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Abstract. In this paper, we want to associate to a n-vector on a manifold
of dimension n a cohomology which generalizes the Poisson cohomology of
a 2-dimensional Poisson manifold. Two possibilities are given here. One of
them, the Nambu-Poisson cohomology, seems to be the most pertinent. We
study these two cohomologies locally, in the case of germs of n-vectors on Kn

(K = R or C).

1. Introduction

A way to study a geometrical object is to associate to it a cohomology. In this
paper, we focus on the n-vectors on a n-dimensional manifold M .
If n = 2, the 2-vectors on M are the Poisson stuctures thus, we can consider the
Poisson cohomology. In dimension 2, this cohomology has three spaces. The first
one, H0, is the space of functions whose Hamiltonian vector field is zero (Casimir
functions). The second one, H1, is the quotient of the space of infinitesimal auto-
morphisms (or Poisson vector fields) by the subspace of Hamiltonian vector fields.
The last one, H2, describes the deformations of the Poisson structure. In a previous
paper ([Mo]), we have computed the cohomology of germs at 0 of Poisson structures
on K2 (K = R or C).
In order to generalize this cohomology to the n-dimensional case (n ≥ 3), we can
follow the same reasoning. These spaces are not necessarily of finite dimension and
it is not always easy to describe them precisely.

Recently, a team of Spanish researchers has defined a cohomology, called Nambu-
Poisson cohomology, for the Nambu-Poisson structures (see [I2]). In this paper, we
adapt their construction to our particular case. We will see that this cohomology
generalizes in a certain sense the Poisson cohomology in dimension 2. Then we
compute locally this cohomology for germs at 0 of n-vectors Λ = f ∂

∂x1
∧ . . . ∧ ∂

∂xn

on Kn (K = R or C), with the assumption that f is a quasihomogeneous polyno-
mial of finite codimension (”most of” the germs of n-vectors have this form). This
computation is based on a preliminary result that we have shown, in the formal case
and in the analytical case (so, the C∞ case is not entirely solved). The techniques
we use in this paper are quite the same as in [Mo].

2. Nambu-Poisson cohomology

Let M be a differentiable manifold of dimension n (n ≥ 3), admitting a volume
form ω. We denote C∞(M) the space of C∞ functions on M , Ωk(M) (k = 0, . . . , n)
the C∞(M)-module of k-forms on M , and X k(M) (k = 0, . . . , n) the C∞(M)-
module of k-vectors on M .
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We consider a n-vector Λ on M . Note that Λ is a Nambu-Poisson structure on M .
Recall that a Nambu-Poisson structure on M of order r is a skew-symmetric
r-linear map { , . . . , }

C∞(M)× . . .× C∞(M) −→ C∞(M), (f1, . . . , fr) 7−→ {f1, . . . , fr},
which satifies

{f1, . . . , fr−1, gh} = {f1, . . . , fr−1, g}h + g{f1, . . . , fr−1, h} (L)

{f1, . . . , fr−1, {g1, . . . , gr}} =
r∑

i=1

{g1, . . . , gi−1, {f1, . . . , fr−1, gi}, gi+1, . . . , gr} (FI)

for any f1, . . . , fr−1, g, h, g1, . . . , gr in C∞(M). It is clear that we can associate to
such a bracket a r-vector on M . If r = 2, we rediscover Poisson structures. Thus,
Nambu-Poisson structures can be seen as a kind of generalization of Poisson struc-
tures. The notion of Nambu-Poisson structures was introduced in [T] by Takhtajan
in order to give a formalism to an idea of Y. Nambu ([Na]).

Here, we suppose that the set {x ∈ M ; Λx 6= 0} is dense in M . We are going to
associate a cohomology to (M, Λ).

2.1. The choice of the cohomology. If M is a differentiable manifold of dimen-
sion 2, then the Poisson structures on M are the 2-vectors on M . If Π is a Poisson
structure on M , then we can associate to (M, Π) the complex

0 −→ C∞(M) ∂−→ X 1(M) ∂−→ X 2(M) −→ 0

with ∂(g) = [g, Π] = Xg (Hamiltonian of g) if g ∈ C∞(M) and ∂(X) = [X, Π] ([ , ]
indicates Schouten’s bracket) if X ∈ X 1(M). The cohomology of this complex is
called the Poisson cohomology of (M, Π). This cohomology has been studied for
instance in [Mo], [N1] and [V].

Now if M is of dimension n with n ≥ 3, we want to generalize this cohomology.
Our first approach was to consider the complex

0 −→ (C∞(M)
)n−1 ∂−→ X 1(M) ∂−→ Xn(M) −→ 0

with ∂(X) = [X, Λ] and ∂(g1, . . . , gn−1) = idg1∧...∧dgn−1Λ = Xg1,...,gn−1 (Hamilton-
ian vector field) where we adopt the convention idg1∧...∧dgn−1Λ = Λ(dg1, . . . , dgn−1, •).
We denote H0

Λ(M), H1
Λ(M) and H2

Λ(M) the three spaces of cohomology of this com-
plex. With this cohomology, we rediscover the interpretation of the first spaces of
the Poisson cohomology, i.e. H2

Λ(M) describes the infinitesimal deformations of Λ
and H1

Λ(M) is the quotient of the algebra of vector fields which preserve Λ by the
ideal of Hamiltonian vector fields.

In [I2], the authors associate to any Nambu-Poisson structure on M a cohomol-
ogy. The second idea is then to adapt their construction to our particular case.
Let #Λ be the morphism of C∞(M)-modules Ωn−1(M) −→ X 1(M) : α 7→ iαΛ.
Note that ker#Λ = {0} (because the set of regular points of Λ is dense). We can
define (see [I1]) a R-bilinear operator [[ , ]] : Ωn−1(M)×Ωn−1(M) −→ Ωn−1(M) by

[[α, β]] = L#Λαβ + (−1)n(idαΛ)β .



COMPUTATIONS OF NAMBU-POISSON COHOMOLOGIES 3

The vector space Ωn−1(M) equiped with [[ , ]] is a Lie algebra (for any Nambu-
Poisson structure, it is a Leibniz algebra). Moreover this bracket verifies #Λ[[α, β]] =
[#Λα, #Λβ] for any α, β in Ωn−1(M). The triple (Λn−1(T ∗(M)), [[ , ]],#Λ) is then
a Lie algebroid and the Nambu-Poisson cohomology of (M, Λ) is the Lie algebroid
cohomology of (Λn−1(T ∗(M)) (for any Nambu-Poisson structure, it is more elab-
orate see [I2]). More precisely, for every k ∈ {0, . . . , n}, we consider the vec-
tor space Ck(Ωn−1(M); C∞(M)) of the skew-symmetric and C∞(M)-k-multilinear
maps Ωn−1(M)× . . .× Ωn−1(M) −→ C∞(M). The cohomology operator
∂ : Ck(Ωn−1(M); C∞(M)) −→ Ck+1(Ωn−1(M); C∞(M)) is defined by

∂c(α0, . . . , αk) =
k∑

i=0

(−1)i(#Λαi).c
(
α0, . . . , α̂i, . . . , αk

)

+
∑

0≤i<j≤k

(−1)i+jc([[αi, αj ]], α0, . . . , α̂i, . . . , α̂j , . . . , αk)

for all c ∈ Ck(Ωn−1(M); C∞(M)) and α0, . . . , αk in Ωn−1(M).
The Nambu-Poisson cohomology of (M, Λ), denoted by H•

NP (M, Λ), is the
cohomology of this complex.

