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Summary We study here the convergence of a finite volume scheme for a diffusion-convection equation
on an open bounded set of IRd (d = 2 or 3) for which we consider Dirichlet, Neumann or Robin boundary
conditions. We consider unstructured meshes which include Voronöı or triangular meshes; we use for the
diffusion term an “s points” (where s is the number of sides of each cell) finite volume scheme and for
the convection term an upstream finite volume scheme. Assuming the exact solution at least in H2 we
prove error estimates in a discrete H1

0 norm of order the size of the mesh. Discrete Poincaré inequalities
then allow to prove error estimates in the L2 norm.

1 Presentation of the problem

Let Ω be an open bounded subset of IRd (d = 2 or 3) which is assumed to be polygonal if d = 2 and
polyhedral if d = 3. We denote by ∂Ω its boundary and by n the unit normal to ∂Ω outward to Ω.
We consider the following convection diffusion reaction problem:

−∆u(x) + div
(
v(x)u(x)

)
+b(x)u(x) = f(x), x ∈ Ω, (1)

with different boundary conditions and the following hypotheses

Assumption 1 f ∈ L2(Ω), b ∈ L∞(Ω) and v ∈ C1(Ω, IRd) such that divv/2 + b ≥ 0 almost every-
where.

In this paper, we consider three different types of boundary conditions for the previous diffusion convection
equation, namely Dirichlet, Neumann or Robin boundary conditions; these conditions are not necessarily
homogeneous. This elliptic problem is then discretized with a finite volume scheme: an “s-points” scheme,
where s is the number of sides of each cell, is used for the diffusion term and an upstream scheme for the
convection term.
Let us remark that the analysis which is developed here still holds for equations of the type

−div
(
k(x)∇u(x)

)
+ div

(
v(x)u(x)

)
+b(x)u(x) = f(x), x ∈ Ω, (2)

under Assumption 1 with the following hypothesis on k:

Assumption 2 k is a piecewise C1 function from Ω to IR such that there exists k0 ∈ IR∗
+ such that

k(x) ≥ k0 for a.e. x ∈ Ω.

For the sake of the simplicity of notations we prefer to deal with the Laplace operator here but we shall
point out the modifications which take place if the operator div(k∇.) is considered instead: see remarks 1,
4 and 7 in the case of the Dirichlet boundary conditions. Let us now assume that k is a tensor satisfying
the following hypothesis:

Assumption 3 k is a piecewise C1 function from Ω to IRd×d such that for all x ∈ Ω, k(x) is a symmetric
matrix and such that there exists k0 ∈ IR∗

+ such that k(x)ξ · ξ ≥ k0 for a.e. x ∈ Ω and for all ξ ∈ IRd.
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Then one may still write the finite volume scheme and obtain some error estimates, but the assumptions
on the mesh have to be modified see Remark 1 and [10], see also the modified scheme of Coudière et al
[5] for this case. However if the mesh is cartesian and if for all x ∈ Ω the matrix k(x) is diagonal then it
is “aligned” with the grid and the analysis is similar to the (non constant) scalar case of Equation (2).
Finite volumes are known to be well adapted to the discretization of conservation equations, particularly
in the presence of convection terms. Their theoretical study has recently been undertaken. Two main
directions are usually followed in order to obtain convergence properties of finite volume schemes. The
first one consists in writing the finite volume as a finite element or mixed finite element method by using
some numerical integration, see for instance [1], [2], [18], [19] or [20]; the convergence then follows from
the general finite element framework. The second one, see for example [5], [6], [12], [9], [21], [14] or
[22], consists in establishing the convergence by using the direct formulation of the finite volume scheme
together with some appropriate discrete functional analysis tools. This last approach is considered here.
A discrete system is obtained for each type of boundary condition. Existence and uniqueness (sometimes
up to a constant like in the continuous case) of the approximate solution is proven. The stability of
the scheme is shown in each case by establishing some estimates on the approximate solution which are
independent of the mesh size. If the exact solution is assumed to be at least in H2(Ω), one may then
establish the convergence of the scheme by proving error estimates. A first one in a discrete H1

0 norm is
obtained and a second one in L2 norm follows with the help of discrete Poincaré inequalities. It is also
possible to prove error estimates in the Lq norm, see [4], for all q such that 1 ≤ q < +∞ if d = 2 and
such that 1 ≤ q ≤ 6 if d = 3 establishing discrete Sobolev’s imbeddings.
This work is divided in four sections. The first one introduces the admissible meshes which are needed
for the discretization of the elliptic problem, and the three following sections correspond to the three
types of boundary conditions which we consider here. Homogeneous Dirichlet conditions were studied
in e.g. [12], [21], [9], [14], with different assumptions on the data and the mesh; to our knowledge,
nonhomogeneous Dirichlet, Neumann and Robin boundary conditions have only been considered up to
now in [6] with some simplifying assumptions; the convergence of the method for Neumann and Robin
conditions requires some additional work compared to that of the Dirichlet case. In the case of Neumann
boundary conditions, a “discrete Poincaré-Wirtinger” inequality needs to be proven in order to obtain an
L2 error estimate. The stability results for both Neumann and Robin boundary conditions are obtained
by using a discrete trace inequality which we prove to be true for piecewise constant functions. In the
case of the Robin condition, it is interesting to note that an artificial upwinding has to be introduced in
the treatment of the boundary condition in order for the scheme to be well defined with no additional
condition on the mesh.

2 Admissible meshes

Definition 1 (Admissible meshes) A finite volume mesh of Ω, denoted by T , is given by a family of
“control volumes”, which are open polygonal (or polyhedral) convex subsets of Ω (with positive measure),
a family of subsets of Ω contained in hyperplanes of IRd, denoted by E (these are the edges (if d = 2) or
sides (if d = 3) of the control volumes), with strictly positive (d− 1)-dimensional measure, and a family
of points of Ω denoted by P. The finite volume mesh is said to be admissible if the properties (i) to (iv)
below are satisfied and restricted admissible if the properties (i) to (v) below are satisfied.

(i) The closure of the union of all the control volumes is Ω;

(ii) For any K ∈ T , there exists a subset EK of E such that ∂K = K \K = ∪σ∈EK
σ. Let E = ∪K∈T EK .

(iii) For any (K,L) ∈ T 2 with K 6= L, either the (d − 1)-dimensional Lebesgue measure of K ∩ L is 0
or K ∩ L = σ for some σ ∈ E, which will then be denoted by K|L.

(iv) The family P = (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if σ = K|L, it is assumed that
xK 6= xL, and that the straight line DK,L going through xK and xL is orthogonal to K|L.
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(v) For any σ ∈ E such that σ ⊂ ∂Ω, let K be the control volume such that σ ∈ EK . If xK /∈ σ, let
DK,σ be the straight line going through xK and orthogonal to σ, then the condition DK,σ ∩ σ 6= ∅ is
assumed; let yσ = DK,σ ∩ σ.

In the sequel, the following notations are used. The mesh size is defined by: size(T ) = sup{diam(K),
K ∈ T }, where diam(K) is the diameter of K ∈ T . For any K ∈ T and σ ∈ E, m(K) is the d-dimensional
Lebesgue measure of K (i.e. area if d = 2, volume if d = 3), m(σ) the (d − 1)-dimensional measure of
σ, and nK,σ denotes the unit normal vector to σ outward to K. The set of interior (resp. boundary)
edges is denoted by Eint (resp. Eext), that is Eint = {σ ∈ E ; σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}).
The set of neighbours of K is denoted by N (K), that is N (K) = {L ∈ T ; ∃σ ∈ EK , σ = K ∩ L}. If
σ = K|L, we denote by dσ or dK|L the Euclidean distance between xK and xL (which is positive) and
by dK,σ the distance from xK to σ. If σ ∈ EK ∩ Eext, let dσ denote the Euclidean distance between xK

and yσ (then, dσ = dK,σ). For any σ ∈ E; the “transmissibility” through σ is defined by τσ = m(σ)/dσ if
dσ 6= 0 and τσ = 0 if dσ = 0 In some results and proofs given below, there are summations over σ ∈ E0,
with E0 = {σ ∈ E ; dσ 6= 0}. For simplicity, (in these results and proofs) E = E0 is assumed.

Admissible (or restricted admissible) meshes include, for instance, meshes made with triangles and rect-
angles in two space dimensions, and also Voronöı meshes: the latter consists in building a mesh using the
orthogonal bisectors from a given family of points (for more details see [7]). Admissible meshes will be
used for the Neumann boundary conditions. Property (v) of the restricted admissible meshes is needed
for the Dirichlet and Robin boundary conditions.

Remark 1 In the case of the operator div(k∇.) which is considered in Equation (2) where k is a function
from Ω to IR or IRd×d which satisfies Assumption 2 or 3, admissible meshes must satisfy the following
additional condition:

(vi) For any K ∈ T , the restriction k|K of the function k to any given control volume K belongs to
C1(K).

Furthermore if k is a piecewise C1 function from Ω to IRd×d, the orthogonality conditions (iv) and (v)
have to be modified into:

(iv)’ For any K ∈ T , let kK denote the mean value of k on K, that is

kK =
1

m(K)

∫
K

k(x)dx.

The set T is such that there exists a family of points

P = (xK)K∈T such that xK = ∩σ∈EK
DK,σ,k ∈ K,

where DK,σ,k is a straigth line perpendicular to σ with respect to the scalar product induced by k−1
K

such that DK,σ,k ∩ σ = DL,σ,k ∩ σ 6= ∅ if σ = K|L. Furthermore, if σ = K|L, let yσ = DK,σ,k ∩ σ(=
DL,σ,k ∩ σ) and assume that xK 6= xL.

(v)’ For any σ ∈ Eext, let K be the control volume such that σ ∈ EK and let DK,σ,k be the straight line
going through xK and orthogonal to σ with respect to the scalar product induced by k−1

K ; then, there
exists yσ ∈ σ ∩ DK,σ,k; let gσ = g(yσ).

3 Dirichlet boundary conditions

The first type of boundary condition which we consider is a Dirichlet condition:

u(x) = gD(x), x ∈ ∂Ω, (3)
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where gD ∈ H1/2(∂Ω).
Let us denote by g̃D a function of H1(Ω) such that γ(g̃D) = gD, where γ denotes the trace operator from
H1(Ω) into H1/2(∂Ω).
Under Assumption 1, there exists a unique variational solution u ∈ H1(Ω) of (1), (3) by the Lax-Milgram
Theorem. That is to say, u satisfies u = ũ+ g̃D where ũ ∈ H1

0 (Ω) is the unique solution to∫
Ω

(
∇ũ(x) · ∇φ(x) + div

(
v(x) ũ(x)

)
φ(x) + b(x) ũ(x)φ(x)

)
dx

=
∫

Ω

(
−∇g̃D(x) · ∇φ(x)− div

(
v(x) g̃D(x)

)
φ(x)− b(x) g̃D(x)φ(x) + f(x)φ(x)

)
dx,

for all φ ∈ H1
0 (Ω).

In order to obtain an error estimate, we shall need some more regularity on the boundary condition
(however, the definition of the finite volume and its convergence require less regularity, see Remark 2):

Assumption 4 gD ∈ H3/2(∂Ω).

3.1 Discretization

The approximate finite volume solution which is sought here is constant on each cell of the mesh. The
discrete unknowns are denoted by (uK)K∈T . The principle of classical finite volume schemes is to integrate
the equation on each cell of the mesh in order to obtain an equation which is sometimes called the balance
equation, for each control volume.
Let K ∈ T , using Green’s formula, one has:∫

K

[
−∆u(x) + div

(
v(x)u(x)

)
+b(x)u(x)

]
dx

=
∑

σ∈EK

∫
σ

[
−∇u(x) + v(x)u(x)

]
·nK,σ dγ(x) +

∫
K

b(x)u(x) dx =
∫

K

f(x) dx,

where dγ is the integration symbol for the (d − 1)-dimensional Lebesgue measure on the considered
hyperplane.
For all K ∈ T and all σ ∈ EK , let us denote by FK,σ the approximate diffusion flux (respectively by VK,σ,
the approximate convection flux) that is to say an approximation of

∫
σ
−∇u(x) ·nK,σ dγ(x) (respectively

of
∫

σ
v(x) · nK,σ u(x) dγ(x)).

In order to prove the convergence of the scheme, one needs two basic properties. The first one, called
conservativity of the scheme, states that the numerical flux through a given edge is conservative, i.e.:

FK,σ = −FL,σ for all K ∈ T , L ∈ N (K) and where σ = K|L. (4)

The second one is that 1
m(σ)FK,σ is a consistent approximation of 1

m(σ)

∫
σ
−∇u(x) · nK,σ dγ(x) (for more

details see Lemmas 2 and 3). The same properties are required for VK,σ.
The numerical diffusion flux FK,σ is chosen as:

FK,σ = −m(K|L)
uL − uK

dK|L
if σ = K|L, (5)

and
FK,σ dK,σ = −m(σ) (uσ − uK) if σ ∈ Eext ∩ EK . (6)

The numerical convective flux VK,σ is obtained with an upstream scheme, that is:

VK,σ = vK,σ uσ,+ (7)
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with
vK,σ =

∫
σ

v(x).nK,σ dγ(x), (8)

and 
if σ = K|L, uσ,+ =

 uK if vK,σ ≥ 0,

uL otherwise,

if σ ∈ Eext ∩ EK , uσ,+ =

 uK if vK,σ ≥ 0,

uσ otherwise.

(9)

and where we set
uσ = gD(yσ), (10)

with yσ defined in Definition 1.

Remark 2 If Assumption 4 is weakened to gD ∈ L2(∂Ω), gD is no longer defined pointwise, but (10) may
be replaced by uσ = 1

m(σ)

∫
σ
gD(y) dγ(y), where dγ stands for the (d − 1)-dimensional Lebesgue measure

on σ. In this latter case we do not obtain an error estimate but only a convergence result as in [7].

