[0,x](s)F (s)dWHt ,

the limit process UH(x) defined by (2.19) can also be written as

UH(x) = c∗WHx −
∫ x

0
F (t)dWHt + x

∫ 1

0
F (t)dWHt − x

(∫ 1

0
F (z)dz − a∗q

)
WH1 .

The result of Theorem 2.4 should be contrasted with the convergence result for
processes with short term memory:

Theorem 2.5 Let uε and ū be as in Theorem 2.4 and let ϕ(x) be a mean zero station-
ary random process of the form (2.6). If the correlation function Rg of g is integrable
(instead of being equivalent to τ−α at infinity), then R is also integrable. The corrector
uε − ū is a random process in C[0, 1] and we have the following convergence in C(0, 1)

uε(x)− ū(x)√
ε

distribution−−−−−−−→
(

2
∫ ∞

0
R(τ)dτ

)1/2

U(x), (2.26)

where
U(x) =

∫

R

K(x, t)dWt, (2.27)

K(x, t) is given by (2.20), and Wt is standard Brownian motion.
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The limit process U(x) can also be written in the form

U(x) = c∗Wx −
∫ x

0
F (t)dWt + x

∫ 1

0
F (t)dWt − x

(∫ 1

0
F (z)dz − a∗q

)
W1 .

Such a result is based on standard techniques of approximation of oscillatory integrals
[8] and was first derived in [4]. In the next sections, we focus our attention to the anal-
ysis of random variables or random processes defined in terms of integrals of random
processes with long-term memory.

3 Convergence of random integrals

In this section, we aim at proving the following theorem.

Theorem 3.1 Let ϕ be of the form (2.6) and let F ∈ L1(R) ∩ L∞(R). We define the
mean zero random variable MεF by

MεF = ε−
α
2

∫

R

ϕε(t)F (t)dt . (3.28)

Then the random variable MεF converges in distribution as ε → 0 to the mean zero
Gaussian random variable M0

F defined by

M0
F =

√
κ

H(2H − 1)

∫

R

F (t)dWHt , (3.29)

where WHt is a fractional Brownian motion with Hurst index H = 1− α
2
.

The limit random variable M0
F is a Gaussian random variable with mean zero and

variance

E{|M0
F |2} =

κ

H(2H − 1)
× 1

2πC(H)2

∫

R

|F̂ (ξ)|2
|ξ|2H−1

dξ . (3.30)

In order to prove Theorem 3.1, we show in Subsection 3.1 that the variance of MεF
converges to the variance of M0

F as ε→ 0. In Subsection 3.2, we prove convergence in
distribution by using the Gaussian property of the underlying process gx.

3.1 Convergence of the variances

We begin with a key technical lemma.

Lemma 3.2 1. There exist T,K > 0 such that the autocorrelation function R(τ) of
the process ϕ satisfies

|R(τ)− V 2
1 Rg(τ)| ≤ KRg(τ)2, for all |τ | ≥ T.

2. There exist T,K such that

|E{gxΦ(gx+τ )} − V1Rg(τ)| ≤ KR2
g(τ) for all |τ | ≥ T.
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Proof The first point is a refinement of what we proved in Proposition 2.1: we found
that the autocorrelation function of the process ϕ is

R(τ) =
1

2π
√

1−R2
g(τ)

∫ ∫
Φ(g1)Φ(g2) exp

(
− g2

1 + g2
2 − 2Rg(τ)g1g2

2(1− R2
g(τ))

)
dg1dg2 .

For large τ , the coefficient Rg(τ) is small and we can expand the value of the double
integral in powers of Rg(τ), which gives the result of the first item. The proof of the
second item follows along the same lines. We first write

E
{
gxΦ(gx+τ )

}
=

1

2π
√

1− R2
g(τ)

∫ ∫
g1Φ(g2) exp

(
− g2

1 + g2
2 − 2Rg(τ)g1g2

2(1− R2
g(τ))

)
dg1dg2 ,

and we expand the value of the double integral in powers of Rg(τ).

For F ∈ L1(R) ∩ L∞(R), we define the mean zero random variable Mε,gF by

Mε,gF = ε−
α
2

∫

R

g t
ε
F (t)dt . (3.31)

The purpose of this subsection is to determine the limits of the variances of the variables
MεF and Mε,gF .

Lemma 3.3 Let F ∈ L1(R) ∩ L∞(R) and let gx be the Gaussian random process
described in Hypothesis [H]. Then

lim
ε→0

E
{∣∣∣Mε,gF

∣∣∣
2}

=
κg2−αΓ(1−α

2
)√

πΓ(α
2
)

∫

R

|F̂ (ξ)|2
|ξ|1−α dξ . (3.32)

Proof We write the square of the integral as a double integral, which gives

E

{∣∣∣∣
∫

R

F (y)g y
ε
dy
∣∣∣∣
2}

=
∫

R2

Rg
(y − z

ε

)
F (y)F (z)dydz .

This implies the estimate
∣∣∣∣∣E
{∣∣∣Mε,gF

∣∣∣
2}−

∫

R2

κg
|y − z|αF (y)F (z)dydz

∣∣∣∣∣

≤
∫

R2

∣∣∣∣∣ε
−αRg

(y − z
ε

)
− κg
|y − z|α

∣∣∣∣∣ |F (y)||F (z)|dydz .

By (2.8), for any δ > 0, there exists Tδ such that, for all |τ | ≥ Tδ,
∣∣∣Rg(τ)− κgτ−α

∣∣∣ ≤ δτ−α .