2.2. An equivalent cohomology. So defined, the Nambu-Poisson cohomology is
quite difficult to manipulate. We are going to give an equivalent cohomology which
is more accessible.
Recall that we assume that M admits a volume form ω.
Let f ∈ C∞(M), we define the operator

df : Ωk(M) −→ Ωk+1(M)
α 7−→ fdα− kdf ∧ α.

It is easy to prove that df ◦ df = 0. We denote H•
f (M) the cohomology of this

complex. Let [ be the isomorphism X 1(M) −→ Ωn−1(M) X 7−→ iXω.

Lemma 2.1. 1- If X ∈ X (M), then #Λ

(
[(X)

)
= (−1)n−1fX where f = iΛω.

2- If X and Y are in X (M), then

(−1)n−1[[[(X), [(Y )]] = f[([X, Y ]) + (X.f)[(Y )− (Y.f)[(X) .

Proof : 1- Obvious.
2- We have #Λ

(
[[[(X), [(Y )]]

)
= [#Λ([(X)),#Λ([(Y ))] (property of the Lie alge-

broid), which implies that

#Λ

(
[[[(X), [(Y )]]

)
= f(X.f)Y − f(Y.f)X + f2[X, Y ]

= (−1)n−1#Λ

(
(X.f)[(Y )− (Y.f)[(X) + f[([X, Y ])

)
.

The result follows via the injectivity of #Λ. ¤
Proposition 2.2. If we put f = iΛω, then H•

NP (M, Λ) is isomorphic to H•
f (M).

Proof : For every k, we consider the application ϕ : Ck(Ωn−1(M); C∞(M)) −→
Ωk(M) defined by

ϕ(c)
(
X1, . . . , Xk

)
= c

(
(−1)n−1[(X1), . . . , (−1)n−1[(Xk)

)
,

where c ∈ Ck(Ωn−1(M); C∞(M)) and X1, . . . , Xk ∈ X (M). It is easy to see that
ϕ is an isomorphism of vector spaces. We show that it is an isomorphism of com-
plexes.
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Let c ∈ Ck(Ωn−1(M); C∞(M)). We put α = ϕ(c). If X0, . . . , Xk are in X (M) then
ϕ(∂c)(X0, . . . , Xk) = (−1)(n−1)(k+1)∂c([(X0), . . . , [(Xk)) = A + B where
A = (−1)(n−1)(k+1)

∑k
i=0(−1)i#Λ

(
[(Xi)

)
.c

(
[(X0), . . . , [̂(Xi), . . . , [(Xk)

)

B = (−1)(n−1)(k+1)
∑

0≤i<j≤k(−1)i+jc
(
[[[(Xi), [(Xj)]], [(X0), . . . , [̂(Xi), . . . , [̂(Xj), . . . , [(Xk)

)
.

We have A = f
∑k

i=0(−1)iXi.α(X0, . . . , X̂i, . . . , Xk) and

B = f
∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

+
∑

0≤i<j≤k

(−1)i+j(Xi.f)α(Xj , X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

−
∑

0≤i<j≤k

(−1)i+j(Xj .f)α(Xi, X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

= f
∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

−k

k∑

i=0

(−1)i(Xi.f)α(X0, . . . , X̂i, . . . , Xk) .

Consequently, ϕ(∂c) = dfα = df

(
ϕ(c)

)
. ¤

Remark 2.3. We claim that this cohomology is a “good” generalisation of the Pois-
son cohomology of a 2-dimensional Poisson manifold. Indeed, if (M, Π) is an ori-
entable Poisson manifold of dimension 2, we consider the volume form ω on M and
we put

φ2 : X 2(M) −→ Ω2(M) and φ1 : X 1(M) −→ Ω1(M)
defined by

φ2(Γ) = (iΓω)ω and φ1(X) = −iXω

for every 2-vector Γ and vector field X.
We also put φ0 = id : C∞(M) −→ C∞(M).
If we denote ∂ the operator of the Poisson cohomology, and f = iΠω, it is quite
easy to see that

φ : (X •(M), ∂) −→ (Ω•(M), df )
is an isomorphism of complexes.

Remark 2.4. 1- The definitions we have given make sense if we work in the holo-
morphic case or in the formal case.
2- Important : If h is a function on M which doesn’t vanish on M , then the
cohomologies H•

f (M) and H•
fh(M) are isomorphic.

Indeed, the applications
(
Ωk(M), dfh

) −→ (
Ωk(M), df

)
α 7−→ α

hk give an isomor-
phism of complexes.
In particular, if f doesn’t vanish on M then H•

f (M) is isomorphic to the de Rham’s
cohomology.

2.3. Other cohomologies. We can construct other complexes which look like
(Ω•(M), df ). More precisely we denote, for p ∈ Z,

d
(p)
f : Ωk(M) −→ Ωk+1(M)

α 7−→ fdα− (k − p)df ∧ α.
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We will denote H•
f,p(M) the cohomology of these complexes. We will see in the

next section some relations between these different cohomologies.

Using the contraction i•ω, it is quite easy to prove the following proposition.

Proposition 2.5. The spaces H1
Λ(M) and H2

Λ(M) are isomorphic to Hn−1
f,n−2(M)

and Hn
f,n−2(M).

Remark 2.6. The two properties of remark 2.4 are valid for H•
f,p(M) with p ∈ Z.

3. Computation

Henceforth, we will work locally. Let Λ be a germ of n-vectors on Kn (K
indicates R or C ) with n ≥ 3. We denote F(Kn) (Ωk(Kn),X (Kn)) the space
of germs at 0 of (holomorphic, analytic, C∞, formal) functions (k-forms, vector
fields). We can write Λ (with coordinates (x1, . . . , xn)) Λ = f ∂

∂x1
∧ . . .∧ ∂

∂xn
where

f ∈ F(Kn). We assume that the volume form ω is dx1 ∧ . . . ∧ dxn.
We suppose that f(0) = 0 (see remark 2.4) and that f is of finite codimension,
which means that Qf = F(Kn)/If (If is the ideal spanned by ∂f

∂x1
, . . . , ∂f

∂xn
) is a

finite dimensional vector space.

