COMPUTATIONS OF NAMBU-POISSON COHOMOLOGIES

PHILIPPE MONNIER

ABSTRACT. In this paper, we want to associate to a *n*-vector on a manifold of dimension *n* a cohomology which generalizes the Poisson cohomology of a 2-dimensional Poisson manifold. Two possibilities are given here. One of them, the Nambu-Poisson cohomology, seems to be the most pertinent. We study these two cohomologies locally, in the case of germs of *n*-vectors on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}).

1. INTRODUCTION

A way to study a geometrical object is to associate to it a cohomology. In this paper, we focus on the n-vectors on a n-dimensional manifold M.

If n = 2, the 2-vectors on M are the Poisson stuctures thus, we can consider the Poisson cohomology. In dimension 2, this cohomology has three spaces. The first one, H^0 , is the space of functions whose Hamiltonian vector field is zero (Casimir functions). The second one, H^1 , is the quotient of the space of infinitesimal automorphisms (or Poisson vector fields) by the subspace of Hamiltonian vector fields. The last one, H^2 , describes the deformations of the Poisson structure. In a previous paper ([Mo]), we have computed the cohomology of germs at 0 of Poisson structures on \mathbb{K}^2 ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}).

In order to generalize this cohomology to the *n*-dimensional case $(n \ge 3)$, we can follow the same reasoning. These spaces are not necessarily of finite dimension and it is not always easy to describe them precisely.

Recently, a team of Spanish researchers has defined a cohomology, called Nambu-Poisson cohomology, for the Nambu-Poisson structures (see [I2]). In this paper, we adapt their construction to our particular case. We will see that this cohomology generalizes in a certain sense the Poisson cohomology in dimension 2. Then we compute locally this cohomology for germs at 0 of *n*-vectors $\Lambda = f \frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}$ on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}), with the assumption that f is a quasihomogeneous polynomial of finite codimension ("most of" the germs of *n*-vectors have this form). This computation is based on a preliminary result that we have shown, in the formal case and in the analytical case (so, the \mathcal{C}^{∞} case is not entirely solved). The techniques we use in this paper are quite the same as in [Mo].

2. NAMBU-POISSON COHOMOLOGY

Let M be a differentiable manifold of dimension n $(n \geq 3)$, admitting a volume form ω . We denote $\mathcal{C}^{\infty}(M)$ the space of \mathcal{C}^{∞} functions on M, $\Omega^{k}(M)$ (k = 0, ..., n)the $\mathcal{C}^{\infty}(M)$ -module of k-forms on M, and $\mathcal{X}^{k}(M)$ (k = 0, ..., n) the $\mathcal{C}^{\infty}(M)$ module of k-vectors on M.

¹⁹⁹¹ Mathematics Subject Classification. 53D17.

Key words and phrases. Nambu-Poisson structures, singularities, Nambu-Poisson cohomology.

We consider a n-vector Λ on M. Note that Λ is a Nambu-Poisson structure on M. Recall that a **Nambu-Poisson structure** on M of order r is a skew-symmetric r-linear map $\{, \ldots, \}$

$$\mathcal{C}^{\infty}(M) \times \ldots \times \mathcal{C}^{\infty}(M) \longrightarrow \mathcal{C}^{\infty}(M), \quad (f_1, \ldots, f_r) \longmapsto \{f_1, \ldots, f_r\},\$$

which satifies

$$\{f_1, \dots, f_{r-1}, gh\} = \{f_1, \dots, f_{r-1}, g\}h + g\{f_1, \dots, f_{r-1}, h\} \quad (L)$$
$$\{f_1, \dots, f_{r-1}, \{g_1, \dots, g_r\}\} = \sum_{i=1}^r \{g_1, \dots, g_{i-1}, \{f_1, \dots, f_{r-1}, g_i\}, g_{i+1}, \dots, g_r\} \quad (FI)$$

for any $f_1, \ldots, f_{r-1}, g, h, g_1, \ldots, g_r$ in $\mathcal{C}^{\infty}(M)$. It is clear that we can associate to such a bracket a *r*-vector on M. If r = 2, we rediscover Poisson structures. Thus, Nambu-Poisson structures can be seen as a kind of generalization of Poisson structures. The notion of Nambu-Poisson structures was introduced in [T] by Takhtajan in order to give a formalism to an idea of Y. Nambu ([Na]).

Here, we suppose that the set $\{x \in M; \Lambda_x \neq 0\}$ is dense in M. We are going to associate a cohomology to (M, Λ) .

2.1. The choice of the cohomology. If M is a differentiable manifold of dimension 2, then the Poisson structures on M are the 2-vectors on M. If Π is a Poisson structure on M, then we can associate to (M, Π) the complex

$$0 \longrightarrow \mathcal{C}^{\infty}(M) \xrightarrow{\partial} \mathcal{X}^{1}(M) \xrightarrow{\partial} \mathcal{X}^{2}(M) \longrightarrow 0$$

with $\partial(g) = [g, \Pi] = X_g$ (Hamiltonian of g) if $g \in \mathcal{C}^{\infty}(M)$ and $\partial(X) = [X, \Pi]$ ([,] indicates Schouten's bracket) if $X \in \mathcal{X}^1(M)$. The cohomology of this complex is called the Poisson cohomology of (M, Π) . This cohomology has been studied for instance in [Mo], [N1] and [V].

Now if M is of dimension n with $n \ge 3$, we want to generalize this cohomology. Our first approach was to consider the complex

$$0 \longrightarrow \left(\mathcal{C}^{\infty}(M) \right)^{n-1} \xrightarrow{\partial} \mathcal{X}^{1}(M) \xrightarrow{\partial} \mathcal{X}^{n}(M) \longrightarrow 0$$

with $\partial(X) = [X, \Lambda]$ and $\partial(g_1, \ldots, g_{n-1}) = i_{dg_1 \wedge \ldots \wedge dg_{n-1}} \Lambda = X_{g_1, \ldots, g_{n-1}}$ (Hamiltonian vector field) where we adopt the convention $i_{dg_1 \wedge \ldots \wedge dg_{n-1}} \Lambda = \Lambda(dg_1, \ldots, dg_{n-1}, \bullet)$. We denote $H^0_{\Lambda}(M)$, $H^1_{\Lambda}(M)$ and $H^2_{\Lambda}(M)$ the three spaces of cohomology of this complex. With this cohomology, we rediscover the interpretation of the first spaces of the Poisson cohomology, i.e. $H^2_{\Lambda}(M)$ describes the infinitesimal deformations of Λ and $H^1_{\Lambda}(M)$ is the quotient of the algebra of vector fields which preserve Λ by the ideal of Hamiltonian vector fields.

In [I2], the authors associate to any Nambu-Poisson structure on M a cohomology. The second idea is then to adapt their construction to our particular case. Let $\#_{\Lambda}$ be the morphism of $\mathcal{C}^{\infty}(M)$ -modules $\Omega^{n-1}(M) \longrightarrow \mathcal{X}^{1}(M) : \alpha \mapsto i_{\alpha}\Lambda$. Note that ker $\#_{\Lambda} = \{0\}$ (because the set of regular points of Λ is dense). We can define (see [I1]) a \mathbb{R} -bilinear operator $[\![,]\!] : \Omega^{n-1}(M) \times \Omega^{n-1}(M) \longrightarrow \Omega^{n-1}(M)$ by

$$\llbracket \alpha, \beta \rrbracket = \mathcal{L}_{\#_{\Lambda}\alpha}\beta + (-1)^n (i_{d\alpha}\Lambda)\beta$$

The vector space $\Omega^{n-1}(M)$ equiped with $[\![,]\!]$ is a Lie algebra (for any Nambu-Poisson structure, it is a Leibniz algebra). Moreover this bracket verifies $\#_{\Lambda}[\![\alpha,\beta]\!] = [\#_{\Lambda}\alpha, \#_{\Lambda}\beta]$ for any α, β in $\Omega^{n-1}(M)$. The triple $(\Lambda^{n-1}(T^*(M)), [\![,]\!], \#_{\Lambda})$ is then a Lie algebroid and the Nambu-Poisson cohomology of (M, Λ) is the Lie algebroid cohomology of $(\Lambda^{n-1}(T^*(M)))$ (for any Nambu-Poisson structure, it is more elaborate see [I2]). More precisely, for every $k \in \{0, \ldots, n\}$, we consider the vector space $C^k(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M))$ of the skew-symmetric and $\mathcal{C}^{\infty}(M)$ -k-multilinear maps $\Omega^{n-1}(M) \times \ldots \times \Omega^{n-1}(M) \longrightarrow \mathcal{C}^{\infty}(M)$. The cohomology operator $\partial : C^k(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M)) \longrightarrow C^{k+1}(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M))$ is defined by

$$\partial c(\alpha_0, \dots, \alpha_k) = \sum_{i=0}^k (-1)^i (\#_\Lambda \alpha_i) . c(\alpha_0, \dots, \hat{\alpha_i}, \dots, \alpha_k) + \sum_{0 \le i < j \le k} (-1)^{i+j} c(\llbracket \alpha_i, \alpha_j \rrbracket, \alpha_0, \dots, \hat{\alpha_i}, \dots, \hat{\alpha_j}, \dots, \alpha_k)$$

for all $c \in C^k(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M))$ and $\alpha_0, \ldots, \alpha_k$ in $\Omega^{n-1}(M)$. The **Nambu-Poisson cohomology** of (M, Λ) , denoted by $H^{\bullet}_{NP}(M, \Lambda)$, is the cohomology of this complex.

