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In this paper, we consider a quasi-neutral plasma expanding in the vacuum gap separat-
ing two electrodes. During the expansion, some particles are emitted from the plasma-

vacuum interface and form a beam in the vacuum. Starting from the two-fluid full Euler-
Poisson model, we derive an asymptotic model. This asymptotic model consists of a
quasi-neutral model in the plasma region, a Child-Langmuir law in the beam region
and connection relations at the plasma-beam interface. For this model, we propose a

numerical scheme which accounts for the motion of the plasma-beam interface and is
much more efficient than the resolution of the original two-fluid Euler-Poisson problem.
We demonstrate the efficiency of the model by means of numerical simulations for two

different one-dimensional test cases.
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1. Introduction

In this paper, which is a continuation of earlier works 10,13, we are concerned with

the modeling of a quasi-neutral plasma expansion in the vacuum gap separating

two electrodes. Such a problem arises in the study of high current diodes men-

tioned in Ref. 27, in electrical discharges on satellite solar panels, see Ref. 6 or in

high current injectors for ion accelerators, see Ref. 18. These accelerators are used,

among other applications, to produce isotopes for medical applications. In the case

of the high current diode application, the plasma is used to increase the extracted

current as compared with conventional plane diodes. For the solar panel problem,
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our model can be used for the transition from the primary discharge to the electric

arc, see Ref. 17 for more details.

In all these problems, the physical process is the following: a quasi-neutral

plasma, considered as fully ionized and constituted of only one ion species is in-

jected from an electrode namely the anode in the case of high current injectors and

the cathode in the cases of high current diodes and of arc phenomena on satellites.

This plasma undergoes a thermal expansion in the gap separating the electrodes.

But, due to the applied potential difference, some particles (the ions in the case

of high current injectors and the electrons in the cases of high current diodes and

of arc phenomena on satellites) are emitted from the plasma-vacuum interface into

the gap. These particles form a non quasi-neutral beam in the vacuum.

The description of such a problem can be performed with the two-fluid full

Euler-Poisson model. This model consists of the full Euler system for each species

(the ions and the electrons) coupled with the Poisson equation for the electric

potential. By full Euler model, we mean the complete set of mass, momentum and

energy equations, as opposed to the isentropic approximation used in Ref 10, 13.

Unfortunately, this system is subject to severe numerical constraints in the quasi-

neutral zones. Indeed, in plasmas, local charge imbalances can occur only at the scale

of the Debye length, see Ref. 4 and Ref. 20. Due to these local charge imbalances and

to electric restoring forces the particles oscillates around their equilibrium positions.

The period of the electron oscillations is called the plasma period. In order to

avoid numerical instabilities, the scheme used for the discretization of the two-fluid

Euler-Poisson model must resolve the scale of the plasma period. But, in quasi-

neutral plasmas, the Debye length and the plasma period are very small parameters.

Then, the numerical simulations of the two-fluid Euler-Poisson model is virtually

impossible in dimensions greater than one.

There are two possible ways to overcome this limitation. The first way consists in

finding an asymptotically stable discretization, i.e. a scheme which does not require

the resolution of the plasma period. Such a scheme has been developed in Ref. 11 for

the two-fluid Euler-Poisson system in the isentropic case, see also Ref. 5, 7, 24, 25.

The second way, that we choose to explore here, consists in finding an asymptotic

model in the quasi-neutral regions. In Ref. 10 and Ref. 13, this study has been done

in the isentropic case. Here, we extend this method when full Euler models with

energy conservation laws are considered.

Starting from the two-fluid Euler-Poisson system and performing a formal quasi-

neutral limit, we derive a quasi-neutral model with a non vanishing current for

the plasma region. This model is a non conservative hyperbolic system. But in the

considered applications, that is high current diodes and arc phenomena on satellites,

the fluid quantities are regular. Then, the non conservativity of the model is not

a problem. Rigorous quasi-neutral limits of the Euler-Poisson system have been

investigated in Ref. 8, 22, 26, 29, mostly in the current-free case.

In the beam region, only one species is present and the quasi-neutral model is no

more valid. Then, introducing a new scaling we derive a Child-Langmuir law. This
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model consists of a stationary Euler-Poisson model with a pressureless momentum

equation, see Ref. 21 and Ref. 1, 12, 16 for the mathematical aspects.

Then, the domain is divided in two regions: the quasi-neutral region, i.e. the

plasma bubble and the non quasi-neutral beam region. Therefore two different

models coexist in different parts of the domain and we must reconnect them at

the plasma-beam interface. Furthermore, due to the plasma expansion between the

electrodes, we must describe the dynamics of the interface between the plasma and

the beam. To this aim, we introduce a transmission problem which consists in an-

alyzing the transition region around the interface as a traveling-wave solution of

the two-fluid Euler-Poisson. This traveling-wave solution is connecting the quasi-

neutral model on the plasma side to the Child-Langmuir model on the beam side.

Here, this problem reduces to the isentropic transmission problem. Then using the

results proved in Ref. 13, we get convenient transmission relations between the

quasi-neutral and the Child-Langmuir model.

We propose a numerical scheme for the discretization of the asymptotic model. In

order to approximate the interface velocity, we solve a particular Riemann problem

at the plasma beam interface. This problem consists of a fluid-vacuum Riemann

problem but with a non vanishing pressure in the vacuum. This is due to the fact

that emitted particles from the interface exert a pressure onto the plasma. In order

to validate our asymptotic model, we perform numerical simulations for two different

one-dimensional test cases. The first test case is related to high current injectors for

ion accelerators and the second test case to high current diode or arc phenomena

on satellites.

2. The physical problem and the two-fluid Euler-Poisson model

We denote by x̄ = (x̄1, · · · , x̄d) ∈ IRd (d = 1, 2 or 3) and t̄ > 0 the space and

time variables, and we consider two plane electrodes located at x̄1 = 0 and x̄1 = L.

Then the domain is given by Ω = [0, L] × IRd−1. We set the origin of the potential

at x̄1 = 0 and the potential at x̄1 = L is given by φ̄L. This potential φ̄L can

be positive or negative, depending on the considered device. Here for clarity, we

suppose that φ̄L < 0. Then, the anode is located at x̄1 = 0 and the cathode at

x̄1 = L. The symmetric case, i.e. when φ̄L > 0, can be easily deduced from this

work (see Ref. 9). In Section 5 we give numerical results for both cases.

We consider that a quasi-neutral plasma, constituted of one positively charged

ion species and of electrons, is injected from a part of the anode. Due to thermal

effects, it expands in the gap between the electrodes. Simultaneously, attracted by

the negative potential of the cathode located at x̄1 = L, some ions are emitted from

the plasma-vacuum interface forming an ion beam in the vacuum. Then, the domain

is divided in two zones: the quasi-neutral plasma region and the non quasi-neutral

beam region, provided the transition region reduces to an interface.

We use a fluid description and the particles (the ions and the electrons) are

described by their densities, Ni and Ne, their velocities, Ui and Ue, and their total
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energies, Wi and We, where the quantities for ions are indexed by i and those for

electrons by e. The two-fluid Euler-Poisson model is valid in all the device, i.e. in

the quasi-neutral and in the non quasi-neutral zones. It is constituted of the Euler

systems for the ions and electrons coupled with the Poisson equation for the electric

potential. It is written














∂t̄Ni + ∇x̄ · (Ni Ui) = 0,

mi

(

∂t̄(Ni Ui) + ∇x̄(Ni Ui ⊗ Ui)
)

+∇x̄Pi = −eNi∇x̄Φ,

∂t̄Wi + ∇x̄ · (Wi Ui + Pi Ui) = −eNi Ui · ∇x̄Φ,

(2.1)















∂t̄Ne + ∇x̄ · (Ne Ue) = 0,

me

(

∂t̄(Ne Ue) + ∇x̄(Ne Ue ⊗ Ue)
)

+∇x̄Pe = eNe ∇x̄Φ,

∂t̄We + ∇x̄ · (We Ue + Pe Ue) = eNe Ue · ∇x̄Φ,

(2.2)

where ∇x̄ = (∂x̄1
, · · · , ∂x̄d

), mi and me are the particle masses, and e > 0 is the

elementary charge. The pressure laws Pi and Pe are defined by

We =
Pe

γe − 1
+
meNe |Ue|2

2
, Wi =

Pi

γi − 1
+
miNi |Ui|2

2
, (2.3)

where γi,e > 1 are the ratios of specific heats. We recall that the temperatures are

obtained with the relations Pi,e = Ni,e kB T̄i,e, kB being the Boltzmann constant.