For all K ∈ T , let fK and bK denote the mean value of f and b on K that is to say

fK =
1

m(K)

∫
K

f(x) dx and bK =
1

m(K)

∫
K

b(x) dx. (11)

Then the considered finite volume scheme is defined by the following equations:∑
σ∈EK

(
FK,σ + vK,σ uσ,+

)
+m(K) bK uK = m(K) fK . (12)

Remark 3 The definition of the diffusion flux on a boundary edge (6) allows dK,σ = 0, in this case one
has uK = uσ and FK,σ becomes an unknown.

Remark 4 In the case of a non constant diffusion coefficient as in Equation (2) where k is a function
from Ω to IR satisfying Assumption 2 or from Ω to IRd×d satisfying Assumption 3, one considers admis-
sible meshes satisfying (vi) of Remark 1 and in the tensor case also (iv)′ and (v)′ instead of (iv) and (v).
For K ∈ T and σ ∈ EK , let

kK,σ =
∣∣∣∣ 1
m(K)

∫
K

k(x) dxnK,σ

∣∣∣∣
(where | · | denotes the Euclidean norm). Note that in the scalar case, this yields in fact kK,σ =

1
m(K)

∫
K
k(x)dx. The exact diffusion fluxes k(x)∇u ·nK,σ on an edge σ of the mesh may then be approx-

imated in a consistent way (see [6] and [10]) by replacing the formulae (5) and (6) by:

• internal edges:
FK,σ = −τσ(uL − uK), if σ ∈ Eint, σ = K|L, (13)

where
τσ = m(σ)

kK,σkL,σ

kK,σdL,σ + kL,σdK,σ
;

• boundary edges:

FK,σ = −τσ(uσ − uK), if σ ∈ Eext and xK 6∈ σ, (14)

where

τσ = m(σ)
kK,σ

dK,σ
·
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3.2 Existence, uniqueness and stability of the approximate solution

The proof of existence and uniqueness of the approximate solution may be performed by establishing a
discrete maximum principle

Proposition 1 Under Assumptions 1 and 4, let T be an admissible mesh in the sense of Definition 1.
Let (uσ)σ∈Eext , (fK)K∈T , (bK)K∈T and (vK,σ)σ∈EK , K∈T be defined by (10), (11) and (8). If fK ≥ 0 for
all K ∈ T , and uσ ≥ 0, for all σ ∈ Eext, then if (uK)K∈T is a solution to (12), (5), (6), (7), (9), then
uK ≥ 0 for all K ∈ T .

The proof of this maximum principle may be found in [6] or [9] using a strong formulation and in [7]
for a weak formulation. It immediately yields the existence and uniqueness of the solution to the finite
volume scheme. We may therefore now define the approximate finite volume solution uT by:

uT (x) = uK for a.e. x ∈ K, K ∈ T , (15)

where (uK)K∈T is the unique solution to (5)-(12).
The following stability estimate on the approximate solution was proven in [7] in the more general case
of a semilinear convection diffusion equation.

Lemma 1 Under Assumptions 1 and 4, let T be an admissible mesh in the sense of Definition 1, and
let:

ζ = min
(

min
K∈T

min
σ∈EK

dK,σ

diam(K)
, min
K∈T

min
σ∈EK

dK,σ

dσ

)
, (16)

Let uT be defined by uT (x) = uK for a.e. x ∈ K, and for any K ∈ T where (uK)K∈T is the solution to
(5)-(12).
Then there exists C ∈ IR+, only depending on Ω, gD, ζ, M = maxK∈T card(EK), b and f , such that:

‖uT ‖1,T ≤ C and ‖uT ‖L2(Ω) ≤ C. (17)

3.3 Error estimates

In this section, one proves the convergence of the approximate solution uT towards the exact solution u
to (1), (3) assuming u ∈ C2(Ω) or u ∈ H2(Ω) and an additional assumption on the mesh. To do this, we
establish error estimates in a discrete H1

0 norm. Some similar results are also in [5], [6], [9] and [12].
Let us now define the discrete H1

0 norm of a piecewise constant function from Ω to IR.

Definition 2 (Discrete H1
0 norm) Let T be an admissible finite volume mesh in the sense of Defini-

tion 1. For u which is constant on each control volume of T , that is to say u(x) = uK for a.e. x ∈ K,
K ∈ T , one defines the discrete H1

0 norm by

‖u‖1,T =

(∑
σ∈E

τσ (Dσu)2
)1/2

,

where Dσu = |uK − uL| if σ ∈ Eint, σ = K|L, Dσu = |uK | if σ ∈ Eext ∩ EK , τσ and the sets E, Eint, Eext

and EK are defined in Definition 1.

Remark 5 Let σ ∈ Eint and assume σ = K|L with K ∈ T and L ∈ N (K). One can see the difference
quotient Dσu/dσ as a discrete normal gradient of u on σ and therefore also on the diamond shaped dual
cell defined by the vertices of σ and xK and xL, note that the measure of this dual cell is dσ m(σ)/d,
where d = 2 or 3 is the space dimension. Let σ ∈ Eext and assume σ ∈ EK with K ∈ T . Again in this
case, assuming u = 0 on ∂Ω, the difference quotient Dσu/dσ can be seen as a discrete gradient of u on
σ and so on a dual cell defined by the vertices of σ and xK of measure dσ m(σ)/2.

Hence ‖u‖1,T =
(∑

σ∈E
dσ m(σ)(Dσu/dσ)2

)1/2

can be seen as a discrete H1
0 norm of u.
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Let us now state the error estimates under some regularity assumption on the solution.

Theorem 1 (C2 regularity) Under Assumptions 1 and 4, let T be a restricted admissible mesh in the
sense of Definition 1 and uT be the solution to (5)-(12) and (15). Assume that the unique variational
solution u of Problem (1), (3) satisfies u ∈ C2(Ω). Let eT be defined by eT (x) = eK = u(xK) − uK if
x ∈ K, K ∈ T .
Then, there exists C > 0, only depending on u, v, b, d and Ω, such that

‖eT ‖1,T ≤ C size(T ), (18)

where ‖ · ‖1,T is the discrete H1
0 norm defined in Definition 2. Furthermore:

‖eT ‖L2(Ω) ≤ C size(T ). (19)

Theorem 2 (H2 regularity) Under Assumptions 1 and 4, let T be a restricted admissible mesh in the
sense of Definition 1 and let

ζ = min
K∈T

min
σ∈EK

dK,σ

diam(K)
·

Let uT be defined by (5)-(12) and (15). Assume that the unique variational solution u to (1) and (3)
belongs to H2(Ω). Let eT be defined by eT (x) = eK = u(xK)− uK if x ∈ K, K ∈ T .
Then, there exists C, only depending on u, v, b, Ω, d and ζ, such that (18) and (19) hold.

Remark 6

1. Inequality (18) (resp. (19)) yields an estimate of order 1 for the discrete H1
0 norm (resp. L2 norm)

of the error on the solution. Note also that, using u ∈ C1(Ω) (or u ∈ H1(Ω)), one deduces, from
(19), the existence of C, only depending on u, b, v, d and Ω (or u, b, v, d, Ω and ζ), such that
‖u− uT ‖L2(Ω) ≤ C size(T ).

2. In Theorem 2, the function eT is still well defined and so is the quantity “∇u · nσ” on σ, for all
σ ∈ E. Indeed, since u ∈ H2(Ω) and d ≤ 3, one has u ∈ C(Ω), then u(xK) is well defined for all
control volume K ∈ T and ∇u ·nσ belongs to L2(σ) (for the (d− 1)-Lebesgue measure on σ) for all
σ ∈ E.

3. Note that, under Assumptions 1 and 4 with b = v = gD = 0 the (unique) variational solution of
(1), (3) is necessarily in H2(Ω) provided that Ω is convex.

4. Thanks to (iv) of Definition 1, ζ, in Theorem 2, is always defined. The important fact is that the
constant C in the error estimates (18) and (19) depends on ζ.

5. In Theorem 2 if one considers rectangular meshes for which the points xK are located at the centers
of the cells, then ζ depends on the ratio of the length and the width of rectangles; if one considers
meshes which are made out of triangles for which the points xK are located at the intersection of the
orthogonal bisectors of the triangles, then all angles of triangles must be lower that π/2 + η where
η is a positive constant and ζ depends only on η.

6. In the case of the pure diffusion operator, one may approximate the diffusive fluxes through the mesh
interfaces up to the second order with the same difference quotient by using appropriate meshes such
as rectangles or Voronöı meshes. Indeed if yσ is the mid-point of [xK , xL] for any σ = K|L ∈ Eint,
the proof of Lemma 3 may be adapted to show that the consistency error on the flux RK,σ defined
in (24) below is of order 2 with respect to the mesh size size(T ) instead of 1 as in (26) below. This
is in good agreement with numerical results which are presented in the recent paper [3] for a related
co-volume scheme. In the case of the diffusion-convection operator however the consistency error
of the upwind approximation of the convection flux remains of order one for any mesh. Hence the
order one estimate which we obtain here seems to be sharp for the upwind scheme. Order one is
also obtained in the numerical results of [3] for the convective case.
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Proof of Theorems 1 and 2
One proceeds in two steps. In the first step, one proves that the approximation of the fluxes is consistent.
In the second step, one establishes error estimates using this property and the conservativity of the scheme
(see (4)).
Step 1 (Consistency)
Let K be a control volume and σ ∈ EK . We define the exact diffusion flux FK,σ and the exact convection
flux V K,σ by:

FK,σ = −
∫

σ

∇u(x) · nK,σdγ(x) and V K,σ =
∫

σ

u(x)v(x) · nK,σdγ(x). (20)

Next for all K ∈ T and all σ ∈ EK , let F ?
K,σ and V ?

K,σ be defined by:

F ?
K,σ = −m(K|L)

u(xL)− u(xK)
dK|L

, ifσ = K|L ∈ EK ∩ Eint, (21)

dK,σ F
?
K,σ = −m(σ) (u(yσ)− u(xK)), ifσ ∈ Eext ∩ EK , (22)

V ?
K,σ = vK,σu(xσ,+), (23)

where xσ,+ = xK (resp. xL) if σ ∈ Eint, σ = K|L and vK,σ ≥ 0 (resp. vK,σ < 0) and xσ,+ = xK (resp.
yσ) if σ ∈ EK ∩ Eext and vK,σ ≥ 0 (resp. vK,σ < 0). Then, the consistency error on the diffusion and
convection fluxes may be defined as

RK,σ =
1

m(σ)

(
FK,σ − F ?

K,σ

)
and rK,σ =

1
m(σ)

(
V K,σ − V ?

K,σ

)
. (24)

Moreover, we define

ρK =
1

m(K)

∫
K

b(x)
(
u(x)− u(xK)

)
dx. (25)

Thanks to the regularity of u and v, a Taylor expansion immediately yields the following lemma which
gives the consistency of scheme in a finite volume sense when u ∈ C2(Ω).

Lemma 2 Under Assumptions 1 and 4, let T be a restricted admissible mesh in the sense of Definition 1.
Assume that the unique variational solution u of Problem (1), (3) satisfies u ∈ C2(Ω). Then there exists
C > 0, only depending on u, b and v, such that

|RK,σ|+ |rK,σ|+ |ρK | ≤ C size(T ),

for any K ∈ T and σ ∈ EK , where RK,σ, rK,σ and ρK are defined by (24) and (25).

We prove a similar lemma when u only belongs to H2(Ω).

Lemma 3 Under Assumptions 1 and 4, let T be a restricted admissible mesh in the sense of Definition 1

ζ = min
K∈T

min
σ∈EK

dK,σ

diam(K)
.

For K ∈ T , let VK,σ = {txK + (1 − t)x, x ∈ σ, t ∈ [0, 1]}. For σ ∈ Eint, let Vσ = VK,σ ∪ VL,σ where K
and L are the control volumes such that σ = K|L. For σ ∈ Eext ∩ EK , let Vσ = VK,σ.
Assume that the unique variational solution u to (1), (3) belongs to H2(Ω). Then there exists C1, only
depending on d and ζ, and C2, only depending on d, v, ζ and p such that for all K ∈ T and all σ ∈ EK ,

|RK,σ| ≤ C1 size(T ) (m(σ)dσ)−1/2‖u‖H2(Vσ), (26)

|rK,σ| ≤ C2 size(T ) (m(σ) dσ)−1/p ‖u‖W 1,p(Vσ), (27)
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and
|ρK | ≤ ‖b‖∞ size(T )m(K)−1/p ‖u‖W 1,p(K). (28)

for all p > d and such that p < +∞ if d = 2 and p ≤ 6 if d = 3,
where, for all p such that 1 ≤ p < +∞:

‖u‖p
W 1,p(Vσ) = ‖u‖p

Lp(Vσ) +
d∑

i=1

‖Diu‖p
Lp(Vσ),

Di is the (weak) derivative with respect to the component zi of z = (z1, · · · , zd)t ∈ IRd.

Proof of Lemma 3
First note that thanks to Sobolev’s imbeddings, if u ∈ H2(Ω) then u ∈ W 1,p(Ω) for all p such that
1 ≤ p < +∞ if d = 2 and such that 1 ≤ p ≤ 6 if d = 3. Then (27) and (28) are well defined.
Let σ ∈ E . Since u ∈ H2(Ω), the restriction of u to Vσ belongs to H2(Vσ). The space C2(Vσ) is dense in
H2(Vσ) (see, for instance, [17], this can be proved quite easily by a regularization technique). Then, using
a density argument, one needs only to prove (26), (27) and (28) for u ∈ C2(Vσ). Therefore let us first
assume that u ∈ C2(Vσ). The density argument will be proven for (26) in the sequel. It is straightforward
for (27) and (28).