2.2. An equivalent cohomology. So defined, the Nambu-Poisson cohomology is quite difficult to manipulate. We are going to give an equivalent cohomology which is more accessible.

Recall that we assume that M admits a volume form ω . Let $f \in C^{\infty}(M)$, we define the operator

$$\begin{aligned} d_f : \Omega^k(M) &\longrightarrow \Omega^{k+1}(M) \\ \alpha &\longmapsto f d\alpha - k df \wedge \alpha \end{aligned}$$

It is easy to prove that $d_f \circ d_f = 0$. We denote $H^{\bullet}_f(M)$ the cohomology of this complex. Let \flat be the isomorphism $\mathcal{X}^1(M) \longrightarrow \Omega^{n-1}(M) \quad X \longmapsto i_X \omega$.

Lemma 2.1. 1- If $X \in \mathcal{X}(M)$, then $\#_{\Lambda}(\flat(X)) = (-1)^{n-1} f X$ where $f = i_{\Lambda} \omega$. 2- If X and Y are in $\mathcal{X}(M)$, then

$$(-1)^{n-1} \llbracket \flat(X), \flat(Y) \rrbracket = f \flat([X,Y]) + (X.f) \flat(Y) - (Y.f) \flat(X) \,.$$

Proof : 1- Obvious.

2- We have $\#_{\Lambda}(\llbracket \flat(X), \flat(Y) \rrbracket) = [\#_{\Lambda}(\flat(X)), \#_{\Lambda}(\flat(Y))]$ (property of the Lie algebroid), which implies that

$$\#_{\Lambda} \big(\llbracket \flat(X), \flat(Y) \rrbracket \big) = f(X.f)Y - f(Y.f)X + f^{2}[X,Y] = (-1)^{n-1} \#_{\Lambda} \big((X.f)\flat(Y) - (Y.f)\flat(X) + f\flat([X,Y]) \big) .$$

The result follows via the injectivity of $\#_{\Lambda}$. \Box

Proposition 2.2. If we put $f = i_{\Lambda}\omega$, then $H^{\bullet}_{NP}(M, \Lambda)$ is isomorphic to $H^{\bullet}_{f}(M)$.

Proof: For every k, we consider the application $\varphi : C^k(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M)) \longrightarrow \Omega^k(M)$ defined by

$$\varphi(c)(X_1,\ldots,X_k) = c((-1)^{n-1}\flat(X_1),\ldots,(-1)^{n-1}\flat(X_k)),$$

where $c \in C^k(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M))$ and $X_1, \ldots, X_k \in \mathcal{X}(M)$. It is easy to see that φ is an isomorphism of vector spaces. We show that it is an isomorphism of complexes.

PHILIPPE MONNIER

$$\begin{split} & \text{Let } c \in C^k(\Omega^{n-1}(M); \mathcal{C}^\infty(M)). \text{ We put } \alpha = \varphi(c). \text{ If } X_0, \dots, X_k \text{ are in } \mathcal{X}(M) \text{ then } \\ & \varphi(\partial c)(X_0, \dots, X_k) = (-1)^{(n-1)(k+1)} \partial c(\flat(X_0), \dots, \flat(X_k)) = A + B \text{ where} \\ & A = (-1)^{(n-1)(k+1)} \sum_{i=0}^k (-1)^i \#_\Lambda(\flat(X_i)).c(\flat(X_0), \dots, \flat(\widehat{X_i}), \dots, \flat(X_k)) \\ & B = (-1)^{(n-1)(k+1)} \sum_{0 \leq i < j \leq k} (-1)^{i+j} c(\llbracket (X_i), \flat(X_j) \rrbracket, \flat(X_0), \dots, \flat(\widehat{X_i}), \dots, \flat(\widehat{X_j}), \dots, \flat(\widehat{X_j}) \\ & \text{We have } A = f \sum_{i=0}^k (-1)^i X_i.\alpha(X_0, \dots, \widehat{X_i}, \dots, X_k) \text{ and } \\ & B = f \sum_{0 \leq i < j \leq k} (-1)^{i+j} \alpha([X_i, X_j], X_0, \dots, \widehat{X_i}, \dots, \widehat{X_j}, \dots, X_k) \\ & \quad + \sum_{0 \leq i < j \leq k} (-1)^{i+j} (X_i.f) \alpha(X_j, X_0, \dots, \widehat{X_i}, \dots, \widehat{X_j}, \dots, X_k) \\ & \quad - \sum_{0 \leq i < j \leq k} (-1)^{i+j} \alpha([X_i, X_j], X_0, \dots, \widehat{X_i}, \dots, \widehat{X_j}, \dots, X_k) \\ & = f \sum_{0 \leq i < j \leq k} (-1)^{i+j} \alpha([X_i, X_j], X_0, \dots, \widehat{X_i}, \dots, \widehat{X_j}, \dots, X_k) \\ & \quad - k \sum_{i=0}^k (-1)^i (X_i.f) \alpha(X_0, \dots, \widehat{X_i}, \dots, X_k) . \end{split}$$

Consequently, $\varphi(\partial c) = d_f \alpha = d_f (\varphi(c))$. \Box

Remark 2.3. We claim that this cohomology is a "good" generalisation of the Poisson cohomology of a 2-dimensional Poisson manifold. Indeed, if (M, Π) is an orientable Poisson manifold of dimension 2, we consider the volume form ω on M and we put

$$\phi^2: \mathcal{X}^2(M) \longrightarrow \Omega^2(M) \text{ and } \phi^1: \mathcal{X}^1(M) \longrightarrow \Omega^1(M)$$

defined by

$$\phi^2(\Gamma) = (i_{\Gamma}\omega)\omega$$
 and $\phi^1(X) = -i_X\omega$

for every 2-vector Γ and vector field X. We also put $\phi^0 = id : \mathcal{C}^{\infty}(M) \longrightarrow \mathcal{C}^{\infty}(M)$.

If we denote ∂ the operator of the Poisson cohomology, and $f = i_{\Pi}\omega$, it is quite easy to see that

$$\phi: (\mathcal{X}^{\bullet}(M), \partial) \longrightarrow (\Omega^{\bullet}(M), d_f)$$

is an isomorphism of complexes.

Remark 2.4. 1- The definitions we have given make sense if we work in the holomorphic case or in the formal case.

2- **Important**: If h is a function on M which doesn't vanish on M, then the cohomologies $H_f^{\bullet}(M)$ and $H_{fh}^{\bullet}(M)$ are isomorphic.

Indeed, the applications $(\Omega^k(M), d_{fh}) \longrightarrow (\Omega^k(M), d_f) \quad \alpha \longmapsto \frac{\alpha}{h^k}$ give an isomorphism of complexes.

In particular, if f doesn't vanish on M then $H^{\bullet}_{f}(M)$ is isomorphic to the de Rham's cohomology.

2.3. Other cohomologies. We can construct other complexes which look like $(\Omega^{\bullet}(M), d_f)$. More precisely we denote, for $p \in \mathbb{Z}$,

$$\begin{aligned} d_f^{(p)} &: \Omega^k(M) & \longrightarrow & \Omega^{k+1}(M) \\ \alpha & \longmapsto & f d\alpha - (k-p) df \wedge \alpha. \end{aligned}$$

4

We will denote $H^{\bullet}_{f,p}(M)$ the cohomology of these complexes. We will see in the next section some relations between these different cohomologies.

Using the contraction $i_{\bullet}\omega$, it is quite easy to prove the following proposition.

Proposition 2.5. The spaces $H^1_{\Lambda}(M)$ and $H^2_{\Lambda}(M)$ are isomorphic to $H^{n-1}_{f,n-2}(M)$ and $H^n_{f,n-2}(M)$.

Remark 2.6. The two properties of remark 2.4 are valid for $H^{\bullet}_{f,p}(M)$ with $p \in \mathbb{Z}$.

3. Computation

Henceforth, we will work **locally**. Let Λ be a germ of *n*-vectors on \mathbb{K}^n (\mathbb{K} indicates \mathbb{R} or \mathbb{C}) with $n \geq 3$. We denote $\mathcal{F}(\mathbb{K}^n)$ $(\Omega^k(\mathbb{K}^n), \mathcal{X}(\mathbb{K}^n))$ the space of **germs** at 0 of (holomorphic, analytic, \mathcal{C}^{∞} , formal) functions (k-forms, vector fields). We can write Λ (with coordinates (x_1, \ldots, x_n)) $\Lambda = f \frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}$ where $f \in \mathcal{F}(\mathbb{K}^n)$. We assume that the volume form ω is $dx_1 \wedge \ldots \wedge dx_n$.

We suppose that f(0) = 0 (see remark 2.4) and that f is of **finite codimension**, which means that $Q_f = \mathcal{F}(\mathbb{K}^n)/I_f$ $(I_f$ is the ideal spanned by $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}$ is a finite dimensional vector space.

Remark 3.1. It is important to note that, according to Tougeron's theorem (see for instance [AGV]), if f is of finite codimension, then the set $f^{-1}(\{0\})$ is, from the topological point of view, the same as the set of the zeros of a polynomial. Therefore, if q is a germ at 0 of functions which satisfies fq = 0, then q = 0.

Moreover we suppose that f is a **quasihomogeneous** polynomial of degree N (for a justification of this additional assumption, see section 3). We are going to recall the definition of the quasi-homogeneity.

