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Abstract. In this paper, we study a certain cohomology attached to a smooth
function, which arose naturally in Poisson geometry. We explain how this
cohomology depends on the function, and we prove that it satisfies both the
excision and the Mayer-Vietoris axioms. For a regular function we show that
the cohomology is related to the de Rham cohomology. Finally, we use it
to give a new proof of a well-known result of A. Dimca in complex analytic
geometry.

1. Introduction

There are several cohomologies attached to a function that can be defined in
terms of differential forms, such as the relative cohomology associated to a singu-
larity, or the cohomology of the complex of logarithmic differential forms associated
with the complement of a hyperplane. These cohomologies give, for instance, in-
formation on the topology of the complement of the zeros of the function. In this
paper, we consider a new cohomology attached to a smooth function on a differen-
tiable manifold.

This new cohomology is also defined in terms of differential forms. More precisely,
if M is a differentiable manifold and f is a smooth function on M , we define a
coboundary operator

df : Ωk(M) −→ Ωk+1(M)
α 7−→ fdα− kdf ∧ α.

where Ωk(M) is the space of k-differential forms on M . It is easy to check that
df ◦df = 0, and we denote by H•

f (M) the cohomology associated with the complex
(Ω•(M), df ). More generally, for any integer p, we define a coboundary operator

d
(p)
f : Ωk(M) −→ Ωk+1(M)

α 7−→ fdα− (k − p)df ∧ α.

We still have d
(p)
f ◦ d

(p)
f = 0 and we denote by H•

f,p(M) the cohomology of this
complex. We shall restrict our attention to the cohomology H•

f (M) but most
results readily generalize to the cohomology H•

f,p(M).
This cohomology was considered for the first time in [19] in the context of Poisson

geometry, and more generally, Nambu-Poisson geometry. There we have computed
this cohomology in the case where f is the germ of a function with an isolated sin-
gularity. The aim of this paper is to initiate a systematic study of this cohomology.
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We start, in Section 2, by showing several possible ways of defining this cohomol-
ogy. First we recall how it arises in Poisson and Nambu-Poisson geometry. Then
we construct a certain Lie algebroid attached to a function f for which the Lie
algebroid cohomology coincides with H•

f (M). If 0 is a regular value of a function f ,
there is another Lie algebroid one can attach to f , namely the Melrose fake tangent
bundle of S = f−1({0}) (see [4]). This Lie algebroid does not coincide with ours,
but they have isomorphic cohomologies. Finally, one can also consider differential
forms with a “pole” along S, obtaining a chain complex for which the cohomology
is also H•

f (M).
In Section 3 we study some basic properties of the cohomology. First we discuss

how the cohomology varies when the function f changes. In particular, we show that
if the function f does not vanish, then the cohomology H•

f (M) coincides with the
de Rham cohomology of M . Then we will show that it is possible to write a Mayer-
Vietoris exact sequence, a relative cohomology exact sequence, and an excision
theorem, for our cohomology. We also give an appropriate notion of homotopy, but
it is an open question whether the cohomology is homotopy invariant in general.

In Section 4 we consider the regular case, i.e., the case where the function f does
not have singularities in a neighborhood of S = f−1({0}). In this case, we can
relate the cohomology with the de Rham cohomology of M and of S, showing that
the space Hk

f (M) is isomorphic to Hk
dR(M)⊕Hk−1

dR (S). As a corollary of this result,
one obtains the Poisson cohomology for generic 2-dimensional Poisson structures.
In this regular case, we prove homotopy invariance.

Finally, in Section 5, we study the complex case, giving an application of our
cohomology to complex algebraic geometry. Namely, we explain how the results
we have found in [19] can be applied to give information on the degeneration of
a spectral sequence converging to the cohomology of an hypersurface complement.
As a corollary, we obtain a new proof of a well-known result of A. Dimca.
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2. Geometrical origins

The following notations will be enforced throughout the paper. We denote by
f a smooth function on a n-dimensional manifold M and by S ⊂ M the level set
f−1({0}). As usual, Ωk(M) denotes the vector space of k-differential forms, and
Hk

dR(M) the k-th de Rham cohomology group. Dually, Xk(M) denotes the vector
space of k-vector fields. Also, [ , ] : Xk(M) × Xl(M) → Xk+l−1(M) denotes the
Schouten bracket on multi-vector fields. For a cohomology theory, we denote by
Zk (resp. Bk) the space of k-cocycles (resp. k-cobords).

2.1. The two-dimensional case. Let M be a Poisson manifold with Poisson 2-
vector field Π ∈ X2(M), so that [Π, Π] = 0 (see for instance [4, 14, 27]). If the
manifold M has dimension two, this condition is automatically satisfied, so every
2-vector on a 2-dimensional manifold is a Poisson structure.

Assume that (M, Π) is a 2-dimensional orientable Poisson manifold, and fix a
volume form ν ∈ Ω2(M). The contraction f := iΠν is a smooth function. We have
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observed in [19] that the Poisson cohomology of (M, Π) is isomorphic to H•
f (M).

Let us recall how this works.
First of all, the Poisson cohomology of (M, Π) is defined to be the cohomology

of the following chain complex (see [14]):

0 → X0(M) ∂→ X1(M) ∂→ X2(M) → 0

where the boundary map is ∂(Q) = [Q, Π]. Hence, the map ∂ : X0(M) → X1(M)
is the map that associates to a function g its Hamiltonian vector field Xg:

∂(g) = [g, Π] ≡ Xg,

and ∂ : X1(M) → X2(M) is the map that associates to a vector field X the Lie
derivative of Π along X:

∂(X) = [X, Π] ≡ LXΠ.

This cohomology is an invariant of the Poisson manifold, which has been studied,
from different points of view, for instance in [18, 22, 24, 25, 27].

Secondly, we have an isomorphism of chain complexes

φ : (X•(M), ∂) −→ (Ω•(M), df ),

where φ0 : C∞(M) → C∞(M) is the identity, φ1 : X1(M) → Ω1(M) is contraction
of ν:

φ1(X) ≡ −iXν,

and φ2 : X2(M) → Ω2(M) is the linear application defined by

φ2(Γ) ≡ (iΓν)ν.