The electric potential Φ is calculated with the Poisson equation given by:

−∆x̄Φ =
e

ε0
(Ni −Ne), (2.4)

where ε0 is the vacuum permittivity.

In plasmas the local charge imbalances take place at the scale of the Debye

length (see Ref. 4 and Ref. 20), defined by

λD =

(

ε0 kB T̄0

e2N0

)1/2

, (2.5)

where T̄0 and N0 are the typical scales of the temperature and of the density in

the plasma. When such charge imbalances occur, the particles oscillate around their

equilibrium position due to the electric restoring forces. The periods of these oscil-

lations, denoted by τe for electrons and by τi for ions, are given by

τe = λD/Uth,e, and τi = λD/Uth,i, (2.6)

where Uth,e =
√

kB T̄0/me and Uth,i =
√

kB T̄0/mi are respectively the electron

and ion thermal velocities. Note that due to the large ion to electron mass ratio,

the ion plasma period τi is much greater than the electron plasma period τe which

is usually called plasma period. In quasi-neutral plasmas the Debye length and the

plasma period are very small compared to the typical length and time of interest. As

a consequence, charge imbalances are negligible and an equilibrium between positive

and negative charges occurs in the plasma, leading to the approximation ni ≈ ne.
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By contrast, in non-quasi-neutral plasmas, the Debye length and the typical length

of interest and similarly the plasma period and the typical time of interest are of

the same order of magnitude. In this case, it is no more possible to average out

charge imbalances.

In practice, when standard explicit schemes are used they must resolve the

plasma period in order to avoid instabilities, see Ref. 19. Then, the time step must

satisfy

∆t ≤ τe. (2.7)

In quasi-neutral regime, this constraint is so penalizing that it is virtually impos-

sible to perform two or three dimensional simulations. In order to overcome this

limitation, we choose to establish an asymptotic model. This model is presented

in the next section and consists of a quasi-neutral system with a non vanishing

current for the plasma region, a Child-Langmuir law for the beam region and some

transmission relations at the plasma-beam interface.

3. The asymptotic model

We begin with the derivation of the quasi-neutral model. We recall that this model

is only valid in the quasi-neutral zones, i.e. the plasma region. Then, in Section 3.2,

we introduce the Child-Langmuir model used for the description of the non quasi-

neutral beam region. Finally, we present the plasma beam interface model connect-

ing the quasi-neutral and the non quasi-neutral zones.

3.1. The quasi-neutral model

The quasi-neutral model is obtained from the two-fluid Euler-Poisson model (2.1)-

(2.4), passing formally to the limit λD/L → 0. First, we study this formal limit,

then, we present a one-fluid formulation of this model. This formulation is simpler in

the one-dimensional case and gives precious qualitative informations on the quasi-

neutral model. Finally, we precise the boundary conditions for the quasi-neutral

model.

3.1.1. The formal quasi-neutral limit

We begin with the rescaling of the system (2.1)-(2.4). For characteristic scales, we

choose N0 for the densities, T̄0 for the temperatures and Uth,i =
√

kB T̄0/mi for the

velocities. We recall that N0 and T̄0 are the typical scales of the density and of the

temperature in the plasma. We define the new variables t = t̄/t0 and x = x̄/L with

t0 = L/Uth,i. The new unknowns are given by ni,e = Ni,e/N0, ui,e = Ui,e/Uth,i,

wi,e = Wi,e/(kB T̄0), pi,e = Pi,e/(N0 kB T̄0), φ = eΦ/(kB T̄0) and Ti,e = T̄i,e/T̄0.

Inserting these new variables in (2.1)-(2.4), we obtain the rescaled two-fluid Euler-
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Poisson system for all x ∈ Ω = [0, 1] × IRd−1 and all t > 0

∂tni,e + ∇ · (ni,e ni,e) = 0, (3.1)

∂t(ni ui) + ∇(ni ui ⊗ ui) + ∇pi = −ni ∇φ, (3.2)

ε
(

∂t(ne ue) + ∇ne ue ⊗ ue

)

+∇pe = ne ∇φ, (3.3)

∂twi + ∇ · ((wi + pi)ui) = −ni ui · ∇φ, (3.4)

∂twe + ∇ · ((we + pe)ue) = ne ue · ∇φ, (3.5)

−λ2 ∆φ = ni − ne, (3.6)

where

ε = me/mi, and λ = λD/L, (3.7)

are respectively the mass ratio and the scaled Debye length. We recall that λD is

given by (2.5). The rescaled equations of state are written

wi =
pi

γi − 1
+
ni |ui|2

2
, we =

pe

γe − 1
+
ε ne |ue|2

2
. (3.8)

At the beginning of the process, there is no plasma in the gap. Therefore, the initial

conditions are given by ni|t=0 = ne|t=0 = 0 in all the domain, and ui|t=0, ue|t=0

are undefined. We assume that a quasi-neutral plasma is emitted from the anode

with the same velocities for the two species. We set the origin of potential at the

anode. Then, the boundary conditions for (3.1)-(3.6) are given by

ni|x1=0 = ne|x1=0 = n0, ui|x1=0 = ue|x1=0 = u0, Ti|x1=1 = Te|x1=1 = T0, (3.9)

ni|x1=1 = ne|x1=1 = 0, (3.10)

φ|x1=0 = 0, φ|x1=1 = φL, (3.11)

where n0, u0 and T0 are respectively the rescaled density, velocity and temperature

of the injected plasma and φL = e φ̄L/(kB T̄0) is the rescaled cathode potential.

For a hyperbolic system, the number of boundary conditions which can be pre-

scribed depends on the number of incoming characteristics. So, (3.9) and (3.10)

should be understood as follows: suppose that we introduce a discretization of the

rescaled two-fluid Euler-Poisson system by means of a Godunov scheme. Then, (3.9)

and (3.10) will be used to compute the flux of the Riemann problems across the

domain boundary.

Now, taking the formal quasi-neutral limit, λ→ 0, gives

∂tni,e + ∇ · (ni,e ni,e) = 0, (3.12)

∂t(ni ui) + ∇(ni ui ⊗ ui) + ∇pi = −ni ∇φ, (3.13)

ε
(

∂t(ne ue) + ∇ne ue ⊗ ue

)

+∇pe = ne ∇φ, (3.14)

∂twi + ∇ · ((wi + pi)ui) = −ni ui · ∇φ, (3.15)

∂twe + ∇ · ((we + pe)ue) = ne ue · ∇φ, (3.16)

ni = ne. (3.17)
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Note that the electric potential is now the Lagrange multiplier of the quasi-

neutrality constraint (3.17). This constraint yields a divergence-free current. Indeed,

taking the difference between the mass conservation equations (3.12) and taking into

account the quasi-neutrality constraint (3.17), we obtain

∂t(ni − ne) + ∇ · j = ∇ · j = ∇ · (ni ui − ne ue) = 0. (3.18)

Like in the isentropic case (see Ref. 11) an explicit equation for the electric potential

can be found. We take the divergence of the difference between (3.13) and (3.14).

Using (3.18) into the result, we obtain the quasi-neutral potential equation

−∇ ·
((

ni +
ne

ε

)

∇φ
)

= ∇2 : (fi − fe) , (3.19)

where the symbols ∇2 and : respectively denote the tensor of second order deriva-

tives and the contracted product of two tensors. The scaled momentum fluxes are

given by fi = ni ui ⊗ ui + pi Id and fe = ne ue ⊗ ue + pe/ε Id.

Thus, the quasi-neutral model consists of (3.8), (3.12)-(3.16) and (3.19). It is

formally equivalent to (3.8), (3.12)-(3.17) provided the quasi-neutrality is initially

satisfied i.e. ni(t = 0) = ne(t = 0). It is important to note that this asymptotic

model is only valid in quasi-neutral regions i.e. in the regions where λ is sufficiently

small. In our particular problem, the validity zone is the region filled by the plasma

and denoted by ΩP (t) for t > 0. The dynamics of the boundary of ΩP (t) will be

precised in Section 3.3.