First, one proves (26) if σ ∈ Eint. Let K and L be the two control volumes such that σ = K|L. It is
possible to assume, for simplicity of notations and without loss of generality, that σ = 0× σ̃, with some
σ̃ ⊂ IRd−1, and xK = (−dK,σ, 0)t, xL = (dL,σ, 0)t.
A Taylor expansion, using u ∈ C2(Vσ) gives, for a.e. (for the (d− 1)-Lebesgue measure) x = (0, x̃)t ∈ σ,

u(xL)− u(x) = ∇u(x) · (xL − x) +
∫ 1

0

H(u)(tx+ (1− t)xL)(xL − x) · (xL − x) t dt,

where H(u)(z) denotes the Hessian matrix of u at point z, and

u(xK)− u(x) = ∇u(x) · (xK − x) +
∫ 1

0

H(u)(tx+ (1− t)xK)(xK − x) · (xK − x) t dt.

Remark that xL − xK = nK,σdσ; substracting one equation off the other and integrating over σ yields
|RK,σ| ≤ BK,σ +BL,σ, with, for some C3 only depending on d,

BK,σ =
C3

m(σ)dσ

∫
σ

∫ 1

0

|H(u)(tx+ (1− t)xK)||xK − x|2 t dt dγ(x),

where |H(u)(z)|2 =
∑d

i,j=1 |DiDju(z)|2.
The quantity BL,σ is obtained from BK,σ by changing K in L. One uses a change of variables in BK,σ.
Indeed, one sets z = tx+ (1− t)xK . Since |xK − x| ≤ diam(K) and dz = td−1 dK,σ dt dγ(x), one obtains,
using z1 = (t− 1) dK,σ, z = (z1, z)t with z ∈ IRd−1,

BK,σ ≤
C3 (diam(K))2

m(σ) dσ

∫
VK,σ

|H(u)(z) | (dK,σ)d−2

dK,σ (z1 + dK,σ)d−2
dz.

This gives with the Cauchy-Schwarz inequality,

BK,σ ≤
C3 (dK,σ)d−3(diam(K))2

m(σ)dσ

(∫
VK,σ

|H(u)(z)|2 dz

)1/2(∫
VK,σ

1
(z1 + dK,σ)(d−2)2

dz

)1/2

. (29)

For d = 2, remarking that m(VK,σ) = (dK,σ m(σ))/2, (29) gives

BK,σ ≤
C3 (diam(K))2√

2 (m(σ) dσ)1/2 (dσ dK,σ)1/2

(∫
VK,σ

|H(u)(z)|2dz

)1/2

.

9



A similar estimate holds on BL,σ by changing K in L and dK,σ in dL,σ. Since dK,σ, dL,σ ≥ ζdiam(K) and
dσ = dK,σ + dL,σ ≥ 2 ζdiam(K), these estimates on BK,σ and BL,σ yield (26) for some C only depending
on d and ζ.
For d = 3,

BK,σ ≤
C3 (diam(K))2

(m(σ) d2
σ dK,σ)1/2

(∫
VK,σ

|H(u)(z)|2 dz

)1/2

≤ C3 size(T )√
2 ζ (m(σ) dσ)1/2

‖H(u)‖L2(VK,σ).

With a similar estimate on BL,σ, this yields (26) for some C only depending on d and ζ.

Now, one proves (26) if σ ∈ Eext. Let K be the control volume such that σ ∈ EK . One can assume,
without loss of generality, that xK = 0 and σ = dK,σ × σ̃ with σ̃ ⊂ IRd−1. The above proof gives (see
Definition 1 for the definition of yσ), with some C4 only depending on d and ζ,∣∣∣∣u(yσ)− u(xK)

dK,σ
− 1

m(σ̂)

∫
σ̂

∇u(x) · nK,σdγ(x)
∣∣∣∣2 ≤ C4

(size(T ))2

m(σ)dσ

∫
Vσ̂

|H(u)(z)|2dz, (30)

with σ̂ = {(dK,σ/2, x̃/2) , x̃ ∈ σ̃}, and Vσ̂ = {tyσ + (1 − t)x, x ∈ σ̂, t ∈ [0, 1]} ∪ {txK + (1 − t)x, x ∈ σ̂,
t ∈ [0, 1]}. Note that m(σ̂) = m(σ)/2d−1 and that Vσ̂ ⊂ Vσ.
One has now to compare Iσ = 1

m(σ)

∫
σ
∇u(x) ·nK,σdγ(x) with Iσ̂ = 1

m(σ̂)

∫
σ̂
∇u(x) ·nK,σdγ(x). A Taylor

expansion gives

Iσ − Iσ̂ =
1

m(σ)

∫
σ

∫ 1

1
2

H(u)(xK + t(x− xK))(x− xK) · nK,σdtdγ(x).

The change of variables in this last integral z = xK + t(x − xK), which gives dz = 2 dK,σ t
d−1 dt dγ(x),

yields, with Eσ = {tx+ (1− t)xK , x ∈ σ, t ∈ [ 12 , 1]} and some C5 only depending on d (note that t ≥ 1
2 ),

|Iσ − Iσ̂| ≤
C5

m(σ) dK,σ

∫
Eσ

|H(u)(z)||x− xK |dz.

Then, using once more the Cauchy-Schwarz inequality and |x− xK | ≤ diam(K),

|Iσ − Iσ̂|2 ≤
C6(diam(K))2

m(σ)dσ

∫
Eσ

|H(u)(z)|2dz ≤ C6(size(T ))2

m(σ)dσ

∫
Vσ

|H(u)(z)|2dz, (31)

with some C6 only depending on d.
Inequalities (30) and (31) yield (26) for some C only depending on d and ζ for u ∈ C2(Vσ). Taking C
convenient for σ ∈ Eint and Eext gives (26) for all σ ∈ E .
Now for the density argument, let u ∈ H2(Vσ) and let (un)n∈IN ⊂ C2(Vσ) be a sequence which converges
to u in the H2(Vσ) norm. Thanks to the previous result, one has∣∣∣∣un(xL)− un(xK)

dK,σ
− 1

m(σ)

∫
σ

∇un(x) · nK,σ dγ(x)
∣∣∣∣ ≤ C1 size(T ) (m(σ) dσ)−1/2 ‖un‖H2(Vσ)

Thanks to Sobolev imbeddings the sequence (un)n∈IN ⊂ C2(Vσ) converges to u ∈ H2(Vσ) uniformly and
the sequence (∇un · nK,σ ⊂ L2(σ) converges to ∇u · nK,σ in L2(σ) and therefore in L1(σ). Hence one
pass to the limit in the left hand side term and obviously in the right hand side too. This gives (26) for
some C only depending on d and ζ for u ∈ H2(Vσ).
Let us now prove (27) in the case σ ∈ Eint; let σ = K|L with K ∈ T and L ∈ N (K). One assumes
vK,σ ≥ 0 (the case vK,σ < 0 works in the same way) so

|rK,σ| =
∣∣∣∣ 1
m(σ)

∫
σ

v(x) · nK,σ

(
u(x)− u(xK)

)
dγ(x)

∣∣∣∣ .
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It is possible to assume, for simplicity of notations and without loss of generality, that σ = 0 × σ̃, with
some σ̃ ⊂ IRd−1, and xK = (−dK,σ, 0)t. A Taylor expansion, using u ∈ C1(Vσ) gives with x = (0, x̃)t ∈ σ

|rK,σ| ≤ sup
x∈Ω

|v(x)| size(T )
m(σ)

∫
σ̃

∫ 1

0

∣∣∣∇u((t− 1) dK,σ, t x̃)
∣∣∣ dt dx̃.

Let p > d be such that p < +∞ if d = 2 and p ≤ 6 if d = 3, let p′ be its conjugate exponent that is
1
p + 1

p′ = 1. Thanks to Hölder’s inequality:

|rK,σ| ≤ sup
x∈Ω

|v(x)| size(T )
m(σ)

(∫
σ̃

∫ 1

0

∣∣∣∇u((t− 1) dK,σ, t x̃)
∣∣∣ td−1 dK,σ dt dx̃

)1/p

×

∫
σ̃

∫ 1

0

1(
td−1 dK,σ

)p′/p
dt dx̃


1/p′.

Using a change of variables such that (x̃, t) 7→ z = ((t − 1) dK,σ, t x̃) and remarking that
p′

p
(d − 1) =

(p′ − 1)(d− 1) < 1 since p > d, one obtains

|rK,σ| ≤ sup
x∈Ω

|v(x)| ‖u‖W 1,p(VK,σ) size(T )
(
m(σ) dK,σ

)−1/p
(∫ 1

0

1
t(p′−1) (d−1)

dt

)1/p′

=
supx∈Ω |v(x)|(

1− (p′ − 1) (d− 1)
)1/p′

‖u‖W 1,p(VK,σ) size(T )
(
m(σ) dK,σ

)−1/p

. (32)

Remarking that dσ = dK,σ + dL,σ ≥ 2 ζ diam(K) ≥ 2 ζ dK,σ one obtains (27) for some C only depending
on v, ζ and p.
Now let us prove (27) for σ ∈ Eext ∩ EK , K ∈ T . If vK,σ ≥ 0, the proof of (27) is identical to the case
σ ∈ Eint, so one assumes vK,σ < 0; hence:

|rK,σ| =
∣∣∣∣ 1
m(σ)

∫
σ

v(x) · nK,σ

(
u(x)− u(yσ)

)
dγ(x)

∣∣∣∣ .
One can assume, without loss of generality, that xK = 0 and σ = dK,σ× σ̃ with σ̃ ⊂ IRd−1. We introduce
σ̂ = {(dK,σ

2 , x
2 ), x ∈ σ̃}. Note that m(σ̂) = m(σ)

2d−1 , then:

|rK,σ| ≤ sup
x∈Ω

|v(x)|
(

1
m(σ)m(σ̂)

∫
σ

∫
σ̂

∣∣∣u(x)− u(y)
∣∣∣ dγ(x) dγ(y) +

1
m(σ̂)

∫
σ̂

∣∣∣u(y)− u(yσ)
∣∣∣ dγ(y)) .

Then using a Taylor expansion, a change of variables and Hölder’s inequality (for more details see the
proof of (32)), one has:

|rK,σ| ≤ C ‖u‖W 1,p(Vσ) size(T ) (m(σ) dσ)−1/p
,

for any p > d such that p < +∞ if d = 2 and p ≤ 6 if d = 3 and where C only depends on v, d and p.
Finally let us prove (28). Using a Taylor expansion, one obtains

|ρK | ≤
‖b‖∞ size(T )

m(K)

∫
K

∫ 1

0

|∇u(t x+ (1− t)xK)| dt dx.

Using the change of variables such that x 7→ z = t x+ (1− t)xK and denoting by Kt the image of K by
this change of variables, one obtains:

|ρK | ≤
‖b‖∞ size(T )

m(K)

∫ 1

0

∫
K

χKt
(z)

|∇u(z)|
td

dz dt,
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where χKt
is the characteristic function of Kt.

Thanks to Hölder’s inequality and using m(Kt) ≤ tdm(K), one has:

|ρK | ≤
‖b‖∞ size(T )

m(K)

∫ 1

0

(∫
K

|∇u(z)|p dz
)1/p

(
m(Kt)

)1/p′

td
dt ≤ ‖b‖∞ size(T )

m(K)1/p
‖u‖W 1,p(K)

∫ 1

0

1
td/p

dt,

for all p > d such that p < +∞ if d = 2 and p ≤ 6 if d = 3. As p > d we obtain (28). This concludes the
proof of Lemma 3 and also step 1.
Step 2 (Error estimates)
Now, one proves Estimates (18) and (19).
As u is the exact solution to (1), (3), for all K ∈ T , one has:∑

σ∈EK

(
FK,σ + V K,σ

)
+
∫

K

b(x)u(x) dx =
∫

K

f(x) dx. (33)

Substracting (12) off the previous equation, using (24) and the regularity of u yields∑
σ∈EK

(
(F ?

K,σ − FK,σ) + (V ?
K,σ − VK,σ)

)
+ bK m(K)eK = −m(K) ρK −

∑
σ∈EK

m(σ)(RK,σ + rK,σ),

Multiplying the result by eK , summing for K ∈ T , and noting that∑
K∈T

∑
σ∈EK

(
F ?

K,σ − FK,σ

)
eK =

∑
σ∈E

|Dσe|2 τσ = ‖e‖21,T ,

yields

‖eT ‖21,T +
∑
K∈T

∑
σ∈EK

vK,σeσ,+eK +
∫

Ω

b(x)
(
eT (x)

)2
dx (34)

≤ −
∑
K∈T

m(K) ρK eK −
∑
K∈T

∑
σ∈EK

m(σ)(RK,σ + rK,σ)eK ,

where |Dσe| is defined in Definition 2 and eσ,+ = u(xσ,+)− uσ,+.
Reordering the summation over the set of edges, one has∑

K∈T

∑
σ∈EK

vK,σeσ,+eK =
∑
σ∈E

vσ

(
eσ,+ − eσ,−

)
eσ,+ =

1
2

∑
σ∈E

vσ

(
(eσ,+ − eσ,−)2 + (e2σ,+ − e2σ,−)

)
,

where vσ = |
∫

σ
v(x) · nσ dγ(x)|, nσ being a unit normal vector to σ, and eσ,− is the downstream value

to σ with respect to v, that is to say if σ = K|L, then eσ,− = eK if vK,σ ≤ 0, and eσ,− = eL otherwise;
if σ ∈ EK ∩ Eext, then eσ,− = uK if vK,σ ≤ 0 and eσ,− = 0 otherwise.
Now note that:∑

σ∈E
vσ (e2σ,+ − e2σ,−) =

∑
K∈T

(∫
∂K

v(x) · nKdγ(x)
)
e2K =

∫
Ω

(divv(x))e2T (x)dx.