The Poisson cohomology of a manifold is, in general, very hard to compute,
even in dimension two. Since working with differential forms has many advantages
over working with multivectors, one may expect that this isomorphism will lead
to actual computations of Poisson cohomology in dimension two. We shall see an
example of that in the proof of Theorem 4.11.

2.2. In higher dimensions. If M is an orientable manifold of dimension n > 2,
one generalizes the previous case in a straightforward way. One considers a n-vector
Λ ∈ Xn(M), and fixes a volume form ν ∈ Ωn(M), obtaining a smooth function
f := iΛν. The pair (M, Λ) is no more a Poisson manifold, but it is a Nambu-
Poisson manifold of degree n, which may be seen as a kind of generalization of
Poisson structures (see [23, 26]).

Now we would like to associate a cohomology to the pair (M, Λ), generaliz-
ing Poisson cohomology in dimension two. In [13], the authors construct a chain
complex (called the Nambu-Poisson complex) associated to any Nambu-Poisson
manifold of dimension and of degree larger than 3. This complex is rather difficult
to manipulate, but we have shown in [19] that the Nambu-Poisson cohomology of
(M, Π) is indeed isomorphic to H•

f (M).
There is a second complex one can associate to the pair (M, Λ), which also

generalizes Poisson cohomology in dimension two, and which is much simpler. One
takes

0 → (
C∞(M)

)n−1 ∂→ X1(M) ∂→ Xn(M) → 0
where the boundary map ∂ : X0(M) → X1(M) is the map that associates to the
functions g1, . . . , gn their Hamiltonian vector field Xg1,...,gn−1 :

∂(g1, . . . , gn−1) = idg1∧...∧dgn−1Λ ≡ Xg1,...,gn−1 ,
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and ∂ : X1(M) → Xn(M) is the map that associates to a vector field X the Lie
derivative of Λ along X:

∂(X) = [X, Λ] ≡ LXΛ.

In the same way as for the 2-dimensional case, one can show that the last two coho-
mology groups of this chain complex are isomorphic to Hn−1

f,n−2(M) and Hn
f,n−2(M)

(see [19]).

2.3. A Lie algebroid attached to a function. Recall (see, e.g., [4, 10, 16]) that
a Lie algebroid over M is a triple (A, ρ, [[ , ]]) where A is a vector bundle over M ,
ρ : A → TM is a bundle map (called the anchor), and [[ , ]] is a Lie algebra bracket
on the sections Γ(A), such that:

• ρ defines a Lie algebra homomorphism (Γ(A), [[ , ]]) → (X(M), [ , ]);
• for every u, v ∈ Γ(A) and g ∈ C∞(M):

[[u, gv]] = g[[u, v]] +
(
ρ(u) · g)

v.

To any Lie algebroid one associates a cohomology H•(A) by considering the chain
complex (Ω•(A), dA), where Ωk(A) ≡ Γ(∧kA∗) and

dAQ(u0, . . . , ur) =
1

r + 1

r∑

k=0

(−1)kρ(uk) ·Q(u0, . . . , ûk, . . . , ur)

+
1

r + 1

∑

k<l

(−1)k+l+1Q([uk, ul], u0, . . . , ûk, . . . , ûl, . . . , ur).

Now, for any smooth function f on a manifold M we can attach a Lie algebroid
as follows. We take A = TM , the anchor ρ : TM → TM is defined by

ρ(X) ≡ fX, X ∈ X(M),

and the Lie bracket [[ , ]] on X(M) is given by

[[X, Y ]] ≡ [fX, fY ]
f

= f [X, Y ] + (X · f)Y − (Y · f)X, X, Y ∈ X(M).

It is easy to check that the triple (TM, ρ, [[ , ]]) is a Lie algebroid over M and its
cohomology is precisely H•

f (M).

Remark 2.1. The Lie algebroid (TM, ρ, [[ , ]]) is always integrable to a Lie groupoid
since the obstructions to integrability given in [3] vanish.

Remark 2.2. When 0 is a regular value of the function f there is another Lie
algebroid attached to f which can be defined as follows (see [17] and [4]). Recall
that S ⊂ M denotes the set f−1(0), which is here an embedded submanifold. It
is shown in [17], that the C∞(M)-module XS(M) of vector fields on M tangent
to S is the space of sections of a vector bundle A over M , called the fake tangent
bundle. On A one has a structure of a Lie algebroid over M , where the bracket is
the standard Lie bracket of vector fields, and the anchor may be defined locally as
follows. For a point p ∈ S, there exists local coordinates (U, x, y2, . . . , yn) such that
U ∩ S = {q ∈ U : x(q) = 0}. If one sets e1 = x ∂

∂x and ei = ∂
∂yi

for i > 1, the ei’s
form a local basis of XS(M). The anchor map τ is then defined as τ(e1) = x ∂

∂x and
τ(ei) = ∂

∂yi
for i > 1. This Lie algebroid does not coincide with the one defined

above (the later has points of rank zero, while the first one not), but we will see
later (cf. Remark 4.6) that their Lie algebroid cohomologies are isomorphic.
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Remark 2.3. For p 6= 0 the operator d
(p)
f is not a derivation of the exterior algebra,

hence the cohomology H•
f,p(M) does not come from a Lie algebroid.

2.4. Singular k-forms. Let us call a form ω ∈ Ωk(M \ S) a singular k-form if
the form fkω can be extended to a smooth form on M . We denote the space of
singular k-forms by Ωk

f (M).
If ω ∈ Ωk

f (M) is a singular k-form then dω is a singular (k + 1)-form. In fact,
we have

fk+1dω = d(fk+1ω)− (k + 1)df ∧ (fkω),
so fk+1dω also extends to a smooth form on M . Therefore we obtain a chain
complex

(
Ω•f (M), d

)
.

Proposition 2.4. The cohomology of
(
Ω•f (M), d

)
is isomorphic to H•

f (M).

Proof. Define a map of chain complexes ϕ :
(
Ω•f (M), d

) → (
Ω•(M), df

)
by setting

ϕk : Ωk
f (M) → Ωk(M), ω 7→ fkω.

It is easy to check that ϕ induces an isomorphism in cohomology. ¤

3. Basic Properties

In this section we will study some basic properties of the cohomology defined
above.