3.1.2. The one-fluid formulation of the quasi-neutral model

In Ref. 10, concerned with the isentropic case, it has been showed that it is possible

to write the quasi-neutral model with three different formulations: a constrained

two-fluid formulation, a 1.5-fluid formulation and a one-fluid formulation. All these

formulations are formally equivalent, but have different properties. The constrained

two-fluid formulation is a strictly hyperbolic system, the 1.5-fluid formulation is a

hyperbolic system and the one-fluid formulation is a conditionally hyperbolic system

which is well-posed in one space dimension only. Although strict hyperbolicity is a

better framework for numerical schemes, the numerical simulations of the plasma

expansion test case, have shown that the 1.5-fluid formulations is the best formu-

lation. The one-fluid formulation is as efficient as the 1.5-fluid formulation in the

one-dimensional case but cannot be extended in dimensions more than 1. Further-

more, it has been proved that the one-fluid formulation contains all the information

in its hyperbolic part and then gives precious qualitative informations on the quasi-

neutral solution. Indeed the hyperbolicity condition of this system corresponds to

the condition of linear stability for the quasi-neutral model. Finally, in one space

dimension the one-fluid formulation is simpler to discretize than (3.12)-(3.16), (3.8)

and (3.19). Then in Section 5 we use this one-fluid formulation. We precise it bellow.

Due to quasi-neutrality, the electric potential variations are of the order of the

Debye length. Then in the quasi-neutral limit, the potential is given by the anode
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potential and we do not need to calculate it. Following this idea, the one-fluid

formulation is obtained eliminating the electric potential from the fluid equations.

To do this, we subtract (3.13) and (3.14), this gives an expression for ∇φ which we

insert in the sum of (3.13) and (3.14) as well as in (3.15) and (3.16). We obtain

ni = ne = n , ui = ue +
j

n
, (3.20)

∇ · j = 0 , (3.21)

(1 + ε)n∇φ = −ε ∂tj − ε∇
(

j ⊗ ue + ue ⊗ j +
j ⊗ j

n

)

+ ∇pe − ε∇pi, (3.22)

∂tn+ ∇ · (nue) = 0, (3.23)

(1 + ε)
(

∂t (nue) + ∇ (nue ⊗ ue)
)

+∇
(

j ⊗ ue + ue ⊗ j +
j ⊗ j

n

)

+∇ (pi + pe) = −∂tj, (3.24)

∂twi + ∇ ·
(

(wi + pi)

(

ue +
j

n

))

+
1

1 + ε

(

ue +
j

n

)

· (∇pe − ε∇pi)

− ε

1 + ε

(

ue +
j

n

)

· ∇
(

j ⊗ ue + ue ⊗ j +
j ⊗ j

n

)

=
ε

1 + ε

(

ue +
j

n

)

· ∂tj, (3.25)

∂twe + ∇ · ((we + pe)ue) −
1

1 + ε
ue · (∇pe − ε∇pi)

+
ε

1 + ε
ue · ∇

(

j ⊗ ue + ue ⊗ j +
j ⊗ j

n

)

= − ε

1 + ε
ue · ∂tj, (3.26)

with the equations of state given by (3.8).

Note that this formulation is not conservative, so it can only be used for regular

solutions without shocks. This is the case in our plasma expansion applications.

Following this remark it is natural to write the total energy conservation equa-

tions (3.25) and (3.26) in terms of pressures, i.e.

∂tpi +

(

ue +
j

n

)

· ∇pi + γi pi ∇ ·
(

ue +
j

n

)

= 0, (3.27)

∂tpe + ue · ∇pe + γe pe ∇ · ue = 0. (3.28)

In Section 3.2 we will see that the electric current is known in the beam region in

the one-dimensional case. Then, the continuity of the current provides the current

in the plasma region at the plasma-beam interface. Thus, in the one-dimensional

case, Eq. (3.21) fully determines the current as a time dependent function and (3.22)

determines the potential. In the two or three dimensional cases, this is more com-

plicated. Indeed (3.21) is a scalar equation which cannot determine the current

vector. It must be complemented by (3.22) in order to determine both the current

vector and the scalar potential. For this reason, this one-fluid model is used only in

one-dimensional case.
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In this case, the current, completely determined by the beam region, is a param-

eter of the system (3.20)-(3.26). And this system is conditionally hyperbolic. The

hyperbolicity domain is characterized by

γepe + γipi ≥
εj2

(1 + ε)n
. (3.29)

We recall that, in Ref. 10, it has been proved, for isentropic pressure laws, that this

hyperbolicity condition corresponds to the linear stability condition of the quasi-

neutral model. Then, this condition gives the validity domain of the quasi-neutral

model.

3.1.3. Initial and boundary conditions for the quasi-neutral model

Like for the rescaled two-fluid Euler-Poisson system we assume that the domain is

initially devoid of plasma and that we inject a quasi-neutral plasma from the anode

with the same velocities for the two species. Then, the anode boundary conditions

for the quasi-neutral model are given by

ni|x1=0 = ne|x1=0 = n0 , ui|x1=0 = ue|x1=0 = u0 , Ti|x1=0 = Te|x1=0 = T0,

(3.30)

where n0, u0 and T0 are respectively the rescaled density, velocity and tempera-

ture of the injected plasma. We recall that (3.30) should be understood as follows:

suppose we introduce a discretization of the quasi-neutral system by means of a

Godunov scheme. Then, (3.30) will be used to compute the flux of the Riemann

problem across the domain boundary.

In order to close the quasi-neutral model in the plasma region, we must precise

the boundary conditions prescribed at the plasma beam interface. It is well known

for hyperbolic systems that the number of boundary conditions depends on the

outgoing characteristics. We recall that the plasma-beam interface position moves

in the course of the time. We will see in Section 3.3 that it moves with the electron

velocity: ue. Thus, at the plasma-beam interface, the number of the eigenvalues

lower than ue gives the number of the boundary conditions we must impose. In the

hyperbolicity region, the eigenvalues are given by ue, ui = ue +j/n and u± = up±c
where up and c are the mean velocity and the sound speed in the plasma. They are

given by

up = ue +
j

(1 + ε)n
=
εue + ui

(1 + ε)
, c =

(

1

(1 + ε)n

(

γepe + γipi −
εj2

(1 + ε)n

))1/2

.

(3.31)

In the problem we are interested in, some ions are emitted from the plasma-beam

interface. Therefore the current j is positive. This gives ui ≥ ue and u+ ≥ ue at

the plasma-beam interface. Finally an easy calculation shows that if γepe + γipi ∈
[εj2/((1 + ε)n), j2/n] then u− ≥ ue. In this case the interface is supersonic and

we do not need to impose a boundary condition. But if γepe + γipi > j2/n then

u− < ue and we need to impose one boundary condition at the considered point.
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These boundary conditions are precised in Section 3.3 when we connect the quasi-

neutral plasma region with the non quasi-neutral beam region.

3.2. The Child-Langmuir model in the beam region

We begin this section with the derivation of the Child-Langmuir model. This model

is obtained from the Euler-Poisson system by a formal asymptotic limit. It possesses

analytical solutions in the one-dimensional case (see Ref. 16). We briefly recall their

expressions in Section 3.2.2.

3.2.1. The formal derivation of the Child-Langmuir model

Let t > 0, we let ΩB(t) = Ω \ ΩP (t) be the beam region. In this region, there are

no electrons and consequently ne = 0. The ions satisfy the rescaled Euler-Poisson

system

∂tni + ∇ · (ni ui) = 0,

∂t(ni ui) + ∇ (ni ui ⊗ ui) + ∇pi = −ni ∇φ,
∂twi + ∇ · ((wi + pi)ui) = −ni ui · ∇φ,
−λ2 ∆φ = ni.

At the plasma-beam interface, Γ(t) = ∂ΩP (t) ∩ ∂ΩB(t), we assume the continuity

of the potential and of the ion density and velocity. Then, the rescaled boundary

conditions are given by φ|Γ(t) = 0, ni|Γ(t) = n−i , ui|Γ(t) = u−i and φ|x1=1 = φL =

e φ̄L/kB T̄0, where n−i and u−i are respectively the ion density and velocity at the

plasma-beam interface given by the quasi-neutral model.

In our applications, the cathode potential φ̄L < 0 is very large. Then, in the

beam region, we expect ion velocities of the order of
√

e |φ̄L|/mi and not of the

order of
√

kB T̄0/mi like in the quasi-neutral zone (see Section 3.1 for the rescaling).