Remark 3.1. It is important to note that, according to Tougeron’s theorem (see for
instance [AGV]), if f is of finite codimension, then the set f−1({0}) is, from the
topological point of view, the same as the set of the zeros of a polynomial.
Therefore, if g is a germ at 0 of functions which satisfies fg = 0, then g = 0.

Moreover we suppose that f is a quasihomogeneous polynomial of degree N
(for a justification of this additional assumption, see section 3). We are going to
recall the definition of the quasi-homogeneity.

3.1. Quasi-homogeneity. Let (w1, . . . , wn) ∈ (N∗)n. We denote W the vector
field w1x1

∂
∂x1

+ . . . + wnxn
∂

∂xn
on Kn. We will say that a tensor T is quasiho-

mogeneous with weights w1, . . . , wn and of (quasi)degree N ∈ Z if LW T = NT (L
indicates the Lie derivative operator). Note that T is then polynomial.
If f is a quasihomogeneous polynomial of degree N then N = k1w1+. . .+knwn with
k1, . . . , kn ∈ N ; so, an integer is not necessarily the quasidegree of a polynomial. If
f ∈ K[

[x1, . . . , xn]
]
, we can write f =

∑∞
i=0 fi with fi quasihomogeneous of degree

i (we adopt the convention that fi = 0 if i is not a quasidegree); f is said to be of
order d (ord(f) = d) if all of its monomials have a degree d or higher. For more
details, consult [AGV].
Since LW and the exterior differentiation d commute, if α is a quasihomogeneous
k-form, then dα is a quasihomogeneous (k + 1)-form of degree deg α. In particular,
it is important to notice that dxi is a quasihomogeneous 1-form of degree wi (note
that ∂

∂xi
is a quasihomogeneous vector field of degree −wi). Thus, the volume form

ω = dx1 ∧ . . . ∧ dxn is quasihomogeneous of degree w1 + . . . + wn. Note that a
quasihomogeneous non zero k-form (k ≥ 1) has a degree strictly positive.
Note that if f is a quasihomogeneous polynomial of degree N, then the n-vector
Λ = f ∂

∂x1
∧ . . . ∧ ∂

∂xn
is quasihomogeneous of degree N−∑

i wi.
In the sequel, the degrees will be quasidegrees with respect to W = w1x1

∂
∂x1

+ . . .+
wnxn

∂
∂xn

.
We will need the following result.
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Lemma 3.2. Let k1, . . . , kn ∈ N and put p =
∑

kiwi. Assume that g ∈ F(Kn) and
α ∈ Ωi(Kn) verify ord(j∞0 (g)) > p and ord(j∞0 (α)) > p (j∞0 indicates the ∞-jet at
0). Then

1. there exists h ∈ F(Kn) such that W.h− ph = g,
2. there exists β ∈ Ωi(Kn) such that LW β − pβ = α.

proof : The first claim is only a generalisation of a lemma given (in dimension 2)
in [Mo] and it can be proved in the same way. The second claim is a consequence
of the first.

Now we are going to compute the spaces Hk
f (Kn) (i.e Hk

NP (Kn,Λ)) for k =
0, . . . , n. We will denote Zk

f (Kn) and Bk
f (Kn) the spaces of k-cocycles and k-

cobords. We will also compute some spaces Hk
f,p(Kn) with particular interest in

the spaces Hn
f,n−2(Kn) (i.e. H2

Λ(Kn)) and Hn−1
f,n−2(Kn) (i.e. H1

Λ(Kn)). We will
denote Zk

f,p(Kn)
(
Bk

f,p(Kn)
)

the spaces of k-cocycles (k-cobords) for the operator

d
(p)
f .

3.2. Two useful preliminary results. In the computation of these spaces of
cohomology, we will need the two following propositions. The first is only a corollary
of the de Rham’s division lemma (see [dR]).

Proposition 3.3. Let f ∈ F(Kn) of finite codimension. If α ∈ Ωk(Kn) (1 ≤ k ≤
n− 1) verifies df ∧ α = 0 then there exists β ∈ Ωk−1(Kn) such that α = df ∧ β.

Proposition 3.4. Let f ∈ F(Kn) of finite codimension. Let α be a k-form (2 ≤
k ≤ n − 1) which verifies dα = 0 and df ∧ α = 0 then there exists γ ∈ Ωk−2(Kn)
such that α = df ∧ dγ.

Proof : We are going to prove this result in the formal case and in the analytical
case.
Formal case: Let α be a quasihomogeneous k-form of degree p which verifies the
hypotheses. Since df ∧α = 0, we have α = df ∧β1 where β1 is a quasihomogeneous
(k − 1)-form of degree p − N. Now, since dα = 0, we have df ∧ dβ1 = 0 and so
dβ1 = df ∧ β2, where β2 is a quasihomogeneous (k − 1)-form of degree p − 2N.
This way, we can construct a sequence (βi) of quasihomogeneous (k−1)-forms with
deg βi = p−iN which verifies dβi = df∧βi+1. Let q ∈ N such that p−qN ≤ 0. Thus,
we have βq = 0 and so dβq−1 = 0 i.e. βq−1 = dγq−1 where γq−1 is a (k − 2)-form.
Consequently, dβq−2 = df ∧ dγq−1 which implies that βq−2 = −df ∧ γq−1 + dγq−2,
where γq−2 is a (k − 2)-form. In the same way, dβq−3 = df ∧ dγq−2 so βq−3 =
−df ∧ γq−2 + dγq−3 where γq−3 is a (k − 2)-form. This way, we can show that
β1 = −df ∧ γ2 + dγ1 where γ1 and γ2 are (k − 2)-forms. Therefore, α = df ∧ dγ1

Analytical case : In [Ma], Malgrange gives a result on the relative cohomology of
a germ of an analytical function. In particular, he shows that in our case, if β is
a germ at 0 of analytical r-forms (r < n − 1) which verifies dβ = df ∧ µ (µ is a
r-form) then there exists two germs of analytical (r − 1)-forms γ and ν such that
β = dγ + df ∧ ν.
Now, we are going to prove our proposition. Let α be a germ of analytical k-forms
(2 ≤ k ≤ n−1) which verifies the hypotheses of the proposition. Then there exists a
(k−1)-form β such that α = df ∧β (proposition 3.3). But since 0 = dα = −df ∧dβ,
we have dβ = df ∧ µ and so ([Ma]) β = dγ + df ∧ ν where γ and ν are analytical
(k − 2)-forms. We deduce that α = df ∧ dγ where γ is analytic. ¤
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Remark 3.5. Important:
In fact, some results which appear in [R] lead us to think that this proposition is
not true in the real C∞ case.
The computation of the spaces Hn

f,p(Kn), Hn−1
f,p (Kn) (p 6= n − 2) and H0

f,p(Kn)
doesn’t use this proposition so, it still holds in the C∞ case.
The results we find on the other spaces should be the same in the C∞ case as in
the analytical case but another proof need to be found.