3.1. Degree zero cohomology. If M \ S is a dense subset of M (e.g., if f is
regular) one can compute the groups H0

f,p(M):

Proposition 3.1. If M \ S is dense in M ,

H0
f,p(M) =





0, if p > 0,

R, if p ≤ 0.

Proof. If p > 0, note that d
(p)
f (g) = d(fpg)

fp−1 for any smooth function g on M . Hence

d
(p)
f (g) = 0 iff g ≡ 0, and we obtain H0

f,p(M) = {0}.
If p ≤ 0, let g be a function on M such that d

(p)
f (g) = 0. We have d

(
g

f−p

)
= 0

on M \ S, so g = λf−p on M \ S for some λ ∈ R. It follows that g = λf−p on M ,
so we obtain H0

f,p(M) ' R. ¤
The higher degree cohomology groups are much harder to compute, even in the

case where the function vanishes at a single point.

3.2. Dependence on the function. A natural question to ask about the coho-
mology H•

f (M) is how it depends on the function f . A first result is the following.

Proposition 3.2. If h ∈ C∞(M) does not vanish, then the cohomologies H•
f (M)

and H•
fh(M) are isomorphic.

Proof. For each k ∈ N, consider the linear isomorphism

φk : Ωk(M) → Ωk(M), α 7−→ α

hk
.

If α is a k-form on M , one checks easily that

φk+1(dfhα) = df

(
φk(α)

)
,
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so φ induces an isomorphism between the cohomologies H•
f (M) and H•

fh(M). ¤

Corollary 3.3. If the function f ∈ C∞(M) does not vanish, then H•
f (M) is iso-

morphic to the de Rham cohomology H•
dR(M).

It follows also that the cohomology H•
f (M) depends only on the germ of the

function f on its set of zeros:

Corollary 3.4. If g and f are smooth functions on M such that S = f−1(0) =
g−1(0) and g = f on some neighborhood of S, then H•

f (M) ' H•
g (M).

3.3. Relative cohomology. Let N be a submanifold (eventually with boundary)
of M . We assume that N is not included in S and we denote by ι the inclusion
N ↪→ M . The relative cohomology groups H•

f (M, N) are defined exactly as in the
case of the de Rham theory (see, e.g., the construction done in [2]).

As in case of the de Rham cohomology, we have a long exact sequence for the
pair (M, N):

Theorem 3.5. There is a long exact sequence

· · · → Hk−1
f (N) → Hk

f (M, N) → Hk
f (M) ι∗→ Hk

f (N) → · · ·
Corollary 3.6. If M \ S is dense in M , we have H0

f (M, N) = {0} (and also
H0

f,p(M,N) = {0}).
Proof. Apply Proposition 3.1 and Theorem 3.5. ¤

Now, assume that N is the closure of an open subset of M instead of a manifold.
We can still define the relative cohomology H•

f (M, N). In fact, if we denote by
Ωk

N (M) the vector space formed by the k-forms which vanish on N , then exterior
differentiation d : Ωk

N (M) → Ωk+1
N (M) is well defined. Indeed, if α ∈ Ωk

N (M), then
α = 0 on the interior of N , and thus dα = 0 on N , i.e., dα ∈ Ωk+1

N (M). It follows
that the differential operator df : Ωk

N (M) → Ωk+1
N (M) is also well defined. Again,

imitating the de Rham case, one obtains:

Proposition 3.7. If N is the closure of an open subset of M then the cohomology
of the complex (Ω•N (M), df ) is isomorphic to the cohomology H•

f (M, N).

3.4. Excision. We leave it to the reader to check that the following version of the
excision property also holds (again, the proof is similar to the de Rham case):

Theorem 3.8. Let U be an open subset of M with closure in the interior of N .
Then, the inclusion j : (M \ U,N \ U) ↪→ (M,N) induces an isomorphism

j∗ : H•
f (M,N) −→ H•

f (M \ U,N \ U).

3.5. The Mayer-Vietoris sequence. Since the differential df commutes with the
restrictions to open subsets, one can construct, in the same way as for the de Rham
cohomology (see [2]), a Mayer-Vietoris exact sequence.

Theorem 3.9. If U = (U, V ) is an open cover of M , we have the long exact
sequence

. . . → Hk−1
f (U ∩ V ) → Hk

f (M) R→ Hk
f (U)⊕Hk

f (V ) J→ Hk
f (U ∩ V ) → . . .

where for [ω] ∈ Hk
f (M) and ([α], [β]) ∈ Hk

f (U)⊕Hk
f (V ), we define

R([ω]) = ([ω|U ], [ω|V ]), J([α], [β]) = [α|U∩V − β|U∩V ].
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3.6. Homotopy invariance. We need to define an appropriate notion of homo-
topy. Assuming a more functorial approach, let us think of a pair (M, f) as an
object. In order to think of H•

f (M) as a functor, we need a notion of morphism
between such pairs:

Definition 3.10. Let M and N two differentiable manifolds with smooth functions
f and g, respectively. A morphism Φ from the pair (M,f) to the pair (N, g) is a
pair (φ, a) formed by a smooth map φ : M → N and smooth function a : M → R,
such a does not vanish on M and g ◦ φ = af .

We will say that the pairs (M,f) and (N, g) are equivalent if there exists a
morphism Φ = (φ, a) between these two pairs where φ is a diffeomorphism. This
notion of equivalence between the pairs is sometimes called “contact equivalence”
in singularity theory.

A morphism Φ = (φ, a) from the pair (M, f) to the pair (N, g) induces a chain
map Φ∗ : (Ω•(N), dg) → (Ω•(M), df ) defined by:

Φ∗ : Ωk(N) → Ωk(M), ω 7−→ φ∗ω
ak

.

and this map induces an homomorphism in cohomology Φ∗ : H•
g (N) → H•

f (M). If
Φ is an equivalence this map is an isomorphism.

Now, we come back to our problem:

Definition 3.11. A homotopy from the pair (M,f) to the pair (N, g) is given by
two smooth maps

h : M × [0, 1] → N, a : M × [0, 1] → R,

such that for each t ∈ [0, 1], we have a morphism

Ht ≡ (h(·, t), a(·, t)) : (M, f) → (N, g)

(i.e., a does not vanish and g ◦ h(x, t) = a(x, t)f(x)).