Similarly the potential energy is of the order of e |φ̄L| and not of kB T̄0 like in the

plasma region. We introduce the following scaling parameter

η =
kB T̄0

e |φ̄L|
(3.32)

and the appropriate change of variables for the beam region is given by φ̄ =

φ (kB T̄0/e)/|φ̄L| = η φ and ūi = ui

√

kB T̄0/mi/
√

e |φ̄L|/mi =
√
η ui. Furthermore,

in Ref. 14 we performed numerical simulations of the two-fluid model. They show

that the currents in the plasma and in the beam are of the same order. Then, we

rescale the electron density in order to respect this property. This gives n̄i ūi = ni ui

i.e. n̄i = ni/
√
η. For convenience reasons, we write the energy conservation equation

in terms of the pressure. Inserting this new scaling in the previous Euler-Poisson
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system, we obtain
√
η ∂tn̄i + ∇ · (n̄i ūi) = 0,

√
η ∂t(n̄i ūi) + ∇(n̄i ūi ⊗ ūi) +

√
η∇pi = −n̄i ∇φ̄,

√
η ∂tpi + ūi · ∇pi + γi pi∇ · ūi = 0,

−α∆φ̄ = n̄i,

where

α =
λ2

η
√
η

=
ǫ0 |φ̄L|3/2

√
emi L2

1

N0

√

kB T̄0/mi

, (3.33)

is the ratio of the Child-Langmuir current in a device of length L (see Ref. 4) to

the typical plasma current. We recall that λ and η are respectively given by (3.7)

and (3.32). Since these currents are of same order, we consider α as an order one

parameter. Finally, the rescaled boundary conditions are given by

φ̄|Γ(t) = 0, n̄i|Γ(t) =
n−i√
η
, ūi|Γ(t) =

√
η u−i and φ|x1=1 = −1.

Now, the formal limit η → 0 gives the Child-Langmuir problem, see Ref. 16:


















∇ · (n̄iūi) = 0,

∇(n̄i ūi ⊗ ūi) = −n̄i∇φ̄,
ūi · ∇pi + γi pi∇ · ūi = 0,

−α∆φ̄ = n̄i,

(3.34)

with the following boundary conditions

φ̄|Γ(t) = 0, ūi|Γ(t) = 0, φ̄|x1=1 = −1. (3.35)

3.2.2. The one-dimensional analytical solution of the Child-Langmuir model

In Ref. 21 or Ref. 16, it has been showed that this system has an analytical solution

in the one-dimensional case. Here, we recall briefly its expression. In one space

dimension, the plasma-beam interface Γ(t) is a point that we denote by X(t). We

set j̄i = n̄i ūi and we consider the case of an ion emission at the plasma-beam

interface, so we assume j̄i > 0. Then, system (3.34) leads to the fact that j̄i does

not depend on x in [X(t), 1].

Furthermore, we introduce the Child-Langmuir current:

j̄CL(t) = 4
√

2α/(9 (1 −X(t))
2
), (3.36)

where we recall that α is given by (3.33). Then, there is no solution if j̄i 6∈ [0, j̄CL(t)].

But, for all values j̄i ∈ [0, j̄CL(t)], there exists a unique solution (n̄i, ūi, φ̄) which is

given, for all x ∈ ΩP (t) = [X(t), 1] and all t > 0, by

n̄i(x, t) = j̄i(t)/
√

−2φ̄(x, t), ūi(x, t) =
√

−2φ̄(x, t), pi(x, t) = C̄i n̄
γi

i (x, t),

(3.37)
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where C̄i = pi(X(t), t)/n̄γi

i (X(t), t) is unknown at this level.

The potential φ̄ is positive and implicitly determined by the relation

∫ φ̄(x,t)

0

dψ
√

(

φ̄x(X(t), t)
)2

+2
√

2α−1j̄i(t)
√
−ψ

= X(t) − x , (3.38)

where the electric field at the plasma-beam interface −φ̄x(X) is calculated using the

boundary condition φ̄|x=1 = 1 in the previous formula. In particular, for j̄i = j̄CL(t),

we have φ̄x(X) = 0 and

φ̄(x, t) = −
(

x−X(t)

1 −X(t)

)4/3

. (3.39)

This concludes the presentation of the one-dimensional analytical solution of the

Child-Langmuir model.

3.3. The plasma-beam interface model

Let us recall that there are two different systems for the description of the plasma

bubble expansion. A quasi-neutral system for the plasma region and a Child-

Langmuir system for the beam region. In order to close the model we must precise

the dynamics of the plasma-beam interface and reconnect the quasi-neutral and the

Child-Langmuir systems at this interface.

After rescaling the connection problem can be expressed in terms of the vari-

able normal to the interface. Thus, the multi-dimensional case consists of one-

dimensional problems in the normal direction on each point of the plasma-beam

interface. Consequently, we just describe the one-dimensional analysis and give the

transmission relations in the multi-dimensional case. We reconnect the quasi-neutral

model (3.20)-(3.24), (3.27), (3.28) with the Child-Langmuir model (3.37), (3.38).

Following Ref. 13, this reconnection is obtained through the analysis of a one-

dimensional transmission problem. We begin with the evaluation of the different

parameters that must be determined for the problem to be at least formally well-

posed.

In the one-dimensional case, we recall that the plasma-beam interface reduces

to a point. We denote it by X(t). We must determine the time evolution of this

point X(t). Besides, in each zone some information is missing. Both the evolution

of X(t) and the missing information can be partially recovered by analyzing the

transition problem.

At the plasma beam interface, we need to determine the current. We recall that,

in the one-dimensional case, the current depends only on time in both zones. Then,

it is sufficient to determine it at one point in the domain. Furthermore, in the beam

zone, the current is known as soon as the electric field at the interface is known.

In the plasma region, we must impose some boundary conditions at the plasma

beam interface for the conditionally hyperbolic system (3.23), (3.24), (3.27), (3.28)
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when it is subsonic. We have seen in Section 3.1 that if γepe + γipi ∈ [εj2/((1 +

ε)n), j2/n], the interface is supersonic and we do not need to impose a boundary

condition. But if γepe + γipi > j2/n, we need to impose one boundary condition at

the plasma beam interface.

Finally in the beam region, the determination of the pressure requires the knowl-

edge of the ion density and pressure at the plasma beam interface.

Like in Ref. 13, we introduce a transmission problem in order to connect the two

models. To this aim, we go back to the two-fluid Euler-Poisson system (3.1)-(3.6)

and we zoom in on the plasma beam interface. Therefore, we introduce the change

of variables x 7→ ξ = (x −X(t))/λ and we set f(x, t) = f̃(ξ, t) for all functions f .

Omitting the “tildes” and formally passing to the limit λ→ 0, we obtain

∂ξ(ni,e (ui,e −X ′)) = 0, (3.40)

∂ξ(ni ui (ui −X ′) + pi) = −ni ∂ξφ, (3.41)

∂ξ(εne ue (ue −X ′) + pe) = ne ∂ξφ, (3.42)

(ui,e −X ′) ∂ξpi,e + γi,e pi,e ∂ξui,e = 0, (3.43)

−∂2
ξξφ = ni − ne, (3.44)

where X ′ is the plasma-beam interface velocity.

Let us be more precise about the boundary conditions for this transmission

problem. We are looking for solutions which connect the solution of the quasi-

neutral system (3.20)-(3.24), (3.27), (3.28) at ξ → −∞, to the solution of the

Child-Langmuir problem (3.37), (3.38) at ξ → ∞. Furthermore, since the plasma-

beam interface is located at ξ = 0, we set ne = 0 for ξ > 0. Finally we are looking

for solutions such that ne is continuous at the plasma-beam interface ξ = 0. Indeed,

it is well known that for an ordinary fluid a shock wave cannot border the vacuum,

see Ref. 28. The boundary conditions are the following for ξ → −∞:

ni, ne → n−, ui → u−+
j

n−
, ue → u−, pi → pi−, pe → pe−, φ, φξ → 0 , (3.45)

where n− = n|X(t)−0, u− = ue|X(t)−0, pi− = pi|X(t)−0, pe− = pe|X(t)−0 are the val-

ues of the quasi-neutral system solution at the plasma-beam interface. Furthermore,

j is the current in the plasma region. We recall that it depends only on time.

For ξ → ∞, ui must reconnect to the Child-Langmuir velocity, which is large of

the order O(η−1/2), because of the change of scale in the beam region (see discussion

at the beginning of Section 3.2). Therefore, for ξ → ∞, ui ∼ η−1/2 while X ′ is of

order O(1). We deduce that ni (ui −X ′) ∼ niui as ξ → ∞ and the reconnection to

the Child-Langmuir region implies that

ni (ui −X ′) → j̄i , when ξ → ∞ , (3.46)

where j̄i is the ion flux of the Child-Langmuir problem. Finally, we shall be looking

for a solution such that ni is bounded as ξ → ∞, otherwise the traveling-wave

solution cannot be used to reconnect the two models.
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In Ref. 13, it is shown that non regular solutions (shock waves) cannot be solu-

tions of this system in the isentropic case. But, we will see that solving this system

amounts to considering isentropic pressure laws. Then, we assume regular solutions.