3.3. Computation of H0
f,p(Kn). We consider the application d

(p)
f : Ω0(Kn) −→

Ω1(Kn) g 7−→ fdg + pdf ∧ g.

Theorem 3.6. 1- If p > 0 then H0
f,p(Kn) = {0}

2- If p ≤ 0 then H0
f,p(Kn) = K.f−p

Proof : 1- If g ∈ F(Kn) verifies d
(p)
f g = 0 then d(fpg) = 0, and so fpg is constant.

But as f(0) = 0, fpg must be 0 i.e. g = 0 (because f is of finite codimension; see
remark 3.1).
2- We will use an induction to show that for any k ≥ 0, if g satisfies fdg = kgdf
then g = λfk where λ ∈ K.
For k = 0 it is obvious.
Now we suppose that the property is true for k ≥ 0. We show that it is still valid
for k + 1. Let g ∈ F(Kn) be such that fdg = (k + 1)gdf (∗). Then df ∧ dg = 0 and
so there exists h ∈ F(Kn) such that dg = hdf (proposition 3.3). Replacing dg by
hdf in (∗), we get fhdf = (k + 1)gdf i.e. g = 1

k+1fh. Now, this former relation
gives on the one hand fdg = 1

k+1 (f2dh + fhdf) and on the other hand, using (∗),
fdg = fhdf . Consequently, fdh = khdf and so h = λfk with λ ∈ K. ¤

3.4. Computation of Hk
f (Kn) 1 ≤ k ≤ n− 2.

Lemma 3.7. Let α ∈ Zk
f,p(Kn) with 1 ≤ k ≤ n− 2. Then α is cohomologous to a

closed k-form.

Proof : We have fdα − (k − p)df ∧ α = 0. If k = p then α is closed. Now we
suppose that k 6= p. We put β = dα ∈ Ωk+1(Kn). We have

0 = df ∧ (fdα− (k − p)df ∧ α) = fdf ∧ α

so, df ∧ α = 0.
Now, since dβ = 0 and df ∧ β = 0, proposition 3.4 gives β = df ∧ dγ with γ ∈
Ωk−1(Kn). Then, if we consider α′ = α − 1

k−p

(
fdγ − (k − p − 1)df ∧ γ

)
, we have

dα′ = 0 and fdγ − (k − p− 1)df ∧ γ ∈ Bk
f,p(Kn). ¤

Theorem 3.8. If k ∈ {2, . . . , n− 2} then Hk
f (Kn) = {0}.

Proof : Let α ∈ Zk
f (Kn). Then α ∈ Ωk(Kn) and verifies fdα− kdf ∧ α = 0.

According to lemma 3.7 we can assume that α is closed. Now we show that α ∈
Bk

f (Kn).
Since dα = 0 and df ∧ α = 0, there exists β ∈ Ωk−2(Kn) such that α = df ∧ dβ
(proposition 3.4). Thus, α = df

( −1
k−1dβ

)
. ¤

Remark 3.9. It is possible to adapt this proof to show that Hk
f,p(Kn) = {0} if

k ∈ {2, . . . , n− 2} and p 6= k, k − 1.
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Lemma 3.10. Let α ∈ Z1
f (Kn). If ord

(
j∞0 (α)

)
> N then α ∈ B1

f (Kn).

Proof : According to lemma 3.7, we can assume that dα = 0.
Since df ∧α = 0 we have α = gdf (proposition 3.3) where g is in F(Kn) and verifies
ord

(
j∞0 (g)

)
> 0. We show that f divides g.

Let ḡ ∈ F(Kn) be such that W.ḡ = g (lemma 3.2); note that ord
(
j∞0 (ḡ)

)
> 0.

We have LW (df ∧ dḡ) = Ndf ∧ dḡ + df ∧ dg, and since df ∧ dg = −dα = 0, df ∧ dḡ
verifies

LW (df ∧ dḡ) = Ndf ∧ dḡ ,

which means that df ∧ dḡ is either 0 or quasihomogeneous of degree N.
But since ord

(
j∞0 (df ∧ dḡ)

)
> N, df ∧ dḡ must be 0.

Consequently, there exists ν ∈ F(Kn) such that ∂ḡ
∂xi

= ν ∂f
∂xi

for any i. Thus,
W.ḡ = νW.f and so g = νf .
We deduce that α = fβ with β ∈ Ω1(Kn).
Now, we have

0 = dα = df ∧ β + fdβ and 0 = df ∧ α = fdf ∧ β ,

which implies that dβ = 0.
Therefore, α = fdh = df (h) with h ∈ F(Kn). ¤

Theorem 3.11. The space H1
f (Kn) is of dimension 1 and spanned by df .

Proof : Let α ∈ Z1
f (Kn). According to lemma 3.10 we only have to study the

case where α is quasihomogeneous with deg(α) ≤ N. We have fdα− df ∧α = 0 so,
df ∧ dα = 0. We deduce that dα = df ∧ β where β is a quasihomogeneous 1-form
of degree deg(α)−N ≤ 0. But since dxi is quasihomogeneous of degree wi > 0 for
any i, every quasihomogeneous non zero 1-form has a strictly positive degree. We
deduce that β = 0 and so dα = 0. Therefore, df ∧α = 0 which implies that α = gdf
where g is a quasihomogeneous function of degree deg(α) − N ≤ 0. Consequently,
if deg(α) < N then g = 0; otherwise g is constant. To conclude, note that df is not
a cobord because f doesn’t divide df . ¤

3.5. Computation of Hn
f,p(Kn). We are going to compute the spaces Hn

f,p(Kn)
for p 6= n− 1. We consider the application

d
(n−q)
f : Ωn−1(Kn) −→ Ωn(Kn) α 7−→ fdα− (q − 1)df ∧ α

with q 6= 1 (note that if q = n then we obtain the space Hn
NP (M, Λ) and if q = 2

then we have H2
Λ(Kn)).

We denote In = {df ∧ α; α ∈ Ωn−1(Kn)}. It is clear that In ' If (recall that
If is the ideal of F(Kn) spanned by ∂f

∂x1
, . . . , ∂f

∂x1
) and that Ωn(Kn)/In ' Qf =

F(Kn)/If .
We put σ = iW ω (recall that W = w1x1

∂
∂x1

+ . . . + wnxn
∂

∂xn
and that ω is the

standard volume form on Kn). Note that σ is a quasihomogeneous (n− 1)-form of
degree

∑
i wi and that dg ∧ σ = (W.g)ω if g ∈ F(Kn).

If α ∈ Ωn−1(Kn), we will use the notation div(α) for dα = div(α)ω; for example,
div(σ) =

∑
i wi. Note that if α is quasihomogeneous then div(α) is quasihomoge-

neous of degree deg α−∑
i wi.

Lemma 3.12. 1- If the ∞-jet at 0 of γ doesn’t contain a component of degree qN
(in particular if q ≤ 0) then γ ∈ Bn

f,n−q(Kn) ⇔ γ ∈ In.
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2- If γ is a quasihomogeneous n-form of degree qN then γ ∈ Bn
f,n−q(Kn) ⇒ γ ∈ In.