We decompose the integration domain into three subdomains D1, D2, and D3:

D1 =
{

(y, z) ∈ R2 , |y − z| ≤ Tδε
}
,

D2 =
{

(y, z) ∈ R2 , Tδε < |y − z| ≤ 1
}
,

D3 =
{

(y, z) ∈ R2 , 1 < |y − z|
}
.
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First,
∫

D1

∣∣∣∣∣ε
−αRg

(y − z
ε

)
− κg
|y − z|α

∣∣∣∣∣ |F (y)||F (z)|dydz

≤
∫

D1

∣∣∣∣ε
−αRg

(y − z
ε

)∣∣∣∣ |F (y)||F (z)|dydz+
∫

D1

κg|y − z|−α|F (y)||F (z)|dydz

≤ 2ε−α‖Rg‖∞
∫

R

∫ Tδε

0
|F (y + z)|dy|F (z)|dz + 2κg

∫

R

∫ Tδε

0
y−α|F (y + z)|dy|F (z)|dz

≤ 2ε−α‖Rg‖∞‖F‖∞‖F‖1
∫ Tδε

0
dy + 2κg‖F‖∞‖F‖1

∫ Tδε

0
y−αdy

≤ ‖F‖∞‖F‖1
(

2TδRg(0) +
2κgT 1−α

δ

1− α

)
ε1−α ,

where we have used the fact that Rg(τ) is maximal at τ = 0, and the value of the
maximum is equal to the variance of g. Second,
∫

D2

∣∣∣∣∣ε
−αRg

(y − z
ε

)
− κg
|y − z|α

∣∣∣∣∣ |F (y)||F (z)|dydz ≤ δ
∫

D2

|y − z|−α|F (y)||F (z)|dydz

≤ 2δ‖F‖∞‖F‖1
∫ 1

Tδε
y−αdy

≤ 2δ‖F‖∞‖F‖1
1− α ,

and finally
∫

D3

∣∣∣∣∣ε
−αRg

(y − z
ε

)
− κg
|y − z|α

∣∣∣∣∣ |F (y)||F (z)|dydz ≤ δ
∫

D3

|y − z|−α|F (y)||F (z)|dydz

≤ δ
∫

D3

|F (y)||F (z)|dydz

≤ δ‖F‖21 .
Therefore, there exists K > 0 such that

lim sup
ε→0

∣∣∣∣∣E
{∣∣∣Mε,gF

∣∣∣
2}−

∫

R2

κg
|y − z|αF (y)F (z)dydz

∣∣∣∣∣ ≤ K
(
‖F‖2∞ + ‖F‖21

)
δ .

Since this holds true for any δ > 0, we get

lim
ε→0

∣∣∣∣∣E
{∣∣∣Mε,gF

∣∣∣
2}−

∫

R2

κg
|y − z|αF (y)F (z)dydz

∣∣∣∣∣ = 0 .

We recall that the Fourier transform of the function |x|−α is

|̂x|−α(ξ) = cα|ξ|α−1 , cα =
∫

R

eit

|t|αdt =
√
π21−αΓ(1−α

2
)

Γ(α
2
)

. (3.33)

Using the Parseval equality, we find that
∫

R2

1
|y − z|αF (y)F (z)dydz =

cα
2π

∫

R

|F̂ (ξ)|2
|ξ|1−α dξ .
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The right-hand side is finite, because (i) F ∈ L1(R) so that F̂ (ξ) ∈ L∞(R), (ii)
F ∈ L1(R) ∩ L∞(R) so F ∈ L2(R) and F̂ ∈ L2(R), and (iii) α ∈ (0, 1).

Lemma 3.4 Let F ∈ L1(R) ∩ L∞(R) and let the process ϕ(x) be of the form (2.6).
Then we have:

lim
ε→0

E

{
(MεF − V1M

ε,g
F )2

}
= 0 .

Proof. We write the square of the integral as a double integral:

E

{
(MεF − V1M

ε,g
F )2

}
= ε−α

∫

R2

F (y)F (z)Q(
y

ε
,
z

ε
)dydz ,

where
Q(y, z) = E

{
Φ(gy)Φ(gz)− V1Φ(gy)gz − V1gyΦ(gz) + V 2

1 gygz

}
.

By Lemma 3.2 and (2.8), there exist K, T such that |Q(y, z)| ≤ K|y − z|−2α for all
|x− y| ≥ T . Besides, Φ is bounded and gx is square-integrable, so there exists K such
that, for all y, z ∈ R, |Q(y, z)| ≤ K. We decompose the integration domain R2 into
three subdomains D1, D2, and D3:

D1 =
{

(y, z) ∈ R2 , |y − z| ≤ Tε
}
,

D2 =
{

(y, z) ∈ R2 , T ε < |y − z| ≤ 1
}
,

D3 =
{

(y, z) ∈ R2 , 1 < |y − z|
}
.

We get the estimates
∣∣∣∣
∫

D1

F (y)F (z)Q(
y

ε
,
z

ε
)dydz

∣∣∣∣ ≤ K
∫

D1

|F (y)||F (z)|dydz

≤ 2K
∫

R

∫ Tε

0
|F (y + z)|dy|F (z)|dz

≤ 2K‖F‖∞‖F‖1Tε ,

∣∣∣∣
∫

D2

F (y)F (z)Q(
y

ε
,
z

ε
)dydz

∣∣∣∣ ≤ K
∫

D2

∣∣∣∣
y

ε
− z

ε

∣∣∣∣
−2α

|F (y)||F (z)dydz

≤ 2Kε2α
∫

R

∫ 1

Tε
y−2α|F (y + z)|dy|F (z)|dz

≤ 2K‖F‖1‖F‖∞ε2α
∫ 1

Tε
y−2αdy

≤ 2K‖F‖1‖F‖∞





1
1− 2α

ε2α if α <
1
2

| ln(Tε)|ε if α =
1
2

T 1−2α

2α− 1
ε if α >

1
2
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∣∣∣∣
∫

D3

F (y)F (z)Q(
y

ε
,
z

ε
)dydz

∣∣∣∣ ≤ K
∫

D3

∣∣∣∣
y

ε
− z

ε

∣∣∣∣
−2α

|F (y)||F (z)dydz

≤ 2Kε2α
∫

R

∫ ∞

1
y−2α|F (y + z)|dy|F (z)|dz

≤ 2Kε2α
∫

R

∫ ∞

1
|F (y + z)|dy|F (z)|dz

≤ 2K‖F‖21ε2α ,

which gives the desired result:

lim
ε→0

ε−α
∣∣∣∣
∫

R2

F (y)F (z)Q(
y

ε
,
z

ε
)dydz

∣∣∣∣ = 0 .

