COMPUTATIONS OF NAMBU-POISSON COHOMOLOGIES

PHILIPPE MONNIER

Abstract

In this paper, we want to associate to a n-vector on a manifold of dimension n a cohomology which generalizes the Poisson cohomology of a 2-dimensional Poisson manifold. Two possibilities are given here. One of them, the Nambu-Poisson cohomology, seems to be the most pertinent. We study these two cohomologies locally, in the case of germs of n-vectors on \mathbb{K}^{n} $(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$.

1. Introduction

A way to study a geometrical object is to associate to it a cohomology. In this paper, we focus on the n-vectors on a n-dimensional manifold M.
If $n=2$, the 2 -vectors on M are the Poisson stuctures thus, we can consider the Poisson cohomology. In dimension 2, this cohomology has three spaces. The first one, H^{0}, is the space of functions whose Hamiltonian vector field is zero (Casimir functions). The second one, H^{1}, is the quotient of the space of infinitesimal automorphisms (or Poisson vector fields) by the subspace of Hamiltonian vector fields. The last one, H^{2}, describes the deformations of the Poisson structure. In a previous paper ([Mo]), we have computed the cohomology of germs at 0 of Poisson structures on $\mathbb{K}^{2}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$.
In order to generalize this cohomology to the n-dimensional case ($n \geq 3$), we can follow the same reasoning. These spaces are not necessarily of finite dimension and it is not always easy to describe them precisely.

Recently, a team of Spanish researchers has defined a cohomology, called NambuPoisson cohomology, for the Nambu-Poisson structures (see [I2]). In this paper, we adapt their construction to our particular case. We will see that this cohomology generalizes in a certain sense the Poisson cohomology in dimension 2. Then we compute locally this cohomology for germs at 0 of n-vectors $\Lambda=f \frac{\partial}{\partial x_{1}} \wedge \ldots \wedge \frac{\partial}{\partial x_{n}}$ on $\mathbb{K}^{n}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$, with the assumption that f is a quasihomogeneous polynomial of finite codimension ("most of" the germs of n-vectors have this form). This computation is based on a preliminary result that we have shown, in the formal case and in the analytical case (so, the \mathcal{C}^{∞} case is not entirely solved). The techniques we use in this paper are quite the same as in [Mo].

2. NAMBu-Poisson cohomology

Let M be a differentiable manifold of dimension $n(n \geq 3)$, admitting a volume form ω. We denote $\mathcal{C}^{\infty}(M)$ the space of \mathcal{C}^{∞} functions on $M, \Omega^{k}(M)(k=0, \ldots, n)$ the $\mathcal{C}^{\infty}(M)$-module of k-forms on M, and $\mathcal{X}^{k}(M)(k=0, \ldots, n)$ the $\mathcal{C}^{\infty}(M)$ module of k-vectors on M.

Key words and phrases. Nambu-Poisson structures, singularities, Nambu-Poisson cohomology.

We consider a n-vector Λ on M. Note that Λ is a Nambu-Poisson structure on M. Recall that a Nambu-Poisson structure on M of order r is a skew-symmetric r-linear map $\{, \ldots$,

$$
\mathcal{C}^{\infty}(M) \times \ldots \times \mathcal{C}^{\infty}(M) \longrightarrow \mathcal{C}^{\infty}(M), \quad\left(f_{1}, \ldots, f_{r}\right) \longmapsto\left\{f_{1}, \ldots, f_{r}\right\}
$$

which satifies

$$
\begin{align*}
\left\{f_{1}, \ldots, f_{r-1}, g h\right\} & =\left\{f_{1}, \ldots, f_{r-1}, g\right\} h+g\left\{f_{1}, \ldots, f_{r-1}, h\right\} \quad(L) \\
\left\{f_{1}, \ldots, f_{r-1},\left\{g_{1}, \ldots, g_{r}\right\}\right\} & =\sum_{i=1}^{r}\left\{g_{1}, \ldots, g_{i-1},\left\{f_{1}, \ldots, f_{r-1}, g_{i}\right\}, g_{i+1}, \ldots, g_{r}\right\} \tag{FI}
\end{align*}
$$

for any $f_{1}, \ldots, f_{r-1}, g, h, g_{1}, \ldots, g_{r}$ in $\mathcal{C}^{\infty}(M)$. It is clear that we can associate to such a bracket a r-vector on M. If $r=2$, we rediscover Poisson structures. Thus, Nambu-Poisson structures can be seen as a kind of generalization of Poisson structures. The notion of Nambu-Poisson structures was introduced in [T] by Takhtajan in order to give a formalism to an idea of Y. Nambu ([Na]).

Here, we suppose that the set $\left\{x \in M ; \Lambda_{x} \neq 0\right\}$ is dense in M. We are going to associate a cohomology to (M, Λ).
2.1. The choice of the cohomology. If M is a differentiable manifold of dimension 2, then the Poisson structures on M are the 2 -vectors on M. If Π is a Poisson structure on M, then we can associate to (M, Π) the complex

$$
0 \longrightarrow \mathcal{C}^{\infty}(M) \xrightarrow{\partial} \mathcal{X}^{1}(M) \xrightarrow{\partial} \mathcal{X}^{2}(M) \longrightarrow 0
$$

with $\partial(g)=[g, \Pi]=X_{g}$ (Hamiltonian of g) if $g \in \mathcal{C}^{\infty}(M)$ and $\partial(X)=[X, \Pi]([]$, indicates Schouten's bracket) if $X \in \mathcal{X}^{1}(M)$. The cohomology of this complex is called the Poisson cohomology of (M, Π). This cohomology has been studied for instance in [Mo], [N1] and [V].

Now if M is of dimension n with $n \geq 3$, we want to generalize this cohomology. Our first approach was to consider the complex

$$
0 \longrightarrow\left(\mathcal{C}^{\infty}(M)\right)^{n-1} \xrightarrow{\partial} \mathcal{X}^{1}(M) \xrightarrow{\partial} \mathcal{X}^{n}(M) \longrightarrow 0
$$

with $\partial(X)=[X, \Lambda]$ and $\partial\left(g_{1}, \ldots, g_{n-1}\right)=i_{d g_{1} \wedge \ldots \wedge d g_{n-1}} \Lambda=X_{g_{1}, \ldots, g_{n-1}}$ (Hamiltonian vector field) where we adopt the convention $i_{d g_{1} \wedge \ldots \wedge d g_{n-1}} \Lambda=\Lambda\left(d g_{1}, \ldots, d g_{n-1}, \bullet\right)$. We denote $H_{\Lambda}^{0}(M), H_{\Lambda}^{1}(M)$ and $H_{\Lambda}^{2}(M)$ the three spaces of cohomology of this complex. With this cohomology, we rediscover the interpretation of the first spaces of the Poisson cohomology, i.e. $H_{\Lambda}^{2}(M)$ describes the infinitesimal deformations of Λ and $H_{\Lambda}^{1}(M)$ is the quotient of the algebra of vector fields which preserve Λ by the ideal of Hamiltonian vector fields.

In [I2], the authors associate to any Nambu-Poisson structure on M a cohomology. The second idea is then to adapt their construction to our particular case. Let $\#_{\Lambda}$ be the morphism of $\mathcal{C}^{\infty}(M)$-modules $\Omega^{n-1}(M) \longrightarrow \mathcal{X}^{1}(M): \alpha \mapsto i_{\alpha} \Lambda$. Note that $\operatorname{ker} \#_{\Lambda}=\{0\}$ (because the set of regular points of Λ is dense). We can define (see [I1]) a \mathbb{R}-bilinear operator $\llbracket, \rrbracket: \Omega^{n-1}(M) \times \Omega^{n-1}(M) \longrightarrow \Omega^{n-1}(M)$ by

$$
\llbracket \alpha, \beta \rrbracket=\mathcal{L}_{\#_{\Lambda} \alpha} \beta+(-1)^{n}\left(i_{d \alpha} \Lambda\right) \beta
$$

The vector space $\Omega^{n-1}(M)$ equiped with \llbracket, \rrbracket is a Lie algebra (for any NambuPoisson structure, it is a Leibniz algebra). Moreover this bracket verifies $\#_{\Lambda} \llbracket \alpha, \beta \rrbracket=$ $\left[\#_{\Lambda} \alpha, \#_{\Lambda} \beta\right]$ for any α, β in $\Omega^{n-1}(M)$. The triple $\left(\Lambda^{n-1}\left(T^{*}(M)\right), \llbracket, \rrbracket, \#_{\Lambda}\right)$ is then a Lie algebroid and the Nambu-Poisson cohomology of (M, Λ) is the Lie algebroid cohomology of $\left(\Lambda^{n-1}\left(T^{*}(M)\right)\right.$ (for any Nambu-Poisson structure, it is more elaborate see [I2]). More precisely, for every $k \in\{0, \ldots, n\}$, we consider the vector space $C^{k}\left(\Omega^{n-1}(M) ; \mathcal{C}^{\infty}(M)\right)$ of the skew-symmetric and $\mathcal{C}^{\infty}(M)$ - k-multilinear maps $\Omega^{n-1}(M) \times \ldots \times \Omega^{n-1}(M) \longrightarrow \mathcal{C}^{\infty}(M)$. The cohomology operator $\partial: C^{k}\left(\Omega^{n-1}(M) ; \mathcal{C}^{\infty}(M)\right) \longrightarrow C^{k+1}\left(\Omega^{n-1}(M) ; \mathcal{C}^{\infty}(M)\right)$ is defined by

$$
\begin{aligned}
\partial c\left(\alpha_{0}, \ldots, \alpha_{k}\right)= & \sum_{i=0}^{k}(-1)^{i}\left(\#_{\Lambda} \alpha_{i}\right) \cdot c\left(\alpha_{0}, \ldots, \hat{\alpha_{i}}, \ldots, \alpha_{k}\right) \\
& +\sum_{0 \leq i<j \leq k}(-1)^{i+j} c\left(\llbracket \alpha_{i}, \alpha_{j} \rrbracket, \alpha_{0}, \ldots, \hat{\alpha_{i}}, \ldots, \hat{\alpha_{j}}, \ldots, \alpha_{k}\right)
\end{aligned}
$$

for all $c \in C^{k}\left(\Omega^{n-1}(M) ; \mathcal{C}^{\infty}(M)\right)$ and $\alpha_{0}, \ldots, \alpha_{k}$ in $\Omega^{n-1}(M)$.
The Nambu-Poisson cohomology of (M, Λ), denoted by $H_{N P}^{\circ}(M, \Lambda)$, is the cohomology of this complex.
2.2. An equivalent cohomology. So defined, the Nambu-Poisson cohomology is quite difficult to manipulate. We are going to give an equivalent cohomology which is more accessible.
Recall that we assume that M admits a volume form ω.
Let $f \in \mathcal{C}^{\infty}(M)$, we define the operator

$$
\begin{aligned}
d_{f}: \Omega^{k}(M) & \longrightarrow \Omega^{k+1}(M) \\
\alpha & \longmapsto f d \alpha-k d f \wedge \alpha .
\end{aligned}
$$