If H = (h, a) is a homotopy from (M, f) to (N, g), we obtain a map at the
cohomology level

H∗
t : H•

g (N) → H•
f (M).

The problem of homotopy invariance is the following: given a homotopy H, from
(M, f) to (N, g), is it true that H∗

0 = H∗
1 at the cohomology level? For general

pairs (M, f) and (N, g) this seems to be a hard problem. If the complements
of the zero level sets of f and g are dense sets, then in degree zero we do have
H∗

0 = H∗
1 : H0

f (M) → H0
g (N). But for higher degree, this is a much more difficult

problem. In the next section, we give some partial results in the regular case.

Remark 3.12. One can express the notion of homotopy in terms of singular forms.
In fact, it is easy to check that under the correspondence between singular k-forms
ω ∈ Ωk

f (M) and k-forms fkω ∈ Ωk(M) (see the the proof of Proposition 2.4), the
map H∗

t : Ωk(N) → Ωk(M) corresponds to the pullback h∗t : Ωk
g(N) → Ωk

f (M).

4. The regular case

By regular case we mean the case of a function f which does not have singularities
in a neighborhood of its zero set (i.e. 0 is a regular value). The subset S = f−1({0})
in then an embedded submanifold of M . In order to simplify the exposition we
assume that S is connected.
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4.1. Computation of the cohomology. It follows from Proposition 3.1 that
H0

f (M) = R. Our main result is the following:

Theorem 4.1. If 0 is a regular value of f then, for each k ≥ 1, there is an
isomorphism

Hk
f (M) ' Hk

dR(M)⊕Hk−1
dR (S).

Before we start the proof we need to introduce some notation.
Let U ⊂ U ′ be tubular neighborhoods of S. We may assume that U = S×]−ε, ε[

and U ′ = S×]− ε′, ε′[, with ε′ > ε, and that

f |U ′ : S×]− ε′, ε′[→ R, (x, t) 7−→ t.

We denote by π the projection U ′ → S.
Let ρ : R → R be a smooth function which is 1 on [−ε, ε] and has support

contained in [−ε′, ε′]. Note that the function ρ ◦ f is 1 on U , and we claim that we
can assume that the function ρ ◦ f vanishes on M \ U ′. Indeed, let W = {x ∈ M :
|f(x)| < ε′}. If W = U ′ there is nothing to prove. If not, we have W = U ′ ∪ V

where U ′ and V are disjoint open sets. Then, there exists a smooth function f̃
which equals f on U ′ and such that |f | > ε′ on V . By Corollary 3.4, we can replace
f by f̃ .

If ν is a form on S, we will denote by ν the form ρ(f)π∗ν. Notice that

dν = ρ(f)π∗(dν) + ρ′(f)df ∧ π∗ν,

so we conclude that

(4.1) df ∧ dν = df ∧ dν.

Proof of Theorem 4.1. We split the proof into several lemmas.

Lemma 4.2. Any k-form ω on M can be decomposed, in an unique way, as

(4.2) ω = fkωk + fk−1ωk−1 + . . . + fω1 + ω0,

where ωi = µi + df ∧ νi, with µi ∈ Ωk(S) and νi ∈ Ωk−1(S), for 0 ≤ i ≤ k − 1.

Proof. Let ω be a k-form on M , and write ω = (1 − ρ(f))ω + ρ(f)ω. We can
decompose ω|U ′ , in an unique way, as

ω|U ′ = fkθk + fk−1θk−1 + . . . + fθ1 + θ0,

where θi = π∗µi + df ∧ π∗νi, for 0 ≤ i ≤ k − 1, with µi ∈ Ωk(S) and νi ∈ Ωk−1(S).
Now, since ρ ◦ f = 0 on M \ U ′, the k-form ρ(f)ω may be written as

ρ(f)ω = fkρ(f)θk + fk−1(µi + df ∧ νi) + . . . + (µ0 + df ∧ ν0).

On the other hand, since 1 − ρ(f) is 0 on a neighborhood of S, we can write
(1− ρ(f))ω = fkζ for some k-form ζ, and the result follows. ¤

In the sequel we denote by Φ the linear application

Ωk(M)⊕ Ωk−1(S) → Ωk(M), (α, β) 7−→ fkα + fk−1df ∧ β.

If (α, β) ∈ Ωk(M)⊕ Ωk−1(S), with dα = 0 and dβ = 0 then, using (4.1), we find

df

(
Φ(α, β)

)
= fk+1dα− fkdf ∧ dβ,

= fk+1dα− fkdf ∧ dβ = 0.
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Similarly, one checks that if µ ∈ Ωk−1(M) and ν ∈ Ωk−2(S), then

Φ(dµ, dν) = df (fk−1µ− fk−2df ∧ ν).

We conclude that Φ induces a map at the level of cohomology

Φ : Hk
dR(M)⊕Hk−1

dR (S) → Hk
f (M),

([α], [β]) 7−→ [fkα + fk−1df ∧ β].

Lemma 4.3. If k > 1, Φ is surjective.

Proof. Let ω be a k-form on M with dfω = 0. If we decompose ω as in (4.2), we
obtain

dfω = fk+1dωk + fkdωk−1 + fk−1(dωk−2 − df ∧ ωk−1)

+ · · ·+ f(dω0 − (k − 1)df ∧ ω1)− kdf ∧ ω0 = 0.

If we restrict to U , we get by uniqueness of the decomposition df ∧ ω0|U = 0, i.e.
df ∧ π∗µ0 = 0 and so, µ0 = 0. We conclude that ω0 = df ∧ ν0.

Now set γ0 ≡ 1
k−1ν0. We have

ω + dfγ0 = fkωf + fk−1ωk−1 + . . . + f2ω2 + f(ω1 + dγ0).

Noting that dγ0 = 1
k−1dν0+ ρ′(f)

k−1 df ∧π∗ν0, writing df (ω+dfγ0) = 0 and restricting
to U , we obtain µ1 + 1

k−1dν0 = 0. Therefore:

ω1 + dγ0 = df ∧ (ν1 +
ρ′(f)
k − 1

π∗ν0).