Then, one obtains ∑
K∈T

∑
σ∈EK

vK,σeσ,+eK ≥ 1
2

∫
Ω

(divv(x))e2T (x)dx,

and so, using this result in (34),

‖eT ‖21,T +
∫

Ω

(
divv(x)

2
+ b(x)

)
e2T (x)dx ≤ −

∑
K∈T

m(K) ρK eK −
∑
K∈T

∑
σ∈EK

m(σ)(RK,σ + rK,σ)eK . (35)
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Let us now deal with the consistency error terms: By Young’s inequality, for all δ > 0, one has

−
∑
K∈T

m(K)ρK eK ≤ δ

2
‖eT ‖2L2(Ω) +

1
2 δ

∑
K∈T

m(K) ρ2
K .

Hence if u ∈ C2(Ω), using Lemma 2, one obtains, for all δ > 0:

−
∑
K∈T

m(K) ρK eK ≤ δ

2
‖eT ‖2L2(Ω) +

C

δ
(size(T ))2, (36)

where C only depends on u, b and Ω.
If u is only in H2(Ω), thanks to Lemma 3 and to Hölder’s inequality one has, for all δ > 0 and all p > d
such that p < +∞ if d = 2 and p ≤ 6 if d = 3:

−
∑
K∈T

m(K) ρK eK ≤ δ

2
‖eT ‖2L2(Ω) +

(‖b‖∞ size(T ))2

2 δ

∑
K∈T

m(K)1−2/p ‖u‖2W 1,p(K)

≤ δ

2
‖eT ‖2L2(Ω) +

(‖b‖∞ size(T ))2

2 δ
‖u‖2W 1,p(Ω)m(Ω)(p−2)/p,

choosing p = 4, one obtains (36) for all δ > 0, where C only depends on b, u and Ω.
Furthermore, thanks to the conservativity property of the scheme (see (4)), one has RK,σ = −RL,σ and
rK,σ = −rL,σ for σ ∈ Eint such that σ = K|L. Let Rσ = |RK,σ| and rσ = |rK,σ| if σ ∈ EK . Reordering
the summation over the edges and using Young’s inequality, one obtains

|
∑
K∈T

∑
σ∈EK

m(σ)(RK,σ + rK,σ)eK | ≤
∑
σ∈E

m(σ)(Dσe)(Rσ + rσ)

≤ 1
2

∑
σ∈E

m(σ)
dσ

(Dσe)2 +
1
2

∑
σ∈E

m(σ)dσ(Rσ + rσ)2. (37)

Now, using Lemma 2, if u ∈ C2(Ω), or Lemma 3 (with p = 4) and Hölder’s inequality, if u is only in
H2(Ω) (for more details see the proof of inequality (36)), and remarking that

∑
σ∈E m(σ)dσ = dm(Ω),

(37) yields the existence of C, only depending on u, v, d and Ω if u ∈ C2(Ω) and on u, v, d, ζ and Ω if
u is only in H2(Ω), such that

|
∑
K∈T

∑
σ∈EK

m(σ)(RK,σ + rK,σ)eK | ≤
1
2
‖eT ‖21,T + C (size(T ))2.

Hence, (35), (36) and the previous inequality yield for all δ > 0

1
2
‖eT ‖21,T +

∫
Ω

(
divv(x)

2
+ b(x)

)
e2T (x)dx ≤ δ

2
‖eT ‖2L2(Ω) + C

(
1 +

1
δ

)
(size(T ))2, (38)

where C depends only on b, u, v, d and Ω if u ∈ C2(Ω) and on b, u, v, d, ζ and Ω if u is only in H2(Ω).
If there exists δ > 0 such that divv/2 + b ≥ δ/2, this inequality yields Estimate (18) and Estimate (19).

Otherwise, to obtain Estimate (18), one uses the inequality (38) with δ =
1

2 (diam(Ω))2
, the positivity of

divv/2 + b and a discrete Poincaré inequality which is proved in [9] or [7] and which we recall here:

Lemma 4 (Discrete Poincaré inequality) Let T be an admissible finite volume mesh in the sense of
Definition 1 and u be a function which is constant on each cell of T , that is u(x) = uK if x ∈ K, K ∈ T .
Then

‖u‖L2(Ω) ≤ diam(Ω)‖u‖1,T ,

where ‖ · ‖1,T is the discrete H1
0 norm defined in Definition 2.
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Using the above lemma once more and Estimate (18) gives Estimate (19).
This concludes the proofs of Theorems 1 and 2 and shows that the numerical solution converges towards
the exact solution to (1), (3).

Remark 7 The error estimates of Theorems 1 and 2 still hold if a non constant piecewise C1 diffusion
scalar coefficient is considered i.e. if k satisfies Assumption 2 and if Equation (2) is discretized by the
scheme (7)-(15).
In the general tensor case however, some more restrictive assumptions are needed on the mesh in order
to obtain an error estimate: see [6] and [10]. More precisely, in the error estimate (18) and (19), the
real number C now depends on ζ1 and ζ2 ∈ IR+ such that

ζ1 (size(T ))2 ≤ m(K) ≤ ζ2 (size(T ))2,
ζ1 size(T ) ≤ m(σ) ≤ ζ2 size(T ),
ζ1 size(T ) ≤ dσ ≤ ζ2 size(T ).

4 Neumann boundary conditions

The second boundary condition we consider is a Neumann condition:

∇u(x) · n(x) = gN (x), x ∈ ∂Ω, (39)

where

Assumption 5 b = 0 a.e. on Ω, divv = 0 on Ω, v · n = 0 on ∂Ω, and gN ∈ H1/2(∂Ω) satisfies the
following compatibility relation:

∫
∂Ω
gN (x) dγ(x) +

∫
Ω
f(x) dx = 0.

Then under Assumptions 1 and 5, by Lax-Milgram Theorem, there exists a unique variational solution
u ∈ H1(Ω) such that

∫
Ω
u(x) dx = 0, of (1), (39). That is to say u ∈ H1(Ω) such that

∫
Ω
u(x) dx = 0

satisfies for all φ ∈ H1(Ω)∫
Ω

(
∇u(x) · ∇φ(x) + div

(
v(x)u(x)

)
φ(x)

)
dx =

∫
∂Ω

gN (x) γ(φ)(x) dγ(x) +
∫

Ω

f(x)φ(x) dx,

where γ denotes the trace operator from H1(Ω) to H1/2(∂Ω) and dγ is the integration symbol for the
(d− 1)-dimensional Lebesgue measure.

Remark 8 The assumptions b = 0, divv = 0 and v · n = 0 are sufficient to prove the coercivity of the
bilinear form of the variational formulation. However, if the hypotheses on v and b of Assumption 5 are
not satisfied, we do not need a compatibility relation. This latter case is therefore treated in section 5
which deals with Robin boundary conditions.

4.1 Discretization

We use the same notations as in the previous section. Let T be an admissible mesh in the sense of
Definition 1 and uK be the discrete unknown associated with the control volume K for all K ∈ T . Let
us integrate Equation (1) on each cell of the mesh; the diffusion flux is discretized on interior edges only
since it is known on the boundary of Ω; an upstream scheme is used for the convection term and one
obtains: ∑

σ∈EK∩Eint

(
FK,σ + vK,σ uσ,+

)
= m(K) fK +

∑
σ∈EK∩Eext

gN
σ , (40)

where FK,σ is defined by (5) if σ ∈ Eint, σ = K|L,

gN
σ =

∫
σ

gN (x) dγ(x) if σ ∈ Eext (41)
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and where vK,σ and fK are defined by (8) and (11) and uσ,+ is defined by:

if σ = K|L, uσ,+ =

 uK if vK,σ ≥ 0,

uL otherwise.
(42)

4.2 Existence, uniqueness and stability of the approximate solution

One proves the following proposition which gives the existence of the approximate solution and the
uniqueness up to a constant like in the continuous case.

Proposition 2 Under Assumptions 1 and 5, let T be an admissible mesh in the sense of Definition 1.
Then, there exists a solution uT to (15), (40), (41), (42), (5), (8) and (11). This solution is unique up
to a constant.

Proof of Proposition 2
Let us first study the kernel of the linear operator defined by the left hand side of (40). For all K ∈ T ,
suppose that

∑
σ∈Eext∩EK

gN
σ +m(K) fK = 0. Let us denote byK0 a cell of T such that uK0 = minK∈T uK .

Since divv = 0 on Ω and v · n = 0 on ∂Ω, one has
∑

σ∈EK0∩Eint

∫
σ
v(x) · nK0,σ dγ(x) = 0; then, using the

numerical scheme (40), one gets:∑
L∈N (K0)

−m(K0|L)
uL − uK0

dK0|L
+

∑
σ∈EK0∩Eint

vK0,σ (uσ,+ − uK0) = 0.

Now remarking that uK0 ≤ uL for all L ∈ N (K0) and
∑

σ∈EK0∩Eint
vK0,σ (uσ,+ − uK0) ≤ 0, one obtains

uL = uK0 for any neighbour L of K0. Since Ω is connected, one has uL = uK for all (K,L) ∈ T 2. So the
dimension of the kernel of the linear operator defined by the left hand side of (40) is 1. Let us now study
its image. First note that its dimension is card(T )− 1 where card(T ) is the number of control volumes
of the mesh.
Summing Equation (40) over K ∈ T , remarking that v · n = 0 on ∂Ω and vK,σ = −vL,σ for all K ∈ T
and all L ∈ N (K), one obtains:

∑
K∈T

( ∑
σ∈Eext∩EK

gN
σ + m(K) fK

)
=
∫

∂Ω

gN (x) dγ(x) +
∫

Ω

f(x) dx = 0.

So assuming
∫

∂Ω
gN (x) dγ(x)+

∫
Ω
f(x) dx = 0 there exists a solution to (15), (40), (41),(42), (5), (8) and

(11) and this solution is unique up to a constant.
Let us introduce, like in the Dirichlet case, the discrete H1 semi-norm of a function from Ω to IR which
is constant on each control volume (or cell) of T .

Definition 3 (Discrete H1 semi-norm) Let T be an admissible finite volume mesh in the sense of
Definition 1. Let u be a function which is constant on each control volume of T , that is u(x) = uK if
x ∈ K, K ∈ T , one defines the discrete H1 semi-norm by

|u|1,T =

( ∑
σ∈Eint

m(σ)
dσ

(Dσu)2
)1/2

,

where Dσu = |uK − uL| if σ = K|L and the set Eint is defined in Definition 1.

Let us now give an estimate on the approximate solution.
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Lemma 5 Under Assumptions 1 and 5, let T be an admissible mesh in the sense of Definition 1. Let
uT be the solution to (15), (40), (41), (42), (5), (8) and (11) such that

∫
Ω
uT (x) dx = α.

Then there exists C ∈ IR+ depending only on Ω such that

|uT |1,T ≤ C
(
‖gN‖L2(∂Ω) + ‖f‖L2(Ω) + α

)
. (43)

where |.|1,T is defined in Definition 3

Proof of Lemma 5
Let K ∈ T , we multiply (40) by uK and we sum the result over K ∈ T , we obtain:∑

K∈T

∑
σ∈EK∩Eint

σ=K|L

(
uK − uL

dK|L
uK m(σ) + vK,σ uσ,+ uK

)
=
∑
K∈T

m(K) fK uK +
∑
K∈T

∑
σ∈EK∩Eext

gN
σ uK .

Now let us note that: ∑
K∈T

∑
σ∈EK∩Eint

σ=K|L

uK − uL

dK|L
uK m(σ) =

∑
σ∈Eint

m(σ)
dσ

(Dσu)2 (44)

Furthermore, for σ ∈ Eint, σ = K|L, let uσ,− = uK if vK,σ < 0 and uσ,− = uL otherwise and vσ =
|vK,σ| = |vL,σ|. Then, one has∑
K∈T

∑
σ∈EK∩Eint

σ=K|L

vK,σ uσ,+ uK =
∑

σ∈Eint

vσ

(
(uσ,+)2 − uσ,+ uσ,−

)
(45)

=
∑

σ∈Eint

vσ

(
(uσ,+ − uσ,−)2

2
+

(uσ,+)2

2
− (uσ,−)2

2

)
≥ 1

2

∑
K∈T

∑
σ∈Eint

vK,σ (uK)2

=
1
2

∫
Ω

div(v(x)) (uT (x))2 dx− 1
2

∫
∂Ω

v(x) · n(x) (uT )2 dγ(x).

Therefore by Assumption 5 and Young’s inequality, we get for all δ > 0:

|uT |21,T ≤ δ
(
‖gN‖2L2(∂Ω) + ‖f‖2L2(Ω)

)
+

1
4 δ

(
‖uT ‖2L2(∂Ω) + ‖uT ‖2L2(Ω)

)
,

where uT (x) = uK for almost every x ∈ σ, σ ∈ Eext ∩ EK .
In order to conclude, one uses Lemmas 6 and 7, which are stated and proved below and obtains

|uT |21,T ≤ δ
(
‖gN‖2L2(∂Ω) + ‖f‖2L2(Ω)

)
+
C

δ

(
|uT |21,T +

2
m(Ω)

α2

)
for all δ > 0 and where C only depends on Ω.
Choosing δ = 2C gives (43).

Lemma 6 (Discrete Poincaré-Wirtinger inequality) Let T be an admissible mesh in the sense of
Definition 1. Let u be a function which is constant on each cell of T , that is u(x) = uK if x ∈ K, K ∈ T .
Then

‖u‖2L2(Ω) ≤ C|u|21,T + 2 (m(Ω))−1

(∫
Ω

u(x) dx
)2

,

where C only depends on Ω and | · |1,T is defined in Definition 3.
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Proof of Lemma 6
Let T be an admissible mesh and u be a function which is constant on each cell of T . Let mΩ(u) be the
mean value of u over Ω, that is

mΩ(u) =
1

m(Ω)

∫
Ω

u(x)dx.