The following proposition is now a straightforward corollary of Lemmas 3.3 and 3.4
and the fact that κ = κgV

2
1 .

Proposition 3.5 Let F ∈ L1(R) ∩ L∞(R) and let the process ϕ(x) be of the form
(2.6). Then we find that:

lim
ε→0

E
{∣∣∣MεF

∣∣∣
2}

=
κ2−αΓ(1−α

2
)√

πΓ(α
2
)

∫

R

|F̂ (ξ)|2
|ξ|1−α dξ . (3.34)

Remark 3.1 The limit of the variance of MεF is (3.34) and the variance of M0 is
(3.30). These two expressions are reconciled by using the identity 1−α = 2H − 1 and
standard properties of the Γ function, namely Γ(H)Γ(H + 1

2
) = 21−2H

√
πΓ(2H) and

Γ(1−H)Γ(H) = π(sin(πH))−1. We get

2−αΓ(1−α
2

)√
πΓ(α

2
)

=
2−2+2HΓ(H − 1

2
)√

πΓ(1−H)
=

2−2+2HΓ(H + 1
2
)√

π(H − 1
2
)Γ(1−H)

=
Γ(2H) sin(πH)
π(2H − 1)

.

By (2.23) this shows that

2−αΓ(1−α
2

)√
πΓ(α

2
)

2π =
1

H(2H − 1)C(H)2
,

and this implies that the variance (3.30) ofM0
F is exactly the limit (3.34) of the variance

of MεF :

lim
ε→0

E
{∣∣∣MεF

∣∣∣
2}

= E
{∣∣∣M0

F

∣∣∣
2}
.

3.2 Convergence in distribution

We can now give the proof of Theorem 3.1.
Step 1. The sequence of random variables Mε,gF defined by (3.31) converges in

distribution as ε→ 0 to

M0,g
F =

√
κg

H(2H − 1)

∫

R

F (t)dWHt .
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Since the random variable Mε,gF is a linear transform of a Gaussian process, it has
Gaussian distribution. Moreover, its mean is zero. The same statements hold true for
M0,g
F . Therefore, the characteristic functions of Mε,gF and M0,g

F are

E

{
eiλM

ε,g
F

}
= exp

(
−λ

2

2
E

{
(Mε,gF )2

})
, E

{
eiλM

0,g
F

}
= exp

(
−λ

2

2
E

{
(M0,g
F )2

})
,

where λ ∈ R. Convergence of the characteristic functions implies that of the distribu-
tions [5]. Therefore, it is sufficient to show that the variance of Mε,gF converges to the
variance of M0,g

F as ε→ 0. This follows from Lemma 3.3.
Step 2: MεF converges in distribution to M0

F as ε→ 0.
Let λ ∈ R. Since M0

F = V1M
0,g
F , we have

∣∣∣∣E
{
eiλM

ε
F

}
− E

{
eiλM

0
F

}∣∣∣∣ ≤
∣∣∣∣E
{
eiλM

ε
F

}
− E

{
eiλV1M

ε,g
F

}∣∣∣∣

+
∣∣∣∣E
{
eiλV1M

ε,g
F

}
− E

{
eiλV1M

0,g
F

}∣∣∣∣ . (3.35)

Since |eix − 1| ≤ |x| we can write
∣∣∣∣E
{
eiλM

ε
F

}
− E

{
eiλV1M

ε,g
F

}∣∣∣∣ ≤ |λ|E
{
|MεF − V1M

ε,g
F |
}
≤ |λ|E

{
(MεF − V1M

ε,g
F )2

}1/2
,

which goes to zero by the result of Lemma 3.4. This shows that the first term of the
right-hand side of (3.35) converges to 0 as ε → 0. The second term of the right-hand
side of (3.35) also converges to zero by the result of Step 1. This completes the proof
of Theorem 3.1.

4 Convergence of random processes

Let F1, F2 be two functions in L∞(0, 1). We consider the random process Mε(x) defined
for any x ∈ [0, 1] by

Mε(x) = ε−
α
2

(∫ x

0
F1(t)ϕε(t)dt+ x

∫ 1

0
F2(t)ϕε(t)dt

)
. (4.36)

With the notation (3.28) of the previous section, we have

Mε(x) = MεFx = ε−
α
2

∫

R

Fx(t)ϕε(t)dt ,

where
Fx(t) = F1(t)1[0,x](t) + xF2(t)1[0,1](t) (4.37)

is indeed a function in L1(R) ∩ L∞(R).

Theorem 4.1 Let ϕ be a random process of the form (2.6) and let F1, F2 ∈ L∞(0, 1).
Then the random process Mε(x) defined by (4.36) converges in distribution as ε → 0
in the space of the continuous functions C(0, 1) to the continuous Gaussian process

M0(x) =
√

κ

H(2H − 1)

∫

R

Fx(t)dWHt , (4.38)
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where Fx is defined by (4.37) and WHt is a fractional Brownian motion with Hurst
index H = 1− α

2
.

The limit random process M0 is a Gaussian process with mean zero and autocorrelation
function given by

E
{
M0(x)M0(y)

}
=

κ

H(2H − 1)
× 1

2πC(H)2

∫

R

F̂x(ξ)F̂y(ξ)
|ξ|2H−1

dξ . (4.39)

The proof of Theorem 4.1 is based on a classical result on the weak convergence of
continuous random processes [3]:

Proposition 4.2 Suppose (Mε)ε∈(0,1) are random processes with values in the space
of continuous functions C(0, 1) with Mε(0) = 0. Then Mε converges in distribution to
M0 provided that:

(i) for any 0 ≤ x1 ≤ . . . ≤ xk ≤ 1, the finite-dimensional distribution (Mε(x1), · · · ,Mε(xk))
converges to the distribution (M0(x1), . . . ,M0(xk)) as ε→ 0.