Thus, if we put γ1 = 1
k−2ν1 + ρ′(f)

k−1 π∗ν0, we get

ω + df (fγ1 + γ0) = fkωf + fk−1ωk−1 + . . . + f3ω3 + f2(ω2 + dγ1).

This way, we can construct γ0, γ1, . . . , γk−2, with

γk−2 = νk−2 +
ρ′(f)

2
π∗νk−3 + . . . +

ρ(k−2)(f)
(k − 1)!

π∗ν0,

such that

ω + df (γ0 + . . . + fk−2γk−2) = fkωk + fk−1(ωk−1 + dγk−2).

Now, writing df (ω+df (γ0+ . . .+fk−2γk−2)) = 0 and restricting to U , we obtain
µk−1 = −dνk−2 (using ρ ◦ f = 1) and dωk−1|U = 0. Consequently, we have

ωk−1 + dγk−2 = df ∧ νk−1 + η,

where

η = df ∧ [ρ′(f)π∗νk−2+ . . .+
ρ(k−1)(f)
(k − 1)!

π∗ν0]+
ρ′(f)

2
π∗dνk−3+ . . .+

ρ(k−2)(f)
(k − 1)!

π∗dν0.

Since dωk−1|U = 0 and η|U = 0, we obtain dνk−2 = 0. On the other hand, since η
is zero on a neighborhood of S, we can write η = fξ. We conclude that

ω = fk(ωk + ξ) + fk−1df ∧ νk−2 + dfγ,

where γ = γ0 + . . . + fk−2γk−2. We have seen, that dνk−2 = 0. Now, writing
dfω = 0, we see that d(ωk + ξ) = 0. This shows that ω is in the image of Φ. ¤

Lemma 4.4. If k > 1, Φ is injective.
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Proof. Let (α, β) in Ωk(M) ⊕ Ωk−1(S) with dα = 0 and dβ = 0. We assume that
fkα + fk−1df ∧ β = dfγ, where γ ∈ Ωk−1(M).

We decompose γ as in (4.2), i.e.,

γ = fk−1γk−1 + fk−2γk−2 + . . . + fγ1 + γ0,

with, for i ≤ k − 2, γi = µi + df ∧ νi, µi and νi are forms on S. We have

dfγ = fkdγk−1 + fk−1dγk−2 + fk−2(dγk−3 − df ∧ γk−2)

+ . . . + f(dγ0 − (k − 2)df ∧ γ1)− (k − 1)df ∧ γ0.

Restricting to U , we obtain

df ∧ γ0|U = 0

(dγ0 − (k − 2)df ∧ γ1)|U = 0
...(4.3)

(dγk−3 − df ∧ γk−2)|U = 0

dγk−2|U = df ∧ π∗β

The first relation gives df ∧π∗µ0 = 0 and so, µ0 = 0. This implies that γ0 = df ∧ν0.
Using the second relation, we then get

df ∧ π∗dν0 + (k − 2)df ∧ π∗µ1 = 0,

which implies µ1 = − 1
k−2dν0. In this way, we obtain for each i ≤ k − 2,

µi = − 1
k − 1− i

dνi−1.

Now, since γk−2 = µk−2 + df ∧ νk−2, the one before the last relation in (4.3)
gives −df ∧ π∗dνk−2 = df ∧ π∗β, which implies β = −dνk−2, i.e., β is exact.

On the other hand, we have, for each 1 ≤ i ≤ k − 2,

dγi−1 − (k − 1− i)df ∧ γi = dµi−1 − df ∧ dνi−1 − (k − 1− i)df ∧ µi,

= dµi−1 + ρ′(f)df ∧ π∗µi−1

− df ∧ [dνi−1 + (k − 1− i)µi],

= − ρ′(f)
k − 1− i

df ∧ π∗dνi−1,

and
dγk−2 = df ∧ β + ρ′(f)df ∧ π∗µk−2 = df ∧ β − ρ′(f)df ∧ π∗dνk−3.

We conclude that

fkα = fkd
(
γk−1+

ρ′(f)
f

df∧π∗νk−3+
ρ′(f)
f2

df∧π∗νk−3+. . .+
ρ′(f)

(k − 2)fk−1
df∧π∗ν0

)
.

Therefore, α is exact. ¤

This shows that Φ is bijective for k > 1. On the other hand, we have

Lemma 4.5. If k = 1, Φ is bijective.
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Proof. To prove that Φ is surjective, let ω be a 1-form on M with dfω = 0. We
write ω = fω1 + ω0 with ω0 = µ0 + df ∧ ν0 (µ0 ∈ Ω1(S), ν0 ∈ Ω0(S)). We write
dfω = 0 an we restrict to U . We obtain µ0 = 0 hence, ω0 = df ∧ ν0. Moreover, we
have dω0|U = 0 which gives dν0 = 0. It follows that dω1 = 0.

Now to prove that Φ is injective, let α ∈ Ω1(S) and β ∈ Ω0(S) with dα = 0 and
dβ = 0. We suppose that

fα + df ∧ β = dfγ = fdγ

where γ ∈ Ω0(M). Restricting to S, we obtain β = 0. This implies α = dγ. ¤

We have establish that Φ is an isomorphism for all k ≥ 1 so Theorem 4.1 follows.
¤

Remark 4.6. Comparing this result with Proposition 2.49 in [17], we see that the
cohomology of the Lie algebroid attached to a function constructed in Section 2.3
is isomorphic to the cohomology of the Melrose Lie algebroid.

Remark 4.7. For k − p > 0 it is possible to adapt this proof in order to compute
the cohomology H•

f,p(M). For k− p < 0 the decomposition (4.2) is no longer valid.
For k = p the expression for Hp

f,p(M) is not so nice. For instance, if p = 1, and
if H1

dR(M) = {0}, we can show that the space H1
f,1(M) has infinite dimension. In

fact, the space Z1
f,1(M) of 1-cocycles is {dh |h ∈ C∞(M)} which is isomorphic, via

exterior differentiation d, to the space C∞0 (M) of functions which vanish in at least
a point of M . Similarly, the space B1

f,1(M) of 1-cobords is isomorphic, via d, to the
ideal of C∞0 (M) spanned by f . Therefore, the quotient C∞0 (M)/(f) has infinite
dimension.