Proof : If γ = fdα− (q−1)df ∧α ∈ Bn
(
d
(n−q)
f

)
where α ∈ Ωn−1 then γ = df ∧β

with β = −(q − 1)α + div(α)
N σ. This shows the second claim and the first part of

the first one.
Now we prove the reverse of the first claim.
Formal case : Let γ =

∑
i>0 γ(i) and β =

∑
β(i−N) (with γ(i) of degree i, γ(qN) =

0 and β(i−N) of degree i − N) such that γ = df ∧ β. If we put α = −1
q−1β +

∑
i

div(β(i−N))
(q−1)(i−qN)σ, we have d

(n−q)
f (α) = γ.

Analytical case : If β is analytic at 0, the function div(β) is analytic too and since
limi→+∞ 1

i−qN = 0, the (n-1)-form defined above is also analytic at 0.
C∞ case : We suppose that γ = df ∧β. If we denote γ̃ = j∞0

(
γ
)

then there exists a
formal (n-1)-form α̃ such that γ̃ = fdα̃− (q − 1)df ∧ α̃. Let α be a C∞-(n-1)-form
such that α̃ = j∞0 (α). This form verifies fdα− (q− 1)df ∧α = γ + ε where ε is flat
at 0. Since Bn

f,n−q(Kn) ⊂ In, ε ∈ In so that ε = df ∧ µ where µ is flat at 0. Let

g ∈ F(Kn) be such that W.g− (
(q− 1)N−∑

wi

)
g = div(µ)

q−1 (lemma 3.3). Then the

form θ = −1
q−1µ + gσ verifies d

(n−q)
f (θ) = ε. ¤

Remark 3.13. 1- This lemma gives Bn
f,n−q(Kn) ⊂ In. Thus, there is a surjec-

tion from Hn
f,n−q(Kn) onto Qf . Therefore, if f is not of finite codimension then

Hn
f,n−q(Kn) is a infinite-dimensional vector space.

2- According to this lemma, if γ is in In then there exits a quasihomogeneous
n-form θ, of degree qN, such that γ + θ ∈ Bn

f,n−q(Kn).

The first claim of this lemma allows us to state the following theorem.

Theorem 3.14. If q ≤ 0 then Hn
f,n−q(Kn) ' Qf .

Now we suppose that q > 1.

Lemma 3.15. Let α ∈ Ωk(Kn) and p ∈ Z. Then fd
(p)
f (α) = d

(p−1)
f (fα).

Proof : Obvious.

Lemma 3.16. 1- Let q > 2. If α ∈ Ωn(Kn) is quasihomogeneous of degree (q−1)N
and verifies fα ∈ Bn

f,n−q(Kn) then α ∈ Bn
f,n−q+1(Kn).

2- If α is quasihomogeneous of degree N with fα ∈ Bn
f,n−2(Kn) then α = 0.

Proof : 1- We suppose that α = gω with g ∈ F(Kn) quasihomogeneous of degree
(q−1)N−∑

wi. We have fgω = fdβ−(q−1)df ∧β where β is a quasihomogeneous
(n-1)-form of degree (q − 1)N.
If we put θ = −(q − 1)β + div(β)−g

N σ then df ∧ θ = 0, and so θ = df ∧ γ
where γ is a quasihomogeneous (n-2)-form of degree (q − 2)N. Consequently
β = −1

q−1df ∧ γ + div(β)−g
(q−1)N σ. Now, a computation shows that fdβ − (q − 1)df ∧ β =

1
q−1fdf ∧ dγ i.e. fα = 1

q−1fdf ∧ dγ.

Therefore, α = 1
q−1df ∧ dγ = 1

q−1d
(n−q+1)
f

( −1
q−2dγ

)
.

2- As in 1- (with q = 2), we have fα = fgω = d
(n−2)
f (β) with deg g = N and

deg β = N. We put θ = −β + div(β)−g
N σ.
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If θ 6= 0 then θ = df ∧ γ where γ is a quasihomogeneous (n-2)-form of degree 0
which is not possible. So, θ = 0 i.e. β = div(β)−g

N σ.
We deduce that fdβ − df ∧ β = 0 i.e. α = 0. ¤

Let B be a monomial basis of Qf (for the existence of such a basis, see [AGV]).
We denote rj (j = 2, . . . , q − 1) the number of monomials of B whose degree is
jN−∑

wi (this number doesn’t depend on the choice of B). We also denote s the
dimension of the space of quasihomogeneous polynomials of degree N −∑

wi and
c the codimension of f .

Theorem 3.17. Let α ∈ Ωn(Kn). Then there exist unique polynomials h1, . . . , hq

(possibly zero) such that
•h1 is quasihomogeneous of degree N−∑

wi,
•hj(2 ≤ j ≤ q−1) is a linear combination of monomials of B of degree jN−∑

wi,
•hq is a linear combination of monomials of B and

α = (hq + fhq−1 + . . . + fq−1h1)ω mod Bn
f,n−q(Kn) .

In particular, the dimension of Hn
f,n−q(Kn) is c + rq−1 + . . . + r2 + s.

Proof : Existence : We suppose that α = gω with g ∈ F(Kn). There exists hq, a
linear combination of the monomials of B, such that g = hq mod If . So, according
to lemma 3.12 (see the former remark), gω = hqω + df ∧ β mod Bn

f,n−q(Kn) where
β is a quasihomogeneous (n-1)-form of degree (q − 1)N.
Consequently, gω = hqω + 1

q−1fdβ − 1
q−1 [fdβ − (q − 1)df ∧ β] modBn

f,n−q(Kn) so,
we can write

gω = hqω + fgq−1ω mod Bn
f,n−q(Kn)

with deg gq−1 = (q − 1)N−∑
wi.

In the same way,

gq−1ω = hq−1ω + fgq−2ω modBn
f,n−q+1(Kn)

where hq−1 is a linear combination of the monomials of B of degree (q−1)N−∑
wi

and gq−2 is quasihomogeneous of degree (q − 2)N−∑
wi . . .

. . . . . .

. . . and
g2ω = h2ω + fh1ω mod Bn

f,n−2(Kn)
where h2 is a linear combination of the monomials of B of degree 2N −∑

wi and
h1 is quasihomogeneous of degree N−∑

wi.
Using lemma 3.15, we get

α = gω = hq + hq−1 + f2hq−2 + . . . + fq−1h1ω mod Bn
(
d
(n−q)
f

)
.