Thanks to (3.40) we have ni,e(ξ, t)(ui,e(ξ, t)−X ′) = Ji,e(t) for all ξ ∈ IR and all

t > 0, where the ion and electron current Ji(t) and Je(t) are unknown at this level.

Inserting this result in (3.43), this gives

∂ξpi,e

pi,e
= −γi,e

∂ξui,e

(ui,e −X ′)
= −γi,e

∂ξJi,e/ni,e

Ji,e/ni,e
= γi,e

∂ξni,e

ni,e
.

Integrating the previous equation, we obtain

pi,e(ξ, t) = C̄i,e n
γi,e

i,e (ξ, t),

for ξ ∈ IR, t > 0 and where C̄i,e are constant parameters determined by the bound-

ary conditions. Thus, the transmission problem (3.40)-(3.44) is formally equivalent

to the following system:

ni,e (ui,e −X ′) = Ji,e(t), (3.47)

∂ξ(ni ui (ui −X ′) + pi) = −ni ∂ξφ, (3.48)

∂ξ(εne ue (ue −X ′) + pe) = ne ∂ξφ, (3.49)

pi,e = C̄i,e n
γi,e

i,e , (3.50)

−∂2
ξξφ = ni − ne. (3.51)

We obtain the same interface problem as in the isentropic case solved in Ref. 13.

We briefly recall its solution referring to Ref. 13 for details.

Since ne(ξ, t) = 0 for all ξ > 0 and all t > 0, Eq. (3.47) gives Je = 0. Then using

the boundary conditions (3.45), we get

X ′(t) = u− = ue(X(t), t), (3.52)

where ue is the electron velocity given by the quasi-neutral model (3.20)-(3.24),

(3.27), (3.28).

Now, thanks to (3.47) and to the boundary conditions (3.45) and (3.46), we

obtain the current continuity:

j(t) = j̄i(t), (3.53)

where, we recall that j is the current in the plasma zone and ji is the ion current

in the beam region. Furthermore, the constant parameters in the pressure relations

are given by

C̄i =
pi−

nγi

−

=
pi(X(t), t)

(n(X(t), t))γi
and C̄e =

pe−

nγe

−

=
pe(X(t), t)

(n(X(t), t))γe
, (3.54)

where pi, n and pe are given by the quasi-neutral model (3.20)-(3.24), (3.27), (3.28).

Finally using these results, in Ref. 13, we prove that the solution of (3.47)-(3.51)

is obtained solving a differential system on the electric potential and the electric field

(we refer to Ref. 13 for more details). A phase portrait analysis gives a necessary and
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sufficient condition for the existence of a solution to (3.40)-(3.44), (3.45) and (3.46).

This condition is given by:

j2

n−
≥ γepe− + γipi−. (3.55)

This condition is nothing but the “Bohm sheath criterion” which is well-known in

ion sheath physics (see Ref. 4, Ref. 23). Indeed this condition tells exactly that

the interface, which moves at the electron velocity, must be supersonic, see the

introduction at the beginning of this section.

This condition implicitly gives a boundary condition for the quasi-neutral model

when it is necessary: if the interface is subsonic, that is if the density and the pressure

in the plasma are such that j2/n− < γepe− + γipi−, then we impose the following

condition at the plasma-beam interface:

j(t)2

n(X(t), t)
= γe pe(X(t), t) + γi pi(X(t), t). (3.56)

We will see in Section 4.2 that this condition allows for the existence of a shock

wave between the plasma and the vacuum in the quasi-neutral model contrary to

classical plasma-fluid interface problem for the two-fluid Euler-Poisson system, see

Ref. 28. But, this shock cannot be too strong since the density in the plasma is

limited by the condition (3.55).

Unfortunately, like in the isentropic case, this transmission problem gives the

current continuity but not the value of this current. In order to assign a value to

j̄i = j, we assume that the emission in the beam is the maximal possible current

emission that is, φx(X(t), t) = 0 for all t > 0 which gives

j(t) = jCL, (3.57)

where jCL is the Child-Langmuir current defined by (3.36).

We generalize these transmission relations in the multi-dimensional case. First,

following (3.52), the velocity of each point of the plasma-beam interface is given by

the electron velocity. Then, for all t > 0 and all x(t) ∈ Γ(t)

dx(t)

dt
= ue(x(t), t).

We assume the continuity of the current at the plasma-beam interface. Therefore

Eq. (3.53) is generalized by j(x(t), t) = j̄i(x(t), t) for all t > 0 and all x(t) ∈ Γ(t).

The pressure laws are still given by (3.54) changing X(t) into x(t). Furthermore

the boundary condition for the quasi-neutral model at the plasma-beam interface

is given by

|j(x(t), t)|2
n(x(t), t)

= γe pe(x(t), t) + γi pi(x(t), t),

if |j(x(t), t)|2/n(x(t), t) < γepe(x(t), t) + γipi(x(t), t), unless the interface is super-

sonic.



16

Finally, assuming a maximal current regime in the beam, we consider the fol-

lowing boundary condition for the Child-Langmuir system (3.34)

(∇φ · ν)(x(t), t) = 0,

where ν is the unit normal to Γ(t) outwards to ΩP (t).

4. Discretization of the one-dimensional asymptotic model

First we summarize the asymptotic model in the one-dimensional case. It is consti-

tuted of two systems, one for the plasma region ΩP (t) = [0,X(t)] and one for the

beam region ΩB(t) = [X(t), 1]. The dynamics of the plasma-beam interface is given

by (3.52) for all t > 0.

The system for the plasma region consists of the one-fluid formulation of the

quasi-neutral model (3.20)-(3.24), (3.27), (3.28). The current j is given by (3.57).

Initially the domain is supposed to be devoid of plasma and the boundary con-

ditions are defined by (3.30) at the anode x = 0. At the plasma-beam inter-

face we impose (3.56) if the interface is subsonic, that is if j2/n(X(t), t) <

γe pe(X(t), t)+γi pi(X(t), t). In the beam region, we use the Child-Langmuir model

given by (3.37), (3.39), (3.53) and (3.54).

Since the Child-Langmuir model has an explicit solution, the only points which

deserve some discussion are the discretization of the motion of the plasma-beam

interface (3.52) and that of the quasi-neutral model (3.20)-(3.24), (3.27), (3.28) in

the plasma region [0,X(t)] for all t > 0.

We begin the presentation of the discretization with the description of the gen-

eral principle of the scheme. Then, in Section 4.2, we calculate the approximate

interface velocity with the help of a particular Riemann problem.

4.1. General principle of the scheme

The quasi-neutral model (3.20)-(3.24), (3.27), (3.28) can be written in the following

form

∂tW +A(W )∂xW = S(W ), (4.1)

where W = (n, ue, pe, pi)
T , S(W ) = (0,−∂tj/((1 + ε)n), 0, 0)T and where A is a

four by four matrix defined by

A(W ) =















ue n 0 0

−j2/((1 + ε)n3) ue + 2j/((1 + ε)n) 1/((1 + ε)n) 1/((1 + ε)n)

0 γepe ue 0

−γipij/n
2 γipi 0 ue + j/n















.

(4.2)

We denote by ∆t > 0 the time step and we set tm = m∆t for all m ∈ IN. We

refer to the m-th step as the step consisting in determining an approximation of the

variable W at time tm+1 knowing its approximation at time tm.
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We recall that the domain is defined by [0,X(t)] and so it varies with time.

Then, we use a space discretization which follows the interface position. We begin

with a uniform discretization of [0, 1] such that [0, 1] = ∪N
k=1Mk where N ∈ IN∗

is the given number of cells and Mk = [xk−1/2, xk+1/2[ with xk−1/2 = (k − 1)∆x

and ∆x = 1/N . During the m-th step, the interface position Xm at time tm is

known and the interface position Xm+1 at time tm+1 is calculated with an explicit

discretization of (3.52) given by

Xm+1 = Xm + ∆t um
I ,

where um
I is an approximation of the interface velocity calculated in Section 4.2. In

particular, we will see that um
I is completely determined by the approximate values

of W at time tm.