3.1. Quasi-homogeneity. Let $(w_1, \ldots, w_n) \in (\mathbb{N}^*)^n$. We denote W the vector field $w_1 x_1 \frac{\partial}{\partial x_1} + \ldots + w_n x_n \frac{\partial}{\partial x_n}$ on \mathbb{K}^n . We will say that a tensor T is quasihomogeneous with weights w_1, \ldots, w_n and of (quasi)degree $\mathbb{N} \in \mathbb{Z}$ if $\mathcal{L}_W T = \mathbb{N}T$ (\mathcal{L} indicates the Lie derivative operator). Note that T is then polynomial.

If f is a quasihomogeneous polynomial of degree N then $N = k_1 w_1 + \ldots + k_n w_n$ with $k_1, \ldots, k_n \in \mathbb{N}$; so, an integer is not necessarily the quasidegree of a polynomial. If $f \in \mathbb{K}[[x_1, \ldots, x_n]]$, we can write $f = \sum_{i=0}^{\infty} f_i$ with f_i quasihomogeneous of degree i (we adopt the convention that $f_i = 0$ if i is not a quasidegree); f is said to be of order d (ord(f) = d) if all of its monomials have a degree d or higher. For more details, consult [AGV].

Since \mathcal{L}_W and the exterior differentiation d commute, if α is a quasihomogeneous k-form, then $d\alpha$ is a quasihomogeneous (k+1)-form of degree deg α . In particular, it is important to notice that dx_i is a quasihomogeneous 1-form of degree w_i (note that $\frac{\partial}{\partial x_i}$ is a quasihomogeneous vector field of degree $-w_i$). Thus, the volume form $\omega = dx_1 \wedge \ldots \wedge dx_n$ is quasihomogeneous of degree $w_1 + \ldots + w_n$. Note that a quasihomogeneous non zero k-form $(k \ge 1)$ has a degree strictly positive.

Note that if f is a quasihomogeneous polynomial of degree N, then the n-vector

A set of the equation $\Lambda = f \frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}$ is quasihomogeneous of degree $N - \sum_i w_i$. In the sequel, the degrees will be quasidegrees with respect to $W = w_1 x_1 \frac{\partial}{\partial x_1} + \ldots +$ $w_n x_n \frac{\partial}{\partial x_n}$.

We will need the following result.

PHILIPPE MONNIER

Lemma 3.2. Let $k_1, \ldots, k_n \in \mathbb{N}$ and put $p = \sum k_i w_i$. Assume that $g \in \mathcal{F}(\mathbb{K}^n)$ and $\alpha \in \Omega^i(\mathbb{K}^n)$ verify $\operatorname{ord}(j_0^\infty(g)) > p$ and $\operatorname{ord}(j_0^\infty(\alpha)) > p$ $(j_0^\infty \text{ indicates the } \infty\text{-jet at } 0)$. Then

1. there exists $h \in \mathcal{F}(\mathbb{K}^n)$ such that W.h - ph = g,

2. there exists $\beta \in \Omega^i(\mathbb{K}^n)$ such that $\mathcal{L}_W\beta - p\beta = \alpha$.

proof : The first claim is only a generalisation of a lemma given (in dimension 2) in [Mo] and it can be proved in the same way. The second claim is a consequence of the first.

Now we are going to compute the spaces $H_f^k(\mathbb{K}^n)$ (i.e $H_{NP}^k(\mathbb{K}^n, \Lambda)$) for $k = 0, \ldots, n$. We will denote $Z_f^k(\mathbb{K}^n)$ and $B_f^k(\mathbb{K}^n)$ the spaces of k-cocycles and k-cobords. We will also compute some spaces $H_{f,p}^k(\mathbb{K}^n)$ with particular interest in the spaces $H_{f,n-2}^n(\mathbb{K}^n)$ (i.e. $H_{\Lambda}^2(\mathbb{K}^n)$) and $H_{f,n-2}^{n-1}(\mathbb{K}^n)$ (i.e. $H_{\Lambda}^1(\mathbb{K}^n)$). We will denote $Z_{f,p}^k(\mathbb{K}^n)$ ($B_{f,p}^k(\mathbb{K}^n)$) the spaces of k-cocycles (k-cobords) for the operator $d_f^{(p)}$.

3.2. Two useful preliminary results. In the computation of these spaces of cohomology, we will need the two following propositions. The first is only a corollary of the de Rham's division lemma (see [dR]).

Proposition 3.3. Let $f \in \mathcal{F}(\mathbb{K}^n)$ of finite codimension. If $\alpha \in \Omega^k(\mathbb{K}^n)$ $(1 \le k \le n-1)$ verifies $df \land \alpha = 0$ then there exists $\beta \in \Omega^{k-1}(\mathbb{K}^n)$ such that $\alpha = df \land \beta$.

Proposition 3.4. Let $f \in \mathcal{F}(\mathbb{K}^n)$ of finite codimension. Let α be a k-form $(2 \leq k \leq n-1)$ which verifies $d\alpha = 0$ and $df \wedge \alpha = 0$ then there exists $\gamma \in \Omega^{k-2}(\mathbb{K}^n)$ such that $\alpha = df \wedge d\gamma$.

Proof : We are going to prove this result in the formal case and in the analytical case.

Formal case: Let α be a quasihomogeneous k-form of degree p which verifies the hypotheses. Since $df \wedge \alpha = 0$, we have $\alpha = df \wedge \beta_1$ where β_1 is a quasihomogeneous (k-1)-form of degree p-N. Now, since $d\alpha = 0$, we have $df \wedge d\beta_1 = 0$ and so $d\beta_1 = df \wedge \beta_2$, where β_2 is a quasihomogeneous (k-1)-form of degree p-2N. This way, we can construct a sequence (β_i) of quasihomogeneous (k-1)-forms with deg $\beta_i = p - i$ N which verifies $d\beta_i = df \wedge \beta_{i+1}$. Let $q \in \mathbb{N}$ such that $p - q \le 0$. Thus, we have $\beta_q = 0$ and so $d\beta_{q-1} = 0$ i.e. $\beta_{q-1} = d\gamma_{q-1}$ where γ_{q-1} is a (k-2)-form. Consequently, $d\beta_{q-2} = df \wedge d\gamma_{q-1}$ which implies that $\beta_{q-2} = -df \wedge \gamma_{q-1} + d\gamma_{q-2}$, where γ_{q-2} is a (k-2)-form. In the same way, $d\beta_{q-3} = df \wedge d\gamma_{q-2}$ so $\beta_{q-3} =$ $-df \wedge \gamma_{q-2} + d\gamma_{q-3}$ where γ_{q-3} is a (k-2)-form. This way, we can show that $\beta_1 = -df \wedge \gamma_2 + d\gamma_1$ where γ_1 and γ_2 are (k-2)-forms. Therefore, $\alpha = df \wedge d\gamma_1$ Analytical case: In [Ma], Malgrange gives a result on the relative cohomology of a germ of an analytical function. In particular, he shows that in our case, if β is a germ at 0 of analytical r-forms (r < n-1) which verifies $d\beta = df \wedge \mu$ (μ is a r-form) then there exists two germs of analytical (r-1)-forms γ and ν such that $\beta = d\gamma + df \wedge \nu.$

Now, we are going to prove our proposition. Let α be a germ of analytical k-forms $(2 \le k \le n-1)$ which verifies the hypotheses of the proposition. Then there exists a (k-1)-form β such that $\alpha = df \land \beta$ (proposition 3.3). But since $0 = d\alpha = -df \land d\beta$, we have $d\beta = df \land \mu$ and so ([Ma]) $\beta = d\gamma + df \land \nu$ where γ and ν are analytical (k-2)-forms. We deduce that $\alpha = df \land d\gamma$ where γ is analytic. \Box

 $\mathbf{6}$

Remark 3.5. Important:

In fact, some results which appear in [R] lead us to think that this proposition is not true in the real \mathcal{C}^{∞} case.

The computation of the spaces $H_{f,p}^n(\mathbb{K}^n)$, $H_{f,p}^{n-1}(\mathbb{K}^n)$ $(p \neq n-2)$ and $H_{f,p}^0(\mathbb{K}^n)$ doesn't use this proposition so, it still holds in the \mathcal{C}^{∞} case.

The results we find on the other spaces should be the same in the C^{∞} case as in the analytical case but another proof need to be found.

3.3. Computation of $H^0_{f,p}(\mathbb{K}^n)$. We consider the application $d_f^{(p)} : \Omega^0(\mathbb{K}^n) \longrightarrow \Omega^1(\mathbb{K}^n) \quad g \longmapsto f dg + p df \wedge g.$

Theorem 3.6. 1- If p > 0 then $H^0_{f,p}(\mathbb{K}^n) = \{0\}$ 2- If $p \le 0$ then $H^0_{f,p}(\mathbb{K}^n) = \mathbb{K}.f^{-p}$

Proof: 1- If $g \in \mathcal{F}(\mathbb{K}^n)$ verifies $d_f^{(p)}g = 0$ then $d(f^pg) = 0$, and so f^pg is constant. But as f(0) = 0, f^pg must be 0 i.e. g = 0 (because f is of finite codimension; see remark 3.1).

2- We will use an induction to show that for any $k \ge 0$, if g satisfies fdg = kgdf then $g = \lambda f^k$ where $\lambda \in \mathbb{K}$.

For k = 0 it is obvious.