Unicity : Let g = hq + fhq−1 + . . . + fq−1h1 with h1, . . . , hq as in the statement of
the theorem. We suppose that gω ∈ Bn

f,n−q(Kn). Then gω ∈ In i.e. g ∈ If . But
since fhq−1 + . . . + fq−1h1 ∈ If (because f ∈ If ) we have hq ∈ If and so hq = 0.
Now , according to lemma 3.16, (hq−1 +fhq−2 + . . .+fq−2h1)ω is in Bn

f,n−q+1(Kn)
and so, in the same way, hq−1 = 0.
This way, we get hq = hq−1 = . . . = h2 = 0 and fh1ω ∈ Bn

f,n−2(Kn). Lemma 3.16
gives h1 = 0. ¤
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This theorem allows us to give the dimension of the spaces Hn
NP (Kn, Λ) and

H2
Λ(Kn).

Corollary 3.18. Let α ∈ Ωn(Kn). Then there exist unique polynomials h1, . . . , hn

(possibly zero) such that
•h1 is quasihomogeneous of degree N−∑

wi,
•hj(2 ≤ j ≤ n−1) is a linear combination of monomials of B of degree jN−∑

wi,
•hn is a linear combination of monomials of B and

α = (hn + fhn−1 + . . . + fn−1h1)ω modBn
f (Kn) .

In particular, the dimension of Hn
NP (Kn,Λ) is c + rn−1 + . . . + r2 + s.

Corollary 3.19. Let α ∈ Ωn(Kn). Then there exist unique polynomials h1, h2

(possibly zero) such that
•h1 is quasihomogeneous of degree N−∑

wi,
•h2 is a linear combination of monomials of B and

α = (h2 + fh1)ω mod Bn
f,n−2(Kn) .

In particular, the dimension of H2
Λ(Kn) is c + s.

Remark 3.20. If q = 1 then the space Hn
f,n−1(Kn) is Ωn(Kn)/fΩn(Kn) which is of

infinite dimension.

3.6. Computation of Hn−1
f,p (Kn). We are going to compute the spaces Hn−1

f,p (Kn)
with p 6= n− 1. We consider the piece of complex

Ωn−2(Kn) −→ Ωn−1(Kn) −→ Ωn(Kn)

with d
(n−q)
f (α) = fdα− (q − 2)df ∧ α if α ∈ Ωn−2(Kn),

and d
(n−q)
f (α) = fdα − (q − 1)df ∧ α if α ∈ Ωn−1(Kn) with q 6= 1.// Remember

that if q = n we obtain Hn−1
NP (Kn, Λ) and if q = 2 we have H1

Λ(Kn).

Lemma 3.21. If α ∈ Zn−1
f,n−q(Kn) then α = div(α)

(q−1)Nσ + df ∧ β with β ∈ Ωn−2(Kn)
and so, dα verifies LW (dα)− (q − 1)Ndα = (q − 1)Ndf ∧ dβ.

Proof : It is sufficient to notice that df∧(
α− div(α)

(q−1)Nσ
)

= 0 (proposition 3.3). For
the second claim, we have (q−1)Ndα =

(
W.div(α)+(

∑
wi)div(α)

)
ω−(q−1)Ndf∧dβ

and the conclusion follows. ¤

Lemma 3.22. If α ∈ Zn−1
f,n−q(Kn) with ord

(
j∞0 (α)

)
> (q − 1)N then α is cohomol-

ogous to a closed (n-1)-form. In particular, if q ≤ 0 then every (n− 1)-cocycle for
d
(n−q)
f is cohomologous to a closed (n− 1)-form.

Proof : We have α = div(α)
(q−1)Nσ + df ∧ β (lemma 3.21) with

LW (dα)− (q − 1)Ndα = (q − 1)Ndf ∧ dβ (∗) .

Now, let γ ∈ Ωn−2(Kn) such that LW γ − (q − 2)Nγ = (q − 1)Nβ (γ exists because
ord

(
j∞0 (β)

)
> (q − 2)N, see lemma 3.2).

We have LW dγ − (q − 2)Ndγ = (q − 1)Ndβ. Thus df ∧ dγ verifies

LW (df ∧ dγ)− (q − 1)Ndf ∧ dγ = (q − 1)Ndf ∧ dβ (∗∗) .
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¿From (∗) and (∗∗) we get dα = df ∧ dγ.
Indeed, LW (dα− df ∧ dγ) = (q − 1)N(dα− df ∧ dγ) but dα− df ∧ dγ is not quasi-
homogeneous of degree (q − 1)N.
Now, if we put θ = α − 1

q−1

(
fdγ − (q − 2)df ∧ γ

)
, we have dθ = 0 and θ =

α mod Bn−1
f,n−q(Kn).¤

This lemma allows us to state the following theorem.

Theorem 3.23. If we suppose that q ≤ 0 then Hn−1
f,n−q(Kn) = {0}.

Proof : Let α ∈ Zn−1
f,n−q(Kn). We can suppose (according to the former lemma)

that dα = 0. Thus we have df ∧ α = 0. Proposition 3.4 gives then, α = df ∧ dγ

with γ ∈ Ωn−3(Kn). Therefore, α = d
(n−q)
f

(− 1
q−2dγ

)
. ¤

Now, we assume that q > 1.

Lemma 3.24. If α ∈ Zn−1
f,n−q(Kn) is a quasihomogeneous (n-1)-form whose degree

is strictly lower than (q − 1)N then α is cohomologous to a closed (n-1)-form.

Proof : According to lemma 3.21, we have α = div(α)
(q−1)Nσ + df ∧ β and so,

dα =
(q − 1)N

deg(α)− (q − 1)N
df ∧ dβ .

We deduce that, if we put θ = α− d
(n−q)
f

(
N

deg(α)−(q−1)Ndβ
)
, we have dθ = 0. ¤

Remark 3.25. A consequence of lemmas 3.22 and 3.24 is that, if q > 1, every cocycle
α ∈ Zn−1

f,n−q(Kn) is cohomologous to a cocycle η + θ where η is in Zn−1
f,n−q(Kn) and

is closed, and θ is quasihomogeneous of degree (q − 1)N.

Lemma 3.26. Let α = gσ where g is a quasihomogeneous polynomial of degree
(q − 1)N−∑

wi. Then
1- If q > 2 then, α ∈ Bn−1

f,n−q(Kn) ⇐⇒ gω ∈ Bn
f,n−q+1(Kn).

2- If q = 2, α ∈ Bn−1
f,n−2(Kn) ⇐⇒ α = 0.

Proof :1- • We suppose that α ∈ Bn−1
f,n−q(Kn) i.e. α = fdβ − (q − 2)df ∧ β with

β ∈ Ωn−2(Kn). Then dα = (q − 1)df ∧ dβ.
On the other hand, dα = (q − 1)Ngω so gω = 1

Ndf ∧ dβ = d
(n−q+1)
f

(− dβ
(q−2)N

)
.