It is easy to prove that $d_{f} \circ d_{f}=0$. We denote $H_{f}^{\bullet}(M)$ the cohomology of this complex. Let b be the isomorphism $\mathcal{X}^{1}(M) \longrightarrow \Omega^{n-1}(M) \quad X \longmapsto i_{X} \omega$.
Lemma 2.1. 1- If $X \in \mathcal{X}(M)$, then $\#_{\Lambda}(b(X))=(-1)^{n-1} f X$ where $f=i_{\Lambda} \omega$.
2- If X and Y are in $\mathcal{X}(M)$, then

$$
(-1)^{n-1} \llbracket b(X), b(Y) \rrbracket=f b([X, Y])+(X . f) b(Y)-(Y . f) b(X) .
$$

Proof: 1- Obvious.
2- We have $\#_{\Lambda}(\llbracket b(X), b(Y) \rrbracket)=\left[\#_{\Lambda}(b(X)), \#_{\Lambda}(b(Y))\right]$ (property of the Lie algebroid), which implies that

$$
\begin{aligned}
\#_{\Lambda}(\llbracket b(X), b(Y) \rrbracket) & =f(X . f) Y-f(Y . f) X+f^{2}[X, Y] \\
& =(-1)^{n-1} \#_{\Lambda}((X . f) b(Y)-(Y . f) b(X)+f b([X, Y])) .
\end{aligned}
$$

The result follows via the injectivity of $\#_{\Lambda}$.
Proposition 2.2. If we put $f=i_{\Lambda} \omega$, then $H_{N P}^{\bullet}(M, \Lambda)$ is isomorphic to $H_{f}^{\bullet}(M)$.
Proof : For every k, we consider the application $\varphi: C^{k}\left(\Omega^{n-1}(M) ; \mathcal{C}^{\infty}(M)\right) \longrightarrow$ $\Omega^{k}(M)$ defined by

$$
\varphi(c)\left(X_{1}, \ldots, X_{k}\right)=c\left((-1)^{n-1} b\left(X_{1}\right), \ldots,(-1)^{n-1} b\left(X_{k}\right)\right),
$$

where $c \in C^{k}\left(\Omega^{n-1}(M) ; \mathcal{C}^{\infty}(M)\right)$ and $X_{1}, \ldots, X_{k} \in \mathcal{X}(M)$. It is easy to see that φ is an isomorphism of vector spaces. We show that it is an isomorphism of complexes.

Let $c \in C^{k}\left(\Omega^{n-1}(M) ; \mathcal{C}^{\infty}(M)\right)$. We put $\alpha=\varphi(c)$. If X_{0}, \ldots, X_{k} are in $\mathcal{X}(M)$ then $\varphi(\partial c)\left(X_{0}, \ldots, X_{k}\right)=(-1)^{(n-1)(k+1)} \partial c\left(b\left(X_{0}\right), \ldots, b\left(X_{k}\right)\right)=A+B$ where
$A=(-1)^{(n-1)(k+1)} \sum_{i=0}^{k}(-1)^{i} \#_{\Lambda}\left(b\left(X_{i}\right)\right) \cdot c\left(b\left(X_{0}\right), \ldots, \widehat{b\left(X_{i}\right)}, \ldots, b\left(X_{k}\right)\right)$
$B=(-1)^{(n-1)(k+1)} \sum_{0 \leq i<j \leq k}(-1)^{i+j} c\left(\llbracket b\left(X_{i}\right), b\left(X_{j}\right) \rrbracket, b\left(X_{0}\right), \ldots, \widehat{b\left(X_{i}\right)}, \ldots, \widehat{b\left(X_{j}\right)}, \ldots, b\left(X_{k}\right)\right)$.
We have $A=f \sum_{i=0}^{k}(-1)^{i} X_{i} . \alpha\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{k}\right)$ and

$$
\begin{aligned}
B= & f \sum_{0 \leq i<j \leq k}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k}\right) \\
& +\sum_{0 \leq i<j \leq k}(-1)^{i+j}\left(X_{i} . f\right) \alpha\left(X_{j}, X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k}\right) \\
& -\sum_{0 \leq i<j \leq k}(-1)^{i+j}\left(X_{j} . f\right) \alpha\left(X_{i}, X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k}\right) \\
= & f \sum_{0 \leq i<j \leq k}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k}\right) \\
& -k \sum_{i=0}^{k}(-1)^{i}\left(X_{i} . f\right) \alpha\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{k}\right) .
\end{aligned}
$$

Consequently, $\varphi(\partial c)=d_{f} \alpha=d_{f}(\varphi(c))$.
Remark 2.3. We claim that this cohomology is a "good" generalisation of the Poisson cohomology of a 2-dimensional Poisson manifold. Indeed, if (M, Π) is an orientable Poisson manifold of dimension 2, we consider the volume form ω on M and we put

$$
\phi^{2}: \mathcal{X}^{2}(M) \longrightarrow \Omega^{2}(M) \text { and } \phi^{1}: \mathcal{X}^{1}(M) \longrightarrow \Omega^{1}(M)
$$

defined by

$$
\phi^{2}(\Gamma)=\left(i_{\Gamma} \omega\right) \omega \quad \text { and } \quad \phi^{1}(X)=-i_{X} \omega
$$

for every 2 -vector Γ and vector field X.
We also put $\phi^{0}=i d: \mathcal{C}^{\infty}(M) \longrightarrow \mathcal{C}^{\infty}(M)$.
If we denote ∂ the operator of the Poisson cohomology, and $f=i_{\Pi} \omega$, it is quite easy to see that

$$
\phi:\left(\mathcal{X}^{\bullet}(M), \partial\right) \longrightarrow\left(\Omega^{\bullet}(M), d_{f}\right)
$$

is an isomorphism of complexes.
Remark 2.4. 1- The definitions we have given make sense if we work in the holomorphic case or in the formal case.
2- Important : If h is a function on M which doesn't vanish on M, then the cohomologies $H_{f}^{\bullet}(M)$ and $H_{f h}^{\bullet}(M)$ are isomorphic.
Indeed, the applications $\left(\Omega^{k}(M), d_{f h}\right) \longrightarrow\left(\Omega^{k}(M), d_{f}\right) \quad \alpha \longmapsto \frac{\alpha}{h^{k}}$ give an isomorphism of complexes.
In particular, if f doesn't vanish on M then $H_{f}^{\bullet}(M)$ is isomorphic to the de Rham's cohomology.
2.3. Other cohomologies. We can construct other complexes which look like $\left(\Omega^{\bullet}(M), d_{f}\right)$. More precisely we denote, for $p \in \mathbb{Z}$,

$$
\begin{aligned}
d_{f}^{(p)}: \Omega^{k}(M) & \longrightarrow \Omega^{k+1}(M) \\
\alpha & \longmapsto f d \alpha-(k-p) d f \wedge \alpha
\end{aligned}
$$

We will denote $H_{f, p}^{\bullet}(M)$ the cohomology of these complexes. We will see in the next section some relations between these different cohomologies.

Using the contraction $i_{\bullet} \omega$, it is quite easy to prove the following proposition.
Proposition 2.5. The spaces $H_{\Lambda}^{1}(M)$ and $H_{\Lambda}^{2}(M)$ are isomorphic to $H_{f, n-2}^{n-1}(M)$ and $H_{f, n-2}^{n}(M)$.
Remark 2.6. The two properties of remark 2.4 are valid for $H_{f, p}^{\bullet}(M)$ with $p \in \mathbb{Z}$.

3. Computation

Henceforth, we will work locally. Let Λ be a germ of n-vectors on \mathbb{K}^{n} (K indicates \mathbb{R} or \mathbb{C}) with $\underline{n \geq 3}$. We denote $\mathcal{F}\left(\mathbb{K}^{n}\right)\left(\Omega^{k}\left(\mathbb{K}^{n}\right), \mathcal{X}\left(\mathbb{K}^{n}\right)\right)$ the space of germs at 0 of (holomorphic, analytic, \mathcal{C}^{∞}, formal) functions (k-forms, vector fields). We can write Λ (with coordinates $\left.\left(x_{1}, \ldots, x_{n}\right)\right) \Lambda=f \frac{\partial}{\partial x_{1}} \wedge \ldots \wedge \frac{\partial}{\partial x_{n}}$ where $f \in \mathcal{F}\left(\mathbb{K}^{n}\right)$. We assume that the volume form ω is $d x_{1} \wedge \ldots \wedge d x_{n}$.
We suppose that $f(0)=0$ (see remark 2.4) and that f is of finite codimension, which means that $Q_{f}=\mathcal{F}\left(\mathbb{K}^{n}\right) / I_{f}\left(I_{f}\right.$ is the ideal spanned by $\left.\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$ is a finite dimensional vector space.

Remark 3.1. It is important to note that, according to Tougeron's theorem (see for instance [AGV]), if f is of finite codimension, then the set $f^{-1}(\{0\})$ is, from the topological point of view, the same as the set of the zeros of a polynomial. Therefore, if g is a germ at 0 of functions which satisfies $f g=0$, then $g=0$.