Now we suppose that the property is true for $k \ge 0$. We show that it is still valid for k + 1. Let $g \in \mathcal{F}(\mathbb{K}^n)$ be such that fdg = (k+1)gdf(*). Then $df \wedge dg = 0$ and so there exists $h \in \mathcal{F}(\mathbb{K}^n)$ such that dg = hdf (proposition 3.3). Replacing dg by hdf in (*), we get fhdf = (k+1)gdf i.e. $g = \frac{1}{k+1}fh$. Now, this former relation gives on the one hand $fdg = \frac{1}{k+1}(f^2dh + fhdf)$ and on the other hand, using (*), fdg = fhdf. Consequently, fdh = khdf and so $h = \lambda f^k$ with $\lambda \in \mathbb{K}$. \Box

3.4. Computation of $H_f^k(\mathbb{K}^n)$ $1 \le k \le n-2$.

Lemma 3.7. Let $\alpha \in Z_{f,p}^k(\mathbb{K}^n)$ with $1 \leq k \leq n-2$. Then α is cohomologous to a closed k-form.

Proof: We have $fd\alpha - (k-p)df \wedge \alpha = 0$. If k = p then α is closed. Now we suppose that $k \neq p$. We put $\beta = d\alpha \in \Omega^{k+1}(\mathbb{K}^n)$. We have

$$0 = df \wedge (fd\alpha - (k - p)df \wedge \alpha) = fdf \wedge \alpha$$

so, $df \wedge \alpha = 0$.

Now, since $d\beta = 0$ and $df \wedge \beta = 0$, proposition 3.4 gives $\beta = df \wedge d\gamma$ with $\gamma \in \Omega^{k-1}(\mathbb{K}^n)$. Then, if we consider $\alpha' = \alpha - \frac{1}{k-p} (f d\gamma - (k-p-1)df \wedge \gamma)$, we have $d\alpha' = 0$ and $f d\gamma - (k-p-1)df \wedge \gamma \in B^k_{f,p}(\mathbb{K}^n)$. \Box

Theorem 3.8. If $k \in \{2, ..., n-2\}$ then $H_f^k(\mathbb{K}^n) = \{0\}$.

Proof : Let $\alpha \in Z_f^k(\mathbb{K}^n)$. Then $\alpha \in \Omega^k(\mathbb{K}^n)$ and verifies $fd\alpha - kdf \wedge \alpha = 0$. According to lemma 3.7 we can assume that α is closed. Now we show that $\alpha \in B_f^k(\mathbb{K}^n)$.

Since $d\alpha = 0$ and $df \wedge \alpha = 0$, there exists $\beta \in \Omega^{k-2}(\mathbb{K}^n)$ such that $\alpha = df \wedge d\beta$ (proposition 3.4). Thus, $\alpha = d_f \left(\frac{-1}{k-1} d\beta\right)$. \Box

Remark 3.9. It is possible to adapt this proof to show that $H_{f,p}^k(\mathbb{K}^n) = \{0\}$ if $k \in \{2, \ldots, n-2\}$ and $p \neq k, k-1$.

Lemma 3.10. Let $\alpha \in Z_f^1(\mathbb{K}^n)$. If $\operatorname{ord}(j_0^\infty(\alpha)) > \mathbb{N}$ then $\alpha \in B_f^1(\mathbb{K}^n)$.

Proof: According to lemma 3.7, we can assume that $d\alpha = 0$. Since $df \wedge \alpha = 0$ we have $\alpha = gdf$ (proposition 3.3) where g is in $\mathcal{F}(\mathbb{K}^n)$ and verifies $\operatorname{ord}(j_0^{\infty}(g)) > 0$. We show that f divides g.

Let $\bar{g} \in \mathcal{F}(\mathbb{K}^n)$ be such that $W.\bar{g} = g$ (lemma 3.2); note that $\operatorname{ord}(j_0^{\infty}(\bar{g})) > 0$. We have $\mathcal{L}_W(df \wedge d\bar{g}) = \operatorname{N} df \wedge d\bar{g} + df \wedge dg$, and since $df \wedge dg = -d\alpha = 0$, $df \wedge d\bar{g}$ verifies

$$\mathcal{L}_W(df \wedge d\bar{g}) = \mathrm{N}df \wedge d\bar{g}$$

which means that $df \wedge d\bar{g}$ is either 0 or quasihomogeneous of degree N. But since $\operatorname{ord}(j_0^{\infty}(df \wedge d\bar{g})) > N$, $df \wedge d\bar{g}$ must be 0. Consequently, there exists $\nu \in \mathcal{F}(\mathbb{K}^n)$ such that $\frac{\partial \bar{g}}{\partial x_i} = \nu \frac{\partial f}{\partial x_i}$ for any *i*. Thus, $W.\bar{g} = \nu W.f$ and so $g = \nu f$. We deduce that $\alpha = f\beta$ with $\beta \in \Omega^1(\mathbb{K}^n)$. Now, we have $0 = d\alpha = df \wedge \beta + fd\beta$ and $0 = df \wedge \alpha = fdf \wedge \beta$

$$0 = d\alpha = df \wedge \beta + f d\beta$$
 and $0 = df \wedge \alpha = f df \wedge \beta$,

which implies that $d\beta = 0$.

Therefore, $\alpha = fdh = d_f(h)$ with $h \in \mathcal{F}(\mathbb{K}^n)$. \Box

Theorem 3.11. The space $H^1_f(\mathbb{K}^n)$ is of dimension 1 and spanned by df.

Proof : Let $\alpha \in Z_f^1(\mathbb{K}^n)$. According to lemma 3.10 we only have to study the case where α is quasihomogeneous with $\deg(\alpha) \leq N$. We have $fd\alpha - df \wedge \alpha = 0$ so, $df \wedge d\alpha = 0$. We deduce that $d\alpha = df \wedge \beta$ where β is a quasihomogeneous 1-form of degree $\deg(\alpha) - N \leq 0$. But since dx_i is quasihomogeneous of degree $w_i > 0$ for any i, every quasihomogeneous non zero 1-form has a strictly positive degree. We deduce that $\beta = 0$ and so $d\alpha = 0$. Therefore, $df \wedge \alpha = 0$ which implies that $\alpha = gdf$ where g is a quasihomogeneous function of degree $\deg(\alpha) - N \leq 0$. Consequently, if $\deg(\alpha) < N$ then g = 0; otherwise g is constant. To conclude, note that df is not a cobord because f doesn't divide df. \Box

3.5. Computation of $H_{f,p}^n(\mathbb{K}^n)$. We are going to compute the spaces $H_{f,p}^n(\mathbb{K}^n)$ for $p \neq n-1$. We consider the application

$$d_f^{(n-q)}:\Omega^{n-1}(\mathbb{K}^n)\longrightarrow\Omega^n(\mathbb{K}^n)\quad \alpha\longmapsto fd\alpha-(q-1)df\wedge\alpha$$

with $\underline{q \neq 1}$ (note that if q = n then we obtain the space $H^n_{NP}(M, \Lambda)$ and if q = 2 then we have $H^2_{\Lambda}(\mathbb{K}^n)$).

We denote $\mathcal{I}^n = \{ df \land \alpha; \alpha \in \Omega^{n-1}(\mathbb{K}^n) \}$. It is clear that $\mathcal{I}^n \simeq I_f$ (recall that I_f is the ideal of $\mathcal{F}(\mathbb{K}^n)$ spanned by $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_1}$) and that $\Omega^n(\mathbb{K}^n)/\mathcal{I}^n \simeq Q_f = \mathcal{F}(\mathbb{K}^n)/I_f$.

We put $\sigma = i_W \omega$ (recall that $W = w_1 x_1 \frac{\partial}{\partial x_1} + \ldots + w_n x_n \frac{\partial}{\partial x_n}$ and that ω is the standard volume form on \mathbb{K}^n). Note that σ is a quasihomogeneous (n-1)-form of degree $\sum_i w_i$ and that $dg \wedge \sigma = (W.g)\omega$ if $g \in \mathcal{F}(\mathbb{K}^n)$.

If $\alpha \in \overline{\Omega^{n-1}}(\mathbb{K}^n)$, we will use the notation $\underline{\operatorname{div}}(\alpha)$ for $d\alpha = \operatorname{div}(\alpha)\omega$; for example, $\operatorname{div}(\sigma) = \sum_i w_i$. Note that if α is quasihomogeneous then $\operatorname{div}(\alpha)$ is quasihomogeneous of degree $\operatorname{deg} \alpha - \sum_i w_i$.

Lemma 3.12. 1- If the ∞ -jet at 0 of γ doesn't contain a component of degree $q\mathbb{N}$ (in particular if $q \leq 0$) then $\gamma \in B^n_{f,n-q}(\mathbb{K}^n) \Leftrightarrow \gamma \in \mathcal{I}^n$.

2- If γ is a quasihomogeneous n-form of degree qN then $\gamma \in B^n_{f,n-q}(\mathbb{K}^n) \Rightarrow \gamma \in \mathcal{I}^n$.

Proof : If $\gamma = f d\alpha - (q-1) df \wedge \alpha \in B^n(d_f^{(n-q)})$ where $\alpha \in \Omega^{n-1}$ then $\gamma = df \wedge \beta$ with $\beta = -(q-1)\alpha + \frac{\operatorname{div}(\alpha)}{N}\sigma$. This shows the second claim and the first part of the first one.

Now we prove the reverse of the first claim.

Formal case: Let $\gamma = \sum_{i>0} \gamma^{(i)}$ and $\beta = \sum \beta^{(i-N)}$ (with $\gamma^{(i)}$ of degree i, $\gamma^{(qN)} = 0$ and $\beta^{(i-N)}$ of degree i - N) such that $\gamma = df \wedge \beta$. If we put $\alpha = \frac{-1}{q-1}\beta + \sum_i \frac{\operatorname{div}(\beta^{(i-N)})}{(q-1)(i-qN)}\sigma$, we have $d_f^{(n-q)}(\alpha) = \gamma$.