• Now we suppose that gω ∈ Bn
f,n−q+1(Kn) i.e. gω = fdβ− (q−2)df ∧β where β is

a quasihomogeneous (n-1)-form of degree (q − 2)N. We put γ = iW β ∈ Ωn−2(Kn).
We have

d
(n−q)
f (γ) = fdγ − (q − 2)df ∧ γ

= fd(iW β)− (q − 2)df ∧ (iW β)
= f

(LW β − iW dβ
)− (q − 2)

[− iW (df ∧ β) + (iW df) ∧ β
]

= f(q − 2)Nβ − iW
[
fdβ − (q − 2)df ∧ β

]− (q − 2)(W.f)β

= −iW
[
fdβ − (q − 2)df ∧ β

]
.

Consequently, d
(n−q)
f (γ) = −iW (gω) = −gσ.

2- If α = fdβ where β is a quasihomogeneous (n-2)-form of degree deg α − N = 0
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then β = 0 and so α = 0. ¤

We recall that B indicates a monomial basis of Qf . We adopt the same notations
as for theorem 3.17.

Theorem 3.27. We suppose that q > 2. Let α ∈ Zn−1
f,n−q(Kn). There exist unique

polynomials h1, . . . , hq−1 (possibly zero) such that
• h1 is quasihomogeneous of degree N−∑

wi,
• hk (k ≥ 2) is a linear combination of monomials of B of degree kN−∑

wi and

ω = (hq−1 + fhq−2 + . . . + fq−2h1)σ modBn−1
f,n−q(K

n) .

In particular, the dimension of the space Hn−1
f,n−q(Kn) is rq−1 + . . . + r2 + s.

Proof : If α ∈ Zn−1
f,n−q(Kn) then α is cohomologous to η + θ, where η is in

Zn−1
f,n−q(Kn) and is closed, and θ is quasihomogeneous of degree (q − 1)N (see re-

mark 3.25).
The same proof as in theorem 3.23 shows that η is a cobord.
Now, we have to study θ. According to lemma 3.21, we can write θ = div(θ)

(q−1)Nσ+df∧β

(β ∈ Ωn−2(Kn)) with LW (dθ)− (q − 1)Ndθ = (q − 1)Ndf ∧ dβ. Since θ is quasiho-
mogeneous of degree (q− 1)N, the former relation gives df ∧ dβ = 0. Consequently,
if we put γ = df ∧ β, proposition 3.4 gives γ = df ∧ dξ.
Therefore, γ = d

(n−q)
f

(− 1
q−2dξ

)
and so θ = div(θ)

(q−1)Nσ mod Bn−1
f,n−q(Kn). The conclu-

sion follows using lemma 3.26 and theorem 3.17. ¤
Corollary 3.28. We suppose that q = n. Let α ∈ Zn−1

f (Kn). There exist unique
polynomials h1, . . . , hn−1 (possibly zero) such that
• h1 is quasihomogeneous of degree N−∑

wi,
• hk (k ≥ 2) is a linear combination of monomials of B of degree kN−∑

wi and

ω = (hn−1 + fhn−2 + . . . + fn−2h1)σ modBn−1
f (Kn) .

In particular, the dimension of the space Hn−1
NP (Kn, Λ) is rn−1 + . . . + r2 + s.

Remark 3.29. If q = 2, the description of the space Hn−1
f,n−2(Kn) (and so H1

Λ(Kn))
is more difficult. It is possible to show that this space is not of finite dimension.
Indeed, let us consider the case n = 3 in order to simplify (but it is valid for any
n ≥ 3). We put α = g

(
∂f
∂xdx∧dz + ∂f

∂y dy∧dz
)

where g is a function which depends
only on z. We have dα = 0 and df ∧α = 0 so α ∈ Zn−1

f,n−2(Kn) but α 6∈ Bn
f,n−2(Kn)

because f doesn’t divide α.

We can yet give more precisions on the space Hn−1
f,n−2(Kn).

Theorem 3.30. Let E be the space of (n-1)-forms hσ where h is a quasihomo-
geneous polynomial of degree N − ∑

wi, and F the quotient of the vector space
{df ∧ dγ; γ ∈ Ωn−3(Kn)} by the subspace {df ∧ d(fβ); β ∈ Ωn−3(Kn)}.
Then Hn−1

f,n−2(Kn) = E ⊕ F .

Proof : Let α in Zn−1
f,n−2(Kn).

According to remark 3.25, there exixt a closed (n− 1)-form η with η ∈ Zn−1
f,n−2(Kn)

and a quasihomogeneous (n− 1)-form θ, such that α is cohomologous to η + θ.
We have (lemma 3.21) θ = div(θ)

N σ + df ∧ β with β quasihomogeneous of degree
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0 which is possible only if β 6= 0. So, θ = gσ where g is a quasihomogeneous
polynomial of degree N−∑

wi. Lemma 3.26 says that θ ∈ Bn−1
f,n−2(Kn) if and only

if θ = 0.
Now we study η. Proposition 3.4 gives η = df ∧ dγ where γ is a (n − 3)-form.
If we suppose that η ∈ Bn−1

f,n−2(Kn) then df ∧ dγ = fdξ with ξ ∈ Ωn−2(Kn) and
so, df ∧ dξ = 0. Now we apply proposition 3.4 to dξ and we obtain dξ = df ∧ dβ
with β ∈ Ωn−3(Kn). Consequently, df ∧ dγ = fdf ∧ dβ which implies that dγ =
fdβ + df ∧ µ with µ ∈ Ωn−3(Kn), and so dγ = d(fβ) + df ∧ ν with ν ∈ Ωn−3(Kn).
Therefore, η ∈ Bn−1

f,n−2(Kn) ⇔ η = df ∧ d(fβ). ¤

3.7. Summary. It is time to sum up the results we have found.
The cohomology H•

f (Kn) (and so the Nambu-Poisson cohomology H•
NP (Kn, Λ))

has been entirely computed (see theorems 3.6, 3.8, 3.11, and corollaries 3.18 and
3.28) :
The spaces of this cohomology are of finite dimension and only the ”extremal” ones
(i.e H0, H1, Hn−1 and Hn) are possibly different to {0}. The spaces H0

NP (Kn,Λ)
and H1

NP (Kn, Λ) are always of dimension 1. The dimensions of the spaces Hn−1
NP (Kn,Λ)

and Hn
NP (Kn,Λ) depend on the one hand on the type of the singularity of Λ (via

the role played by Qf ), and on the other hand, on the ”polynomial nature” of Λ.

Concerning the cohomology H•
f,n−2(Kn), we have computed Hn, i.e. Hn

Λ(Kn)
(see corollary 3.19) and we have given a sketch of description of Hn−1 (see the-
orem 3.30). We have also computed the spaces H0

f,n−2(Kn) (theorem 3.6) and
Hk

f,n−2(Kn) (theorem 3.8) for k 6= n−2, n−1, but these spaces are not particularly
interesting for our problem.
The space H2

Λ(Kn), which describes the infinitesimal deformations of Λ is of finite di-
mension and its dimension has the same property as the dimension of Hn

NP (Kn, Λ).
On the other hand, the space H1

Λ(Kn) which is the space of the vector fields pre-
serving Λ modulo the Hamiltonian vector fields, is not of finite dimension.