Moreover we suppose that f is a quasihomogeneous polynomial of degree N (for a justification of this additional assumption, see section 3). We are going to recall the definition of the quasi-homogeneity.
3.1. Quasi-homogeneity. Let $\left(w_{1}, \ldots, w_{n}\right) \in\left(\mathbb{N}^{*}\right)^{n}$. We denote W the vector field $w_{1} x_{1} \frac{\partial}{\partial x_{1}}+\ldots+w_{n} x_{n} \frac{\partial}{\partial x_{n}}$ on \mathbb{K}^{n}. We will say that a tensor T is quasihomogeneous with weights w_{1}, \ldots, w_{n} and of (quasi)degree $\mathrm{N} \in \mathbb{Z}$ if $\mathcal{L}_{W} T=\mathrm{N} T(\mathcal{L}$ indicates the Lie derivative operator). Note that T is then polynomial.
If f is a quasihomogeneous polynomial of degree N then $\mathrm{N}=k_{1} w_{1}+\ldots+k_{n} w_{n}$ with $k_{1}, \ldots, k_{n} \in \mathbb{N}$; so, an integer is not necessarily the quasidegree of a polynomial. If $f \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, we can write $f=\sum_{i=0}^{\infty} f_{i}$ with f_{i} quasihomogeneous of degree i (we adopt the convention that $f_{i}=0$ if i is not a quasidegree); f is said to be of order $\mathrm{d}(\operatorname{ord}(f)=\mathrm{d})$ if all of its monomials have a degree d or higher. For more details, consult [AGV].
Since \mathcal{L}_{W} and the exterior differentiation d commute, if α is a quasihomogeneous k-form, then $d \alpha$ is a quasihomogeneous $(k+1)$-form of degree $\operatorname{deg} \alpha$. In particular, it is important to notice that $d x_{i}$ is a quasihomogeneous 1-form of degree w_{i} (note that $\frac{\partial}{\partial x_{i}}$ is a quasihomogeneous vector field of degree $-w_{i}$). Thus, the volume form $\omega=d x_{1} \wedge \ldots \wedge d x_{n}$ is quasihomogeneous of degree $w_{1}+\ldots+w_{n}$. Note that a quasihomogeneous non zero k-form $(k \geq 1)$ has a degree strictly positive.
Note that if f is a quasihomogeneous polynomial of degree N , then the n-vector $\Lambda=f \frac{\partial}{\partial x_{1}} \wedge \ldots \wedge \frac{\partial}{\partial x_{n}}$ is quasihomogeneous of degree $\mathrm{N}-\sum_{i} w_{i}$.
In the sequel, the degrees will be quasidegrees with respect to $W=w_{1} x_{1} \frac{\partial}{\partial x_{1}}+\ldots+$ $w_{n} x_{n} \frac{\partial}{\partial x_{n}}$.
We will need the following result.

Lemma 3.2. Let $k_{1}, \ldots, k_{n} \in \mathbb{N}$ and put $p=\sum k_{i} w_{i}$. Assume that $g \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ and $\alpha \in \Omega^{i}\left(\mathbb{K}^{n}\right)$ verify $\operatorname{ord}\left(j_{0}^{\infty}(g)\right)>p$ and $\operatorname{ord}\left(j_{0}^{\infty}(\alpha)\right)>p\left(j_{0}^{\infty}\right.$ indicates the ∞-jet at 0). Then

1. there exists $h \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ such that $W . h-p h=g$,
2. there exists $\beta \in \Omega^{i}\left(\mathbb{K}^{n}\right)$ such that $\mathcal{L}_{W} \beta-p \beta=\alpha$.
proof: The first claim is only a generalisation of a lemma given (in dimension 2) in $[\mathrm{Mo}]$ and it can be proved in the same way. The second claim is a consequence of the first.

Now we are going to compute the spaces $H_{f}^{k}\left(\mathbb{K}^{n}\right)$ (i.e $H_{N P}^{k}\left(\mathbb{K}^{n}, \Lambda\right)$) for $k=$ $0, \ldots, n$. We will denote $Z_{f}^{k}\left(\mathbb{K}^{n}\right)$ and $B_{f}^{k}\left(\mathbb{K}^{n}\right)$ the spaces of k-cocycles and k cobords. We will also compute some spaces $H_{f, p}^{k}\left(\mathbb{K}^{n}\right)$ with particular interest in the spaces $H_{f, n-2}^{n}\left(\mathbb{K}^{n}\right)$ (i.e. $\left.H_{\Lambda}^{2}\left(\mathbb{K}^{n}\right)\right)$ and $H_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)$ (i.e. $H_{\Lambda}^{1}\left(\mathbb{K}^{n}\right)$). We will denote $Z_{f, p}^{k}\left(\mathbb{K}^{n}\right)\left(B_{f, p}^{k}\left(\mathbb{K}^{n}\right)\right)$ the spaces of k-cocycles (k-cobords) for the operator $d_{f}^{(p)}$.
3.2. Two useful preliminary results. In the computation of these spaces of cohomology, we will need the two following propositions. The first is only a corollary of the de Rham's division lemma (see [dR]).
Proposition 3.3. Let $f \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ of finite codimension. If $\alpha \in \Omega^{k}\left(\mathbb{K}^{n}\right)(1 \leq k \leq$ $n-1)$ verifies df $\wedge \alpha=0$ then there exists $\beta \in \Omega^{k-1}\left(\mathbb{K}^{n}\right)$ such that $\alpha=d f \wedge \beta$.

Proposition 3.4. Let $f \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ of finite codimension. Let α be a k-form $(2 \leq$ $k \leq n-1)$ which verifies $d \alpha=0$ and df $\wedge \alpha=0$ then there exists $\gamma \in \Omega^{k-2}\left(\mathbb{K}^{n}\right)$ such that $\alpha=d f \wedge d \gamma$.

Proof: We are going to prove this result in the formal case and in the analytical case.
Formal case: Let α be a quasihomogeneous k-form of degree p which verifies the hypotheses. Since $d f \wedge \alpha=0$, we have $\alpha=d f \wedge \beta_{1}$ where β_{1} is a quasihomogeneous $(k-1)$-form of degree $p-\mathrm{N}$. Now, since $d \alpha=0$, we have $d f \wedge d \beta_{1}=0$ and so $d \beta_{1}=d f \wedge \beta_{2}$, where β_{2} is a quasihomogeneous $(k-1)$-form of degree $p-2 \mathrm{~N}$. This way, we can construct a sequence $\left(\beta_{i}\right)$ of quasihomogeneous $(k-1)$-forms with $\operatorname{deg} \beta_{i}=p-i \mathrm{~N}$ which verifies $d \beta_{i}=d f \wedge \beta_{i+1}$. Let $q \in \mathbb{N}$ such that $p-q \mathrm{~N} \leq 0$. Thus, we have $\beta_{q}=0$ and so $d \beta_{q-1}=0$ i.e. $\beta_{q-1}=d \gamma_{q-1}$ where γ_{q-1} is a $(k-2)$-form. Consequently, $d \beta_{q-2}=d f \wedge d \gamma_{q-1}$ which implies that $\beta_{q-2}=-d f \wedge \gamma_{q-1}+d \gamma_{q-2}$, where γ_{q-2} is a $(k-2)$-form. In the same way, $d \beta_{q-3}=d f \wedge d \gamma_{q-2}$ so $\beta_{q-3}=$ $-d f \wedge \gamma_{q-2}+d \gamma_{q-3}$ where γ_{q-3} is a $(k-2)$-form. This way, we can show that $\beta_{1}=-d f \wedge \gamma_{2}+d \gamma_{1}$ where γ_{1} and γ_{2} are $(k-2)$-forms. Therefore, $\alpha=d f \wedge d \gamma_{1}$ Analytical case : In [Ma], Malgrange gives a result on the relative cohomology of a germ of an analytical function. In particular, he shows that in our case, if β is a germ at 0 of analytical r-forms $(r<n-1)$ which verifies $d \beta=d f \wedge \mu(\mu$ is a r-form) then there exists two germs of analytical ($r-1$)-forms γ and ν such that $\beta=d \gamma+d f \wedge \nu$.
Now, we are going to prove our proposition. Let α be a germ of analytical k-forms $(2 \leq k \leq n-1)$ which verifies the hypotheses of the proposition. Then there exists a $(k-1)$-form β such that $\alpha=d f \wedge \beta$ (proposition 3.3). But since $0=d \alpha=-d f \wedge d \beta$, we have $d \beta=d f \wedge \mu$ and so ([Ma]) $\beta=d \gamma+d f \wedge \nu$ where γ and ν are analytical ($k-2$)-forms. We deduce that $\alpha=d f \wedge d \gamma$ where γ is analytic.

Remark 3.5. Important:
In fact, some results which appear in $[\mathrm{R}]$ lead us to think that this proposition is not true in the real \mathcal{C}^{∞} case.
The computation of the spaces $H_{f, p}^{n}\left(\mathbb{K}^{n}\right), H_{f, p}^{n-1}\left(\mathbb{K}^{n}\right)(p \neq n-2)$ and $H_{f, p}^{0}\left(\mathbb{K}^{n}\right)$ doesn't use this proposition so, it still holds in the \mathcal{C}^{∞} case.
The results we find on the other spaces should be the same in the \mathcal{C}^{∞} case as in the analytical case but another proof need to be found.
3.3. Computation of $H_{f, p}^{0}\left(\mathbb{K}^{n}\right)$. We consider the application $d_{f}^{(p)}: \Omega^{0}\left(\mathbb{K}^{n}\right) \longrightarrow$ $\Omega^{1}\left(\mathbb{K}^{n}\right) \quad g \longmapsto f d g+p d f \wedge g$.

Theorem 3.6. 1 - If $p>0$ then $H_{f, p}^{0}\left(\mathbb{K}^{n}\right)=\{0\}$
2- If $p \leq 0$ then $H_{f, p}^{0}\left(\mathbb{K}^{n}\right)=\mathbb{K} . f^{-p}$
Proof: 1- If $g \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ verifies $d_{f}^{(p)} g=0$ then $d\left(f^{p} g\right)=0$, and so $f^{p} g$ is constant. But as $f(0)=0, f^{p} g$ must be 0 i.e. $g=0$ (because f is of finite codimension; see remark 3.1).
2- We will use an induction to show that for any $k \geq 0$, if g satisfies $f d g=k g d f$ then $g=\lambda f^{k}$ where $\lambda \in \mathbb{K}$.
For $k=0$ it is obvious.
Now we suppose that the property is true for $k \geq 0$. We show that it is still valid for $k+1$. Let $g \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ be such that $f d g=(k+1) g d f(*)$. Then $d f \wedge d g=0$ and so there exists $h \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ such that $d g=h d f$ (proposition 3.3). Replacing $d g$ by $h d f$ in $(*)$, we get $f h d f=(k+1) g d f$ i.e. $g=\frac{1}{k+1} f h$. Now, this former relation gives on the one hand $f d g=\frac{1}{k+1}\left(f^{2} d h+f h d f\right)$ and on the other hand, using $(*)$, $f d g=f h d f$. Consequently, $f d h=k h d f$ and so $h=\lambda f^{k}$ with $\lambda \in \mathbb{K}$.
3.4. Computation of $H_{f}^{k}\left(\mathbb{K}^{n}\right) 1 \leq k \leq n-2$.