Analytical case : If β is analytic at 0, the function div (β) is analytic too and since $\lim_{i\to+\infty} \frac{1}{i-qN} = 0$, the (n-1)-form defined above is also analytic at 0.

 $\mathcal{C}^{\infty} \ case : \text{We suppose that } \gamma = df \wedge \beta. \text{ If we denote } \tilde{\gamma} = j_0^{\infty}(\gamma) \text{ then there exists a formal (n-1)-form } \tilde{\alpha} \text{ such that } \tilde{\gamma} = f d\tilde{\alpha} - (q-1) df \wedge \tilde{\alpha}. \text{ Let } \alpha \text{ be a } \mathcal{C}^{\infty}\text{-(n-1)-form such that } \tilde{\alpha} = j_0^{\infty}(\alpha). \text{ This form verifies } f d\alpha - (q-1) df \wedge \alpha = \gamma + \varepsilon \text{ where } \varepsilon \text{ is flat at 0. Since } B^n_{f,n-q}(\mathbb{K}^n) \subset \mathcal{I}^n, \ \varepsilon \in \mathcal{I}^n \text{ so that } \varepsilon = df \wedge \mu \text{ where } \mu \text{ is flat at 0. Let } g \in \mathcal{F}(\mathbb{K}^n) \text{ be such that } W.g - ((q-1)N - \sum w_i)g = \frac{\operatorname{div}(\mu)}{q-1} \text{ (lemma 3.3). Then the form } \theta = \frac{-1}{q-1}\mu + g\sigma \text{ verifies } d_f^{(n-q)}(\theta) = \varepsilon.$

Remark 3.13. 1- This lemma gives $B_{f,n-q}^n(\mathbb{K}^n) \subset \mathcal{I}^n$. Thus, there is a surjection from $H_{f,n-q}^n(\mathbb{K}^n)$ onto Q_f . Therefore, if f is not of finite codimension then $H_{f,n-q}^n(\mathbb{K}^n)$ is a infinite-dimensional vector space.

2- According to this lemma, if γ is in \mathcal{I}^n then there exits a quasihomogeneous *n*-form θ , of degree qN, such that $\gamma + \theta \in B^n_{f,n-q}(\mathbb{K}^n)$.

The first claim of this lemma allows us to state the following theorem.

Theorem 3.14. If $q \leq 0$ then $H^n_{f,n-q}(\mathbb{K}^n) \simeq Q_f$.

Now we suppose that q > 1.

Lemma 3.15. Let $\alpha \in \Omega^k(\mathbb{K}^n)$ and $p \in \mathbb{Z}$. Then $fd_f^{(p)}(\alpha) = d_f^{(p-1)}(f\alpha)$.

Proof : Obvious.

Lemma 3.16. 1- Let q > 2. If $\alpha \in \Omega^n(\mathbb{K}^n)$ is quasihomogeneous of degree $(q-1)\mathbb{N}$ and verifies $f\alpha \in B^n_{f,n-q}(\mathbb{K}^n)$ then $\alpha \in B^n_{f,n-q+1}(\mathbb{K}^n)$. 2- If α is quasihomogeneous of degree \mathbb{N} with $f\alpha \in B^n_{f,n-2}(\mathbb{K}^n)$ then $\alpha = 0$.

Proof: 1- We suppose that $\alpha = g\omega$ with $g \in \mathcal{F}(\mathbb{K}^n)$ quasihomogeneous of degree $(q-1)N - \sum w_i$. We have $fg\omega = fd\beta - (q-1)df \wedge \beta$ where β is a quasihomogeneous (n-1)-form of degree (q-1)N.

If we put $\theta = -(q-1)\beta + \frac{\operatorname{div}(\beta)-g}{N}\sigma$ then $df \wedge \theta = 0$, and so $\theta = df \wedge \gamma$ where γ is a quasihomogeneous (n-2)-form of degree (q-2)N. Consequently $\beta = \frac{-1}{q-1}df \wedge \gamma + \frac{\operatorname{div}(\beta)-g}{(q-1)N}\sigma$. Now, a computation shows that $fd\beta - (q-1)df \wedge \beta = \frac{1}{q-1}fdf \wedge d\gamma$ i.e. $f\alpha = \frac{1}{q-1}fdf \wedge d\gamma$. Therefore, $\alpha = \frac{1}{q-1}df \wedge d\gamma = \frac{1}{q-1}df^{(n-q+1)}(\frac{-1}{q-2}d\gamma)$.

2- As in 1- (with q = 2), we have $f\alpha = fg\omega = d_f^{(n-2)}(\beta)$ with deg g = N and deg $\beta = N$. We put $\theta = -\beta + \frac{\operatorname{div}(\beta) - g}{N}\sigma$.

If $\theta \neq 0$ then $\theta = df \wedge \gamma$ where γ is a quasihomogeneous (n-2)-form of degree 0 which is not possible. So, $\theta = 0$ i.e. $\beta = \frac{\operatorname{div}(\beta) - g}{N} \sigma$. We deduce that $f d\beta - df \wedge \beta = 0$ i.e. $\alpha = 0$. \Box

Let \mathcal{B} be a monomial basis of Q_f (for the existence of such a basis, see [AGV]). We denote r_j (j = 2, ..., q - 1) the number of monomials of \mathcal{B} whose degree is $jN - \sum w_i$ (this number doesn't depend on the choice of \mathcal{B}). We also denote s the dimension of the space of quasihomogeneous polynomials of degree $N - \sum w_i$ and c the codimension of f.

Theorem 3.17. Let $\alpha \in \Omega^n(\mathbb{K}^n)$. Then there exist unique polynomials h_1, \ldots, h_q (possibly zero) such that

• h_1 is quasihomogeneous of degree N - $\sum w_i$,

• $h_j(2 \leq j \leq q-1)$ is a linear combination of monomials of \mathcal{B} of degree $jN - \sum w_i$, • h_q is a linear combination of monomials of \mathcal{B} and

$$\alpha = (h_q + f h_{q-1} + \ldots + f^{q-1} h_1) \omega \mod B^n_{f,n-q}(\mathbb{K}^n) \,.$$

In particular, the dimension of $H^n_{f,n-q}(\mathbb{K}^n)$ is $c + r_{q-1} + \ldots + r_2 + s$.

Proof : *Existence* : We suppose that $\alpha = g\omega$ with $g \in \mathcal{F}(\mathbb{K}^n)$. There exists h_q , a linear combination of the monomials of \mathcal{B} , such that $g = h_q \mod I_f$. So, according to lemma 3.12 (see the former remark), $g\omega = h_q \omega + df \wedge \beta \mod B^n_{f,n-q}(\mathbb{K}^n)$ where β is a quasihomogeneous (n-1)-form of degree (q-1)N. Consequently, $g\omega = h_q \omega + \frac{1}{q-1} f d\beta - \frac{1}{q-1} [f d\beta - (q-1)df \wedge \beta] \operatorname{mod} B^n_{f,n-q}(\mathbb{K}^n)$ so,

we can write

$$g\omega = h_q \omega + f g_{q-1} \omega \mod B^n_{f,n-q}(\mathbb{K}^n)$$

with deg $g_{q-1} = (q-1)N - \sum w_i$. In the same way,

$$g_{q-1}\omega = h_{q-1}\omega + fg_{q-2}\omega \mod B^n_{f,n-q+1}(\mathbb{K}^n)$$

where h_{q-1} is a linear combination of the monomials of \mathcal{B} of degree $(q-1)\mathbf{N} - \sum w_i$ and g_{q-2} is quasihomogeneous of degree $(q-2)N - \sum w_i \dots$

. . .

. . .

 \dots and

$$g_2\omega = h_2\omega + fh_1\omega \mod B^n_{f,n-2}(\mathbb{K}^n)$$

where h_2 is a linear combination of the monomials of \mathcal{B} of degree $2N - \sum w_i$ and h_1 is quasihomogeneous of degree N – $\sum w_i$.

Using lemma 3.15, we get

$$\alpha = g\omega = h_q + h_{q-1} + f^2 h_{q-2} + \ldots + f^{q-1} h_1 \omega \mod B^n \left(d_f^{(n-q)} \right).$$

Unicity: Let $g = h_q + fh_{q-1} + \ldots + f^{q-1}h_1$ with h_1, \ldots, h_q as in the statement of the theorem. We suppose that $g\omega \in B^n_{f,n-q}(\mathbb{K}^n)$. Then $g\omega \in \mathcal{I}^n$ i.e. $g \in I_f$. But since $fh_{q-1} + \ldots + f^{q-1}h_1 \in I_f$ (because $f \in I_f$) we have $h_q \in I_f$ and so $h_q = 0$. Now, according to lemma 3.16, $(h_{q-1} + f_{q-2} + ... + f^{q-2}h_1)\omega$ is in $B^n_{f,n-q+1}(\mathbb{K}^n)$ and so, in the same way, $h_{q-1} = 0$.

This way, we get $h_q = h_{q-1} = \ldots = h_2 = 0$ and $fh_1\omega \in B^n_{f,n-2}(\mathbb{K}^n)$. Lemma 3.16 gives $h_1 = 0$. \Box

This theorem allows us to give the dimension of the spaces $H^n_{NP}(\mathbb{K}^n, \Lambda)$ and $H^2_{\Lambda}(\mathbb{K}^n)$.