(ii) (Mε)ε∈(0,1) is a tight sequence of random processes in C(0, 1). A sufficient con-
dition for tightness of (Mε)ε∈(0,1) is the Kolmogorov criterion: ∃δ, β, C > 0 such
that

E
{∣∣∣Mε(s)−Mε(t)

∣∣∣
β} ≤ C|t− s|1+δ , (4.40)

uniformly in ε, t, s ∈ (0, 1).

We split the proof of Theorem 4.1 into two parts: in the next subsection, we prove the
point (i), and next, we prove (ii).

4.1 Convergence of the finite-dimensional distributions

For the proof of convergence of the finite-dimensional distributions, we want to show
that for each set of points 0 ≤ x1 ≤ · · · ≤ xk ≤ 1 and each Λ = (λ1, . . . , λk) ∈ Rk, we
have the following convergence result for the characteristic functions:

E

{
exp

(
i
k∑

j=1

λjM
ε(xj)

)}
ε→0−−−→ E

{
exp

(
i
k∑

j=1

λjM
0(xj)

)}
. (4.41)

Convergence of the characteristic functions implies that of the joint distributions [5].
Now the above characteristic function may be recast as

E

{
exp

(
i
k∑

j=1

λjM
ε(xj)

)}
= E

{
exp i

(
ε−
α
2

∫

R

ϕε(t)FΛ(t)dt
)}

, (4.42)

where

FΛ(t) =
( k∑

j=1

λj1[0,xj ](t)
)
F1(t) +

( k∑

j=1

λjxj

)
1[0,1](t)F2(t) .



264 Random integrals and correctors in homogenization

Since FΛ ∈ L∞(R) ∩ L1(R) when F1, F2 ∈ L∞(0, 1), we can apply Theorem 3.1 to
obtain that:

E

{
exp

(
i
k∑

j=1

λjM
ε(xj)

)}
ε→0−→ E

{
exp i

(√
κ

H(2H − 1)

∫

R

FΛ(t)dWHt

)}
,

which in turn establishes (4.41).

4.2 Tightness

It is possible to control the increments of the process Mε, as shown by the following
proposition.

Proposition 4.3 There exists K such that, for any F1, F2 ∈ L∞(0, 1) and for any
x, y ∈ [0, 1],

sup
ε∈(0,1)

E
{∣∣∣Mε(y)−Mε(x)

∣∣∣
2} ≤ K

(
‖F1‖2∞|y − x|2−α + ‖F2‖2∞|y − x|2

)
, (4.43)

where Mε is defined by (4.36).

Proof. The proof is a refinement of the ones of Lemmas 3.3 and 3.4. We can split the
random process Mε into two components: Mε(x) = Mε,1(x) +Mε,2(x), with

Mε,1(x) = ε−
α
2

∫ x

0
F1(t)ϕ

ε(t)dt , Mε,2(x) = xε−
α
2

∫ 1

0
F2(t)ϕε(t)dt .

We have

E
{∣∣∣Mε(y)−Mε(x)

∣∣∣
2} ≤ 2E

{∣∣∣Mε,1(y)−Mε,1(x)
∣∣∣
2}

+ 2E
{∣∣∣Mε,2(y)−Mε,2(x)

∣∣∣
2}
.

The second moment of the increment of Mε,2 is given by

E
{∣∣∣Mε,2(y)−Mε,2(x)

∣∣∣
2}

= |x− y|2ε−α
∫

[0,1]2
R
(z − t

ε

)
F2(z)F2(t)dzdt .

Since there exists K > 0 such that |R(τ)| ≤ Kτ−α for all τ , we have

ε−α
∫

[0,1]2
R
(z − t

ε

)
F2(z)F2(t)dzdt ≤ K

∫

[0,1]2
|z − t|−α|F2(z)||F2(t)|dzdt

≤ K‖F2‖2∞
∫ 1

−1
|z|−αdz =

2K

1− α‖F2‖2∞ ,

which gives the following estimate

E
{∣∣∣Mε,2(y)−Mε,2(x)

∣∣∣
2} ≤ 2K

1− α‖F2‖2∞|x− y|2 .

The second moment of the increment of Mε,1 for x < y is given by

E
{∣∣∣Mε,1(y)−Mε,1(x)

∣∣∣
2}

= ε−α
∫

[x,y]2
R
(z − t

ε

)
F1(z)F1(t)dzdt .
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We distinguish the cases |y − x| ≤ ε and |y − x| ≥ ε.
First case. Let us assume that |y − x| ≤ ε. Since R is bounded by V2, we have

E
{∣∣∣Mε,1(y)−Mε,1(x)

∣∣∣
2} ≤ V2‖F1‖2∞ε−α|y − x|2 .

Since |y − x| ≤ ε, this implies

E
{∣∣∣Mε,1(y)−Mε,1(x)

∣∣∣
2} ≤ V2‖F1‖2∞|y − x|2−α .

Second case. Let us assume that |y−x| ≥ ε. Since R can be bounded by a power-law
function |R(τ)| ≤ Kτ−α we have

E
{∣∣∣Mε,1(y)−Mε,1(x)

∣∣∣
2} ≤ K‖F1‖2∞

∫

[x,y]2
|z − t|−αdzdt

≤ 2K‖F1‖2∞
∫ y

x

∫ y−x

0
t−αdtdz

≤ 2K

1− α‖F1‖2∞|y − x|2−α ,

which completes the proof.

This Proposition allows us to get two results.
1) By applying Proposition 4.3 with F2 = 0 and y = 0, we prove Lemma 2.2.
2) By applying Proposition 4.3, we obtain that the increments of the process Mε

satisfy the Kolmogorov criterion (4.40) with β = 2 and δ = 1− α > 0. This gives the
tightness of the family of processes Mε in the space C(0, 1).

4.3 Proof of Theorem 2.4

We can now give the proof of Theorem 2.4. The error term can be written in the form

ε−
α
2 (uε(x)− ū(x)) = ε−

α
2

(∫ x

0
F1(t)ϕε(t)dt+ x

∫ 1

0
F2(t)ϕε(t)dt

)
+ r̃ε(x) ,

where F1(t) = c∗ − F (t), F2(t) = F (t) − ∫ 1
0 F (z)dz − a∗q, and r̃ε(x) = ε−α/2[rε(x) +

ρεa∗−1x]. The first term of the right-hand side is of the form (4.36). Therefore, by
applying Theorem 4.1, we get that this process converges in distribution in C(0, 1) to
the limit process (2.19). It remains to show that the random process r̃ε(x) converges
as ε→ 0 to zero in C(0, 1) in probability.