Lemma 3.7. Let $\alpha \in Z_{f, p}^{k}\left(\mathbb{K}^{n}\right)$ with $1 \leq k \leq n-2$. Then α is cohomologous to a closed k-form.

Proof : We have $f d \alpha-(k-p) d f \wedge \alpha=0$. If $k=p$ then α is closed. Now we suppose that $k \neq p$. We put $\beta=d \alpha \in \Omega^{k+1}\left(\mathbb{K}^{n}\right)$. We have

$$
0=d f \wedge(f d \alpha-(k-p) d f \wedge \alpha)=f d f \wedge \alpha
$$

so, $d f \wedge \alpha=0$.
Now, since $d \beta=0$ and $d f \wedge \beta=0$, proposition 3.4 gives $\beta=d f \wedge d \gamma$ with $\gamma \in$ $\Omega^{k-1}\left(\mathbb{K}^{n}\right)$. Then, if we consider $\alpha^{\prime}=\alpha-\frac{1}{k-p}(f d \gamma-(k-p-1) d f \wedge \gamma)$, we have $d \alpha^{\prime}=0$ and $f d \gamma-(k-p-1) d f \wedge \gamma \in B_{f, p}^{k}\left(\mathbb{K}^{n}\right)$.
Theorem 3.8. If $k \in\{2, \ldots, n-2\}$ then $H_{f}^{k}\left(\mathbb{K}^{n}\right)=\{0\}$.
Proof : Let $\alpha \in Z_{f}^{k}\left(\mathbb{K}^{n}\right)$. Then $\alpha \in \Omega^{k}\left(\mathbb{K}^{n}\right)$ and verifies $f d \alpha-k d f \wedge \alpha=0$.
According to lemma 3.7 we can assume that α is closed. Now we show that $\alpha \in$ $B_{f}^{k}\left(\mathbb{K}^{n}\right)$.
Since $d \alpha=0$ and $d f \wedge \alpha=0$, there exists $\beta \in \Omega^{k-2}\left(\mathbb{K}^{n}\right)$ such that $\alpha=d f \wedge d \beta$ (proposition 3.4). Thus, $\alpha=d_{f}\left(\frac{-1}{k-1} d \beta\right)$.
Remark 3.9. It is possible to adapt this proof to show that $H_{f, p}^{k}\left(\mathbb{K}^{n}\right)=\{0\}$ if $k \in\{2, \ldots, n-2\}$ and $p \neq k, k-1$.

Lemma 3.10. Let $\alpha \in Z_{f}^{1}\left(\mathbb{K}^{n}\right)$. If $\operatorname{ord}\left(j_{0}^{\infty}(\alpha)\right)>\mathrm{N}$ then $\alpha \in B_{f}^{1}\left(\mathbb{K}^{n}\right)$.
Proof: According to lemma 3.7, we can assume that $d \alpha=0$.
Since $d f \wedge \alpha=0$ we have $\alpha=g d f$ (proposition 3.3) where g is in $\mathcal{F}\left(\mathbb{K}^{n}\right)$ and verifies $\operatorname{ord}\left(j_{0}^{\infty}(g)\right)>0$. We show that f divides g.
Let $\bar{g} \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ be such that $W \cdot \bar{g}=g$ (lemma 3.2); note that $\operatorname{ord}\left(j_{0}^{\infty}(\bar{g})\right)>0$.
We have $\mathcal{L}_{W}(d f \wedge d \bar{g})=\mathrm{N} d f \wedge d \bar{g}+d f \wedge d g$, and since $d f \wedge d g=-d \alpha=0, d f \wedge d \bar{g}$ verifies

$$
\mathcal{L}_{W}(d f \wedge d \bar{g})=\mathrm{N} d f \wedge d \bar{g}
$$

which means that $d f \wedge d \bar{g}$ is either 0 or quasihomogeneous of degree N .
But since ord $\left(j_{0}^{\infty}(d f \wedge d \bar{g})\right)>\mathrm{N}, d f \wedge d \bar{g}$ must be 0 .
Consequently, there exists $\nu \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ such that $\frac{\partial \bar{g}}{\partial x_{i}}=\nu \frac{\partial f}{\partial x_{i}}$ for any i. Thus, $W \cdot \bar{g}=\nu W \cdot f$ and so $g=\nu f$.
We deduce that $\alpha=f \beta$ with $\beta \in \Omega^{1}\left(\mathbb{K}^{n}\right)$.
Now, we have

$$
0=d \alpha=d f \wedge \beta+f d \beta \quad \text { and } \quad 0=d f \wedge \alpha=f d f \wedge \beta
$$

which implies that $d \beta=0$.
Therefore, $\alpha=f d h=d_{f}(h)$ with $h \in \mathcal{F}\left(\mathbb{K}^{n}\right)$.
Theorem 3.11. The space $H_{f}^{1}\left(\mathbb{K}^{n}\right)$ is of dimension 1 and spanned by $d f$.
Proof : Let $\alpha \in Z_{f}^{1}\left(\mathbb{K}^{n}\right)$. According to lemma 3.10 we only have to study the case where α is quasihomogeneous with $\operatorname{deg}(\alpha) \leq \mathrm{N}$. We have $f d \alpha-d f \wedge \alpha=0$ so, $d f \wedge d \alpha=0$. We deduce that $d \alpha=d f \wedge \beta$ where β is a quasihomogeneous 1-form of degree $\operatorname{deg}(\alpha)-\mathrm{N} \leq 0$. But since $d x_{i}$ is quasihomogeneous of degree $w_{i}>0$ for any i, every quasihomogeneous non zero 1 -form has a strictly positive degree. We deduce that $\beta=0$ and so $d \alpha=0$. Therefore, $d f \wedge \alpha=0$ which implies that $\alpha=g d f$ where g is a quasihomogeneous function of degree $\operatorname{deg}(\alpha)-\mathrm{N} \leq 0$. Consequently, if $\operatorname{deg}(\alpha)<\mathrm{N}$ then $g=0$; otherwise g is constant. To conclude, note that $d f$ is not a cobord because f doesn't divide $d f$.
3.5. Computation of $H_{f, p}^{n}\left(\mathbb{K}^{n}\right)$. We are going to compute the spaces $H_{f, p}^{n}\left(\mathbb{K}^{n}\right)$ for $p \neq n-1$. We consider the application

$$
d_{f}^{(n-q)}: \Omega^{n-1}\left(\mathbb{K}^{n}\right) \longrightarrow \Omega^{n}\left(\mathbb{K}^{n}\right) \quad \alpha \longmapsto f d \alpha-(q-1) d f \wedge \alpha
$$

with $\underline{q \neq 1}$ (note that if $q=n$ then we obtain the space $H_{N P}^{n}(M, \Lambda)$ and if $q=2$ then we have $\left.H_{\Lambda}^{2}\left(\mathbb{K}^{n}\right)\right)$.
We denote $\mathcal{I}^{n}=\left\{d f \wedge \alpha ; \alpha \in \Omega^{n-1}\left(\mathbb{K}^{n}\right)\right\}$. It is clear that $\mathcal{I}^{n} \simeq I_{f}$ (recall that I_{f} is the ideal of $\mathcal{F}\left(\mathbb{K}^{n}\right)$ spanned by $\left.\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{1}}\right)$ and that $\Omega^{n}\left(\mathbb{K}^{n}\right) / \mathcal{I}^{n} \simeq Q_{f}=$ $\mathcal{F}\left(\mathbb{K}^{n}\right) / I_{f}$.
We put $\sigma=i_{W} \omega$ (recall that $W=w_{1} x_{1} \frac{\partial}{\partial x_{1}}+\ldots+w_{n} x_{n} \frac{\partial}{\partial x_{n}}$ and that ω is the standard volume form on \mathbb{K}^{n}). Note that σ is a quasihomogeneous $(n-1)$-form of degree $\sum_{i} w_{i}$ and that $d g \wedge \sigma=(W \cdot g) \omega$ if $g \in \mathcal{F}\left(\mathbb{K}^{n}\right)$.
If $\alpha \in \Omega^{n-1}\left(\mathbb{K}^{n}\right)$, we will use the notation $\underline{\operatorname{div}(\alpha)}$ for $d \alpha=\operatorname{div}(\alpha) \omega$; for example, $\operatorname{div}(\sigma)=\sum_{i} w_{i}$. Note that if α is quasihomogeneous then $\operatorname{div}(\alpha)$ is quasihomogeneous of degree $\operatorname{deg} \alpha-\sum_{i} w_{i}$.
Lemma 3.12. 1 - If the ∞-jet at 0 of γ doesn't contain a component of degree $q \mathrm{~N}$ (in particular if $q \leq 0$) then $\gamma \in B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right) \Leftrightarrow \gamma \in \mathcal{I}^{n}$.

2- If γ is a quasihomogeneous n-form of degree $q \mathrm{~N}$ then $\gamma \in B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right) \Rightarrow \gamma \in \mathcal{I}^{n}$.