Corollary 3.18. Let $\alpha \in \Omega^n(\mathbb{K}^n)$. Then there exist unique polynomials h_1, \ldots, h_n (possibly zero) such that

• h_1 is quasihomogeneous of degree N – $\sum w_i$,

• $h_j(2 \le j \le n-1)$ is a linear combination of monomials of \mathcal{B} of degree $jN - \sum w_i$, • h_n is a linear combination of monomials of \mathcal{B} and

$$\alpha = (h_n + fh_{n-1} + \ldots + f^{n-1}h_1)\omega \mod B_f^n(\mathbb{K}^n).$$

In particular, the dimension of $H^n_{NP}(\mathbb{K}^n, \Lambda)$ is $c + r_{n-1} + \ldots + r_2 + s$.

Corollary 3.19. Let $\alpha \in \Omega^n(\mathbb{K}^n)$. Then there exist unique polynomials h_1, h_2 (possibly zero) such that

• h_1 is quasihomogeneous of degree $N - \sum w_i$,

 $\bullet h_2$ is a linear combination of monomials of ${\mathcal B}$ and

 $\alpha = (h_2 + fh_1)\omega \mod B^n_{f,n-2}(\mathbb{K}^n).$

In particular, the dimension of $H^2_{\Lambda}(\mathbb{K}^n)$ is c+s.

Remark 3.20. If q = 1 then the space $H^n_{f,n-1}(\mathbb{K}^n)$ is $\Omega^n(\mathbb{K}^n)/f\Omega^n(\mathbb{K}^n)$ which is of infinite dimension.

3.6. Computation of $H_{f,p}^{n-1}(\mathbb{K}^n)$. We are going to compute the spaces $H_{f,p}^{n-1}(\mathbb{K}^n)$ with $p \neq n-1$. We consider the piece of complex

$$\Omega^{n-2}(\mathbb{K}^n) \longrightarrow \Omega^{n-1}(\mathbb{K}^n) \longrightarrow \Omega^n(\mathbb{K}^n)$$

with $d_f^{(n-q)}(\alpha) = fd\alpha - (q-2)df \wedge \alpha$ if $\alpha \in \Omega^{n-2}(\mathbb{K}^n)$, and $d_f^{(n-q)}(\alpha) = fd\alpha - (q-1)df \wedge \alpha$ if $\alpha \in \Omega^{n-1}(\mathbb{K}^n)$ with $q \neq 1.//$ Remember that if q = n we obtain $H_{NP}^{n-1}(K^n, \Lambda)$ and if q = 2 we have $H_{\Lambda}^1(\mathbb{K}^n)$.

Lemma 3.21. If $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ then $\alpha = \frac{\operatorname{div}(\alpha)}{(q-1)N}\sigma + df \wedge \beta$ with $\beta \in \Omega^{n-2}(\mathbb{K}^n)$ and so, $d\alpha$ verifies $\mathcal{L}_W(d\alpha) - (q-1)Nd\alpha = (q-1)Ndf \wedge d\beta$.

Proof: It is sufficient to notice that $df \wedge \left(\alpha - \frac{\operatorname{div}(\alpha)}{(q-1)N}\sigma\right) = 0$ (proposition 3.3). For the second claim, we have $(q-1)Nd\alpha = \left(W.\operatorname{div}(\alpha) + (\sum w_i)\operatorname{div}(\alpha)\right)\omega - (q-1)Ndf \wedge d\beta$ and the conclusion follows. \Box

Lemma 3.22. If $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ with $\operatorname{ord}(j_0^{\infty}(\alpha)) > (q-1)\mathbb{N}$ then α is cohomologous to a closed (n-1)-form. In particular, if $q \leq 0$ then every (n-1)-cocycle for $d_f^{(n-q)}$ is cohomologous to a closed (n-1)-form.

Proof : We have $\alpha = \frac{\operatorname{div}(\alpha)}{(q-1)N}\sigma + df \wedge \beta$ (lemma 3.21) with

$$\mathcal{L}_W(d\alpha) - (q-1)Nd\alpha = (q-1)Ndf \wedge d\beta \quad (*)$$

Now, let $\gamma \in \Omega^{n-2}(\mathbb{K}^n)$ such that $\mathcal{L}_W \gamma - (q-2) N \gamma = (q-1) N \beta$ (γ exists because $\operatorname{ord}(j_0^{\infty}(\beta)) > (q-2) N$, see lemma 3.2).

We have $\mathcal{L}_W d\gamma - (q-2)Nd\gamma = (q-1)Nd\beta$. Thus $df \wedge d\gamma$ verifies

$$\mathcal{L}_W(df \wedge d\gamma) - (q-1)\mathrm{N}df \wedge d\gamma = (q-1)\mathrm{N}df \wedge d\beta \quad (**).$$

¿From (*) and (**) we get $d\alpha = df \wedge d\gamma$. Indeed, $\mathcal{L}_W(d\alpha - df \wedge d\gamma) = (q-1)N(d\alpha - df \wedge d\gamma)$ but $d\alpha - df \wedge d\gamma$ is not quasihomogeneous of degree (q-1)N. Now, if we put $\theta = \alpha - \frac{1}{q-1}(fd\gamma - (q-2)df \wedge \gamma)$, we have $d\theta = 0$ and $\theta = \alpha$ mod $B_{f,n-q}^{n-1}(\mathbb{K}^n)$.

This lemma allows us to state the following theorem.

Theorem 3.23. If we suppose that $q \leq 0$ then $H^{n-1}_{f,n-q}(\mathbb{K}^n) = \{0\}$.

Proof: Let $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$. We can suppose (according to the former lemma) that $d\alpha = 0$. Thus we have $df \wedge \alpha = 0$. Proposition 3.4 gives then, $\alpha = df \wedge d\gamma$ with $\gamma \in \Omega^{n-3}(\mathbb{K}^n)$. Therefore, $\alpha = d_f^{(n-q)} \left(-\frac{1}{q-2} d\gamma \right)$. \Box

Now, we assume that q > 1.

Lemma 3.24. If $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ is a quasihomogeneous (n-1)-form whose degree is strictly lower than (q-1)N then α is cohomologous to a closed (n-1)-form.

Proof: According to lemma 3.21, we have $\alpha = \frac{\operatorname{div}(\alpha)}{(q-1)N}\sigma + df \wedge \beta$ and so,

$$d\alpha = \frac{(q-1)N}{\deg(\alpha) - (q-1)N} df \wedge d\beta$$

We deduce that, if we put $\theta = \alpha - d_f^{(n-q)} \left(\frac{N}{\deg(\alpha) - (q-1)N} d\beta \right)$, we have $d\theta = 0$. \Box

Remark 3.25. A consequence of lemmas 3.22 and 3.24 is that, if q > 1, every cocycle $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ is cohomologous to a cocycle $\eta + \theta$ where η is in $Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ and is closed, and θ is quasihomogeneous of degree (q-1)N.

Lemma 3.26. Let $\alpha = g\sigma$ where g is a quasihomogeneous polynomial of degree $(q-1)N - \sum w_i$. Then

1- If
$$q > 2$$
 then, $\alpha \in B^{n-1}_{f,n-q}(\mathbb{K}^n) \iff g\omega \in B^n_{f,n-q+1}(\mathbb{K}^n)$
2- If $q = 2$, $\alpha \in B^{n-1}_{f,n-2}(\mathbb{K}^n) \iff \alpha = 0$.

Proof :1- • We suppose that $\alpha \in B^{n-1}_{f,n-q}(\mathbb{K}^n)$ i.e. $\alpha = f d\beta - (q-2) df \wedge \beta$ with $\beta \in \Omega^{n-2}(\mathbb{K}^n)$. Then $d\alpha = (q-1) df \wedge d\beta$.

On the other hand, $d\alpha = (q-1)Ng\omega$ so $g\omega = \frac{1}{N}df \wedge d\beta = d_f^{(n-q+1)} \left(-\frac{d\beta}{(q-2)N}\right)$. • Now we suppose that $g\omega \in B^n_{f,n-q+1}(\mathbb{K}^n)$ i.e. $g\omega = fd\beta - (q-2)df \wedge \beta$ where β is a quasihomogeneous (n-1)-form of degree (q-2)N. We put $\gamma = i_W\beta \in \Omega^{n-2}(\mathbb{K}^n)$. We have

$$\begin{aligned} d_f^{(n-q)}(\gamma) &= f d\gamma - (q-2) df \wedge \gamma \\ &= f d(i_W \beta) - (q-2) df \wedge (i_W \beta) \\ &= f \left(\mathcal{L}_W \beta - i_W d\beta \right) - (q-2) \left[-i_W (df \wedge \beta) + (i_W df) \wedge \beta \right] \\ &= f (q-2) N\beta - i_W \left[f d\beta - (q-2) df \wedge \beta \right] - (q-2) (W.f) \beta \\ &= -i_W \left[f d\beta - (q-2) df \wedge \beta \right]. \end{aligned}$$

Consequently, $d_f^{(n-q)}(\gamma) = -i_W(g\omega) = -g\sigma$. 2- If $\alpha = f d\beta$ where β is a quasihomogeneous (n-2)-form of degree deg $\alpha - N = 0$

12

then $\beta = 0$ and so $\alpha = 0$. \Box

We recall that \mathcal{B} indicates a monomial basis of Q_f . We adopt the same notations as for theorem 3.17.