Example 4.8. Let M = {(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+x2

n < 2} be an open ball and
f : M → R the function f(x1, . . . , xn) = x2

1 + · · · + x2
n − 1, so that S ⊂ M is the

(n− 1)-sphere. Then,

H0
f (M) = H1

f (M) = Hn
f (M) = R,

Hk
f (M) = {0}, if 2 ≤ k ≤ n− 1.

Example 4.9. Let M = {(x1, . . . , xn+1) ∈ Rn : x2
1 + · · ·+x2

n+1 = 1} be the n-sphere
and f : M → R the function f(x1, . . . , xn+1) = x1, so that S is the equator. Then,

Hk
f (M) = R if k = 0, 1,

Hk
f (M) = {0} if 2 ≤ k ≤ n− 1,

Hn
f (M) = R2.

Example 4.10. (Poisson geometry) Recall the identification explained in Section 2.1
between the cohomology H•

f (M) and Poisson cohomology in dimension 2. It leads
immediately to the following result, which generalizes a result due to Radko [24]
for the compact case:

Theorem 4.11. Let (M, Π) be an orientable 2-dimensional Poisson manifold with
singular set S. Assume that the contraction of the Poisson tensor Π with a volume
form on M does not have singularities in a neighborhood of S. Then the Poisson
cohomology of (M, Π) is

Hk
Π(M) ' Hk

dR(M)⊕Hk−1
dR (S).
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4.2. Homotopy invariance in the regular case. In the regular case we are able
to prove homotopy invariance:

Proposition 4.12. Let U and W be tubular neighborhoods of Sf = f−1(0) and
Sg = g−1(0), respectively. We assume that f and g do not have singularities on
U and W . If Ht is a homotopy from (U, f) to (W, g). Then the induced linear
applications between the cohomology spaces are the same: H∗

1 = H∗
0 .

Proof. We can assume that U = Sf×]− ε, ε[ and W = Sg×]− ε′, ε′[, with

(x, ρ)
f7−→ ρ and (y, τ)

g7−→ τ.

By Proposition 3.1 we can take k ≥ 1. We denote by Ψf and Ψg the linear maps:

Ψf : Hk
dR(U)⊕Hk−1

dR (U) → Hk
f (U)

([α], [β]) 7−→ [ρkα + ρk−1dρ ∧ β],

Ψg : Hk
dR(W )⊕Hk−1

dR (W ) → Hk
f (W )

([α], [β]) 7−→ [τkα + τk−1dτ ∧ β],

which, by Theorem 4.1, are isomorphisms.
Now, we set K∗

t = Ψ−1
f ◦H∗

t ◦ Ψg, for every t ∈ [0, 1]. If ([α], [β]) ∈ Hk
dR(W ) ⊕

Hk−1
dR (W ), we have

H∗
t

(
Ψg([α], [β])

)
=

[h∗t (τkα + τk−1dτ ∧ β)
ak

t

]
,

=
[ak

t ρkh∗t α + ak−1
t ρk−1(ρdat ∧ h∗t β + atdρ ∧ h∗t β)

ak
t

]
,

= [ρkh∗t α + ρk dat

at
∧ h∗t β + ρk−1dρ ∧ h∗t β],

= [ρkh∗t α + ρk−1dρ ∧ h∗t β + ρkd(log|at|h∗t β)].

We conclude that

K∗
t

(
[α], [β]

)
=

(
[h∗t α + d(log|at|h∗t β)], [h∗t β]

)
,

=
(
[h∗t α], [h∗t β]

)
.

Since the de Rham cohomology is homotopy invariant, we have K∗
1 = K∗

0 and it
follows that H∗

1 = H∗
0 . ¤

Proposition 4.13. Let Ht be a homotopy from (M, f) to (N, g). We assume that f

and g do not have singularities on tubular neighborhoods of Sf and Sg. If Hk−1
dR (S)

is trivial, then the linear maps H∗
0 and H∗

1 from Hk
g (N) to Hk

f (M) coincide.

Proof. Note that the assumptions imply that k ≥ 2.
Let U and W be tubular neighborhoods of Sf and Sg such that f and g are

regular on these neighborhoods. We can assume that H sends W onto U , and we
set V = M \ Sf and Z = N \ Sg.

Let ω be in Zk
g (N). According to the previous proposition, we have

(H∗
1ω)|U = (H∗

0ω)|U + dfαU , αU ∈ Ωk−1(U).
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On the other hand, since f and g do not vanish on V and Z and since the de Rham
cohomology is homotopy invariant, we have

(H∗
1ω)|V = (H∗

0ω)|V + dfαV , αV ∈ Ωk−1(V ).

Therefore, we obtain
df (αU |U∩V − αV |U∩V ) = 0,

i.e., αU |U∩V − αV |U∩V ∈ Zk−1
f (U ∩ V ).

Now, since Hk−1
f (U ∩ V ) ' Hk−1

dR (U ∩ V ) ' (
Hk−1

dR (S)
)2 = {0}, there exists

βU∩V ∈ Ωk−2(U ∩ V ) such that

αU |U∩V − αV |U∩V = dfβU∩V .

From the exactness of the Mayer-Vietoris short exact sequence for de Rham co-
homology, there exist α′U ∈ Ωk−2(U) and α′V ∈ Ωk−2(V ) such that βU∩V =
α′V |U∩V − α′U |U∩V . It follows that

(αU + dfα′U )|U∩V = (αV + dfα′V )|U∩V .

Hence, there exists η ∈ Ωk−1(M) such that

η|U = αU + dfα′U and η|V = αV + dfα′V .

This gives

(dfη)|U = (H∗
1ω −H∗

0ω)|U and (dfη)|V = (H∗
1ω −H∗

0ω)|V ,

which shows that
H∗

1ω −H∗
0ω = dfη.

¤

5. One step to the complex case

The definition of the cohomology H•
f (M) readily extends to complex manifolds.

In this section we study the local case and give an application of this cohomology
to the study of the topology of the complement of a hypersurface.

We feel that this cohomology may have others applications in algebraic geometry
or in analytic geometry, and that from it one may be able to obtain more information
on the topology of the complement of the zeros of a function f .