Proof: If $\gamma=f d \alpha-(q-1) d f \wedge \alpha \in B^{n}\left(d_{f}^{(n-q)}\right)$ where $\alpha \in \Omega^{n-1}$ then $\gamma=d f \wedge \beta$ with $\beta=-(q-1) \alpha+\frac{\operatorname{div}(\alpha)}{\mathrm{N}} \sigma$. This shows the second claim and the first part of the first one.
Now we prove the reverse of the first claim.
Formal case : Let $\gamma=\sum_{i>0} \gamma^{(i)}$ and $\beta=\sum \beta^{(i-\mathrm{N})}$ (with $\gamma^{(i)}$ of degree $i, \gamma^{(q \mathrm{~N})}=$ 0 and $\beta^{(i-\mathrm{N})}$ of degree $\left.i-\mathrm{N}\right)$ such that $\gamma=d f \wedge \beta$. If we put $\alpha=\frac{-1}{q-1} \beta+$ $\sum_{i} \frac{\operatorname{div}\left(\beta^{(i-\mathrm{N})}\right)}{(q-1)(i-q \mathrm{~N})} \sigma$, we have $d_{f}^{(n-q)}(\alpha)=\gamma$.
Analytical case : If β is analytic at 0 , the function $\operatorname{div}(\beta)$ is analytic too and since $\lim _{i \rightarrow+\infty} \frac{1}{i-q \mathrm{~N}}=0$, the $(\mathrm{n}-1)$-form defined above is also analytic at 0.
\mathcal{C}^{∞} case: We suppose that $\gamma=d f \wedge \beta$. If we denote $\tilde{\gamma}=j_{0}^{\infty}(\gamma)$ then there exists a formal (n-1)-form $\tilde{\alpha}$ such that $\tilde{\gamma}=f d \tilde{\alpha}-(q-1) d f \wedge \tilde{\alpha}$. Let α be a $\mathcal{C}^{\infty}-(\mathrm{n}-1)$-form such that $\tilde{\alpha}=j_{0}^{\infty}(\alpha)$. This form verifies $f d \alpha-(q-1) d f \wedge \alpha=\gamma+\varepsilon$ where ε is flat at 0 . Since $B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right) \subset \mathcal{I}^{n}, \varepsilon \in \mathcal{I}^{n}$ so that $\varepsilon=d f \wedge \mu$ where μ is flat at 0 . Let $g \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ be such that $W . g-\left((q-1) \mathrm{N}-\sum w_{i}\right) g=\frac{\operatorname{div}(\mu)}{q-1}$ (lemma 3.3). Then the form $\theta=\frac{-1}{q-1} \mu+g \sigma$ verifies $d_{f}^{(n-q)}(\theta)=\varepsilon$.
Remark 3.13. 1- This lemma gives $B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right) \subset \mathcal{I}^{n}$. Thus, there is a surjection from $H_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)$ onto Q_{f}. Therefore, if f is not of finite codimension then $H_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)$ is a infinite-dimensional vector space.
2- According to this lemma, if γ is in \mathcal{I}^{n} then there exits a quasihomogeneous n-form θ, of degree $q \mathrm{~N}$, such that $\gamma+\theta \in B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)$.
The first claim of this lemma allows us to state the following theorem.
Theorem 3.14. If $q \leq 0$ then $H_{f, n-q}^{n}\left(\mathbb{K}^{n}\right) \simeq Q_{f}$.
Now we suppose that $q>1$.
Lemma 3.15. Let $\alpha \in \Omega^{k}\left(\mathbb{K}^{n}\right)$ and $p \in \mathbb{Z}$. Then $f d_{f}^{(p)}(\alpha)=d_{f}^{(p-1)}(f \alpha)$.
Proof: Obvious.
Lemma 3.16. 1 - Let $q>2$. If $\alpha \in \Omega^{n}\left(\mathbb{K}^{n}\right)$ is quasihomogeneous of degree $(q-1) \mathrm{N}$ and verifies $f \alpha \in B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)$ then $\alpha \in B_{f, n-q+1}^{n}\left(\mathbb{K}^{n}\right)$.
2- If α is quasihomogeneous of degree N with $f \alpha \in B_{f, n-2}^{n}\left(\mathbb{K}^{n}\right)$ then $\alpha=0$.
Proof: 1- We suppose that $\alpha=g \omega$ with $g \in \mathcal{F}\left(\mathbb{K}^{n}\right)$ quasihomogeneous of degree $(q-1) \mathrm{N}-\sum w_{i}$. We have $f g \omega=f d \beta-(q-1) d f \wedge \beta$ where β is a quasihomogeneous (n-1)-form of degree $(q-1) \mathrm{N}$.
If we put $\theta=-(q-1) \beta+\frac{\operatorname{div}(\beta)-g}{\mathrm{~N}} \sigma$ then $d f \wedge \theta=0$, and so $\theta=d f \wedge \gamma$ where γ is a quasihomogeneous (n-2)-form of degree $(q-2) \mathrm{N}$. Consequently $\beta=\frac{-1}{q-1} d f \wedge \gamma+\frac{\operatorname{div}(\beta)-g}{(q-1) \mathrm{N}} \sigma$. Now, a computation shows that $f d \beta-(q-1) d f \wedge \beta=$ $\frac{1}{q-1} f d f \wedge d \gamma$ i.e. $f \alpha=\frac{1}{q-1} f d f \wedge d \gamma$.
Therefore, $\alpha=\frac{1}{q-1} d f \wedge d \gamma=\frac{1}{q-1} d_{f}^{(n-q+1)}\left(\frac{-1}{q-2} d \gamma\right)$.
2- As in 1- (with $q=2$), we have $f \alpha=f g \omega=d_{f}^{(n-2)}(\beta)$ with $\operatorname{deg} g=\mathrm{N}$ and $\operatorname{deg} \beta=\mathrm{N}$. We put $\theta=-\beta+\frac{\operatorname{div}(\beta)-g}{\mathrm{~N}} \sigma$.

If $\theta \neq 0$ then $\theta=d f \wedge \gamma$ where γ is a quasihomogeneous (n-2)-form of degree 0 which is not possible. So, $\theta=0$ i.e. $\beta=\frac{\operatorname{div}(\beta)-g}{\mathrm{~N}} \sigma$.
We deduce that $f d \beta-d f \wedge \beta=0$ i.e. $\alpha=0$.
Let \mathcal{B} be a monomial basis of Q_{f} (for the existence of such a basis, see [AGV]). We denote $r_{j}(j=2, \ldots, q-1)$ the number of monomials of \mathcal{B} whose degree is $j \mathrm{~N}-\sum w_{i}$ (this number doesn't depend on the choice of \mathcal{B}). We also denote s the dimension of the space of quasihomogeneous polynomials of degree $\mathrm{N}-\sum w_{i}$ and c the codimension of f.

Theorem 3.17. Let $\alpha \in \Omega^{n}\left(\mathbb{K}^{n}\right)$. Then there exist unique polynomials h_{1}, \ldots, h_{q} (possibly zero) such that
$\bullet h_{1}$ is quasihomogeneous of degree $\mathrm{N}-\sum w_{i}$,

- $h_{j}(2 \leq j \leq q-1)$ is a linear combination of monomials of \mathcal{B} of degree $j \mathrm{~N}-\sum w_{i}$,
$\bullet h_{q}$ is a linear combination of monomials of \mathcal{B} and

$$
\alpha=\left(h_{q}+f h_{q-1}+\ldots+f^{q-1} h_{1}\right) \omega \quad \bmod B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right) .
$$

In particular, the dimension of $H_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)$ is $c+r_{q-1}+\ldots+r_{2}+s$.
Proof : Existence: We suppose that $\alpha=g \omega$ with $g \in \mathcal{F}\left(\mathbb{K}^{n}\right)$. There exists h_{q}, a linear combination of the monomials of \mathcal{B}, such that $g=h_{q} \bmod I_{f}$. So, according to lemma 3.12 (see the former remark), $g \omega=h_{q} \omega+d f \wedge \beta \bmod B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)$ where β is a quasihomogeneous (n-1)-form of degree $(q-1) \mathrm{N}$.
Consequently, $g \omega=h_{q} \omega+\frac{1}{q-1} f d \beta-\frac{1}{q-1}[f d \beta-(q-1) d f \wedge \beta] \bmod B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)$ so, we can write

$$
g \omega=h_{q} \omega+f g_{q-1} \omega \quad \bmod B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)
$$

with $\operatorname{deg} g_{q-1}=(q-1) \mathrm{N}-\sum w_{i}$.
In the same way,

$$
g_{q-1} \omega=h_{q-1} \omega+f g_{q-2} \omega \quad \bmod B_{f, n-q+1}^{n}\left(\mathbb{K}^{n}\right)
$$

where h_{q-1} is a linear combination of the monomials of \mathcal{B} of degree $(q-1) \mathrm{N}-\sum w_{i}$ and g_{q-2} is quasihomogeneous of degree $(q-2) \mathrm{N}-\sum w_{i} \ldots$
... and

$$
g_{2} \omega=h_{2} \omega+f h_{1} \omega \quad \bmod B_{f, n-2}^{n}\left(\mathbb{K}^{n}\right)
$$

where h_{2} is a linear combination of the monomials of \mathcal{B} of degree $2 \mathrm{~N}-\sum w_{i}$ and h_{1} is quasihomogeneous of degree $\mathrm{N}-\sum w_{i}$.
Using lemma 3.15 , we get

$$
\alpha=g \omega=h_{q}+h_{q-1}+f^{2} h_{q-2}+\ldots+f^{q-1} h_{1} \omega \quad \bmod B^{n}\left(d_{f}^{(n-q)}\right) .
$$

Unicity: Let $g=h_{q}+f h_{q-1}+\ldots+f^{q-1} h_{1}$ with h_{1}, \ldots, h_{q} as in the statement of the theorem. We suppose that $g \omega \in B_{f, n-q}^{n}\left(\mathbb{K}^{n}\right)$. Then $g \omega \in \mathcal{I}^{n}$ i.e. $g \in I_{f}$. But since $f h_{q-1}+\ldots+f^{q-1} h_{1} \in I_{f}$ (because $f \in I_{f}$) we have $h_{q} \in I_{f}$ and so $h_{q}=0$. Now, according to lemma 3.16, $\left(h_{q-1}+f h_{q-2}+\ldots+f^{q-2} h_{1}\right) \omega$ is in $B_{f, n-q+1}^{n}\left(\mathbb{K}^{n}\right)$ and so, in the same way, $h_{q-1}=0$.
This way, we get $h_{q}=h_{q-1}=\ldots=h_{2}=0$ and $f h_{1} \omega \in B_{f, n-2}^{n}\left(\mathbb{K}^{n}\right)$. Lemma 3.16 gives $h_{1}=0$.

This theorem allows us to give the dimension of the spaces $H_{N P}^{n}\left(\mathbb{K}^{n}, \Lambda\right)$ and $H_{\Lambda}^{2}\left(\mathbb{K}^{n}\right)$.