Theorem 3.27. We suppose that q > 2. Let $\alpha \in Z^{n-1}_{f,n-q}(\mathbb{K}^n)$. There exist unique polynomials h_1, \ldots, h_{q-1} (possibly zero) such that

- h_1 is quasihomogeneous of degree $N \sum w_i$,
- h_k $(k \ge 2)$ is a linear combination of monomials of \mathcal{B} of degree $kN \sum w_i$ and

$$\omega = (h_{q-1} + fh_{q-2} + \ldots + f^{q-2}h_1)\sigma \mod B^{n-1}_{f,n-q}(\mathbb{K}^n).$$

In particular, the dimension of the space $H_{f,n-q}^{n-1}(\mathbb{K}^n)$ is $r_{q-1} + \ldots + r_2 + s$.

Proof : If $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ then α is cohomologous to $\eta + \theta$, where η is in $Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ and is closed, and θ is quasihomogeneous of degree (q-1)N (see remark 3.25).

The same proof as in theorem 3.23 shows that η is a cobord.

Now, we have to study θ . According to lemma 3.21, we can write $\theta = \frac{\operatorname{div}(\theta)}{(q-1)N}\sigma + df \wedge \beta$ $(\beta \in \Omega^{n-2}(\mathbb{K}^n))$ with $\mathcal{L}_W(d\theta) - (q-1)Nd\theta = (q-1)Ndf \wedge d\beta$. Since θ is quasihomogeneous of degree (q-1)N, the former relation gives $df \wedge d\beta = 0$. Consequently, if we put $\gamma = df \wedge \beta$, proposition 3.4 gives $\gamma = df \wedge d\xi$.

if we put $\gamma = df \wedge \beta$, proposition 3.4 gives $\gamma = df \wedge d\xi$. Therefore, $\gamma = d_f^{(n-q)} \left(-\frac{1}{q-2}d\xi \right)$ and so $\theta = \frac{\operatorname{div}(\theta)}{(q-1)N}\sigma \mod B_{f,n-q}^{n-1}(\mathbb{K}^n)$. The conclusion follows using lemma 3.26 and theorem 3.17. \Box

Corollary 3.28. We suppose that q = n. Let $\alpha \in Z_f^{n-1}(\mathbb{K}^n)$. There exist unique polynomials h_1, \ldots, h_{n-1} (possibly zero) such that

- h_1 is quasihomogeneous of degree $N \sum w_i$,
- $h_k \ (k \ge 2)$ is a linear combination of monomials of \mathcal{B} of degree $kN \sum w_i$ and

$$\omega = (h_{n-1} + fh_{n-2} + \ldots + f^{n-2}h_1)\sigma \mod B_f^{n-1}(\mathbb{K}^n).$$

In particular, the dimension of the space $H_{NP}^{n-1}(\mathbb{K}^n, \Lambda)$ is $r_{n-1} + \ldots + r_2 + s$.

Remark 3.29. If q = 2, the description of the space $H_{f,n-2}^{n-1}(\mathbb{K}^n)$ (and so $H_{\Lambda}^1(\mathbb{K}^n)$) is more difficult. It is possible to show that this space is not of finite dimension. Indeed, let us consider the case n = 3 in order to simplify (but it is valid for any $n \geq 3$). We put $\alpha = g\left(\frac{\partial f}{\partial x}dx \wedge dz + \frac{\partial f}{\partial y}dy \wedge dz\right)$ where g is a function which depends only on z. We have $d\alpha = 0$ and $df \wedge \alpha = 0$ so $\alpha \in Z_{f,n-2}^{n-1}(\mathbb{K}^n)$ but $\alpha \notin B_{f,n-2}^n(\mathbb{K}^n)$ because f doesn't divide α .

We can yet give more precisions on the space $H^{n-1}_{f,n-2}(\mathbb{K}^n)$.

Theorem 3.30. Let E be the space of (n-1)-forms $h\sigma$ where h is a quasihomogeneous polynomial of degree $\mathbb{N} - \sum w_i$, and F the quotient of the vector space $\{df \wedge d\gamma; \gamma \in \Omega^{n-3}(\mathbb{K}^n)\}$ by the subspace $\{df \wedge d(f\beta); \beta \in \Omega^{n-3}(\mathbb{K}^n)\}$. Then $H^{n-1}_{f,n-2}(\mathbb{K}^n) = E \oplus F$.

Proof : Let α in $Z_{f,n-2}^{n-1}(\mathbb{K}^n)$.

According to remark 3.25, there exist a closed (n-1)-form η with $\eta \in Z_{f,n-2}^{n-1}(\mathbb{K}^n)$ and a quasihomogeneous (n-1)-form θ , such that α is cohomologous to $\eta + \theta$. We have (lemma 3.21) $\theta = \frac{\operatorname{div}(\theta)}{N} \sigma + df \wedge \beta$ with β quasihomogeneous of degree 0 which is possible only if $\beta \neq 0$. So, $\theta = g\sigma$ where g is a quasihomogeneous polynomial of degree $N - \sum w_i$. Lemma 3.26 says that $\theta \in B^{n-1}_{f,n-2}(\mathbb{K}^n)$ if and only if $\theta = 0$.

Now we study η . Proposition 3.4 gives $\eta = df \wedge d\gamma$ where γ is a (n-3)-form. If we suppose that $\eta \in B^{n-1}_{f,n-2}(\mathbb{K}^n)$ then $df \wedge d\gamma = fd\xi$ with $\xi \in \Omega^{n-2}(K^n)$ and so, $df \wedge d\xi = 0$. Now we apply proposition 3.4 to $d\xi$ and we obtain $d\xi = df \wedge d\beta$ with $\beta \in \Omega^{n-3}(\mathbb{K}^n)$. Consequently, $df \wedge d\gamma = fdf \wedge d\beta$ which implies that $d\gamma = fd\beta + df \wedge \mu$ with $\mu \in \Omega^{n-3}(\mathbb{K}^n)$, and so $d\gamma = d(f\beta) + df \wedge \nu$ with $\nu \in \Omega^{n-3}(\mathbb{K}^n)$. Therefore, $\eta \in B^{n-1}_{f,n-2}(\mathbb{K}^n) \Leftrightarrow \eta = df \wedge d(f\beta)$. \Box

3.7. Summary. It is time to sum up the results we have found.

The cohomology $H_{f}^{\bullet}(\mathbb{K}^{n})$ (and so the Nambu-Poisson cohomology $H_{NP}^{\bullet}(\mathbb{K}^{n}, \Lambda)$) has been entirely computed (see theorems 3.6, 3.8, 3.11, and corollaries 3.18 and 3.28):

The spaces of this cohomology are of finite dimension and only the "extremal" ones (i.e H^0 , H^1 , H^{n-1} and H^n) are possibly different to $\{0\}$. The spaces $H^0_{NP}(\mathbb{K}^n, \Lambda)$ and $H^1_{NP}(\mathbb{K}^n, \Lambda)$ are always of dimension 1. The dimensions of the spaces $H^{n-1}_{NP}(\mathbb{K}^n, \Lambda)$ and $H^n_{NP}(\mathbb{K}^n, \Lambda)$ depend on the one hand on the type of the singularity of Λ (via the role played by Q_f), and on the other hand, on the "polynomial nature" of Λ .

Concerning the cohomology $H_{f,n-2}^{\bullet}(\mathbb{K}^n)$, we have computed H^n , i.e. $H_{\Lambda}^n(\mathbb{K}^n)$ (see corollary 3.19) and we have given a sketch of description of H^{n-1} (see theorem 3.30). We have also computed the spaces $H_{f,n-2}^0(\mathbb{K}^n)$ (theorem 3.6) and $H_{f,n-2}^k(\mathbb{K}^n)$ (theorem 3.8) for $k \neq n-2, n-1$, but these spaces are not particularly interesting for our problem.

The space $H^2_{\Lambda}(\mathbb{K}^n)$, which describes the infinitesimal deformations of Λ is of finite dimension and its dimension has the same property as the dimension of $H^n_{NP}(\mathbb{K}^n, \Lambda)$. On the other hand, the space $H^1_{\Lambda}(\mathbb{K}^n)$ which is the space of the vector fields preserving Λ modulo the Hamiltonian vector fields, is not of finite dimension.

It is interesting to compare the results we have found on these two cohomologies with the ones given in [Mo] on the computation of the Poisson cohomology in dimension 2.

Finally, if $p \neq 0, n-2, n-1$ we have computed the spaces $H_{f,p}^0(\mathbb{K}^n)$, $H_{f,p}^{n-1}(\mathbb{K}^n)$, $H_{f,p}^n(\mathbb{K}^n)$ and $H_{f,p}^k(\mathbb{K}^n)$ with $k \neq p, p+1$. If p = n-1 we have computed the spaces $H_{f,n-1}^0(\mathbb{K}^n)$ and $H_{f,n-1}^k(\mathbb{K}^n)$ for $2 \leq k \leq n-2$ $k \neq p, p+1$ (the space $H_{f,n-1}^n(\mathbb{K}^n)$ is of infinite dimension).

4. Examples

In this section, we will explicit the cohomology of some particular germs of n-vectors.

4.1. Normal forms of *n*-vectors. Let $\Lambda = f \frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}$ be a germ at 0 of n-vectors on \mathbb{K}^n $(n \geq 3)$ with f of finite codimension (see the beginning of section 3) and f(0) = 0 (if $f(0) \neq 0$, then the local triviality theorem, see [AlGu], [G] or [N2], allows us to write, up to a change of coordinates, that $\Lambda = \frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}$).

Proposition 4.1. If 0 is not a critical point for f then there exist local coordinates y_1, \ldots, y_n such that

$$\Lambda = y_1 \frac{\partial}{\partial y_1} \wedge \ldots \wedge \frac{\partial}{\partial y_n}$$

Proof: A similar proposition is shown for instance in [Mo] in dimension 2. The proof can be generalized to the *n*-dimensional $(n \ge 3)$ case.