Note that
‖u‖2L2(Ω) ≤ 2‖u−mΩ(u)‖2L2(Ω) + 2(mΩ(u))2m(Ω),

and therefore the proof of Lemma 6 is reduced to the proof of the existence of D ≥ 0, only depending on
Ω, such that

‖u−mΩ(u)‖2L2(Ω) ≤ D|u|21,T . (46)

The proof of (46) may be decomposed into three steps (indeed, if Ω is convex, the first step is sufficient).

Step 1 (Estimate on a convex part of Ω)
Let ω be an open convex subset of Ω, ω 6= ∅ and mω(u) be the mean value of u on ω. In this step, one
proves that there exists C0, depending only on ω, such that

‖u(x)−mω(u)‖2L2(ω) ≤
1

m(ω)
C0|u|21,T . (47)

(Taking ω = Ω, this proves (46) and Lemma 6 in the case where ω is convex.)
Noting that ∫

ω

(u(x)−mω(u))2dx ≤ 1
m(ω)

∫
ω

∫
ω

(u(x)− u(y))2 dy dx,

(47) is proved provided that there exists C0 ∈ IR+, only depending on ω, such that∫
ω

∫
ω

(u(x)− u(y))2 dx dy ≤ C0|u|21,T . (48)

For σ ∈ Eint, let the function χσ from IRd × IRd to {0, 1} be defined by

χσ(x, y) = 1, if x, y ∈ ω, [x, y] ∩ σ 6= ∅,
χσ(x, y) = 0, if x /∈ ω or y /∈ ω or [x, y] ∩ σ = ∅.

(Recall that [x, y] = {tx + (1 − t)y, t ∈ [0, 1]}.) For a.e. x, y ∈ ω, one has, with Dσu = |uK − uL| if
σ ∈ Eint, σ = K|L,

(u(x)− u(y))2 ≤
( ∑
σ∈Eint

|Dσu|χσ(x, y)
)2
,

(note that the convexity of ω is used here) which yields, thanks to the Cauchy-Schwarz inequality,

(u(x)− u(y))2 ≤
∑

σ∈Eint

|Dσu|2

dσcσ,y−x
χσ(x, y)

∑
σ∈Eint

dσcσ,y−xχσ(x, y), (49)

with

cσ,y−x =
∣∣∣∣ y − x

|y − x|
· nσ

∣∣∣∣ ,
recall that nσ is a unit normal vector to σ, and that xK − xL = ±dσnσ if σ ∈ Eint, σ = K|L. For a.e.
x, y ∈ ω, one has ∑

σ∈Eint

dσcσ,y−xχσ(x, y) =
∣∣∣∣(xK − xL) · y − x

|y − x|

∣∣∣∣ ,
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for some convenient control volumes K and L, depending on x and y (the convexity of ω is used again
here). Therefore, ∑

σ∈Eint

dσcσ,y−xχσ(x, y) ≤ diam(ω).

Thus, integrating (49) with respect to x and y in ω,∫
ω

∫
ω

(u(x)− u(y))2dxdy ≤ diam(ω)
∫

ω

∫
ω

∑
σ∈Eint

|Dσu|2

dσcσ,y−x
χσ(x, y)dxdy,

which gives, by a change of variables,∫
ω

∫
ω

(u(x)− u(y))2dxdy ≤ diam(ω)
∫

IRd

( ∑
σ∈Eint

|Dσu|2

dσcσ,z

∫
ω

χσ(x, x+ z)dx
)
dz. (50)

Noting that, if |z| > diam(ω), χσ(x, x+ z) = 0, for a.e. x ∈ ω, and∫
ω

χσ(x, x+ z)dx ≤ m(σ)|z · nσ| = m(σ)|z|cσ,z for a.e. z ∈ IRd,

therefore, with (50):∫
ω

∫
ω

(u(x)− u(y))2dxdy ≤ (diam(ω))2m(Bω)
∑

σ∈Eint

m(σ)|Dσu|2

dσ
,

where Bω denotes the ball of IRd of center 0 and radius diam(ω).
This inequality proves (48) and then (47) with C0 = (diam(ω))2m(Bω) (which only depends on ω).
Taking ω = Ω, it concludes the proof of Lemma 6 in the case where Ω is convex.

Step 2 (Estimate with respect to the mean value on a part of the boundary)
In this step, one proves the same inequality than (47) but with the mean value of u on a (arbitrary) part
I of the boundary of ω instead of mω(u) and with a convenient C1 depending on I, Ω and ω instead
of C0.
More precisely, let ω be a polygonal open convex subset of Ω and let I ⊂ ∂ω, with m(I) > 0 (m(I) is
the (d − 1)-Lebesgue measure of I). Assume that I is included in a hyperplane of IRd. Let γu be the
“trace” of u on the boundary of ω, that is γu(x) = uK if x ∈ ∂ω∩K, for K ∈ T (if x ∈ K ∩L, the choice
of γu(x) between uK and uL does not matter). Let mI(u) be the mean value of γu on I. This step is
devoted to the proof of the existence of C1, only depending on Ω, ω and I, such that

‖u(x)−mI(u)‖2L2(ω) ≤ C1|u|21,T . (51)

For the sake of simplicity, only the case d = 2 is considered here. Since I is included in a hyperplane, it
may be assumed, without loss of generality, that I = {0} × J , with J ⊂ IR and ω ⊂ IR+ × IR (one uses
here the convexity of ω).
Let α = max{x1, x = (x1, x2)t ∈ ω} and a = (α, β)t ∈ ω. In the following, a is fixed. For a.e.
x = (x1, x2)t ∈ ω and for a.e. (for the 1-Lebesgue measure) y = (0, y)t ∈ I (with y ∈ J), one sets
z(x, y) = ta + (1 − t)y with t = x1/α. Note that, thanks to the convexity of ω, z(x, y) = (z1, z2)t ∈ ω,
with z1 = x1. The following inequality holds:

±(u(x)− γu(y)) ≤ |u(x)− u(z(x, y))|+ |u(z(x, y))− γu(y)|.

In the following, the notation Ci, i ∈ IN?, will be used for quantities only depending on Ω, ω and I.
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Let us integrate the above inequality over y ∈ I, take the power 2, from the Cauchy-Schwarz inequality,
an integration over x ∈ ω leads to∫

ω

(u(x)−mI(u))2dx ≤
2

m(I)

∫
ω

∫
I

(u(x)− u(z(x, y)))2dγ(y)dx

+
2

m(I)

∫
ω

∫
I

(u(z(x, y))− u(y))2 dγ(y) dx.

Then, ∫
ω

(u(x)−mI(u))2dx ≤
2

m(I)
(A+B),

with, since ω is convex,

A =
∫

ω

∫
I

( ∑
σ∈Eint

|Dσu|χσ(x, z(x, y))
)2
dγ(y) dx,

and
B =

∫
ω

∫
I

( ∑
σ∈Eint

|Dσu|χσ(z(x, y), y)
)2
dγ(y) dx.

Recall that, for ξ, η ∈ ω, χσ(ξ, η) = 1 if [ξ, η] ∩ σ 6= ∅ and χσ(ξ, η) = 0 if [ξ, η] ∩ σ = ∅. Let us now look
for some bounds of A and B of the form C|u|21,T .
The bound for A is easy. Using the Cauchy-Schwarz inequality and the fact that∑

σ∈Eint

cσ,x−z(x,y)dσχσ(x, z(x, y)) ≤ diam(ω)

(recall that cσ,η = | η
|η| · nσ| (for η ∈ IR2 \ 0) gives

A ≤ C2

∫
ω

∫
I

∑
σ∈Eint

|Dσu|2χσ(x, z(x, y))
cσ,x−z(x,y)dσ

dx dγ(y).

Since z1 = x1, one has cσ,x−z(x,y) = cσ,e, with e = (0, 1)t. Let us perform the integration of the right
hand side of the previous inequality, with respect to the first component of x, denoted by x1, first. The
result of the integration with respect to x1 is bounded by |u|21,T . Then, integrating with respect to x2

and y ∈ I gives A ≤ C3|u|21,T .
In order to obtain a bound B, one remarks, as for A, that

B ≤ C4

∫
ω

∫
I

∑
σ∈Eint

|Dσu|2χσ(z(x, y), y)
cσ,y−z(x,y)dσ

dx dγ(y).

In the right hand side of this inequality, the integration with respect to y ∈ I is transformed into an
integration with respect to ξ = (ξ1, ξ2)t ∈ σ, this yields (note that cσ,y−z(x,y) = cσ,a−y)

B ≤ C4

∑
σ∈Eint

|Dσu|2

dσ

∫
ω

∫
σ

ψσ(x, ξ)
cI,a−y(ξ)

|a− y(ξ)|
|a− ξ|

dxdγ(ξ),

where y(ξ) = sξ + (1− s)a, with sξ1 + (1− s)α = 0, and where ψσ is defined by

ψσ(x, ξ) = 1, if y(ξ) ∈ I and ξ1 ≤ x1

ψσ(x, ξ) = 0, if y(ξ) 6∈ I or ξ1 > x1.

Noting that cI,a−y(ξ) ≥ C5 > 0, one deduces that

B ≤ C6

∑
σ∈Eint

|Dσu|2

dσ

∫
σ

(∫
ω

ψσ(x, ξ)
|a− y(ξ)|
|a− ξ|

dx

)
dγ(ξ) ≤ C7|u|21,T ,
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with, for instance, C7 = C6(diam(ω))2. The bounds on A and B yield (51).

Step 3 (proof of (46))
Let us now prove that there exists D ∈ IR+, only depending on Ω such that (46) hold. Since Ω is a
polygonal set (d = 2 or 3), there exists a finite number of disjoint convex polygonal sets, denoted by
{Ω1, . . . ,Ωn}, such that Ω = ∪n

i=1Ωi. Let Ii,j = Ωi ∩ Ωj , and B be the set of couples (i, j) ∈ {1, . . . , n}2
such that i 6= j and the (d− 1)-dimensional Lebesgue measure of Ii,j , denoted by m(Ii,j), is positive.
Let mi denote the mean value of u on Ωi, i ∈ {1, . . . , n}, and mi,j denote the mean value of u on Ii,j ,
(i, j) ∈ B. (For σ ∈ Eint, in order that u be defined on σ, a.e. for the (d − 1)-dimensional Lebesgue
measure, let K ∈ T be a control volume such that σ ∈ EK , one sets u = uK on σ.) By definition,
mi,j = mj,i for all (i, j) ∈ B.
Step 1 gives the existence of Ci, i ∈ {1, . . . , n}, only depending on Ω (since the Ωi only depend on Ω),
such that

‖u−mi‖2L2(Ωi)
≤ Ci|u|21,T , ∀i ∈ {1, . . . , n}, (52)

Step 2 gives the existence of Ci,j , i, j ∈ B, only depending on Ω, such that

‖u−mi,j‖2L2(Ωi)
≤ Ci,j |u|21,T , ∀(i, j) ∈ B.

Then, one has (mi − mi,j)2m(Ωi) ≤ 2(Ci + Ci,j)|u|21,T , for all (i, j) ∈ B. Since Ω is connected, the
above inequality yields the existence of M , only depending on Ω, such that |mi −mj | ≤ M |u|1,T for all
(i, j) ∈ {1, . . . , n}2, and therefore |mΩ(u) −mi| ≤ M |u|1,T for all i ∈ {1, . . . , n}. Then, (52) yields the
existence of D, only depending on Ω, such that (46) holds. This completes the proof of Lemma 6.

Lemma 7 Let T be an admissible finite volume mesh in the sense of Definition 1 and u be a function
which is constant on each cell of T and each edge of Eext, that is u(x) = uK if x ∈ K, K ∈ T and
u(x) = uσ if x ∈ σ, σ ∈ Eext. Let Γ ⊂ ∂Ω such that its (d−1)-dimensional measure m(Γ) 6= 0 and O ⊂ Ω
such that its d-dimensional measure m(O) 6= 0. Then there exists C, only depending on Ω, such that

‖u‖2L2(Ω) ≤ C
(
|u|21,T + ‖u‖2L2(Γ)

)
, (53)

and
‖u‖2L2(∂Ω) ≤ C

(
|u|21,T + ‖u‖2L2(O)

)
, (54)

where | · |1,T is the discrete H1
0 norm defined in Definition 4.

Proof of Lemma 7
We proceed in two steps. The first two steps deal with the proof of (53) while the third step deals with
(54). The first step consists in proving (53) on a part of Ω with a boundary containing Γ. In the second
step we use a discrete trace inequality which is stated in Lemma 8 to conclude the proof of the announced
result on Ω.

Step 1
We can assume without loss of generality that Γ is included in a hyperplane of IRd, indeed if it is not we
can split Γ in several parts included in hyperplanes of IRd since Ω is polygonal if d = 2 or polyhedral if
d = 3. For x, y ∈ IRd, one defines [x, y] = {t x+ (1− t) y ; t ∈ [0, 1]}. Let us define

O(Γ) =
{
x ∈ Ω ; ∃ y ∈ Γ such that (x− y) · y = 0 and [x, y] ⊂ Ω

}
. (55)

Then we choose a coordinate system such that a point y ∈ Γ has for coordinate (0, ỹ) with ỹ ∈ I ⊂ IRd−1

and such that if we consider a point x ∈ O(Γ) with x = (x1, x̃), x̃ ∈ I, then x1 > 0.
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Let us denote by η the first unit vector of the coordinate system, so η = (1, 0) if d = 2 and η = (1, 0, 0) if
d = 3. For σ ∈ E , we define χσ from IRd × IRd to {0, 1} by χσ(x, y) = 1 if σ ∩ [x, y] 6= ∅ and χσ(x, y) = 0
otherwise.
For ỹ ∈ I, let denote by Dỹ,η the semi-line defined by its origin (0, ỹ) and the vector η, and by α(ỹ) the
real such that (α(ỹ), ỹ) ∈ Dỹ,η ∩ ∂Ω and [(0, ỹ), (α(ỹ), ỹ)] ⊂ Ω.
Let y = (0, ỹ) ∈ Γ and x1 ∈]0, α(ỹ)[, then

|u(x1, ỹ)| ≤ |u(0, ỹ)|+
∑
σ∈E

(Dσu)χσ

(
(α(ỹ), ỹ), y

)
,

where Dσu is defined in Definition 4.
Using the Cauchy-Schwarz inequality, and setting cσ = |nσ · η| where nσ is a unit normal vector to σ,
one gets

|u(x1, ỹ)|2 ≤ 2 |u(0, ỹ)|2 + 2

(∑
σ∈E

(Dσu)2

dσ cσ
χσ

(
(α(ỹ), ỹ), y

))(∑
σ∈E

dσ cσ χσ

(
(α(ỹ), ỹ), y

))
.