We denote by km
0 the index of the uniform cellMkm

0
containingXm. Then, during

the m-th step the mesh for the plasma region is defined by ∪km
0 −2

k=1 Mk∪[xkm
0
−3/2,X

m[

at time tm and by ∪km
0 −2

k=1 Mk ∪ [xkm
0
−3/2,X

m+1[ at time tm+1, see Fig. 1.

t

X
m

X
m+1

t
m

t
m+1

M1 M2 Mkm
0
−2

x1/2 = 0 x3/2 x5/2

xkm
0
−1/2

xkm
0
−3/2xkm

0
−5/2

x

Fig. 1. Space discretization of the plasma zone at times t
m and t

m+1 during the m-th step. The

m-th step consists in determining an approximation of the variable W at time t
m+1 knowing this

approximation at time t
m.

We choose to put together the cell Mkm
0
−1 and the interval [xkm

0
−1/2,X

m[ in order

to avoid restrictive C.F.L. conditions. Indeed Xm−xkm
0
−1/2 can be very small while

Xm − xkm
0
−3/2 is always bigger than ∆x.

We consider a piecewise constant approximation, then we denote by Wm
k an

approximation of W at time tm during the m-th step, on Mk for k = 1, · · · , km
0 − 2

and on [xkm
0
−3/2,X

m[ for k = km
0 − 1. We are looking for an approximation Wm+1

k

of W at time tm+1 during the m-th step, on Mk for k = 1, · · · , km
0 − 2 and on

[xkm
0
−3/2,X

m+1[ for k = km
0 − 1.

First, we present the scheme for interior cells, i.e. for k = 1, · · · , km
0 −2. We recall

that we are interested in problems such that the solution in the plasma region is

a regular function. Then, we can use the non conservative form of the hyperbolic

system (4.1). We split the matrix A in its positive and negative parts: A(W ) =

A+(W ) − A−(W ) where we recall that the matrix A+(W ) is a diagonal matrix in

the eigenvectors basis. Its diagonal is constituted of the maxima of 0 and of each

eigenvalue of A. In practice we do not calculate A+ and A− but following Ref. 15,
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we use approximations of these matrices. It consists in writing 2A+ = |A| + A,

2A− = |A| − A and approximating |A| with a polynomial function (here of degree

2) of the variable A. For more detail we refer to Ref. 15 or Ref. 10.

We denote by A+,m
k,k−1 and by A−,m

k+1,k, the respective polynomial approximations

of A+
(

(Wm
k +Wm

k−1)/2
)

and A−
(

(Wm
k+1 +Wm

k )/2
)

. Then, the numerical scheme

for interior cells k = 1, · · · , km
0 − 2, is given by

∆x(Wm+1
k −Wm

k ) + ∆t
[

A+,m
k,k−1 (Wm

k −Wm
k−1) −A−,m

k+1,k (Wm
k+1 −Wm

k )
]

=

(

0,−∆x
jm+1 − jm

(1 + ε)nm+1
k

, 0, 0

)T

where the approximations jm and jm+1 of the plasma current at times tm and tm+1

are given using (3.57), (3.36), Xm and Xm+1.

For the last cell [xkm
0
−3/2,X

m[, we introduce the solution of a Riemann problem.

It consists in solving (4.1) without the source term and with a piecewise constant

initial data W (x, 0) = Wm
km
0

, if x < 0, and W (x, 0) = (0, ue,d, pe,d, pi,d)
T , if x > 0.

We denote by Wm
I the value bordering the vacuum of this solution. This value is

calculated in Section 4.2. And the scheme on the last cell is given by

Xm+1 − xkm
0
−3/2

∆t
Wm+1

km
0
−1 −

Xm − xkm
0
−3/2

∆t
Wm

km
0
−1 − um

I Wm
I +

(

Xm+1 +Xm

2
− xkm

0
−3/2

)[

A+,m
km
0
−1,km

0
−2

Wm
km
0
−1 −Wm

km
0
−2

∆x
−A−,m

I

Wm
I −Wm

km
0
−1

Xm − xkm
0
−1

]

=

(

0,−
Xm+1 − xkm

0
−3/2

∆t

jm+1 − jm

(1 + ε)nm+1
km
0
−1

, 0, 0

)T

,

where A−,m
I and A+,m

km
0
−1,km

0
−2 are the polynomial approximations of A+ (Wm

I ) and

of A+((Wm
km
0
−1 +Wm

km
0
−2)/2).

In order to perform the next step, i.e. the (m+1)-th step, we have to re-initiate

the mesh for the plasma region and the associated approximation of W . To this

aim, we consider the cell Mkm+1

0

containing Xm+1. If km+1
0 = km

0 , the mesh and the

associated approximation of W are the same as in the m-th step. Otherwise km+1
0 =

km
0 + 1 and the mesh is given by ∪km

0 −1
k=1 Mk ∪ [xkm

0
−1/2,X

m+1[= ∪km+1

0
−2

k=1 Mk ∪
[xkm+1

0
−3/2,X

m+1[. The approximation of W on the last cell [xkm
0
−1/2,X

m+1[ is

defined by setting Wm+1

km+1

0
−1

= Wm+1

km+1

0
−2

= Wm+1
km
0
−1.

4.2. A particular fluid-vacuum Riemann problem at the

plasma-beam interface

In order to precisely approximate the velocity of the plasma-beam interface position

we introduce a particular Riemann problem. Since, in the beam region there is no

plasma, the right state is the vacuum. But there are ions in the beam which exert
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a pressure. Therefore, this vacuum state has a non zero pressure. So, we consider

the following Riemann problem:














∂tW +A(W )∂xW = 0,

W (x, 0) =

{

Wg = Wm
km
0

= (ng, ue,g, pe,g, pi,g)
T , if x < 0,

Wd = (0, ue,d, pe,d, pi,d)
T , if x > 0,

(4.3)

where A is defined by (4.2).

It is well-known that the solution of this system is self-similar. We denote it

by W̃ (x/t) = (ñ, ũe, p̃e, p̃i)
T . We recall that we consider an ion emission at the

plasma-beam interface. Then we assume j(t) > 0 for all t > 0. Furthermore, follow-

ing the numerical results of the two-fluid Euler-Poisson model performed in Ref. 13,

we are looking for a solution such that the state bordering the vacuum is separated

from the vacuum by a shock wave or a contact discontinuity.

Now, we prove the following lemma:

Lemma 4.1. We consider the Riemann problem (4.3) and we assume j(t) > 0 for

all given t > 0. We denote by W̃ (x/t)=(ñ, ũe, p̃e, p̃i)
T a solution to (4.3) such that

the state bordering the vacuum and the vacuum are separated by a shock wave or a

contact discontinuity.

Then, if γepe,g + γipi,g ∈
[

ε j2/((1 + ε)ng), j
2/ng

]

, the state bordering the vac-

uum Wm
I and the plasma beam interface velocity um

I are respectively given by

Wg and ue,g. But, if γepe,g + γipi,g > j2/ng, the state bordering the vacuum

Wm
I = (nI , ue,I , pe,I , pi,I)

T and the plasma beam interface velocity um
I are given

by


































pe,I = Ce n
γe

I , pi,I = Ci n
γi

I , γe pe,I + γi pi,I =
j2

nI
,

um
I = ue,I = ue,g +

j

1 + ε

(

1

ng
− 1

nI

)

−
∫ nI

ng

1

s

(

γe Ce s
γe−1 + γi Ci s

γi−1

(1 + ε)
− ε j2

(1 + ε)2s2

)1/2

ds,

(4.4)

where Ce = pe,g/n
γe
g and Ci = pi,g/n

γi
g .

Proof. We have seen in Section 3.1, that the system (4.3) is hyperbolic under the

condition γepe + γipi > ε j2/((1 + ε)n). In the hyperbolicity domain, this system

has four eigenvalues given by ue, ui = ue + j/n, µ+ = up + c and µ− = up − c where

up and c are given by (3.31).

Furthermore, if γepe + γipi ∈
[

ε j2/((1 + ε)n), j2/n
]

all the eigenvalues of sys-

tem (4.3) are bigger than ue, see the discussion at the beginning of Section 3.3. But,

thanks to (3.52), the plasma-beam interface velocity is given by ue. Therefore, in

a frame moving with the interface all the eigenvalues are positive. The associated

characteristic fields are supersonic and no boundary conditions are necessary.
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But if γepe + γipi > j2/n, one of the eigenvalues, µ−, is lower than ue. The

associated characteristic field is subsonic and we must impose a boundary condition.