Corollary 3.18. Let $\alpha \in \Omega^{n}\left(\mathbb{K}^{n}\right)$. Then there exist unique polynomials h_{1}, \ldots, h_{n} (possibly zero) such that

- h_{1} is quasihomogeneous of degree $\mathrm{N}-\sum w_{i}$,
- $h_{j}(2 \leq j \leq n-1)$ is a linear combination of monomials of \mathcal{B} of degree $j \mathrm{~N}-\sum w_{i}$,
$\bullet h_{n}$ is a linear combination of monomials of \mathcal{B} and

$$
\alpha=\left(h_{n}+f h_{n-1}+\ldots+f^{n-1} h_{1}\right) \omega \quad \bmod B_{f}^{n}\left(\mathbb{K}^{n}\right) .
$$

In particular, the dimension of $H_{N P}^{n}\left(\mathbb{K}^{n}, \Lambda\right)$ is $c+r_{n-1}+\ldots+r_{2}+s$.
Corollary 3.19. Let $\alpha \in \Omega^{n}\left(\mathbb{K}^{n}\right)$. Then there exist unique polynomials h_{1}, h_{2} (possibly zero) such that
$\bullet h_{1}$ is quasihomogeneous of degree $\mathrm{N}-\sum w_{i}$,

- h_{2} is a linear combination of monomials of \mathcal{B} and

$$
\alpha=\left(h_{2}+f h_{1}\right) \omega \quad \bmod B_{f, n-2}^{n}\left(\mathbb{K}^{n}\right) .
$$

In particular, the dimension of $H_{\Lambda}^{2}\left(\mathbb{K}^{n}\right)$ is $c+s$.
Remark 3.20. If $q=1$ then the space $H_{f, n-1}^{n}\left(\mathbb{K}^{n}\right)$ is $\Omega^{n}\left(\mathbb{K}^{n}\right) / f \Omega^{n}\left(\mathbb{K}^{n}\right)$ which is of infinite dimension.
3.6. Computation of $H_{f, p}^{n-1}\left(\mathbb{K}^{n}\right)$. We are going to compute the spaces $H_{f, p}^{n-1}\left(\mathbb{K}^{n}\right)$ with $p \neq n-1$. We consider the piece of complex

$$
\Omega^{n-2}\left(\mathbb{K}^{n}\right) \longrightarrow \Omega^{n-1}\left(\mathbb{K}^{n}\right) \longrightarrow \Omega^{n}\left(\mathbb{K}^{n}\right)
$$

with $d_{f}^{(n-q)}(\alpha)=f d \alpha-(q-2) d f \wedge \alpha$ if $\alpha \in \Omega^{n-2}\left(\mathbb{K}^{n}\right)$,
and $d_{f}^{(n-q)}(\alpha)=f d \alpha-(q-1) d f \wedge \alpha$ if $\alpha \in \Omega^{n-1}\left(\mathbb{K}^{n}\right)$ with $q \neq 1 . / /$ Remember that if $q=n$ we obtain $H_{N P}^{n-1}\left(K^{n}, \Lambda\right)$ and if $q=2$ we have $H_{\Lambda}^{1}\left(\mathbb{K}^{n}\right)$.

Lemma 3.21. If $\alpha \in Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ then $\alpha=\frac{\operatorname{div}(\alpha)}{(q-1) \mathrm{N}} \sigma+d f \wedge \beta$ with $\beta \in \Omega^{n-2}\left(\mathbb{K}^{n}\right)$ and so, d α verifies $\mathcal{L}_{W}(d \alpha)-(q-1) \mathrm{N} d \alpha=(q-1) \mathrm{N} d f \wedge d \beta$.

Proof: It is sufficient to notice that $d f \wedge\left(\alpha-\frac{\operatorname{div}(\alpha)}{(q-1) \mathrm{N}} \sigma\right)=0$ (proposition 3.3). For the second claim, we have $(q-1) \mathrm{N} d \alpha=\left(W \cdot \operatorname{div}(\alpha)+\left(\sum w_{i}\right) \operatorname{div}(\alpha)\right) \omega-(q-1) \mathrm{N} d f \wedge d \beta$ and the conclusion follows.

Lemma 3.22. If $\alpha \in Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ with $\operatorname{ord}\left(j_{0}^{\infty}(\alpha)\right)>(q-1) \mathrm{N}$ then α is cohomologous to a closed (n-1)-form. In particular, if $q \leq 0$ then every $(n-1)$-cocycle for $d_{f}^{(n-q)}$ is cohomologous to a closed $(n-1)$-form.

Proof: We have $\alpha=\frac{\operatorname{div}(\alpha)}{(q-1) \mathrm{N}} \sigma+d f \wedge \beta$ (lemma 3.21) with

$$
\mathcal{L}_{W}(d \alpha)-(q-1) \mathrm{N} d \alpha=(q-1) \mathrm{N} d f \wedge d \beta \quad(*)
$$

Now, let $\gamma \in \Omega^{n-2}\left(\mathbb{K}^{n}\right)$ such that $\mathcal{L}_{W} \gamma-(q-2) \mathrm{N} \gamma=(q-1) \mathrm{N} \beta(\gamma$ exists because $\operatorname{ord}\left(j_{0}^{\infty}(\beta)\right)>(q-2) \mathrm{N}$, see lemma 3.2).
We have $\mathcal{L}_{W} d \gamma-(q-2) \mathrm{N} d \gamma=(q-1) \mathrm{N} d \beta$. Thus $d f \wedge d \gamma$ verifies

$$
\mathcal{L}_{W}(d f \wedge d \gamma)-(q-1) \mathrm{N} d f \wedge d \gamma=(q-1) \mathrm{N} d f \wedge d \beta \quad(* *)
$$

¿From (*) and ($* *$) we get $d \alpha=d f \wedge d \gamma$.
Indeed, $\mathcal{L}_{W}(d \alpha-d f \wedge d \gamma)=(q-1) \mathrm{N}(d \alpha-d f \wedge d \gamma)$ but $d \alpha-d f \wedge d \gamma$ is not quasihomogeneous of degree $(q-1) \mathrm{N}$.
Now, if we put $\theta=\alpha-\frac{1}{q-1}(f d \gamma-(q-2) d f \wedge \gamma)$, we have $d \theta=0$ and $\theta=$ $\alpha \bmod B_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$.

This lemma allows us to state the following theorem.
Theorem 3.23. If we suppose that $q \leq 0$ then $H_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)=\{0\}$.
Proof : Let $\alpha \in Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$. We can suppose (according to the former lemma) that $d \alpha=0$. Thus we have $d f \wedge \alpha=0$. Proposition 3.4 gives then, $\alpha=d f \wedge d \gamma$ with $\gamma \in \Omega^{n-3}\left(\mathbb{K}^{n}\right)$. Therefore, $\alpha=d_{f}^{(n-q)}\left(-\frac{1}{q-2} d \gamma\right)$.

Now, we assume that $q>1$.
Lemma 3.24. If $\alpha \in Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ is a quasihomogeneous (n-1)-form whose degree is strictly lower than $(q-1) \mathrm{N}$ then α is cohomologous to a closed (n - 1)-form.

Proof : According to lemma 3.21, we have $\alpha=\frac{\operatorname{div}(\alpha)}{(q-1) \mathrm{N}} \sigma+d f \wedge \beta$ and so,

$$
d \alpha=\frac{(q-1) \mathrm{N}}{\operatorname{deg}(\alpha)-(q-1) \mathrm{N}} d f \wedge d \beta
$$

We deduce that, if we put $\theta=\alpha-d_{f}^{(n-q)}\left(\frac{\mathrm{N}}{\operatorname{deg}(\alpha)-(q-1) \mathrm{N}} d \beta\right)$, we have $d \theta=0$.
Remark 3.25. A consequence of lemmas 3.22 and 3.24 is that, if $q>1$, every cocycle $\alpha \in Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ is cohomologous to a cocycle $\eta+\theta$ where η is in $Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ and is closed, and θ is quasihomogeneous of degree $(q-1) \mathrm{N}$.

Lemma 3.26. Let $\alpha=g \sigma$ where g is a quasihomogeneous polynomial of degree $(q-1) \mathrm{N}-\sum w_{i}$. Then

1- If $q>2$ then, $\alpha \in B_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right) \Longleftrightarrow g \omega \in B_{f, n-q+1}^{n}\left(\mathbb{K}^{n}\right)$.
2- If $q=2, \alpha \in B_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right) \Longleftrightarrow \alpha=0$.
Proof :1- - We suppose that $\alpha \in B_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ i.e. $\alpha=f d \beta-(q-2) d f \wedge \beta$ with $\beta \in \Omega^{n-2}\left(\mathbb{K}^{n}\right)$. Then $d \alpha=(q-1) d f \wedge d \beta$.
On the other hand, $d \alpha=(q-1) \mathrm{N} g \omega$ so $g \omega=\frac{1}{\mathrm{~N}} d f \wedge d \beta=d_{f}^{(n-q+1)}\left(-\frac{d \beta}{(q-2) \mathrm{N}}\right)$.

- Now we suppose that $g \omega \in B_{f, n-q+1}^{n}\left(\mathbb{K}^{n}\right)$ i.e. $g \omega=f d \beta-(q-2) d f \wedge \beta$ where β is a quasihomogeneous (n-1)-form of degree $(q-2) \mathrm{N}$. We put $\gamma=i_{W} \beta \in \Omega^{n-2}\left(\mathbb{K}^{n}\right)$. We have

$$
\begin{aligned}
d_{f}^{(n-q)}(\gamma) & =f d \gamma-(q-2) d f \wedge \gamma \\
& =f d\left(i_{W} \beta\right)-(q-2) d f \wedge\left(i_{W} \beta\right) \\
& =f\left(\mathcal{L}_{W} \beta-i_{W} d \beta\right)-(q-2)\left[-i_{W}(d f \wedge \beta)+\left(i_{W} d f\right) \wedge \beta\right] \\
& =f(q-2) \mathrm{N} \beta-i_{W}[f d \beta-(q-2) d f \wedge \beta]-(q-2)(W . f) \beta \\
& =-i_{W}[f d \beta-(q-2) d f \wedge \beta] .
\end{aligned}
$$

Consequently, $d_{f}^{(n-q)}(\gamma)=-i_{W}(g \omega)=-g \sigma$.
2- If $\alpha=f d \beta$ where β is a quasihomogeneous ($\mathrm{n}-2$-form of degree $\operatorname{deg} \alpha-\mathrm{N}=0$
then $\beta=0$ and so $\alpha=0$.
We recall that \mathcal{B} indicates a monomial basis of Q_{f}. We adopt the same notations as for theorem 3.17.