5.1. Cohomology in the the local case. In this paragraph we give an overview
of the results we have found in [19, 20]. There we consider a germified version of the
cohomology: we let Ωk(Cn) denote the space of germs at 0 of analytic k-forms, and
we let H•

f,p(Cn) denote the cohomology of the chain complex (Ωk(Cn), d(p)
f ). We

consider only the groups Hn−1
f,p (Cn) and Hn

f,p(Cn). The other groups are usually
trivial, with the exception of H0 and H1 (see [19, 20]).

We will assume that the function f is a quasi-homogeneous polynomial on Cn of
degree N , with respect to the weights w1, . . . , wn, and with an isolated singularity
at 0. We denote by c the Milnor number of the singularity, i.e., the dimension of the
vector space Qf = On/If where On is the space of germs of analytic functions and
If the ideal spanned by the first derivatives of f . Also, for every positive integer
q, we denote by hq,n−q the dimension of (Qf )qN−w1−···−wn

, the quasi-homogeneous
part of degree qN −w1 − . . .−wn of the graded space Qf . These numbers are the
mixed Hodge numbers of the quasi-homogeneous singularity f .

Table 1 summarizes the results obtained in [19].
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dim Hn−1
f,p (Cn) dim Hn

f,p(Cn)

0 ≤ p ≤ n− 3
∑n−p−1

i=1 hi,n−i c +
∑n−p−1

i=1 hi,n−i

p = n− 2 ∞ c + h1,n−1

p = n− 1 ? ∞

p ≥ n 0 c

Table 1

Remark 5.1. For k > 0 denote by Ωk
rel(Cn, f) the quotient Ωk(Cn)/df ∧Ωk−1(Cn).

It is easy to check that the de Rham differential d passes to the quotient, so we
get a complex (Ω•rel(Cn, f), d). The cohomology of this complex is the well-known
relative cohomology of the singularity f . This cohomology seems to be linked with
the cohomology H•

f,p(Cn), but they do not coincide (e.g., compare the table above
with the results in [21]). Nevertheless, the computation of the cohomology H•

f,p(Cn)
presented in [19], uses the vanishing of certain relative cohomology spaces of f .

5.2. Cohomology of the complement of a hypersurface. We shall now ex-
plain a method, using the cohomology H•

f,p(Cn), to obtain information on the
cohomology of the complement of a hypersurface. More precisely, we apply this
cohomology to determine at which stage a certain spectral sequence converging to
the cohomology of a hypersurface singularity degenerates. We then use this to give
a new proof of a well-known result of A. Dimca ([5]).

5.2.1. Local case. Let B be a small open ball at the origin of Cn. We consider a
hypersurface singularity V ⊂ B at the origin. Let f = 0 be an equation for V in B
and denote by U = B \ V the complement. A well-known result of Grothendieck
([12]) states that the cohomology H•(U,C) is isomorphic to the cohomology of the
complex A•0 of meromorphic differential forms on B with polar singularity along V .

An element ω ∈ Ak
0 can be written in the form ω = α

fs where α is a holomorphic
k-form on B. We consider the decreasing filtration:

F sAj
0 =





{
α

fj−s : α holomorphic on B
}

if j − s ≥ 0,

{0} if j − s < 0.

This filtration is exhaustive and bounded above so, it induces a spectral sequence(
Er(V ), dr

)
converging to H•(U,C) (see [15]). It is known (see [6]) that this spectral

sequence degenerates after a finite number of steps. The problem is to determine
this number.

For every p, q, r we set

Ep,q
r (V ) =

Zp,q
r (V )

Zp+1,q−1
r−1 (V ) + Bp,q

r−1(V )
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where Zp,q
r (V ) and Bp,q

r (V ) are well-known spaces (see [15]) and dp,q
r : Ep,q

r (V ) →
Ep+r,q−r+1

r (V ). This spectral sequence degenerates at the step r, i.e., Er = E∞, if
d.,.

r = 0. In order to show that d.,.
r = 0 (for some r) it is sufficient to show that for

every p, q we have

(5.1) d
(
Zp,q

r (V )
) ⊂ Bp+r,q−r+1

r−1 (V ).

If we remark that, for a holomorphic (p + q)-form α, we have d
(

α
fq

)
=

d
(p)
f α

fq+1 , then
we can rewrite (5.1) as:

• if α is a holomorphic (p+ q)-form such that fr divides d
(p)
f α then, for some

holomorphic (p + q)-form ζ, one has d
(p)
f α = d

(p)
f (fζ).

It is known that when the function f does not have singularities one has E1 =
E∞. Now, we assume that f has an isolated singularity at 0. In this case, it is
known (see [6]) that dp,q

1 = 0 if p + q < n − 1. Let us look then at dp,q
r with

p + q = n − 1. We assume further that f is a W -quasi-homogeneous polynomial
of degree N, where W = w1x1

∂
∂x1

+ . . . wnxn
∂

∂xn
, with each wi a positive integer.

This means that:
W · f = Nf.

In [19], we have computed the spaces Hn
f,p(B) under these assumptions, and we

recall here our results. We set Qf = H(B)/If , where H(B) is the algebra of
holomorphic functions on B and If the ideal spanned by ∂f

∂x1
, . . . , ∂f

∂xn
. This vector

space has finite dimension (the Milnor number of f) and we let B denote a monomial
basis (for the existence of such a basis, see [1]). Finally, we set ν = dx1 ∧ . . .∧ dxn.

Theorem 5.2 ([19]). Assume that p < n−1 and let η ∈ Ωn(B). There exist unique
polynomials h1, . . . , hn−p (possibly zero) such that:

(a) h1 is quasi-homogeneous of degree N −∑
wi;

(b) hj for 2 ≤ j ≤ n−p−1 is a linear combination of monomials of B of degree
jN −∑

wi;
(c) hq is a linear combination of monomials of B and

η = (hn−p + fhn−p−1 + · · ·+ fn−ph1)ν (mod Bn
f,p(B)).

This theorem allows us to give a new proof of the following result (see [5]).

Corollary 5.3. If f is a quasi-homogeneous polynomial with an isolated singularity
at 0, then the spectral sequence degenerates after the second step, i.e., E2 = E∞.

Proof. We only need to consider dp,q
2 with p + q = n− 1. Also, if q = 0 it is easy to

see that dn−1,0
2 = 0, so we assume q > 0, i.e., p < n− 1.