We have

E{|r̃ε(x)− r̃ε(y)|2} ≤ 2ε−αE{|rε(x)− rε(y)|2}+ 2a∗−2ε−αE{|ρε|2}|x− y|2 ,

From the expression (2.18) of rε, and the fact that cε can be bounded uniformly in ε
by a constant c0, we get

ε−αE{|rε(x)− rε(y)|2} ≤ 2ε−αc0E





∣∣∣∣
∫ y

x
ϕε(t)dt

∣∣∣∣
2


 .



266 Random integrals and correctors in homogenization

Upon applying Proposition 4.3, we obtain that there exists K > 0 such that

ε−αE{|rε(x)− rε(y)|2} ≤ K|x− y|2−α .

Besides, since ρε can be bounded uniformly in ε by a constant ρ0, we have E{|ρε|2} ≤
ρ0E{|ρε|} ≤ Kεα for some K > 0. Therefore, we have established that there exists
K > 0 such that

E{|r̃ε(x)− r̃ε(y)|2} ≤ K|x− y|2−α ,
uniformly in ε, x, y. This shows that r̃ε(x) is a tight sequence in the space C(0, 1) by
the Kolmogorov criterion (4.40). Furthermore, the finite-dimensional distributions of
r̃ε(x) converges to zero because

sup
x∈[0,1]

E
{
|r̃ε(x)|

}
ε→0−→ 0

by (2.15) and (2.17). Proposition 4.2 then shows that r̃ε(x) converges to zero in
distribution in C(0, 1). Since the limit is deterministic, the convergence actually holds
true in probability.

5 Numerical results for Theorem 2.5

In this section, we numerically study the convergence of the error term in the case
where F = 0, q = 1, and the driving process ϕ(x) has an integrable autocorrelation
function. The solutions of the random elliptic equation (2.1) and of the homogenized
equation (2.2) are given by

uε(x) =
1

∫ 1
0

1
aε
dy

∫ x

0

1

aε
dy ; ū(x) = x .

Using the decomposition ϕε = 1
aε
− 1
a∗

and assuming that a∗ = 1, we have

uε(x) =
x+

∫ x
0 ϕε dy

1 +
∫ 1

0 ϕε dy
·

We study the the convergence of the process at the point x = 1
2
, where we have

uε(
1

2
) =

1
2

+
∫ 1

2

0 ϕε dy

1 +
∫ 1

0 ϕε dy

ε→0−→ 1

2
= ū(

1

2
).

5.1 Generation of the driving process

We carry out numerical simulations in the case where the random process ϕ(x) is of
the form Φ(gx) with gx a stationary Ornstein-Uhlenbeck process and Φ(x) = 1

2
sgn(x)

(see Figure 8.1). This is a simple model for a two-component random medium.
The Ornstein-Uhlenbeck process is the solution of the stochastic differential equa-

tion [5]
dgx = −gxdx+

√
2dWx ,
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Figure 8.1: Simulation of the Ornstein-Uhlenbeck process gx (picture (a)) and the
induced bounded process ϕ(x) = 1

2
sgn(gx) (picture (b)).

where Wx is a standard Brownian motion. If we suppose that g0 is a Gaussian random
variable with mean 0 and variance 1 independent of the driving Brownian motion, then
(gx)x≥0 is a stationary, mean zero, Gaussian process with the autocorrelation function
E{gxgx+τ} = exp(−|τ |). Moreover, it is a Markovian process, which makes it easy to
simulate a realization of the Ornstein-Uhlenbeck process (gk∆x)k≥0 sampled at times
(k∆x)k≥0 by the following recursive procedure:
- g0 = G0,
- g(k+1)∆x = e−∆xgk∆x +

√
1− e−2∆xGk+1,

where (Gk)k≥0 is a sequence of independent and identically distributed Gaussian ran-
dom variables with mean 0 and variance 1. Note that the simulation is exact indepen-
dently of the value of the grid step ∆x.

Lemma 5.1 If gx is the stationary Ornstein-Uhlenbeck process and ϕ(x) = 1
2
sgn(gx),

then ϕ(x) is a stationary, mean zero, random process with the autocorrelation function

R(τ) = E{ϕ(x+ τ)ϕ(x)} =
1

4

(
1− 2

π
arctan(

√
e2|τ | − 1)

)
.

Proof. Since g 7→ sgn(g) is an odd function, it is obvious that ϕ(x) has mean zero.
Denoting aτ = e−|τ | and bτ =

√
1− e−2|τ |, the autocorrelation function of ϕ(x) can be
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computed as follows:

R(τ) = E{Φ(g0)Φ(gτ )} =
1

4
E{sgn(g0)sgn(gτ )}

=
1

4

1

2π

∫

R2

sgn(x)sgn(aτx+ bτy) e−
x2

+y2

2 dxdy

=
1

4

2

2π

∫

R+×R

sgn(x)sgn(aτx+ bτy) e−
x2

+y2

2 dxdy

=
1

4π

∫ ∞

0

∫ −π/2+θτ

θ=−π/2
(−1) ρe−

ρ2

2 dθdρ+
1

4π

∫ ∞

0

∫ π/2

θ=θτ
1 ρe−

ρ2

2 dθdρ

=
1

4π
[−θτ + (π − θτ )] =

1

4

(
1− 2

π
θτ

)
,

with θτ = arctan( bτ
aτ

) = arctan(
√

e2|τ | − 1).