Remarking that
∑

σ∈E dσ cσ χσ

(
(α(ỹ), ỹ), y

)
≤ diam(Ω) and integrating with respect to x1 and ỹ, one

obtains

‖u‖2L2(O(Γ)) ≤ 2 ‖u‖2L2(Γ) + 2 (diam(Ω))2
∫

I

∑
σ∈E

(Dσu)2

dσ cσ
χσ

(
(α(ỹ), ỹ), y

)
dỹ.

Since
∫

I
χσ

(
(α(ỹ), ỹ), y

)
dỹ ≤ m(σ) cσ, one has

‖u‖2L2(O(Γ)) ≤ C
(
‖u‖2L2(Γ) + ‖u‖21,T

)
,

where C only depends on Ω. This concludes the first step.

Step 2 Proof of (53)
By compactness of the boundary of ∂O(Γ) (where O(Γ) is defined by (55) and ∂O(Γ) denotes its bound-
ary), there exists a finite number of hyperplanes of IRd, {Γi, i = 1, · · · , N}, such that ∂O(Γ) ⊂ ∪N

i=1Γi

and Γi ∩ Γj ⊂ IRd−2 for i, j ∈ {1, · · · , N}, i 6= j.
Let j ∈ {1, · · · , N}, then, thanks to Lemma 8 which is stated and proved below, one has:

‖γu‖2L2(Γj∩Ω) ≤ C1

(
‖u‖2L2(O(Γ)) + ‖u‖21,T

)
, (56)

whereγu denotes the “discrete trace” of u, that is γu = uK for all x ∈ σ such that σ ∈ Eext ∩ EK and C1

only depends on Ω.
Let us define

O(Γj ∩ Ω) =
{
x ∈ Ω ; ∃ y ∈ Γj ∩ Ω such that (x− y) · y = 0 and [x, y] ⊂ Ω \ O(Γ)

}
Then applying the first step to Γj ∩ Ω instead of Γ, one gets

‖u‖2L2(O(Γj∩Ω)) ≤ C2

(
‖u‖2L2(Γj∩Ω) + ‖u‖21,T

)
,

where C2 only depends on Ω.
Then using (56)

‖u‖2L2(O(Γj∩Ω)) ≤ (C2 + C2 C1)
(
‖u‖2L2(O(Γ)) + ‖u‖21,T

)
,

and thanks to Step 1
‖u‖2L2(O(Γj∩Ω)) ≤ C

(
‖u‖2L2(Γ) + ‖u‖21,T

)
,
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where C only depends on Ω.
Iterating this process so long as a part of Ω has not been reached, we obtain (53) where C only depends
on Ω which concludes the proof of (53).

Step 3 Proof of (54)
Thanks to Lemma 8

‖u‖2L2(∂Ω) ≤ C
(
‖u‖2L2(Ω\O) + ‖u‖21,T

)
,

where C only depends on Ω.
Let us denote by ∂O the boundary of O. We denote by γu the discrete trace of u on ∂O, that is for all
x ∈ ∂O, if x ∈ K, K ∈ T then γu(x) = uK , if x ∈ σ, σ ∈ Eext then γu(x) = uσ, if x ∈ σ, σ ∈ Eint,
σ = K|L ⊂ ∂O and K ⊂ O then γu(x) = uL, finally if x ∈ σ, σ ∈ Eint and σ = K|L 6⊂ ∂O then
γu(x) = uL or uK . Using (53), one gets

‖u‖2L2(Ω\O) ≤ C
(
‖γu‖2L2(∂O) + ‖u‖21,T

)
,

where C only depends on Ω.
Using Lemma 8 once more, one obtains

‖γu‖2L2(∂O) ≤ C
(
‖u‖2L2(O) + ‖u‖21,T

)
,

where C only depends on Ω.
These three results yield (54). This concludes the proof of Lemma 7.

Lemma 8 (Trace inequality) Let Ω be an open bounded polygonal subset of IRd, d = 2 or 3. Let T be
an admissible mesh in the sense of Definition 1, and u be a function from Ω to IR which is constant on
each control volume of the mesh. Let uK be the value of u in the control volume K. Let γu be defined by
γu = uK a.e. (for the (d− 1)-dimensional Lebesgue measure) on σ, if σ ∈ Eext and σ ∈ EK . Then, there
exists C, only depending on Ω, such that

‖γu‖L2(∂Ω) ≤ C(|u|1,T + ‖u‖L2(Ω)). (57)

Proof of Lemma 8
By compactness of the boundary of ∂Ω, there exists a finite number of open hyper-rectangles (d = 2 or
3), {Ri, i = 1, . . . , N}, and normalized vectors of IRd, {ηi, i = 1, . . . , N}, such that ∂Ω ⊂ ∪N

i=1Ri,
ηi · n(x) ≥ α > 0 for all x ∈ Ri ∩ ∂Ω, i ∈ {1, . . . , N},
{x+ tηi, x ∈ Ri ∩ ∂Ω, t ∈ IR+} ∩Ri ⊂ Ω,

where α is some positive number and n(x) is the normal vector to ∂Ω at x, inward to Ω. Let {αi, i =
1, . . . , N} be a family of functions such that

∑N
i=1 αi(x) = 1, for all x ∈ ∂Ω, αi ∈ C∞c (IRd, IR+) and

αi = 0 outside of Ri, for all i = 1, . . . , N . Let Γi = Ri ∩ ∂Ω; let us prove that there exists Ci only
depending on α and αi such that

‖αiγu‖L2(Γi) ≤ Ci

(
|u|1,T + ‖u‖L2(Ω)

)
. (58)

The existence of C, only depending on Ω, such that (57) holds, follows easily (taking C =
∑N

i=1 Ci, and
using

∑N
i=1 αi(x) = 1, note that α and αi depend only on Ω). It remains to prove (58).

Let us introduce some notations. For σ ∈ E and K ∈ T , define χσ and χK from IRd × IRd to {0, 1}
by χσ(x, y) = 1, if [x, y] ∩ σ 6= ∅, χσ(x, y) = 0, if [x, y] ∩ σ = ∅, and χK(x, y) = 1, if [x, y] ∩ K 6= ∅,
χK(x, y) = 0, if [x, y] ∩K = ∅.
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Let i ∈ {1, . . . , N} and let x ∈ Γi. There exists a unique t > 0 such that x+ tηi ∈ ∂Ri, let y(x) = x+ tηi.
For σ ∈ E , let zσ(x) = [x, y(x)] ∩ σ if [x, y(x)] ∩ σ 6= ∅ and is reduced to one point. For K ∈ T , let
ξK(x), ηK(x) be such that [x, y(x)] ∩K = [ξK(x), ηK(x)] if [x, y(x)] ∩K 6= ∅.
One has, for a.e. (for the (d− 1)-dimensional Lebesgue measure) x ∈ Γi,

|αiγu(x)| ≤
∑

σ=K|L∈Eint

∣∣∣αi(zσ(x))(uK − uL)
∣∣∣χσ(x, y(x)) +

∑
K∈T

∣∣∣(αi(ξK(x))− αi(ηK(x))
)
uK

∣∣∣χK(x, y(x)),

that is,
|αiγu(x)|2 ≤ A(x) +B(x) (59)

with
A(x) = 2(

∑
σ=K|L∈Eint

|αi(zσ(x))(uK − uL)|χσ(x, y(x)))2,

B(x) = 2(
∑
K∈T

|(αi(ξK(x))− αi(ηK(x)))uK |χK(x, y(x)))2.

A bound on A(x) is obtained for a.e. x ∈ Γi, by remarking that, from the Cauchy-Schwarz inequality:

A(x) ≤ D1

∑
σ∈Eint

|Dσu|2

dσcσ
χσ(x, y(x))

∑
σ∈Eint

dσcσχσ(x, y(x)),

where D1 only depends on αi and cσ = |ηi · nσ|. (Recall that Dσu = |uK − uL|.) Since∑
σ∈Eint

dσcσχσ(x, y(x)) ≤ diam(Ω),

this yields:

A(x) ≤ diam(Ω)D1

∑
σ∈Eint

|Dσu|2

dσcσ
χσ(x, y(x)).

Then, since ∫
Γi

χσ(x, y(x))dγ(x) ≤ 1
α
cσm(σ),

there exists D2, only depending on Ω, such that

A =
∫

Γi

A(x)dγ(x) ≤ D2|u|21,T .

A bound B(x) for a.e. x ∈ Γi is obtained with the Cauchy-Schwarz inequality:

B(x) ≤ D3

∑
K∈T

u2
KχK(x, y(x))|ξK(x)− ηK(x)|

∑
K∈T

|ξK(x)− ηK(x)|χK(x, y(x)),

where D3 only depends on αi. Since∑
K∈T

|ξK(x)− ηK(x)|χK(x, y(x)) ≤ diam(Ω) and
∫

Γi

χK(x, y(x))|ξK(x)− ηK(x)|dγ(x) ≤ 1
α

m(K),

there exists D4, only depending on Ω, such that

B =
∫

Γi

B(x)dγ(x) ≤ D4‖u‖2L2(Ω).

Integrating (59) over Γi, the bounds on A and B lead (58) for some convenient Ci and it concludes the
proof of Lemma 8.
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4.3 Error estimates

Theorem 3 (C2 regularity) Under Assumptions 1 and 5, let T be an admissible mesh in the sense of
Definition 1. One assumes that the unique variational solution u ∈ H1(Ω), such that

∫
Ω
u(x) dx = 0, of

Problem (1), (39) satisfies u ∈ C2(Ω). Let uT be the solution to (15), (40), (41),(42), (5), (8) and (11),
such that

∑
K∈T m(K)uK =

∑
K∈T m(K)u(xK), where xK is defined in Definition 1. Let eT be defined

by eT (x) = eK = u(xK)− uK if x ∈ K, K ∈ T .
Then, there exists C > 0 only depending on u, v, d and Ω such that

|eT |1,T ≤ C size(T ), (60)

where | · |1,T is the discrete H1 semi-norm defined in Definition 3. Furthermore

‖eT ‖L2(Ω) ≤ C size(T ). (61)

Theorem 4 (H2 regularity) Under Assumptions 1 and 5, let T be an admissible mesh in the sense of
Definition 1 and let

ζ = min
K∈T

min
σ∈EK

dK,σ

diam(K)
·

One assumes that the unique variational solution u ∈ H1(Ω), such that
∫
Ω
u(x) dx = 0, of Problem

(1), (39) satisfies u ∈ H2(Ω). Let uT be the solution to (15), (40), (41),(42), (5), (8) and (11), such
that

∑
K∈T m(K)uK =

∑
K∈T m(K)u(xK), where xK is defined in Definition 1. Let eT be defined by

eT (x) = eK = u(xK)− uK if x ∈ K, K ∈ T .
Then, there exists C, only depending on u, v, d, Ω and ζ, such that (60) and (61) hold.

Proof of Theorems 3 and 4
As u is the exact solution to (1), (39), one has:∑

σ∈EK∩Eint

(
FK,σ + V K,σ

)
=
∫

K

f(x) dx+
∑

σ∈EK∩Eext

gN
σ ,

where FK,σ and V K,σ are defined by (20).
Substracting (40) off the previous equation yields∑

σ=K|L∈Eint

(
F ?

K,σ−FK,σ

)
+

∑
σ∈EK∩Eint

(
V ?

K,σ−VK,σ

)
= −

∑
σ=K|L∈Eint

m(σ)RK,σ−
∑

σ∈EK∩Eint

m(σ) rK,σ, (62)

where F ?
K,σ is defined by (21) and V ?

K,σ = vK,σu(xσ,+),∀σ ∈ EK ∩ Eint, ∀K ∈ T , where xσ,+ = xK (resp.
xL) if σ ∈ Eint, σ = K|L and vK,σ ≥ 0 (resp. vK,σ ≤ 0), finally RK,σ and rK,σ are defined by (24).
Multiplying (62) by eK , summing for K ∈ T and noting that∑

K∈T

∑
σ=K|L∈Eint

(
F ?