Theorem 3.27. We suppose that $q>2$. Let $\alpha \in Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$. There exist unique polynomials h_{1}, \ldots, h_{q-1} (possibly zero) such that

- h_{1} is quasihomogeneous of degree $\mathrm{N}-\sum w_{i}$,
- $h_{k}(k \geq 2)$ is a linear combination of monomials of \mathcal{B} of degree $k N-\sum w_{i}$ and

$$
\omega=\left(h_{q-1}+f h_{q-2}+\ldots+f^{q-2} h_{1}\right) \sigma \quad \bmod B_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)
$$

In particular, the dimension of the space $H_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ is $r_{q-1}+\ldots+r_{2}+s$.
Proof : If $\alpha \in Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ then α is cohomologous to $\eta+\theta$, where η is in $Z_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$ and is closed, and θ is quasihomogeneous of degree $(q-1) \mathrm{N}$ (see remark 3.25).
The same proof as in theorem 3.23 shows that η is a cobord.
Now, we have to study θ. According to lemma 3.21, we can write $\theta=\frac{\operatorname{div}(\theta)}{(q-1) \mathrm{N}} \sigma+d f \wedge \beta$ $\left(\beta \in \Omega^{n-2}\left(\mathbb{K}^{n}\right)\right)$ with $\mathcal{L}_{W}(d \theta)-(q-1) \mathrm{N} d \theta=(q-1) \mathrm{N} d f \wedge d \beta$. Since θ is quasihomogeneous of degree $(q-1) \mathrm{N}$, the former relation gives $d f \wedge d \beta=0$. Consequently, if we put $\gamma=d f \wedge \beta$, proposition 3.4 gives $\gamma=d f \wedge d \xi$.
Therefore, $\gamma=d_{f}^{(n-q)}\left(-\frac{1}{q-2} d \xi\right)$ and so $\theta=\frac{\operatorname{div}(\theta)}{(q-1) \mathrm{N}} \sigma \bmod B_{f, n-q}^{n-1}\left(\mathbb{K}^{n}\right)$. The conclusion follows using lemma 3.26 and theorem 3.17.
Corollary 3.28. We suppose that $q=n$. Let $\alpha \in Z_{f}^{n-1}\left(\mathbb{K}^{n}\right)$. There exist unique polynomials h_{1}, \ldots, h_{n-1} (possibly zero) such that

- h_{1} is quasihomogeneous of degree $\mathrm{N}-\sum w_{i}$,
- $h_{k}(k \geq 2)$ is a linear combination of monomials of \mathcal{B} of degree $k N-\sum w_{i}$ and

$$
\omega=\left(h_{n-1}+f h_{n-2}+\ldots+f^{n-2} h_{1}\right) \sigma \quad \bmod B_{f}^{n-1}\left(\mathbb{K}^{n}\right)
$$

In particular, the dimension of the space $H_{N P}^{n-1}\left(\mathbb{K}^{n}, \Lambda\right)$ is $r_{n-1}+\ldots+r_{2}+s$.
Remark 3.29. If $q=2$, the description of the space $H_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)\left(\right.$ and so $\left.H_{\Lambda}^{1}\left(\mathbb{K}^{n}\right)\right)$ is more difficult. It is possible to show that this space is not of finite dimension. Indeed, let us consider the case $n=3$ in order to simplify (but it is valid for any $n \geq 3)$. We put $\alpha=g\left(\frac{\partial f}{\partial x} d x \wedge d z+\frac{\partial f}{\partial y} d y \wedge d z\right)$ where g is a function which depends only on z. We have $d \alpha=0$ and $d f \wedge \alpha=0$ so $\alpha \in Z_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)$ but $\alpha \notin B_{f, n-2}^{n}\left(\mathbb{K}^{n}\right)$ because f doesn't divide α.

We can yet give more precisions on the space $H_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)$.
Theorem 3.30. Let E be the space of ($n-1$)-forms $h \sigma$ where h is a quasihomogeneous polynomial of degree $\mathrm{N}-\sum w_{i}$, and F the quotient of the vector space $\left\{d f \wedge d \gamma ; \gamma \in \Omega^{n-3}\left(\mathbb{K}^{n}\right)\right\}$ by the subspace $\left\{d f \wedge d(f \beta) ; \beta \in \Omega^{n-3}\left(\mathbb{K}^{n}\right)\right\}$.
Then $H_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)=E \oplus F$.
Proof: Let α in $Z_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)$.
According to remark 3.25 , there exixt a closed $(n-1)$-form η with $\eta \in Z_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)$ and a quasihomogeneous $(n-1)$-form θ, such that α is cohomologous to $\eta+\theta$.
We have (lemma 3.21) $\theta=\frac{\operatorname{div}(\theta)}{\mathrm{N}} \sigma+d f \wedge \beta$ with β quasihomogeneous of degree

0 which is possible only if $\beta \neq 0$. So, $\theta=g \sigma$ where g is a quasihomogeneous polynomial of degree $\mathrm{N}-\sum w_{i}$. Lemma 3.26 says that $\theta \in B_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)$ if and only if $\theta=0$.
Now we study η. Proposition 3.4 gives $\eta=d f \wedge d \gamma$ where γ is a ($n-3$)-form. If we suppose that $\eta \in B_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right)$ then $d f \wedge d \gamma=f d \xi$ with $\xi \in \Omega^{n-2}\left(K^{n}\right)$ and so, $d f \wedge d \xi=0$. Now we apply proposition 3.4 to $d \xi$ and we obtain $d \xi=d f \wedge d \beta$ with $\beta \in \Omega^{n-3}\left(\mathbb{K}^{n}\right)$. Consequently, $d f \wedge d \gamma=f d f \wedge d \beta$ which implies that $d \gamma=$ $f d \beta+d f \wedge \mu$ with $\mu \in \Omega^{n-3}\left(\mathbb{K}^{n}\right)$, and so $d \gamma=d(f \beta)+d f \wedge \nu$ with $\nu \in \Omega^{n-3}\left(\mathbb{K}^{n}\right)$. Therefore, $\eta \in B_{f, n-2}^{n-1}\left(\mathbb{K}^{n}\right) \Leftrightarrow \eta=d f \wedge d(f \beta)$.
3.7. Summary. It is time to sum up the results we have found.

The cohomology $H_{f}^{\bullet}\left(\mathbb{K}^{n}\right)$ (and so the Nambu-Poisson cohomology $H_{N P}^{\bullet}\left(\mathbb{K}^{n}, \Lambda\right)$) has been entirely computed (see theorems 3.6, 3.8, 3.11, and corollaries 3.18 and 3.28) :

The spaces of this cohomology are of finite dimension and only the "extremal" ones (i.e H^{0}, H^{1}, H^{n-1} and H^{n}) are possibly different to $\{0\}$. The spaces $H_{N P}^{0}\left(\mathbb{K}^{n}, \Lambda\right)$ and $H_{N P}^{1}\left(\mathbb{K}^{n}, \Lambda\right)$ are always of dimension 1 . The dimensions of the spaces $H_{N P}^{n-1}\left(\mathbb{K}^{n}, \Lambda\right)$ and $H_{N P}^{n}\left(\mathbb{K}^{n}, \Lambda\right)$ depend on the one hand on the type of the singularity of Λ (via the role played by Q_{f}), and on the other hand, on the "polynomial nature" of Λ.

Concerning the cohomology $H_{f, n-2}^{\bullet}\left(\mathbb{K}^{n}\right)$, we have computed H^{n}, i.e. $H_{\Lambda}^{n}\left(\mathbb{K}^{n}\right)$ (see corollary 3.19) and we have given a sketch of description of H^{n-1} (see theorem 3.30). We have also computed the spaces $H_{f, n-2}^{0}\left(\mathbb{K}^{n}\right)$ (theorem 3.6) and $H_{f, n-2}^{k}\left(\mathbb{K}^{n}\right)$ (theorem 3.8) for $k \neq n-2, n-1$, but these spaces are not particularly interesting for our problem.
The space $H_{\Lambda}^{2}\left(\mathbb{K}^{n}\right)$, which describes the infinitesimal deformations of Λ is of finite dimension and its dimension has the same property as the dimension of $H_{N P}^{n}\left(\mathbb{K}^{n}, \Lambda\right)$. On the other hand, the space $H_{\Lambda}^{1}\left(\mathbb{K}^{n}\right)$ which is the space of the vector fields preserving Λ modulo the Hamiltonian vector fields, is not of finite dimension.

It is interesting to compare the results we have found on these two cohomologies with the ones given in $[\mathrm{Mo}]$ on the computation of the Poisson cohomology in dimension 2.

Finally, if $p \neq 0, n-2, n-1$ we have computed the spaces $H_{f, p}^{0}\left(\mathbb{K}^{n}\right), H_{f, p}^{n-1}\left(\mathbb{K}^{n}\right)$, $H_{f, p}^{n}\left(\mathbb{K}^{n}\right)$ and $H_{f, p}^{k}\left(\mathbb{K}^{n}\right)$ with $k \neq p, p+1$.
If $p=n-1$ we have computed the spaces $H_{f, n-1}^{0}\left(\mathbb{K}^{n}\right)$ and $H_{f, n-1}^{k}\left(\mathbb{K}^{n}\right)$ for $2 \leq k \leq$ $n-2 \quad k \neq p, p+1$ (the space $H_{f, n-1}^{n}\left(\mathbb{K}^{n}\right)$ is of infinite dimension).

4. Examples

In this section, we will explicit the cohomology of some particular germs of n vectors.
4.1. Normal forms of n-vectors. Let $\Lambda=f \frac{\partial}{\partial x_{1}} \wedge \ldots \wedge \frac{\partial}{\partial x_{n}}$ be a germ at 0 of n-vectors on $\mathbb{K}^{n}(\underline{n \geq 3})$ with f of finite codimension (see the beginning of section 3) and $f(0)=0(\overline{\text { if } f(0)} \neq 0$, then the local triviality theorem, see [AlGu], [G] or [N2], allows us to write, up to a change of coordinates, that $\Lambda=\frac{\partial}{\partial x_{1}} \wedge \ldots \wedge \frac{\partial}{\partial x_{n}}$).

Proposition 4.1. If 0 is not a critical point for f then there exist local coordinates y_{1}, \ldots, y_{n} such that

$$
\Lambda=y_{1} \frac{\partial}{\partial y_{1}} \wedge \ldots \wedge \frac{\partial}{\partial y_{n}}
$$

Proof : A similar proposition is shown for instance in [Mo] in dimension 2. The proof can be generalized to the n-dimensional $(n \geq 3)$ case.