5.2 Convergence of the corrector

We now study the convergence of uε(1
2
) to ū(1

2
). The value of the integral

∫ 1
0 F (s)ϕε(s) ds

is approximated by the standard quadrature formula
∫ 1

0
F (s)ϕε(s) ds =

∫ 1

0
F (s)ϕ

(
s

ε

)
ds = ε

∫ 1/ε

0
F (εy)ϕ(y) dy ≈ ε

n∑

i=0

F (iε∆x)ϕ(i∆x)∆x,

with n = [1/(ε∆x)] and ∆x = 0.1 in our simulations.
We first estimate the convergence order of the variance of (uε− ū)(1

2
) when ε→ 0.

The following values are given to ε:

ε ∈ {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.05, 0.1}.

For each ε, we perform 104 simulations and compute the empirical variance. The
results are shown in Figure 8.2a. The asymptotic theory predicts that the convergence
is linear in ε:

Var
{
uε(

1

2
)− ū(

1

2
)
}

= σ2ε+ o(ε) , σ2 = 2a∗

∫ ∞

0
R(τ) dτ ≈ 0.0865.

The computation of a linear regression of the empirical variance with respect to ε, with
the two, three, etc.. first points give 0.0865, 0.0875, 0.0870, which is different from the
theoretical prediction by less than 1%.

We now check the convergence in law of 1√
ε

(uε(
1
2
) − ū(1

2
)). Theorem 2.5 predicts

that
1√
ε

(uε(x)− ū(x))
law−→

(
2
∫ ∞

0
R(τ) dτ

)1/2

U(x),

with U(x) = a∗Wx − a∗xW1, so that in our case

1√
ε

(
uε(

1

2
)− ū(

1

2
)
)
law−→ G,
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Figure 8.2: Picture (a): Variance of (uε − u)(1
2
) as a function of ε, in log-log scale.

The convergence rate of the variance in log log scale has a slope equal to one, which
proves that the convergence is proportional to ε. Picture (b): Normal QQ plot for the
distribution of ε−

1

2 (uε− ū)
(

1
2

)
with ε = 0.0001, which confirms the Gaussian behavior

of the error.

where G is a Gaussian random variable with mean zero and variance

σ2 = 2
∫ ∞

0
R(τ) dτ Var

{
U(

1

2
)
}

= 2a∗

∫ ∞

0
R(τ) dτ ≈ 0.0865

In Figure 8.2b, we compare the distribution of 1√
ε

(uε(
1
2
)− ū(1

2
)) for ε = 10−4 with the

one of G by plotting the normal QQ plot which shows perfect agreement (a normal
QQ plot is a scatter-plot with the quantiles of the sample on the horizontal axis and
the expected normal quantiles on the vertical axis).

6 Numerical results for Theorem 2.4

6.1 Generation of the driving process

To test the result of Theorem 2.4, we need to generate a Gaussian process with a
heavy tail. We choose to generate the increments of a fractional Brownian motion:
gx = WHx+1 − WHx . Since fractional Brownian motion is not a Markovian process,
it cannot be generated iteratively. Many different methods have been developed to
simulate fractional Brownian motions based on integral representations in terms of
standard Brownian motions, spectral representations, or wavelet decompositions (see
the review [1]). In this paper we use the Choleski method because it is the simplest
method to implement. It is based on the following facts:
1) the fractional Brownian motion WHx and the process gx are Gaussian processes,
2) the autocorrelation function of the fractional Brownian motion is known (see (2.21)),
so that it is possible to calculate the covariance matrix C of the Gaussian vector
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Figure 8.3: A series of 105 numerical simulations of the vector (gk∆x)k=0,...,N is carried
out in the case where gx = WHx+1 −WHx , H = 0.8, N = 2000, and ∆x = 1. Picture
(a): The empirical autocorrelation of gx is compared with the theoretical asymptotic
behavior τ 7→ H(2H − 1)τ 2H−2. Picture (b): The empirical autocorrelation of ϕ(x) is
compared with the theoretical asymptotic behavior τ 7→ V 2

1 H(2H − 1)τ 2H−2.

(gk∆x)k=0,...,N ,
3) if X is a vector of independent and identically distributed random variables with
Gaussian distribution, mean 0, and variance 1, then MX is a mean zero Gaussian
vector with covariance matrix MMT .

The Choleski method consists in
1) computing a square root

√
C of the covariance matrix C of the Gaussian vector

(gk∆x)k=0,...,N ,
2) generating a vector X of N + 1 independent and identically distributed Gaussian
random variables with mean 0 and variance 1,
3) computing the vector

√
CX.

This method is exact, in the sense that the simulated vector
√
CX has the distri-

bution of (gk∆x)k=0,...,N , whatever the grid step ∆x may be. The method is, however,
computationally expensive. In fact, only the computation of the square root of the
matrix C is costly. Once this computation has been carried out, it is straightforward
to generate a sequence of independent and identically distributed random vectors with
the distribution of (gk∆x)k=0,...,N .

We apply the Choleski method to generate 105 realizations of the vector (gk∆x)k=0,...,N

with ∆x = 1 and N = 2000. The Hurst parameter is equal to 0.8. The empirical auto-
correlation function is shown in Figure 8.3 and compared with its theoretical asymp-
totic behavior τ 7→ H(2H−1)τ 2H−2 [τ →∞]. When τ becomes large, the fluctuations
become large compared to R(τ) because R(τ) → 0. A linear regression made on the
interval [10, 100] gives the power law fit Ktβ, with K = 0.4901 and β = 0.3964, which
is in agreement with the theoretical values K = 0.48 and β = 0.4.
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Figure 8.4: Picture (a) compares the homogenized solution (solid line) with the solution
of (2.1) obtained for ε = 0.0033 and for a particular realization of the random process
ϕ (circles). Picture (b) plots the difference between uε and ū.

We suppose that the random medium is described by the stationary random process

1

a(x)
=

9

2
+

8

π
arctan(gx). (6.44)

The asymptotic behavior of its autocorrelation function is theoretically given by (2.11)
with

V1 =
1√
2π

8

π

∫ +∞

−∞
xarctan(x)e−

x2

2 dx ≈ 1.6694.

The empirical autocorrelation function of the process determined by a series of 105

experiments is shown in Figure 8.3, where we observe that the theoretical and empirical
curves agree very well.