Now we suppose that 0 is a critical point of f. Moreover, we suppose that the germ f is **simple**, which means that a sufficiently small neighbourhood (with respect to Whitney's topology; see [AGV]) of f intersects only a finite number of R-orbits (two germs g and h are said R-equivalent if there exits φ , a local diffeomorphism at 0, such that $g = h \circ \varphi$). Simple germs are those who present a certain kind of stability under deformation.

The following theorem can be found in [A] with only sketches of the proofs. In [Mo], a similar theorem (in dimension 2) is proved and the demonstration can be adapted here.

Theorem 4.2. Let f be a simple germ at 0 of finite codimension. Suppose that f has at 0 a critical point with critical value 0. Then there exist local coordinates y_1, \ldots, y_n such that the germ $\Lambda = f \frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}$ can be written, up to a multiplicative constant, $g \frac{\partial}{\partial y_1} \wedge \ldots \wedge \frac{\partial}{\partial y_n}$ where g is in the following list.

$$A_k : y_1^{k+1} \pm y_2^2 \pm \ldots \pm y_n^2 \quad k \ge 1$$

$$D_k : y_1^2 y_2 \pm y_2^{k-1} \pm y_3^2 \pm \ldots \pm y_n^2 \quad k \ge 4$$

$$E_6 : y_1^3 + y_2^4 \pm y_3^2 \pm \ldots \pm y_n^2$$

$$E_7 : y_1^3 + y_1 y_2^3 \pm y_3^2 \pm \ldots \pm y_n^2$$

$$E_8 : y_1^3 + y_2^5 \pm y_3^2 \pm \ldots \pm y_n^2$$

Proposition 4.1 and theorem 4.2 describe most of the germs at 0 of *n*-vectors on \mathbb{K}^n vanishing at 0.

We can notice that the models given in the former list are all quasihomogeneous polynomials; which justifies the assumption we made in section 2.

4.2. Some examples. 1- The regular case : $f(x_1, \ldots, x_n) = x_1$. It is easy to see that $Q_f = \{0\}$ and that f is quasihomogeneous of degree $\mathbb{N} = 1$, with respect to $w_1 = \ldots = w_n = 1$. We have $\mathbb{N} - \sum w_i < 0$, so $H_f^0(\mathbb{K}^n) \simeq \mathbb{K}$, $H_f^1(\mathbb{K}^n) = \mathbb{K}.dx_1$ and $H_f^k(\mathbb{K}^n) = \{0\}$ for any $k \geq 2$.

2- Non degenerate singularity: $f(x_1, \ldots, x_n) = x_1^2 + \ldots + x_n^2$ with $n \ge 3$. We have N = 2 and $w_1 = \ldots = w_n = 1$. The space Q_f is isomorphic to \mathbb{K} and is spanned by the constant germ 1, which is of degree 0. We deduce that $H_f^0(\mathbb{K}^n) \simeq \mathbb{K}$, $H_f^1(\mathbb{K}^n) = \mathbb{K}.(x_1dx_1 + \ldots + x_ndx_n)$ and $H_f^k = \{0\}$

we deduce that $\Pi_f(\mathbb{R}) \cong \mathbb{R}, \Pi_f(\mathbb{R}) = \mathbb{R}.(x_1ax_1 + \ldots + x_nax_n)$ and $\Pi_f = \{0\}$ for $2 \le k \le n-2$.

In order to describe the spaces $H_f^{n-1}(\mathbb{K}^n)$ and $H_f^n(\mathbb{K}^n)$, we look for an integer $k \in \{1, \ldots, n-1\}$ such that $kN - \sum w_i = \deg 1$ i.e. 2k - n = 0. Therefore, if n is even then $\{\omega, f^{\frac{n}{2}}\omega\}$ is a basis of $H^n_f(\mathbb{K}^n)$ and $H^{n-1}_f(\mathbb{K}^n)$ is spanned by $\{f^{\frac{n}{2}-1}\sigma\}$

if n is odd then $H_f^{n-1}(\mathbb{K}^n) = \{0\}$ and the space $H_f^n(\mathbb{K}^n)$ is spanned by $\{\omega\}$. We recall that $\omega = dx_1 \wedge \ldots \wedge dx_n$ and

$$\sigma = i_W \omega = \sum_{i=1}^n (-1)^{i-1} x_i dx_1 \wedge \ldots \wedge \widehat{dx_i} \wedge \ldots \wedge dx_n \, .$$

3- The case A_2 with n = 3: $f(x_1, x_2, x_3) = x_1^3 + x_2^2 + x_3^2$. Here, $w_1 = 2$, $w_2 = w_3 = 3$ and N = 6. Thus, N $-\sum w_i = -2$, 2N $-\sum w_i = 4$ and 3N $-\sum w_i = 10$.

Moreover, $\mathcal{B} = \{1, x_1\}$ is a monomial basis of Q_f . But as deg 1 = 0 and deg $x_1 = 3$, we have:

$$H_f^0(\mathbb{K}^3) \simeq \mathbb{K}, H_f^1(\mathbb{K}^3) = \mathbb{K}.(3x_1dx_1 + 2x_2dx_2 + 2x_3dx_3)$$

and $H_f^2(\mathbb{K}^3) = H_f^3(\mathbb{K}^3) = \{0\}.$

4- The case D_5 with n = 4: $f(x_1, x_2, x_3, x_4) = x_1^2 x_2 + x_2^4 + x_3^2 + x_4^2$. We have $w_1 = 3$, $w_2 = 2$, $w_3 = w_4 = 4$ and N = 8 then N - $\sum w_i = -5$, $2N - \sum w_i = 3$, $3N - \sum w_i = 11$ and $4N - \sum w_i = 19$. Now, $\mathcal{B} = \{1, x_1, x_2, x_2^2, x_2^3\}$ is a monomial basis of Q_f . Here, deg 1 = 0, deg $x_1 = 3$,

Now, $\mathcal{B} = \{1, x_1, x_2, x_2^2, x_2^3\}$ is a monomial basis of Q_f . Here, deg 1 = 0, deg $x_1 = 3$, deg $x_2 = 2$, deg $x_2^2 = 4$ and deg $x_2^3 = 6$. Thus, the only element of \mathcal{B} whose degree is of type $kN - \sum w_i$ is x_1 .

Consequently,

$$H_f^0(\mathbb{K}^4) \simeq \mathbb{K}, H_f^1(\mathbb{K}^4) = \mathbb{K} \cdot \left(2x_1x_2dx_1 + (x_1^2 + 4x_2^3)dx_2 + 2x_3dx_3 + 2x_4dx_4\right),$$
$$H_f^2(\mathbb{K}^4) = \{0\}, H_f^3(\mathbb{K}^4) = \mathbb{K} \cdot (x_1\sigma)$$

and $\{\omega, x_1\omega, x_2\omega, x_2^2\omega, x_2^3\omega, x_1f\omega\}$ is a basis of $H_f^4(\mathbb{K}^4)$. Here, we have $W = 3x_1\frac{\partial}{\partial x_1} + 2x_2\frac{\partial}{\partial x_2} + 4x_3\frac{\partial}{\partial x_3} + 4x_4\frac{\partial}{\partial x_4}$ and $\sigma = 3x_1dx_2 \wedge dx_3 \wedge dx_4 - 2x_2dx_1 \wedge dx_3 \wedge dx_4 + 4x_3dx_1 \wedge dx_2 \wedge dx_4 - 4x_4dx_1 \wedge dx_2 \wedge dx_3$.

References

- [A] V.I. Arnold, Mathematical methods of classical Mechanics, Graduate Texts in Math. (60), Second edition, Springer Verlag (1989).
- [AGV] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps (volume 1), Monographs in Math. (82), Birkhäuser (1985).
- [AlGu] D. Alekseevsky, P. Guha, On decomposability of Nambu-Poisson tensor, Acta Math. Univ. Commenianae, 65 (1996), 1-10.
- [dR] G. de Rham, Sur la division de formes et de courants par une forme linéaire, Comment. Math. Helv. 28 (1954) 346-352.
- [G] Ph. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1996), 103-116.
- [I1] R. Ibáñez, M. de León, J.C. Marrero and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A:Math. and Gen., 32 (1999), 8129-8144.
- [I2] R. Ibáñez, M. de León, B. López, J.C. Marrero and E. Padrón, *Duality and modular class of a Nambu-Poisson structure*, Preprint math.SG/0004065.
- [Ma] B. Malgrange, Frobenius avec singularité 1. Codimension un, Public. Sc. IHES, 46 (1976) 163-173.
- [Mo] Ph. Monnier, Poisson cohomology in dimension 2, Preprint math.DG/0005261.
- [N1] N. Nakanishi, Poisson cohomology of plane quadratic Poisson structures, Publ. Res. Inst. Math.Sci. 33 (1997), 73-89.

16

- [N2] N. Nakanishi, On Nambu-Poisson manifolds, Reviews in Math. Phys. 10 (1998), 499-510.
- [Na] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D7 (1973), 2405-2412.
- [R] C.A. Roche, *Cohomologie relative dans le domaine réel*, thèse (1973), University of Grenoble.
- [T] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 160 (1994), 295-315.
- [V] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Math. (118), Birkhäuser (1994).

DEPARTAMENTO DE MATEMÁTICA, INSTITUTO SUPERIOR TÉCNICO, LISBON, PORTUGAL *E-mail address*: pmonnier@math.ist.utl.pt