It is interesting to compare the results we have found on these two cohomologies
with the ones given in [Mo] on the computation of the Poisson cohomology in di-
mension 2.

Finally, if p 6= 0, n−2, n−1 we have computed the spaces H0
f,p(Kn), Hn−1

f,p (Kn),
Hn

f,p(Kn) and Hk
f,p(Kn) with k 6= p, p + 1.

If p = n−1 we have computed the spaces H0
f,n−1(Kn) and Hk

f,n−1(Kn) for 2 ≤ k ≤
n− 2 k 6= p, p + 1 (the space Hn

f,n−1(Kn) is of infinite dimension).

4. Examples

In this section, we will explicit the cohomology of some particular germs of n-
vectors.

4.1. Normal forms of n-vectors. Let Λ = f ∂
∂x1

∧ . . . ∧ ∂
∂xn

be a germ at 0 of
n-vectors on Kn (n ≥ 3) with f of finite codimension (see the beginning of section
3) and f(0) = 0 (if f(0) 6= 0, then the local triviality theorem, see [AlGu], [G] or
[N2], allows us to write, up to a change of coordinates, that Λ = ∂

∂x1
∧ . . . ∧ ∂

∂xn
).
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Proposition 4.1. If 0 is not a critical point for f then there exist local coordinates
y1, . . . , yn such that

Λ = y1
∂

∂y1
∧ . . . ∧ ∂

∂yn
.

Proof : A similar proposition is shown for instance in [Mo] in dimension 2. The
proof can be generalized to the n-dimensional (n ≥ 3) case.

Now we suppose that 0 is a critical point of f . Moreover, we suppose that the
germ f is simple, which means that a sufficiently small neighbourhood (with re-
spect to Whitney’s topology; see [AGV]) of f intersects only a finite number of
R-orbits (two germs g and h are said R-equivalent if there exits ϕ, a local diffeo-
morphism at 0, such that g = h ◦ϕ). Simple germs are those who present a certain
kind of stability under deformation.
The following theorem can be found in [A] with only sketches of the proofs. In
[Mo], a similar theorem (in dimension 2) is proved and the demonstration can be
adapted here.

Theorem 4.2. Let f be a simple germ at 0 of finite codimension. Suppose that
f has at 0 a critical point with critical value 0. Then there exist local coordinates
y1, . . . , yn such that the germ Λ = f ∂

∂x1
∧ . . . ∧ ∂

∂xn
can be written, up to a multi-

plicative constant, g ∂
∂y1

∧ . . . ∧ ∂
∂yn

where g is in the following list.

Ak : yk+1
1 ± y2

2 ± . . .± y2
n k ≥ 1

Dk : y2
1y2 ± yk−1

2 ± y2
3 ± . . .± y2

n k ≥ 4

E6 : y3
1 + y4

2 ± y2
3 ± . . .± y2

n

E7 : y3
1 + y1y

3
2 ± y2

3 ± . . .± y2
n

E8 : y3
1 + y5

2 ± y2
3 ± . . .± y2

n

Proposition 4.1 and theorem 4.2 describe most of the germs at 0 of n-vectors on
Kn vanishing at 0.
We can notice that the models given in the former list are all quasihomogeneous
polynomials; which justifies the assumption we made in section 2.

4.2. Some examples. 1- The regular case : f(x1, . . . , xn) = x1 .
It is easy to see that Qf = {0} and that f is quasihomogeneous of degree N = 1,
with respect to w1 = . . . = wn = 1. We have N − ∑

wi < 0, so H0
f (Kn) ' K ,

H1
f (Kn) = K.dx1 and Hk

f (Kn) = {0} for any k ≥ 2.

2- Non degenerate singularity: f(x1, . . . , xn) = x2
1 + . . . + x2

n with n ≥ 3.
We have N = 2 and w1 = . . . = wn = 1. The space Qf is isomorphic to K and is
spanned by the constant germ 1, which is of degree 0.
We deduce that H0

f (Kn) ' K, H1
f (Kn) = K.(x1dx1 + . . . + xndxn) and Hk

f = {0}
for 2 ≤ k ≤ n− 2.
In order to describe the spaces Hn−1

f (Kn) and Hn
f (Kn), we look for an integer

k ∈ {1, . . . , n− 1} such that kN−∑
wi = deg 1 i.e. 2k − n = 0.

Therefore,
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if n is even then {ω, f
n
2 ω} is a basis of Hn

f (Kn) and Hn−1
f (Kn) is spanned by

{f n
2−1σ}
if n is odd then Hn−1

f (Kn) = {0} and the space Hn
f (Kn) is spanned by {ω}.

We recall that ω = dx1 ∧ . . . ∧ dxn and

σ = iW ω =
n∑

i=1

(−1)i−1xidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn .

3- The case A2 with n = 3: f(x1, x2, x3) = x3
1 + x2

2 + x2
3.

Here, w1 = 2, w2 = w3 = 3 and N = 6. Thus, N−∑
wi = −2, 2N−∑

wi = 4 and
3N−∑

wi = 10.
Moreover, B = {1, x1} is a monomial basis of Qf . But as deg 1 = 0 and deg x1 = 3,
we have:

H0
f (K3) ' K , H1

f (K3) = K.(3x1dx1 + 2x2dx2 + 2x3dx3)

and H2
f (K3) = H3

f (K3) = {0} .

4- The case D5 with n = 4: f(x1, x2, x3, x4) = x2
1x2 + x4

2 + x2
3 + x2

4.
We have w1 = 3, w2 = 2, w3 = w4 = 4 and N = 8 then N − ∑

wi = −5,
2N−∑

wi = 3, 3N−∑
wi = 11 and 4N−∑

wi = 19.
Now, B = {1, x1, x2, x

2
2, x

3
2} is a monomial basis of Qf . Here, deg 1 = 0, deg x1 = 3,

deg x2 = 2, deg x2
2 = 4 and deg x3

2 = 6. Thus, the only element of B whose degree
is of type kN−∑

wi is x1.
Consequently,

H0
f (K4) ' K ,H1

f (K4) = K .
(
2x1x2dx1 + (x2

1 + 4x3
2)dx2 + 2x3dx3 + 2x4dx4

)
,

H2
f (K4) = {0} ,H3

f (K4) = K.(x1σ)

and {ω, x1ω, x2ω, x2
2ω, x3

2ω, x1fω} is a basis of H4
f (K4).

Here, we have W = 3x1
∂

∂x1
+ 2x2

∂
∂x2

+ 4x3
∂

∂x3
+ 4x4

∂
∂x4

and
σ = 3x1dx2∧dx3∧dx4−2x2dx1∧dx3∧dx4+4x3dx1∧dx2∧dx4−4x4dx1∧dx2∧dx3.
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Birkhäuser (1994).
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