6.2 Convergence of the corrector

We now study the convergence of the solution of the homogenization problem (2.1)
as ε → 0. We choose F (x) = x2 and q = 1. For a(x) given by (6.44), we find that
a⋆ = 2

9
. A solution obtained with a particular realization of the random process with

ε = 0.0033 is shown in Figure 8.4 and compared with the theoretical solution of the
homogenized problem.

We estimate the order of convergence of the variance of the corrector (uε − u)(1
2
)

when ε→ 0. The following values are given to ε:

ε ∈ {0.0033, 0.0017, 0.0011, 0.00091, 0.00077, 0.00062, 0.0004}. (6.45)

For each value of ε, we run 104 numerical experiments, compute the empirical variance
of the corrector, and compare with the asymptotic theoretical variance predicted by
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Figure 8.5: Picture (a): Empirical variance of (uε− ū)(1
2
) as a function of ε, in log-log

scale (circles), compared with the asymptotic theoretical variance (6.46) predicted by
Theorem 2.4. Picture (b): Normal QQ plot for (uε − ū)

(
1
2

)
with ε = 0.0004, which

confirms the Gaussian behavior of the corrector term.

Theorem 2.4:
Var

{
uε(

1

2
)− ū(

1

2
)
}

= σ2
Hε

2−2H + o(ε2−2H) (6.46)

with 2− 2H = 0.4 and

σ2
H = Var

(√
κ

H(2H − 1)

∫

R

K
(

1

2
, t
)
dWHt

)
≈ 0.0553.

The results are presented in Figure 8.5a and show good agreement. More quantitatively,
a linear regression of the logarithm of the empirical variance of the error with respect
to log ε gives:

Var
{
uε(

1

2
)− ū(

1

2
)
}
≈ 0.0581ε0.4041 (6.47)

which agrees very well with (6.46). Finally, we can check that the distribution of the
limit process is Gaussian by observing that the normal QQ plot in Figure 8.5b is indeed
a straight line.

7 Conclusions

We have shown that the corrector to homogenization, i.e., the difference between the
random solution to an elliptic equation with random coefficients and the deterministic
solution to the appropriately homogenized elliptic equation, strongly depends on the
statistics of the random medium. When the correlation function of the random diffusion
coefficient is integrable, such a corrector is of order

√
ε, where εmeasures the correlation

length of the random medium. When the correlation function behaves like τ−α, which
measures long-memory effects, then the difference becomes of order ε

α
2 for 0 < α < 1.
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The corrector to the homogenized solution may thus be arbitrarily large asymptotically
for very small values of α, which corresponds to pronounced long-memory effects.

Moreover, up to smaller terms of order εα, the corrector to homogenization is
a centered Gaussian process, which may conveniently and explicitly be written as
a stochastic integral with respect to fractional Brownian motion. Such a random
behavior of the corrector may provide an accurate quantitative model for the statistical
instability (i.e., the dependency with respect to the specific realization of the random
medium) of practical and experimental measurements. This central-limit-type behavior
may be extremely difficult and costly to adequately capture by numerical simulations
of the elliptic equation with random coefficients because of the very large number of
random variables involved in the modeling of a random medium with a small correlation
length (ε≪ 1).

The results presented in this paper are based on the explicit integral representation
(2.3) of the solution to the one-dimensional elliptic equation (2.1). Such formulas
are not available in higher space dimensions. Although we are tempted to believe
that similar behaviors will remain valid in higher space dimensions, namely that long-
memory effects will trigger large random corrections to homogenization, this remains
a conjecture at present.
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Conclusion (version française)

Dans cette thèse, nous avons étudié d’une manière théorique et numérique des modèles
de déplacements en biologie et en particulier nous nous sommes intéressé à la dériva-
tion de modèles macroscopiques à partir de modèles microscopiques, appelés modèles
individus centrés en biologie.

Nous avons tout d’abord étudié un nouveau modèle de déplacement de poisson, le
modèle “Persistent Turning Walker” (PTW) qui est basé sur des données expérimen-
tales (chapitre 1). Nous avons dérivé un modèle macroscopique à partir de ce modèle
de deux manières distinctes (chapitre 2-3). Ensuite, nous avons étudié un modèle
d’interaction général appelé modèle de Vicsek. Dans un premier temps, nous avons
dérivé un modèle macroscopique à partir de ce modèle microscopique (chapitre 6). À
la suite de quoi, nous avons validé numériquement l’équation macroscopique obtenu en
comparant les simulations numériques du modèle microscopique et du modèle macro-
scopique (chapitre 7).

La modélisation des déplacements collectifs est un sujet extrèment vaste qui né-
cessite des outils et des méthodes très variés. Il existe de nombreuses directions dans
lesquelles nous pouvons prolonger les travaux effectués.

Parmi les développements à court terme qu’il nous reste à étudier, un premier
point est de développer un modèle d’interaction entre poissons basé sur les données
expérimentales. L’analyse des données expérimentales (chapitre 5) permettra alors
d’aider à la construction du modèle et de le valider. Des travaux sont en cours pour
introduire dans le modèle PTW un terme supplémentaire modélisant les interactions
entre congénères.

Il serait aussi intéressant de généraliser la méthode utilisée pour dériver un mod-
èle macroscopique à partir du modèle de Vicsek à d’autres modèles de déplacement
en biologie comme par exemple le modèle proposé par Couzin. Nous pourrions ainsi
observer et prédire à partir du modèle macroscopique la formation de différentes struc-
tures (formation alignée, vortex).

D’une manière plus générale, l’introduction des invariants collisionnels généralisés
utilisée dans la dérivation du modèle macroscopique de Vicsek pourrait être appliqués
à d’autres modèles en théorie cinétique pour lesquelles nous n’avons pas préservation
du moment cinétique.