Let α be an (n−1)-form on B. We will show that if for some n-form θ on B one
has f2θ = d

(p)
f α, then there exists an (n− 1)-form ζ such that d

(p)
f α = d

(p)
f (fζ).

By Theorem 5.2, if θ is a holomorphic n-form on B, we have

fθ = (hn−p−1 + fhn−p−2 + · · ·+ fn−p−1h1)ν + d
(p+1)
f ζ,

where ζ is a holomorphic (n− 1)-form and the hi are as in the theorem. It follows
from Lemma 3.12 in [19] that d

(p+1)
f ζ ∈ If . Since f is also in If we must have

hn−p−1 = 0. Since fd
(p+1)
f ζ = d

(p)
f (fζ), we see that

f2θ = (f2hn−p−2 + · · ·+ fn−ph1)ν + d
(p)
f (fζ).
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Hence, if f2θ = d
(p)
f α ∈ Bn

f,p(B), we have (f2hn−p−2 + . . . + fn−ph1)ν ∈ Bn
f,p(B).

The previous relation then implies that hn−p−2 = · · · = h1 = 0. Therefore, we
conclude that d

(p)
f α = f2θ = d

(p)
f (fζ). ¤

5.2.2. Global projective case. Let W be the vector field w1x1
∂

∂x1
+ . . . wnxn

∂
∂xn

,
with w1, . . . , wn positive integers. We denote by Pn(W ) the weighted projective
space associated to W (see [8]). We consider a quasi-homogeneous polynomial (with
respect to W ) f ∈ C[x0, . . . , xn] of degree N and we denote by V the hypersurface in
Pn(W ) with equation f = 0. Again, the cohomology H•(U,C), where U = Pn(W )\
V ), is isomorphic to the cohomology of the complex A• of algebraic differential forms
(see [12]).

An element ω in Ak can be written as ω = α
fs where α is a quasi-homogeneous

k-form of degree sN . This means that iW α = 0 and the Lie derivative satisfies
LW α = (sN)α. In this case we can consider the following decreasing filtration

F̃ sAj =





{ α
fj−s : α quasi-homogeneous of degree (j − s)N

and iW α = 0

}
if j − s > 0,

{0} if j − s ≤ 0.

This filtration induces a spectral sequence (Ẽr(V ), d̃r) converging to H•(U,C).
If f does not have singularities, this spectral sequence degenerates after the first
step (see [11]). Now, we assume that f has an isolated singularity at 0. In this
case, one knows that d̃p,q

1 = 0 if p + q < n− 1 (see [6]).

Proposition 5.4. If f is a quasi-homogeneous polynomial with an isolated sin-
gularity at 0, then the spectral sequence degenerates after the second step, i.e.,
Ẽ2 = Ẽ∞.

Proof. According to [6], we only need to consider d̃p,q
2 with p + q = n − 1. As

for the local case, we need to show that if α is a quasi-homogeneous (n − 1)-form
on Cn+1, of degree qN (q = n − 1 − p) such that iW α = 0 and f2 divides d

(p)
f α,

then there exists a quasi-homogeneous (n− 1)-form ζ which satisfies iW ζ = 0 and
d
(p)
f α = d

(p)
f (fζ).

Let us denote by η the n-form d
(p)
f α. It is easy to check that iW η = 0. Therefore,

we have η = iW (gν), where g is some quasi-homogeneous polynomial of degree
(q + 1)N −∑

wi. Set σ = iW ν, so that η = gσ. By Lemma 3.26 in [19], we have

η ∈ Bn
f,p(Cn+1) ⇐⇒ gν ∈ Bn+1

f,p+1(C
n+1).

Since f2 divides g, we can write gν = f2ξ, where ξ is some quasi-homogeneous
(n + 1)-form on Cn+1. We then have f2ξ ∈ Bn+1

f,p+1(Cn+1). Now, it is possible to
adapt the argument we gave above in the local case (theorem 5.2 is still valid in
a polynomial version because of the homogeneity of the operators d

(p)
f ) to obtain

f2ξ = d
(p+1)
f (fµ), where µ is a quasi-homogeneous n-form. We conclude that

η = iW
(
d
(p+1)
f (fµ)

)
= −d

(p)
f

(
f(iW µ)

)
.

¤
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6. A link with the Witten complex ?

In order to give an analytic proof of the Morse inequalities, E. Witten defined
in [28], a deformed differential on the complex of smooth differential forms on a
compact manifold M . If t ∈ R and f is a Morse function on M , it is defined by

δtf = d + tdf ∧ ·
The idea is that the cohomology of this complex is isomorphic to the de Rham
cohomology for every t and to use Hodge theory and properties of the laplacien
operator associated to the differential δtf . For a short presentation, see for instance
[29].

This Witten complex looks similar to the one defined here even if it is clear
that they are not the same (the cohomology defined here is not always isomorphic
to the de Rham cohomology). However, there might be an important difference
between these two cohomology : the definition of the Witten differential does not
involves the zero set of the function. Whereas, as we saw, the great feature of
the cohomology we defined in this paper is that it deals with the singularities of
the function on its zero set : the singularities at points which are not zeros of the
function do not matter.

The cohomology of the Witten deformed differential may be, once more, related
to the topology of the fiber f−1(c). In [9], the “polynomial” case on a noncompact
manifold with a cylindrical end is studied and the cohomology is related to the
relative cohomology of the couple (M,f−1(−c)) (where c > 0 is sufficiently large).

In a complex context, A. Dimca and M. Saito used the differential δf = d−df ∧·,
where f is a polynomial, on the complex of global algebraic differential form in order
to compute the cohomology of a generic fiber f−1(c) (see [7]). More precisely, they
showed that for any k, we have Hk+1(Ω•, Df ) ' H̃k(f−1(c),C) where H̃ denotes
the reduced cohomology. In the isolated singularities case, the reduced cohomology
of the fiber is closely related to the relative cohomology of the singularity. We saw
in [19] that this cohomology plays an important part in the computation of the
spaces H•

f in the local case and might be closely linked with it.

At this moment, we are not able to give a precise link (if there is one) between
the Witten complex and ours but we hope that the techniques used on the Witten
complex may be applied to the complex defined here.
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