Following the analysis of the interface model, see Section 3.3, we impose the limit

values satisfying the Bohm sheath criterion (3.56), that is γepe + γipi = j2/n.

Before solving the Riemann problem (4.3), let us determine the nature of the

elementary waves associated to each eigenvalues of A.

An easy calculation shows that the characteristic fields associated to ue and ui =

ue + j/n are linearly degenerate. Then, the elementary waves, separating two states

Wg = (ng, ue,g, pe,g, pi,g)
T and Wd = (nd, ue,d, pe,d, pi,d)

T and associated to ue or

ui = ue + j/n, can only be contact discontinuities. Writing the Rankine-Hugoniot

relations for the mass and total momentum conservation laws and denoting by σ

the wave velocity, we show that these contact discontinuities are characterized by

σ = ue,g = ue,d and
j2

ng
+ pe,g + pi,g =

j2

nd
+ pe,d + pi,d,

for a contact discontinuity associated to ue, and

σ = ue,g +
j

ng
= ue,d +

j

nd
and − ε ue,g j + pe,g + pi,g = −ε ue,d j + pe,d + pi,d,

for a contact discontinuity associated to ui = ue + j/n.

Furthermore the characteristic fields associated to µ+ and µ− are genuinely non-

linear. Then, the elementary waves, separating two states Wg = (ng, ue,g, pe,g, pi,g)
T

and Wd(nd, ue,d, pe,d, pi,d)
T and associated to µ+ or µ−, can be either shock waves

or rarefaction waves.

Note that due to the non conservativity of the system (4.3), some Rankine-

Hugoniot relations are missing for the characterization of shock waves. But we will

see that the Rankine-Hugoniot relations associated to the mass and total momen-

tum conservation laws are sufficient to solve the particular fluid-vacuum Riemann

problem (4.3).

For an elementary wave associated to µ+, we prove that:

If nd ≥ ng, then, the states Wg and Wd can be connected by a µ+-rarefaction wave

if and only if

pe,g

nγe
g

=
pe,d

nγe

d

,
pi,g

nγi
g

=
pi,d

nγi

d

and Z+(Wg) = Z+(Wd),

where for all W = (n, ue, pe, pi)
T in the hyperbolicity domain, pe,i/n

γe,i and Z+ are

the Riemann invariants of the field µ+. The Riemann invariant Z+ is defined by

Z+(W ) = ue +
j

(1 + ε)n
−
∫ n

ng

(

γe Ce s
γe−1 + γi Ci s

γi−1

(1 + ε) s2
− ε j2

(1 + ε)2s4

)1/2

ds,

with Ce = pe,g/n
γe
g and Ci = pi,g/n

γi
g .

Otherwise, Wg and Wd can be connected by a µ+-shock wave if and only if

pe,d + pi,d − (pe,g + pi,g)

nd − ng
≥ ε j2

(1 + ε)nd ng
. (4.5)
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In this case, we write the Rankine-Hugoniot relations of the mass and total mo-

mentum conservation laws and the Lax conditions

µ+(Wg) > σ+ > µ+(Wd) and ui(Wg) < σ+,

where σ+ is the velocity of the shock wave. This yields the µ+-shock wave charac-

terization

ue,g = ue,d +
(nd − ng) (ue,d − σ+)

ng
,

σ+ = ue,d +
1

(1 + ε)nd

[

j +

√

−ε j2 + (1 + ε)nd ng
pe,d + pi,d − (pe,g + pi,g)

nd − ng

]

.

Similarly for an elementary wave associated to µ−, we prove that:

If nd ≤ ng, then, the states Wg and Wd can be connected by a µ−-rarefaction wave

if and only if

pe,g

nγe
g

=
pe,d

nγe

d

,
pi,g

nγi
g

=
pi,d

nγi

d

and Z−(Wg) = Z−(Wd), (4.6)

where for all W = (n, ue, pe, pi)
T in the hyperbolicity domain, Z− is defined by

Z−(n, ue) = ue +
j

(1 + ε)n
+

∫ n

ng

(

γe Ce s
γe−1 + γi Ci s

γi−1

(1 + ε) s2
− ε j2

(1 + ε)2s4

)1/2

ds.

Otherwise, the states Wg and Wd can be connected by a µ−-shock wave if and only

if (4.5) is satisfied. Then, using the Rankine-Hugoniot relations of the mass and

total momentum conservation laws as well as the Lax conditions, we prove that a

µ−-shock wave is characterized by

ue,g = ue,d +
(nd − ng) (ue,d − σ−)

ng
,

σ− = ue,d +
1

(1 + ε)nd

[

j −
√

−ε j2 + (1 + ε)nd ng
pe,d + pi,d − (pe,g + pi,g)

nd − ng

]

,

where σ− is the velocity of the shock wave and where the Lax conditions are given by

µ−(Wg) > σ− > µ−(Wd) and ue(Wd) > σ−.

Now, let us turn to the resolution of the Riemann problem (4.3). We recall that

we are looking for a solution to (4.3) such that the state bordering the vacuum,

denoted by WI = (nI , ue,I , pe,I , pi,I)
T , and the vacuum are separated by a shock

wave or a contact discontinuity. Then, writing the conservation of the mass, we

obtain

[n(ue − σ)] = 0 ⇔ nI (ue,I − σI) = 0 (ue,d − σI) ⇔ ue,I = σI .

where σI is the velocity of the wave and also the velocity of the plasma-beam

interface.
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We begin assuming γepe,g + γipi,g ≤ j2/ng. In this case ueg ≤ µ−(Wg) ≤
µ+(Wg) ≤ ui,g, then all the waves are faster than the plasma beam interface velocity.

The solution is given by the left state Wg and the vacuum connected by a ue contact

discontinuity and WI = Wg.

Now, we assume that γepe,g+γipi,g > j2/ng, in this case the interface is subsonic:

one of the eigenvalues, µ− is lower than the plasma-beam interface velocity, ue. It is

necessary to impose a boundary condition, and we recall we chose to assume (3.56).

Using the characterizations of the elementary waves, we show that the solution

is given by the left state Wg connected to WI by a µ− rarefaction wave and the

intermediate state WI connected to the vacuum by a ue contact discontinuity. Then,

using the Riemann invariants relations (4.6), we obtain that WI is given by (4.4).

5. Numerical results

In order to validate the asymptotic model, we compare it to the Euler-Poisson

system (3.1)-(3.6) in the one-dimensional case for two different test cases. In both

cases we consider a quasi-neutral plasma expansion in the vacuum separating two

electrodes. But in the first test case the plasma is injected from the anode while in

the second test case it is injected from the cathode.

The discretization of the Euler-Poisson system (3.1)-(3.6) is standard, we use an

explicit finite volume scheme with a Godunov solver for the hydrodynamic fluxes, a

finite difference scheme for the Poisson equation and an implicit treatment for the

source terms.

In the first test case, related to high current injectors for ions accelerators, we

inject a quasi-neutral plasma from the anode located at x = 0. We consider a

plasma constituted of electrons and of Deuterium ions. Therefore mi = 3, 37 · 10−27

kg. Furthermore the physical parameters are the following, the ratios of specific

heats are given by γi = γe = γ = 5/3. The velocity, density and temperatures of

the injected plasma are Ni = Ne = N0 = 1020 m−3, Ui = Ue = U0 = 3 · 104 m/s

and T i = T e = 5 eV. The length of the diode is L = 1, 15 ·10−2 m and the potential

at the electrodes are: ΦK = −105 Volts for the cathode and ΦA = 0 Volt for the

anode. This yields the following scaled parameters

ε = 2, 7 · 10−4, η = 5 · 10−5 and λ = 4, 2 · 10−4.

We use a uniform mesh with 7000 cells for the Euler-Poisson system and with 2000

cells for the asymptotic model. It is important to note that, even if the plasma

period is resolved i.e. if Eq. (2.7) is satisfied, this is not possible to choose a coarse

mesh for the Euler-Poisson system because some numerical instabilities appear at

the plasma-beam interface. Furthermore, the computational time for the asymptotic

model is 70 seconds while that of the Euler-Poisson model is more than 12 hours.

Then there is a very important time saving using the asymptotic model. Figs. 2, 3, 4

and 5 give the results for this test case.