Nous avons commencé à étudier le modèle macroscopique dérivé à partir du mod-
èle de Vicsek et nous avons mise en évidence que les solutions à ce modèle sont plus
complexes qu’elles ne semblaient l’être. Néanmoins, il est nécessaire par la suite de
développer un cadre théorique pour ce type d’équation (équation hyperbolique non



280 Conclusion

conservative avec contrainte géométrique). L’idéal serait de trouver un critère perme-
ttant de sélectionner les bonnes solutions faibles. Pour l’instant, nous nous sommes
servis du modèle microscopique. Mais la méthode est peu précise et nécessite des temps
de calculs très longs.

Enfin, il serait intéressant d’étudier les modèles de déplacement en biologie à partir
des équations cinétiques. Ceci permettrait d’avoir une description intermédiaire entre
modèles microscopiques et modèles macroscopiques. On pourrait ainsi développé des
méthodes numériques multi-échelle comme cela se fait en dynamique des gaz.



Conclusion (English version)

In this thesis, we have studied theoretically and numerically models of animals dis-
placement in biology. We took a particular interest in the derivation of macroscopic
models from microscopic models, called also in biology individual based model.

We first have considered a new model for fish displacement, the “Persistent Turning
Walker” model (PTW) which is based on experimental data (Chapter 1). We have
derived a macroscopic model from this model using two different methods (Chapter 2-
3). After that, we have studied a general models of interacting particles called Vicsek
model. In a first step, we have derived a macroscopic model from this microscopic
model (Chapter 6). Then we have validated the macroscopic equation obtained by
comparing the numerical simulations of the microscopic and macroscopic equation
(Chapter 7).

The mathematical modeling of collective displacements is a wide subject that re-
quires extensive tools and various methods. There are many directions in which we
can extend the work done.

Among the short-term developments, a first point is to develop a model of inter-
action between fish based on experimental data. The analysis of experimental data
(Chapter 5) will help in the construction of the model. Works are underway to in-
troduce in the PTW model an additional term to model the interactions between
congeners.

It would also be interesting to generalize the method used to derive a macroscopic
model from the Vicsek model to other models of displacement such as the model pro-
posed by Couzin. We should observe and predict the formation of different structures
(highly polarized group, vortex formation) from the macroscopic model.

More generally, the introduction of generalized collisional invariants opens new
perspectives in kinetic theory. In particular, this method could be applied to other
kinetic equation which do not preserve the kinetic moment.

We have began to study the macroscopic model derived from the model of Vicsek
and we have shown that the solutions to this model are more complex than we expected.
However, it is necessary to develop a theoretical framework for this type of equation
(hyperbolic equation with non-conservative constraint geometric). Ideally, we would
like to find a criterion to select the correct weak solution. At the moment, we only use
the microscopic model to determine what is the relevant solution, but this method is
imprecise and requires a lot of CPU time.

Finally, it would be interesting to study models of displacements in biology from
kinetic equations. This would allow to have an intermediate description between mi-
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croscopic and macroscopic models. Then we could develop multiscale methods in the
numerical simulation of collective displacement as it has been develop in gas dynamics.





Résumé

La modélisation des déplacements d’animaux peut se faire à deux échelles différentes. On
peut soit décrire les trajectoires de chaque individu séparément en utilisant des modèles dit
individu centré (échelle “microscopique”), ou bien on peut décrire la dynamique collective du
groupe d’individus au moyen de quantités “macroscopiques” (densité, flux...). Dans cette thèse,
nous nous sommes intéressés à relier ces deux échelles de description, à savoir dériver des
modèles macroscopiques à partir de modèles microscopiques. Cette approche permet de relier
dynamique individuelle et dynamique collective.

Nous nous sommes tout d’abord intéressé à un nouveau modèle de déplacement de poisson
appelé “Persistent Turning Walker” (PTW) introduit à partir de données expérimentales. Nous
avons donnés deux méthodes pour dériver une équation de diffusion à partir de ce modèle,
une méthode utilisant des outils d’analyse fonctionnelle et une deuxième méthode utilisant des
outils probabilistes. L’originalité du modèle PTW réside principalement dans l’utilisation de
la courbure pour décrire le déplacement individuel, cette nouveauté permet d’étendre d’autres
types de modèles ainsi que l’analyse statistique de trajectoires expérimentales.

Dans un deuxième temps, nous avons étudié le modèle dit de Vicsek qui est un modèle in-
dividu centré très répandu dans la modélisation de déplacements d’animaux. Nous avons pour
la première fois dérivé un modèle macroscopique à partir de ce modèle (un système hyperbo-
lique non-conservatif avec une contrainte géométrique). Les simulations numériques du modèle
macroscopique obtenu nous ont ensuite montré la pertinence du modèle macroscopique pour
décrire la dynamique microscopique du modèle Vicsek à grandes échelles.

Mots clés : Mathématiques et Biologie, Modèle Individu Centré, Équations Différen-
tielles Stochastiques, Équations Cinétiques, Analyse Asymptotique, Approximation Diffusion,
Systèmes Hyperboliques.

Abstract

The modeling of animals displacements can occur at two different scales. One may either
describes the trajectories of each individual using the so-called individual based models (at a
“microscopic” scale), or we can describe the dynamics of the all group with “macroscopic” quan-
tities (density, flux...). In this thesis, we want to connect these two descriptions, the microscopic
and the macroscopic scale. Therefore, we can link individual and global dynamics.

In a first part, we have introduced a new model for fish displacement called “Persistent
Turning Walker” (PTW) based on experimental data. We have given two methods to derive a
diffusion equation from this model, a method using tools from functional analysis and a second
method using probabilistic tools. The originality of the PTW model mainly relies in the use of
curvature to describe individual displacement, this novelty has been used to extend other types
of models and to analyse experimental trajectories.

In a second part, we have studied the so-called Vicsek model which is an individual based
model widespread used in the modeling of animals displacements. We have derived for the
first time a macroscopic model from this model (a non-conservative hyperbolic system with
a geometric constraint). The numerical simulations of the macroscopic model obtained have
shown the relevance of the macroscopic model to describe the microscopic dynamics of the
Vicsek model at large scales.

Key words : Mathematical biology, Individual based model, Stochastic diffential equation,
Kinetic equation, Asymptotic analysis, Diffusion approximation, Hyperbolic systems.