K,σ − FK,σ

)
eK =

∑
σ∈Eint

|Dσe|2
m(σ)
dσ

= |e|21,T ,

where | · |21,T is defined in Definition 3, yield

|eT |21,T +
∑
K∈T

∑
σ=K|L∈Eint

vK,σeσ,+eK ≤ −
∑
K∈T

∑
σ=K|L∈Eint

m(σ) (RK,σ + rK,σ) eK , (63)

where eσ,+ = u(xσ,+)− uσ,+.
Reordering the summation over the set of edges, one has∑
K∈T

∑
σ=K|L∈Eint

vK,σeσ,+eK =
∑

σ∈Eint

vσ

(
eσ,+ − eσ,−

)
eσ,+ =

1
2

∑
σ∈Eint

vσ

(
(eσ,+ − eσ,−)2 + (e2σ,+ − e2σ,−)

)
,
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where, for all σ ∈ Eint, vσ = |
∫

σ
v(x) · ndγ(x)|, n being a unit normal vector to σ, and eσ,− is the

downstream value to σ with respect to v, i.e. if σ = K|L, then eσ,− = eK if vK,σ ≤ 0, and eσ,− = eL

otherwise. Thanks to the assumptions divv = 0 on Ω and v · n = 0 on ∂Ω, one obtains

1
2

∑
σ∈Eint

vσ (e2σ,+ − e2σ,−) =
1
2

∑
σ∈Eint

vσ (e2σ,+ − e2σ,−) +
1
2

∑
K∈T

∑
σ∈Eext

vK,σ |eK |2

=
1
2

∑
K∈T

(∫
∂K

v(x) · nKdγ(x)
)
e2K =

1
2

∫
Ω

(divv(x))e2T (x)dx = 0.

Hence, (63) yields
|eT |21,T ≤ −

∑
K∈T

∑
σ∈EK

m(σ)(RK,σ + rK,σ)eK . (64)

Thanks to the conservativity property of the scheme (see (4)), one has RK,σ = −RL,σ and rK,σ = −rL,σ

for σ ∈ Eint such that σ = K|L. Let Rσ = |RK,σ| and rσ = |rK,σ| if σ ∈ EK . Reordering the summation
over the edges and using Young’s inequality, one then obtains

|
∑
K∈T

∑
σ=K|L∈Eint

m(σ)(RK,σ + rK,σ)eK | ≤
∑

σ∈Eint

m(σ)(Dσe)(Rσ + rσ) ≤

1
2

∑
σ∈Eint

m(σ)
dσ

(Dσe)2 +
1
2

∑
σ∈Eint

m(σ)dσ(Rσ + rσ)2. (65)

Using Lemma 2, if u ∈ C2(Ω), or Hölder’s inequality and Lemma 3 (with p = 4), if u is only in H2(Ω)
(for more details see the proof of inequality (36)), and remarking that

∑
σ∈E m(σ)dσ = dm(Ω), (64) and

(65) yield the existence of C, only depending on u, v, d and Ω if u ∈ C2(Ω) and on u, v, d, Ω and ζ if u
is only in H2(Ω), such that

|eT |21,T ≤ C (size(T ))2.

This estimate gives (60). In order to obtain (61), we use a discrete Poincaré-Wirtinger inequality which
is given in Lemma 6. This concludes the proofs of Theorems 3 and 4.

5 Robin boundary condition

The last type of boundary condition we consider is a Robin condition:

∇u(x) · n(x) + λ(x)u(x) = gF (x), x ∈ ∂Ω, (66)

with

Assumption 6 gF ∈ H1/2(∂Ω), λ ∈ L∞(∂Ω) such that v · n/2 + λ ≥ 0 a.e. on ∂Ω. Furthermore, if
v(x) · n(x)/2 + λ(x) = 0 for almost every x ∈ ∂Ω then one assumes the existence of O ⊂ Ω such that its
d-dimensional measure m(O) 6= 0 and such that div(v)/2 + b 6= 0 a.e. on O.

Then, under Assumptions 1 and 6 the Lax-Milgram theorem ensures the existence of a unique variational
solution u ∈ H1(Ω) of (1), (66). That is to say u ∈ H1(Ω) satisfies∫

Ω

[
∇u(x) · ∇φ(x) + div

(
v(x)u(x)

)
φ(x) + b(x)u(x)φ(x)

]
dx+

∫
∂Ω

λ(x) γ(u(x)) γ(φ)(x) dγ(x)

=
∫

∂Ω

gF (x) γ(φ)(x) dγ(x) +
∫

Ω

f(x)φ(x) dx, for all φ ∈ H1(Ω),

where γ denotes the trace operator from H1(Ω) into H1/2(∂Ω) and dγ is the integration symbol for the
(d− 1)-dimensional Lebesgue measure on ∂Ω.
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Remark 9 Assumptions 1 and 6 give the coercivity of the elliptic operator associated to the above vari-
ational equality. It does not need a compatibility relation, even in the case λ = 0 a.e.; in this last case,
even though the boundary condition looks like a Neumann condition, the solution behaves as if the problem
were a Robin condition and the proof of the error estimate is the same as for a Robin condition. The
case λ = 0 under assumptions 1 and 6 is therefore treated in this section.

5.1 Discretization

Let T be an admissible mesh in the sense of Definition 1. The discretization of the diffusion-convection
equation (1) with a Robin boundary condition is performed with the help of some auxiliary unknowns
which are defined on the edges of the boundary. These may be eliminated when solving the linear system.
We shall however keep them throughout our study because they simplify several expressions in the error
estimate. Hence in this section the discrete unknowns are (uK)K∈T ∪ (uσ)σ∈Eext . In order to obtain the
discretized equation let us as usual integrate (1) on each cell of the mesh. Using a “four points” finite
volume scheme for the diffusion terms and an upstream scheme for the convection terms, one gets, for all
K ∈ T , ∑

σ∈EK

[
FK,σ + vK,σ uσ,+

]
+bK m(K)uK = m(K) fK , (67)

where, for all K ∈ T and all σ ∈ EK , vK,σ, fK and bK are defined by (8) and (11), uσ,+ is defined by
(9). Furthermore FK,σ is defined by (5) if σ ∈ Eint, σ = K|L, and by (6) if σ ∈ Eext, and we set for all
σ ∈ Eext

gF
σ =

∫
σ

gF (x) dγ(x) and λσ =
1

m(σ)

∫
σ

λ(x) dγ(x). (68)

There remains to give the equations associated with the boundary unknowns (uσ)σ∈Eext . These are
obtained by discretizing (66). The discretization which we choose involves the upstream value uσ,+ in
order for the scheme to be well defined with no additional condition on the mesh (see remarks 10 and
11). It writes:

− FK,σ +
(
m(σ)λσ + vK,σ

)
uσ − vK,σ uσ,+ = gF

σ , for all σ ∈ EK ∩ Eext, (69)

Remark 10

1. Using (6) and (69), one can eliminate uσ for all σ ∈ Eext in (67) and obtain

uσ =

(
(vK,σ>0) dK,σ + m(σ)

)
uK + dK,σ g

F
σ

m(σ) +
(
m(σ)λσ + vK,σ − (vK,σ⊥0)

)
dK,σ

,

where for all a, b ∈ IR, a>b = max(a, b) and a⊥b = min(a, b). Again, the numerical unknowns are
(uK)K∈T .

2. In order to discretize the boundary condition on an edge σ ∈ Eext of K ∈ T , we use a non centered
scheme summing and substracting vK,σ. This choice is performed, even though to our knowledge
there is no physical background to this choice, in order to prove existence, uniqueness and conver-
gence towards the exact solution, with no restriction on the mesh (see Remark 11), for λ such that
there exists a subset of ∂Ω with a non zero (d-1)-dimensional measure and such that λ < 0 on this
subset. In fact, it would be more natural to discretize the boundary condition as follows:

− FK,σ + λσ m(σ)uσ = gF
σ , ∀ σ ∈ EK ∩ Eext, ∀ K ∈ T . (70)

We shall give the idea of the proof for this scheme in Remarks 11 and 12 and see that for negative
values of λ the convergence proof requires further assumtions on the mesh. Hence, (69) will be
preferred for the discretization of the boundary condition so as to be able to handle negative values
of λ with no additional condition on the mesh.
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5.2 Existence, uniqueness and stability of the approximate solution

Let us first introduce as in the previous sections the discrete H1 norm of a function which is constant on
each cell of the mesh and each edge on the boundary.

Definition 4 (Discrete H1 norm) Let T be an admissible finite volume mesh in the sense of Defi-
nition 1. Let u be a function which is constant on each control volume of T and on each edge on the
boundary with u(x) = uK if x ∈ K, K ∈ T , and u(x) = uσ if x ∈ σ, σ ∈ Eext, one defines the discrete
H1 semi-norm by

|u|1,T =

(∑
σ∈E

m(σ)
dσ

(Dσu)2
)1/2

,

where Dσu = |uK − uL| if σ ∈ Eint, σ = K|L and Dσu = |uK − uσ| if σ ∈ Eext ∩ EK , K ∈ T .

Proposition 3 Under Assumptions 1 and 6, let T be an admissible mesh in the sense of Definition 1.
Then there exists a unique solution (uK)K∈T ∪ (uσ)σ∈Eext to (67), (69), (68), (5), (6), (8), (9) and (11).
Furthermore let uT be defined a.e. from Ω to IR by uT (x) = uK if x ∈ K, K ∈ T and uT (x) = uσ if
x ∈ σ, σ ∈ Eext; then there exists C ∈ IR+ depending only on Ω such that

|uT |1,T ≤ C
(
‖gF ‖L2(∂Ω) + ‖f‖L2(Ω)

)
, (71)

and
‖uT ‖L2(∂Ω) + ‖uT ‖L2(Ω) ≤ C

(
‖gF ‖L2(∂Ω) + ‖f‖L2(Ω)

)
. (72)

Proof of Proposition 3
Let K ∈ T and σ ∈ Eext ∩ EK , then we multiply (67) by uK and (69) by uσ; summing the results, we get∑
σ∈EK∩Eint

σ=K|L

uK − uL

dK|L
uK m(σ) +

∑
σ∈EK

vK,σ uσ,+ uK + bK m(K) (uK)2

+
∑

σ∈EK∩Eext

m(σ)
(
uK − uσ

dK,σ
uK +

uσ − uK

dK,σ
uσ +

(
λσ +

1
m(σ)

vK,σ

)
(uσ)2 − 1

m(σ)
vK,σ uσ,+ uσ

)
=
∑
K∈T

m(K)uK fK +
∑

σ∈Eext

uσ g
F
σ .

Summing the result over K ∈ T , using (44), (45) and Young’s inequality, one gets for all δ > 0 and all
ε > 0

|uT |21,T +
∫

Ω

(
div(v(x))

2
+ b(x)

)
(uT (x))2 dx

+
∑
K∈T

∑
σ∈EK∩Eext

[
vK,σ

(
uσ,+ uK − (uK)2

2
− uσ,+ uσ +

(uσ)2

2

)
+
(
λσm(σ) +

vK,σ

2

)
(uσ)2

]
≤ 2
δ
‖f‖2L2(Ω) +

2
ε
‖gF ‖2L2(∂Ω) +

δ

2
‖uT ‖2L2(Ω) +

ε

2
‖uT ‖2L2(∂Ω).

Remarking that for all K ∈ T and all σ ∈ Eext ∩ EK , vK,σ

(
uσ,+ uK − (uK)2

2 − uσ,+ uσ + (uσ)2

2

)
≥ 0,

hence:

|uT |21,T +
∫

Ω

(
div(v(x))

2
+ b(x)

)
(uT (x))2 dx+

∫
∂Ω

(
λ(x) +

v(x) · n(x)
2

)
(uT (x))2 dx (73)

≤ 2
δ
‖f‖2L2(Ω) +

2
ε
‖gF ‖2L2(∂Ω) +

δ

2
‖uT ‖2L2(Ω) +

ε

2
‖uT ‖2L2(∂Ω),
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for all δ > 0 and all ε > 0.
Hence if there exists δ > 0 and ε > 0 such that div(v)/2 + b > δ/2 a.e. on Ω and v · n/2 + λ > ε/2 a.e.
on ∂Ω, (73) gives (71). Otherwise, thanks to Assumption 6 there are two cases.
The first one is when there exists Γ ⊂ ∂Ω such that its (d− 1)-dimensional measure m(Γ) 6= 0 and such
that ib = infx∈Γ

(
v(x) · n(x)/2 + λ(x)

)
6= 0.

The second one is when there exists O ⊂ Ω such that its d-dimensional measure m(O) 6= 0 and such that
ii = infx∈O

(
div(v(x))/2 + b(x)

)
6= 0.

In both cases one uses Lemma 7 in (73).
In the first case, one obtains

|uT |21,T + ib ‖uT ‖2L2(Γ) ≤
2
δ
‖f‖2L2(Ω) +

2
ε
‖gF ‖2L2(∂Ω) + CΩ

(
δ

2
+
ε

2
(1 + CΩ)

) (
‖uT ‖2L2(Γ) + |uT |21,T

)
,

for all δ > 0, all ε > 0 and where CΩ only depends on Ω.

In the second case, one gets

|uT |21,T + ii ‖uT ‖2L2(O) ≤
2
δ
‖f‖2L2(Ω) +

2
ε
‖gF ‖2L2(∂Ω) + CΩ

(
ε

2
+
δ

2
(1 + CΩ)

) (
‖uT ‖2L2(O) + |uT |21,T

)
,

for all δ > 0, all ε > 0 and where CΩ only depends on Ω.
Then a well adapted choice of δ and ε gives in both cases (71). And using once more Lemma 7 gives (72).
Now let us assume f = 0 on Ω and g = 0 on ∂Ω then, thanks to (72), uK = 0 for all K ∈ T and uσ = 0
for all σ ∈ Eext. This proves uniqueness and therefore existence since the dimension of the space is finite
(equal to the number of discrete unknowns).