Now we suppose that 0 is a critical point of f. Moreover, we suppose that the germ f is simple, which means that a sufficiently small neighbourhood (with respect to Whitney's topology; see [AGV]) of f intersects only a finite number of R-orbits (two germs g and h are said R-equivalent if there exits φ, a local diffeomorphism at 0 , such that $g=h \circ \varphi$). Simple germs are those who present a certain kind of stability under deformation.
The following theorem can be found in [A] with only sketches of the proofs. In [Mo], a similar theorem (in dimension 2) is proved and the demonstration can be adapted here.

Theorem 4.2. Let f be a simple germ at 0 of finite codimension. Suppose that f has at 0 a critical point with critical value 0 . Then there exist local coordinates y_{1}, \ldots, y_{n} such that the germ $\Lambda=f \frac{\partial}{\partial x_{1}} \wedge \ldots \wedge \frac{\partial}{\partial x_{n}}$ can be written, up to a multiplicative constant, $g \frac{\partial}{\partial y_{1}} \wedge \ldots \wedge \frac{\partial}{\partial y_{n}}$ where g is in the following list.

$$
\begin{aligned}
A_{k} & : y_{1}^{k+1} \pm y_{2}^{2} \pm \ldots \pm y_{n}^{2} \quad k \geq 1 \\
D_{k} & : y_{1}^{2} y_{2} \pm y_{2}^{k-1} \pm y_{3}^{2} \pm \ldots \pm y_{n}^{2} \quad k \geq 4 \\
E_{6} & : y_{1}^{3}+y_{2}^{4} \pm y_{3}^{2} \pm \ldots \pm y_{n}^{2} \\
E_{7} & : y_{1}^{3}+y_{1} y_{2}^{3} \pm y_{3}^{2} \pm \ldots \pm y_{n}^{2} \\
E_{8} & : y_{1}^{3}+y_{2}^{5} \pm y_{3}^{2} \pm \ldots \pm y_{n}^{2}
\end{aligned}
$$

Proposition 4.1 and theorem 4.2 describe most of the germs at 0 of n-vectors on \mathbb{K}^{n} vanishing at 0.
We can notice that the models given in the former list are all quasihomogeneous polynomials; which justifies the assumption we made in section 2.
4.2. Some examples. 1- The regular case : $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}$.

It is easy to see that $Q_{f}=\{0\}$ and that f is quasihomogeneous of degree $\mathrm{N}=1$, with respect to $w_{1}=\ldots=w_{n}=1$. We have $\mathrm{N}-\sum w_{i}<0$, so $H_{f}^{0}\left(\mathbb{K}^{n}\right) \simeq \mathbb{K}$, $H_{f}^{1}\left(\mathbb{K}^{n}\right)=\mathbb{K} . d x_{1}$ and $H_{f}^{k}\left(\mathbb{K}^{n}\right)=\{0\}$ for any $k \geq 2$.

2- Non degenerate singularity: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\ldots+x_{n}^{2}$ with $n \geq 3$.
We have $\mathrm{N}=2$ and $w_{1}=\ldots=w_{n}=1$. The space Q_{f} is isomorphic to \mathbb{K} and is spanned by the constant germ 1 , which is of degree 0 .
We deduce that $H_{f}^{0}\left(\mathbb{K}^{n}\right) \simeq \mathbb{K}, H_{f}^{1}\left(\mathbb{K}^{n}\right)=\mathbb{K} .\left(x_{1} d x_{1}+\ldots+x_{n} d x_{n}\right)$ and $H_{f}^{k}=\{0\}$ for $2 \leq k \leq n-2$.
In order to describe the spaces $H_{f}^{n-1}\left(\mathbb{K}^{n}\right)$ and $H_{f}^{n}\left(\mathbb{K}^{n}\right)$, we look for an integer $k \in\{1, \ldots, n-1\}$ such that $k N-\sum w_{i}=\operatorname{deg} 1$ i.e. $2 k-n=0$.
Therefore,
if n is even then $\left\{\omega, f^{\frac{n}{2}} \omega\right\}$ is a basis of $H_{f}^{n}\left(\mathbb{K}^{n}\right)$ and $H_{f}^{n-1}\left(\mathbb{K}^{n}\right)$ is spanned by $\left\{f^{\frac{n}{2}-1} \sigma\right\}$
if n is odd then $H_{f}^{n-1}\left(\mathbb{K}^{n}\right)=\{0\}$ and the space $H_{f}^{n}\left(\mathbb{K}^{n}\right)$ is spanned by $\{\omega\}$.
We recall that $\omega=d x_{1} \wedge \ldots \wedge d x_{n}$ and

$$
\sigma=i_{W} \omega=\sum_{i=1}^{n}(-1)^{i-1} x_{i} d x_{1} \wedge \ldots \wedge \widehat{d x}_{i} \wedge \ldots \wedge d x_{n}
$$

3- The case A_{2} with $n=3: f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{2}+x_{3}^{2}$.
Here, $w_{1}=2, w_{2}=w_{3}=3$ and $\mathrm{N}=6$. Thus, $\mathrm{N}-\sum w_{i}=-2,2 \mathrm{~N}-\sum w_{i}=4$ and $3 \mathrm{~N}-\sum w_{i}=10$.
Moreover, $\mathcal{B}=\left\{1, x_{1}\right\}$ is a monomial basis of Q_{f}. But as $\operatorname{deg} 1=0$ and $\operatorname{deg} x_{1}=3$, we have:

$$
\begin{gathered}
H_{f}^{0}\left(\mathbb{K}^{3}\right) \simeq \mathbb{K}, H_{f}^{1}\left(\mathbb{K}^{3}\right)=\mathbb{K} \cdot\left(3 x_{1} d x_{1}+2 x_{2} d x_{2}+2 x_{3} d x_{3}\right) \\
\text { and } \quad H_{f}^{2}\left(\mathbb{K}^{3}\right)=H_{f}^{3}\left(\mathbb{K}^{3}\right)=\{0\} .
\end{gathered}
$$

4- The case D_{5} with $n=4$: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2} x_{2}+x_{2}^{4}+x_{3}^{2}+x_{4}^{2}$.
We have $w_{1}=3, w_{2}=2, w_{3}=w_{4}=4$ and $\mathrm{N}=8$ then $\mathrm{N}-\sum w_{i}=-5$, $2 \mathrm{~N}-\sum w_{i}=3,3 \mathrm{~N}-\sum w_{i}=11$ and $4 \mathrm{~N}-\sum w_{i}=19$.
Now, $\mathcal{B}=\left\{1, x_{1}, x_{2}, x_{2}^{2}, x_{2}^{3}\right\}$ is a monomial basis of Q_{f}. Here, $\operatorname{deg} 1=0, \operatorname{deg} x_{1}=3$, $\operatorname{deg} x_{2}=2, \operatorname{deg} x_{2}^{2}=4$ and $\operatorname{deg} x_{2}^{3}=6$. Thus, the only element of \mathcal{B} whose degree is of type $k \mathrm{~N}-\sum w_{i}$ is x_{1}.
Consequently,

$$
\begin{gathered}
H_{f}^{0}\left(\mathbb{K}^{4}\right) \simeq \mathbb{K}, H_{f}^{1}\left(\mathbb{K}^{4}\right)=\mathbb{K} .\left(2 x_{1} x_{2} d x_{1}+\left(x_{1}^{2}+4 x_{2}^{3}\right) d x_{2}+2 x_{3} d x_{3}+2 x_{4} d x_{4}\right), \\
H_{f}^{2}\left(\mathbb{K}^{4}\right)=\{0\}, H_{f}^{3}\left(\mathbb{K}^{4}\right)=\mathbb{K} .\left(x_{1} \sigma\right)
\end{gathered}
$$

and $\left\{\omega, x_{1} \omega, x_{2} \omega, x_{2}^{2} \omega, x_{2}^{3} \omega, x_{1} f \omega\right\}$ is a basis of $H_{f}^{4}\left(\mathbb{K}^{4}\right)$.
Here, we have $W=3 x_{1} \frac{\partial}{\partial x_{1}}+2 x_{2} \frac{\partial}{\partial x_{2}}+4 x_{3} \frac{\partial}{\partial x_{3}}+4 x_{4} \frac{\partial}{\partial x_{4}}$ and
$\sigma=3 x_{1} d x_{2} \wedge d x_{3} \wedge d x_{4}-2 x_{2} d x_{1} \wedge d x_{3} \wedge d x_{4}+4 x_{3} d x_{1} \wedge d x_{2} \wedge d x_{4}-4 x_{4} d x_{1} \wedge d x_{2} \wedge d x_{3}$.

References

[A] V.I. Arnold, Mathematical methods of classical Mechanics, Graduate Texts in Math. (60), Second edition, Springer Verlag (1989).
[AGV] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps (volume 1), Monographs in Math. (82), Birkhäuser (1985).
[AlGu] D. Alekseevsky, P. Guha, On decomposability of Nambu-Poisson tensor, Acta Math. Univ. Commenianae, 65 (1996), 1-10.
[dR] G. de Rham, Sur la division de formes et de courants par une forme linéaire, Comment. Math. Helv. 28 (1954) 346-352.
[G] Ph. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1996), 103-116.
[I1] R. Ibáñez, M. de León, J.C. Marrero and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A:Math. and Gen., 32 (1999), 8129-8144.
[I2] R. Ibáñez, M. de León, B. López, J.C. Marrero and E. Padrón, Duality and modular class of a Nambu-Poisson structure, Preprint math.SG/0004065.
[Ma] B. Malgrange, Frobenius avec singularité 1. Codimension un, Public. Sc. IHES, 46 (1976) 163-173.
[Mo] Ph. Monnier, Poisson cohomology in dimension 2, Preprint math.DG/0005261.
[N1] N. Nakanishi, Poisson cohomology of plane quadratic Poisson structures, Publ. Res. Inst. Math.Sci. 33 (1997), 73-89.
[N2] N. Nakanishi, On Nambu-Poisson manifolds, Reviews in Math. Phys. 10 (1998), 499510.
[Na] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D7 (1973), 2405-2412.
[R] C.A. Roche, Cohomologie relative dans le domaine réel, thèse (1973), University of Grenoble.
[T] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 160 (1994), 295-315.
[V] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Math. (118), Birkhäuser (1994).

Departamento de Matemática, Instituto Superior Técnico, Lisbon, Portugal
E-mail address: pmonnier@math.ist.utl.pt