Fig. 2 (left) shows the quasi-neutral density in the plasma. The results are com-

puted with the two-fluid Euler-Poisson and the quasi-neutral models. We note a
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good agreement of the curves at the beginning of the plasma expansion, but with a

discrepancy between the results at the end of the simulation. This discrepancy man-

ifests itself on the plasma-beam interface position, which the quasi-neutral model

computes, a little bit ahead of that of the Euler-Poisson model and on the particle

density which is too large around the anode for the quasi-neutral model. These

problems certainly result from the presence of a boundary layer at the injection

point. They were already observed in the isentropic case (see Ref. 13) but it seems

that they are magnified when the energy conservation laws are considered. The

detailed study of this boundary layer is a difficult problem and is in progress. It

should also be noted that the electric field in the beam region is very large when

the plasma-beam interface reaches the cathode, see Fig. 5 (right). Therefore, the

current is very large and the problem becomes unstable and very difficult to solve.

The physical relevance of the model is also questionable because then, the external

circuit will limit the value of the current.

The same problems can be observed on the particle velocities in the plasma,

see Fig. 3, and on the ion and electron pressures, see Fig. 4. Note that there are

large oscillations around the interface on the electron velocity curve given by the

Euler-Poisson model. These oscillations give large negative values for the electron

velocity. We must cut them otherwise it is not possible to see the variations of

the velocity in the plasma. These oscillations are related to the small mass ratio ε

present in the electron momentum conservation law.

On Fig. 2 (right), we plot the current inside the domain, computed with both

the Euler-Poisson model and with the Child-Langmuir law. Once again, there is a

good agreement at the beginning of the simulation and a discrepancy at the end of

the process. This discrepancy is related with the error made for the determination

of the interface since the Child-Langmuir depends on this position through (3.36).

At the end of the simulation, the plasma-beam interface is no more well predicted

by the asymptotic model and the current is consequently badly predicted too. The

same remark can be made on the electric potential in the beam region given by

Fig. 5. Note that the two-fluid Euler-Poisson model yields a non constant current

for times close to the initial one (see the curve at the rescaled time t = 0.01).

This is due to the fact that the Child-Langmuir regime is not yet established.

At large times, the Euler-Poisson model yields a constant current except at the

plasma-beam interface where there is a peak. This peak, already present in the

isentropic case (see Ref. 13), can be explained by means of the transmission problem

solution. Indeed, in the transmission region, we have ji = ni(ui − dX(t)/dt) and

ne(ue − dX(t)/dt) = 0 where ji does not depend on x. But the current j is given

by j = niui − neue = ji + (ni − ne)dX(t)/dt. Thus j varies like ni − ne and its

shape, as a function of x, is exactly that of the observed peak. Note again that due

to the large electric field in the beam region, the current is very large at the end of

the simulation. And, the physical relevance of the model is questionable because in

practice, the external circuit limits the value of the current.

In the second test case, related to the study of high current diodes and of arc
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Fig. 2. Test case 1. Left: quasi-neutral density in the plasma, given by the Euler-Poisson model
(solid line) and by the quasi-neutral model (dotted line). The results are given at the rescaled
times 0.01, 0.05, 0.15 and 0.3. Right: current inside the domain, given by the Euler-Poisson model

(solid line) and by the Child-Langmuir model (3.36) using the plasma-beam interface calculated
with the quasi-neutral model (dotted line). The results are given at the rescaled times 0.01, 0.05,
0.15 and 0.3.
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Fig. 3. Test case 1. Left: positive part of the electron velocity given by the Euler-Poisson model

(solid line) and electron velocity given by the quasi-neutral model (dotted line) in the plasma
region. The results are given at the rescaled times 0.01, 0.05, 0.15 and 0.3. Right: ion velocity
given by the Euler-Poisson model (solid line) and by the quasi-neutral model (dotted line) in the
plasma region at the rescaled times 0.01, 0.05, 0.15 and 0.3.

phenomena on satellites, the quasi-neutral plasma is injected from the cathode

located at x = 0. Then the emitted particles from the plasma-beam interface are now

electrons. We consider the following rescaled parameters λ = 3, 1 · 10−4, ε = 10−4

and η = 10−3. We use a uniform mesh with 3500 cells for the Euler-Poisson system

and with 1000 cells for the asymptotic model. Furthermore, the computational time

for the asymptotic model is 34 seconds while that for the Euler-Poisson model is

more than 3 hours. Then there is still an important time saving using the asymptotic

model. Figs. 6, 7, 8 and 9 give the results for this test case.
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Fig. 4. Test case 1. Electron and ion pressures given by the Euler-Poisson model (solid line) and
by the quasi-neutral model (dotted line) in the plasma region at the rescaled times 0.01, 0.05, 0.15
and 0.3.
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Fig. 5. Test case 1. Ion velocity and electric potential in the beam region given by the Euler-Poisson
model (solid line) and by the Child-Langmuir model (dotted line) at the rescaled times 0.01, 0.05,
0.15 and 0.3.

The results have overall an identical behavior compared with the results of the

previous test case. The plasma-beam interface is well approximated during all the

simulation (see Fig. 6). We still observe the presence of a boundary layer at the

injection point, the cathode x = 0, which generates an error on the results that

increases with time. Remark that the comparison of the results stops earlier in the

expansion process. This is due to the fact that we cannot give results for larger times

for the asymptotic model. Just after the rescaled time t = 0.6 the hyperbolicity of

the quasi-neutral model is lost and then the simulation of the asymptotic model

stops. In the case of an electron beam, the hyperbolicity region of the quasi-neutral

model is characterized by

γepe + γipi ≥
εj2

(1 + ε)n
.
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We recall that in order to have a solution to the transmission problem, a necessary

and sufficient condition is that the interface is supersonic, which is characterized by

γepe + γipi ≤
εj2

n
.

The smallness of ε gives a very small range between the critical values εj2/((1+ε)n)

and εj2/n. This yields an unstable numerical resolution of this problem and explains

why, contrary to the previous test case, we lose quite quickly the hyperbolicity of

the quasi-neutral model. In Ref. 10, it has been showed that this breakdown of

the model can be attributed to a physical two-stream instability. This instability

occurs when the plasma current reaches large values as the interface moves closer to

the anode. In this case, non quasi-neutral modes are excited and the quasi-neutral

model fails to describe them. For these particular situations, the problem can be

cured by using the Euler-Poisson model which describes both quasi-neutral and

non quasi-neutral modes but it is necessary to discretize it with an asymptotic

preserving scheme in the quasi-neutral limit. Such a scheme has been developed in

the isentropic case, see Ref. 11. Investigation of this scheme for the full Euler case

is in progress.

Furthermore, at the end of the simulation we remark a stronger discrepancy

between the results of the two models in the beam region as compared to the

previous test case. But, here the potential difference between the electrodes is one

hundred times smaller than that applied in the previous test case. Thus it would

certainly be more accurate to couple the quasi-neutral model with a one-fluid Euler-

Poisson model for the description of the beam instead of a child-Langmuir law.
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Fig. 6. Test case 2. Left: quasi-neutral density in the plasma, given by the Euler-Poisson model

(solid line) and by the quasi-neutral model (dotted line). The results are given at the rescaled times
0.01, 0.03, 0.05 and 0.06. Right: current inside the domain, given by the Euler-Poisson model (solid
line) and by the Child-Langmuir model (3.36) using the plasma-beam interface calculated with

the quasi-neutral model (dotted line). The results are given at the rescaled times 0.01, 0.03, 0.05
and 0.06.
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Fig. 7. Test case 2. Electron and ion velocities given by the Euler-Poisson model (solid line) and
by the quasi-neutral model (dotted line) in the plasma region at the rescaled times 0.01, 0.03, 0.05
and 0.06.
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Fig. 8. Test case 2. Electron and ion pressures given by the Euler-Poisson model (solid line) and
by the quasi-neutral model (dotted line) in the plasma region at the rescaled times 0.01, 0.03, 0.05
and 0.06.
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Fig. 9. Test case 2. Electron velocity and electric potential in the beam region given by the Euler-
Poisson model (solid line) and by the Child-Langmuir model (dotted line) at the rescaled times

0.01, 0.03, 0.05 and 0.06.
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6. Conclusion

In this paper, we have proposed a model for the description of a quasi-neutral plasma

expansion between two electrodes. This model is obtained using an asymptotic

analysis from the full-Euler-Poisson system. It consists of a quasi-neutral model

for the plasma region and of a Child-Langmuir law for the beam region. They are

coupled at the plasma-beam interface using transmission relations. These relations

have been obtained from the study of a travelling wave problem in the transition

region. Numerical simulations have been performed for two test cases in one space

dimension. They confirm that the model produces a good approximation of the

original two-fluid Euler-Poisson model and show that there is a very important

time saving using the asymptotic model.
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