Remark 11 If the discretization (70) is used instead of (69), remarking that∑
K∈T

∑
σ∈EK∩Eext

(
vK,σ uσ,+ uK − vK,σ

(uK)2

2
+ m(σ)λσ (uσ)2

)

=
∑
K∈T

 ∑
σ∈EK∩Eext

[
(uK − uσ)2

2
|vK,σ|+

(
m(σ)λσ +

vK,σ

2

)
(uσ)2

]
+

∑
σ∈EK∩Eext

vK,σ≥0

uσ (uK − uσ) vK,σ

 ,
computations similar to those of the above proof yield:

|uT |21,T +
∫

Ω

(
div(v(x))

2
+ b

)
(uT (x))2 dx

+
∑
K∈T

 ∑
σ∈EK∩Eext

[
(uK − uσ)2

2
|vK,σ|+

(
m(σ)λσ +

vK,σ

2

)
(uσ)2

]
+

∑
σ∈EK∩Eext

vK,σ≥0

λσ dK,σ m(σ) (uσ)2


≤ 2
δ
‖f‖2L2(Ω) +

2
ε
‖gF ‖2L2(∂Ω) +

δ

2
‖uT ‖2L2(Ω) +

ε

2
‖uT ‖2L2(∂Ω),

for all δ > 0 and all ε > 0. So if λ ≥ 0 a.e. on ∂Ω, this inequality gives Proposition 3, otherwise one
must assume some more restrictive assumption on the mesh as already mentionned in Remark 10; for
instance one might assume m(σ)λσ + 1

2vK,σ + λσdK,σm(σ) ≥ 0 if vK,σ ≥ 0.

We may now define the approximate solution by{
uT (x) = uK if x ∈ K, K ∈ T ,
uT (x) = uσ if x ∈ σ, σ ∈ Eext.

(74)

28



5.3 Error estimate

We prove in this section an error estimate in a discrete H1 semi-norm assuming u ∈ C2(Ω) or u ∈ H2(Ω)
(with more restrictive assumptions on the mesh in the latter case).

Theorem 5 (C2 regularity) Under Assumptions 1 and 6, let T be a restricted admissible mesh in the
sense of Definition 1. Let uT be the solution to (74), (67), (69), (68), (5), (6), (8) and (11).
Assume that the unique variational solution u of Problem (1), (66) satisfies u ∈ C2(Ω). Let eT be defined
by eT (x) = eK = u(xK)− uK if x ∈ K, K ∈ T and eT (x) = eσ = u(yσ)− uσ if x ∈ σ, σ ∈ Eext.
Then, there exists C only depending on d, u, v, b, λ and Ω such that

|eT |1,T ≤ C size(T ), (75)

where | · |1,T is the discrete H1
0 norm defined in Definition 4.

Furthermore
‖eT ‖L2(Ω) + ‖eT ‖L2(∂Ω) ≤ C size(T ). (76)

One proves a similar result when u is only in H2(Ω), assuming more restrictive hypotheses on T .

Theorem 6 (H2 regularity) Under Assumptions 1 and 6, let T be a restricted admissible mesh in the
sense of Definition 1 and let

ζ = min
K∈T

min
σ∈EK

dK,σ

diam(K)
·

Let uT be the solution to (74), (67), (69), (68), (5), (6), (8) and (11). Assume that the unique variational
solution u of Problem (1), (66) satisfies u belongs to H2(Ω). Let eT be defined by eT (x) = eK =
u(xK)− uK if x ∈ K, K ∈ T and eT (x) = eσ = u(yσ)− uσ if x ∈ σ, σ ∈ Eext.
Then, there exists C, only depending on u, v, b, λ, Ω and ζ, such that (75) and (76) hold.

Proof of Theorems 5 and 6
One proceeds, like in the Dirichlet case, in two steps. In the first one, one proves the consistency of the
scheme, in a finite volume sense. Then in the second step, using this result and the conservativity of the
scheme (see (4)), one proves error estimates.
Step 1
For all K ∈ T and all σ ∈ EK let

ρK =
1

m(K)

∫
K

b(x)
(
u(x)− u(xK)

)
dx and rK,σ =

1
m(σ)

∫
σ

v(x) · nK,σ

(
u(x)− u(xσ,+)

)
dγ(x),

with xK defined in Definition 1 and xσ,+ = xK if vK,σ ≥ 0, xσ,+ = xL if vK,σ < 0 and σ ∈ EK ∩ Eint,
σ = K|L, finally xσ,+ = xσ if vK,σ < 0 and σ ∈ EK ∩ Eext.
Furthermore, if σ ∈ EK ∩ Eint, σ = K|L, one has

RK,σ = − 1
m(σ)

∫
σ

(
∇u(x) · nK,σ −

u(xL)− u(xK)
dK,σ

)
dγ(x),

and, if σ ∈ EK ∩ Eext xL is replaced by yσ where yσ is defined in Definition 1.
In a same way, one uses, for all σ ∈ EK ∩ Eext

R̃K,σ =
1

m(σ)

∫
σ

(
λ(x) + v(x) · nK,σ

)(
u(x)− u(yσ)

)
dγ(x), (77)

One recalls that Lemmas 2 and 3 hold. Moreover, using Taylor expansions, one proves the following
result:

29



Lemma 9 Under Assumptions 1 and 6, let T be an admissible mesh in the sense of Definition 1. Assume
that the unique variational solution u of Problem (1), (66) satisfies u ∈ C2(Ω). Then there exists C > 0,
only depending on u, v and λ, such that

|R̃K,σ| ≤ C size(T ),

for any K ∈ T and σ ∈ EK .

With the same technique as was used for rK,σ in Lemma 3 we prove a similar lemma when u is only in
H2(Ω):

Lemma 10 Under Assumptions 1 and 6, let T be an admissible mesh in the sense of Definition 1 and
let

ζ = min
K∈T

min
σ∈EK

dK,σ

diam(K)
·

Assume that the unique variational solution, u, to (1), (66) belongs to H2(Ω). Then there exists C, only
depending on λ, d, v, ζ and p such that, for all K ∈ T and all σ ∈ EK ,

|R̃K,σ| ≤ C size(T ) (m(σ) dσ)−1/p ‖u‖W 1,p(Vσ), (78)

for all p > d and such that p < +∞ if d = 2 and p ≤ 6 if d = 3, where Vσ is defined in Lemma 3.

This concludes the proof of the scheme consistency in a finite volume sense, i.e. step 1.
Step 2
Let K ∈ T , since u is the exact solution to (1), (66), one has:∑

σ∈EK

∫
σ

(−∇u(x) · nK,σ + v(x) · nK,σ u(x)) dγ(x) +
∫

K

b(x)u(x) dx =
∫

K

f(x) dx,

Substracting (67) off the previous equation, one gets for all K ∈ T∑
σ∈EK∩Eint

σ=K|L

−eL − eK

dK|L
m(σ) +

∑
σ∈EK∩Eext

−eσ − eK

dK,σ
m(σ) +

∑
σ∈EK

vK,σ eσ,+ + bK m(K) eK

= −m(K) ρK −
∑

σ∈EK

m(σ) (RK,σ + rK,σ), (79)

where, for all σ ∈ EK , eσ,+ = eK if vK,σ ≥ 0, eσ,+ = eL if vK,σ < 0 and σ ∈ EK ∩ Eint, σ = K|L, finally
eσ,+ = eσ if vK,σ < 0 and σ ∈ EK ∩ Eext.
In a similar way, using (66) and (69), one has for all K ∈ T

m(σ)
eσ − eK

dK,σ
+
(
m(σ)λσ + vK,σ

)
eσ − vK,σeσ,+ = m(σ)

(
RK,σ − R̃K,σ + rK,σ

)
. (80)

We then multiply (80) by eσ, we sum the result over σ ∈ EK , we multiply (79) by eK , we sum these two
equalities and we finally sum the result over K ∈ T . Using for the left hand side term the same technique
as the one used in the proof of Proposition 3, one obtains

|eT |21,T +
∫

Ω

(
div(v(x))

2
+ b(x)

)
(eT (x))2 dx+

∫
∂Ω

(
λ(x) +

v(x) · n(x)
2

)
(eT (x))2 dx

≤ −
∑
K∈T

m(K) ρK eK −
∑
K∈T

∑
σ∈EK

m(σ) (RK,σ + rK,σ) eK

+
∑
K∈T

∑
σ∈EK∩Eext

m(σ)
(
RK,σ − R̃K,σ + rK,σ) eσ.
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Using Young’s inequality, Lemma 2 if u ∈ C2(Ω) and Lemma 3 (with p = 4) and Hölder’s inequality if u
is only in H2(Ω) (for more details see the proof of Theorems 1 and 2), one gets for all δ > 0

|eT |21,T +
∫

Ω

(
div(v(x))

2
+ b(x)

)
(eT (x))2 dx+

∫
∂Ω

(
λ(x) +

v(x) · n(x)
2

)
(eT (x))2 dx

≤ C

2 δ
(size(T ))2 +

δ

2
‖eT ‖2L2(Ω) −

∑
K∈T

∑
σ∈EK

m(σ) (RK,σ + rK,σ) eK

+
∑
K∈T

∑
σ∈EK∩Eext

m(σ)
(
RK,σ − R̃K,σ + rK,σ) eσ,

where C only depends on u, b and Ω if u ∈ C2(Ω) and on u, b, Ω and ζ if u is only in H2(Ω).
Thanks to the conservativity property of the scheme (see (4)), one has, for all σ ∈ Eint, σ = K|L,
RK,σ = −RL,σ and rK,σ = −rL,σ. Then using this result, Young’s inequality, Lemma 2 if u ∈ C2(Ω) and
Lemma 3 (with p = 4) and Hölder’s inequality if u is only in H2(Ω) (for more details see the proof of
Theorems 1 and 2)), one obtains

−
∑
K∈T

∑
σ∈EK

m(σ) (RK,σ + rK,σ) eK +
∑
K∈T

∑
σ∈EK∩Eext

m(σ)RK,σ eσ ≤
1
2
|eT |21,T + C (size(T ))2,

where C only depends on v, d, u and Ω if u ∈ C2(Ω) and on v, d, u, Ω and ζ if u is only in H2(Ω).
The two previous inequalities yield for all δ > 0

|eT |21,T

2
+
∫

Ω

(
div(v(x))

2
+ b(x)

)
(eT (x))2 dx+

∫
∂Ω

(
λ(x) +

v(x) · n(x)
2

)
(eT (x))2 dx

≤ C

(
1 +

1
δ

)
(size(T ))2 +

δ

2
‖eT ‖2L2(Ω) −

∑
K∈T

∑
σ∈EK∩Eext

m(σ) R̃K,σ eσ,

where C only depends on d, u, b, v, and Ω if u ∈ C2(Ω) and on d, u, b, v, Ω and ζ if u is only in H2(Ω).
Finally, using Young’s inequality, Lemma 9 if u ∈ C2(Ω) and Lemma 10 (with p = 4) and Hölder’s
inequality if u is only in H2(Ω) (for more details see the proof of Theorems 1 and 2)), one obtains for all
ε > 0 and all δ > 0

|eT |21,T

2
+
∫

Ω

(
div(v(x))

2
+ b(x)

)
(eT (x))2 dx+

∫
∂Ω

(
λ(x) +

v(x) · n(x)
2

)
(eT (x))2 dx (81)

≤ C

(
1 +

1
δ

+
1
ε

)
(size(T ))2 +

δ

2
‖eT ‖2L2(Ω) +

ε

2
‖eT ‖2L2(∂Ω),

where C only depends on d, u, b, v, λ and Ω if u ∈ C2(Ω) and on d, u, b, v, λ, Ω and ζ if u is only in
H2(Ω).

Remark 12 If λ ≥ 0 a.e. on ∂Ω and if one uses (70) instead of (69) in order to discretize the boundary
condition. One proves (81), using Remark 11 for the left hand side. For the right hand side, one introduces

R̃K,σ =
1

m(σ)

∫
σ

λ(x)
(
u(x)− u(yσ)

)
dγ(x),

then using a technique similar to the one used in the above proof, one gets (81).

Hence if there exists δ > 0 and ε > 0 such that div(v)/2 + b > δ/2 a.e. on Ω and v · n/2 + λ > ε/2 a.e.
on ∂Ω, (81) gives (75) and (76). Otherwise, thanks to Assumption 6 there are two cases.
The first one is when there exists Γ ⊂ ∂Ω such that its (d− 1)-dimensional measure m(Γ) 6= 0 and such
that ib = infx∈Γ

(
v(x) · n(x)/2 + λ(x)

)
6= 0.
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The second one is when there exists O ⊂ Ω such that its d-dimensional measure m(O) 6= 0 and such that
ii = infx∈O

(
div(v(x))/2 + b(x)

)
6= 0.

In both cases one uses Lemma 7 in (81).
In the first case, one obtains

|eT |21,T

2
+ ib ‖eT ‖2L2(Γ) ≤ C

(
1 +

1
δ

+
1
ε

)
(size(T ))2

+
CΩ

2

(
δ + εCΩ

)
‖eT ‖2L2(Γ) +

CΩ

2

(
δ + ε+ εCΩ

)
|eT |21,T ,

for all δ > 0, all ε > 0, where C only depends on λ, d, u, b, v, and Ω if u ∈ C2(Ω) and on λ, d, u, b, v,
Ω and ζ if u is only in H2(Ω), and where CΩ only depends on Ω.

In the second case, one gets

|eT |21,T

2
+ ii ‖eT ‖2L2(O) ≤ C

(
1 +

1
δ

+
1
ε

)
(size(T ))2

+
CΩ

2

(
ε+ δ CΩ

)
‖eT ‖2L2(O) +

CΩ

2

(
ε+ δ + δ CΩ

)
|eT |21,T ,

for all δ > 0, all ε > 0, where C only depends on λ, d, u, b, v, and Ω if u ∈ C2(Ω) and on λ, d, u, b, v,
Ω and ζ if u is only in H2(Ω), and where CΩ only depends on Ω.
Then a well adapted choice of δ and ε gives in both cases (75) and using once more Lemma 7 yields (76).
This concludes the proof of Theorems 5 and 6.
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[15] K.W. Morton and E. Süli (1991), Finite volume methods and their analysis, IMA J. Numer.
Anal. 11, 241-260.

[16] K.W. Morton (1996), Numerical Solutions of Convection-Diffusion problems (Chapman and Hall,
London).
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