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Summary We study here the convergence of a finite volume scheme for a diffusion-convection equation
on an open bounded set of R? (d = 2 or 3) for which we consider Dirichlet, Neumann or Robin boundary
conditions. We consider unstructured meshes which include Voronoi or triangular meshes; we use for the
diffusion term an “s points” (where s is the number of sides of each cell) finite volume scheme and for
the convection term an upstream finite volume scheme. Assuming the exact solution at least in H? we
prove error estimates in a discrete H} norm of order the size of the mesh. Discrete Poincaré inequalities
then allow to prove error estimates in the L? norm.

1 Presentation of the problem

Let © be an open bounded subset of R? (d = 2 or 3) which is assumed to be polygonal if d = 2 and
polyhedral if d = 3. We denote by 92 its boundary and by n the unit normal to 02 outward to €.
We consider the following convection diffusion reaction problem:

~Au(z) + div (V(x) u(x))er(a:)u(x) — f(a), z€Q, (1)

with different boundary conditions and the following hypotheses

Assumption 1 f € L?(Q), b € L®(Q) and v € CY(Q,R?) such that divv/2 +b > 0 almost every-
where.

In this paper, we consider three different types of boundary conditions for the previous diffusion convection
equation, namely Dirichlet, Neumann or Robin boundary conditions; these conditions are not necessarily
homogeneous. This elliptic problem is then discretized with a finite volume scheme: an “s-points” scheme,
where s is the number of sides of each cell, is used for the diffusion term and an upstream scheme for the
convection term.

Let us remark that the analysis which is developed here still holds for equations of the type

—div(k(x)Vu(m)) + div (V(x) u(m))—l—b(m)u(m) = f(x), z€Q, 2)

under Assumption 1 with the following hypothesis on k:

Assumption 2 k is a piecewise C' function from Q to IR such that there exists ko € IR, such that
k(z) > ko for a.e. x €.

For the sake of the simplicity of notations we prefer to deal with the Laplace operator here but we shall
point out the modifications which take place if the operator div(kV.) is considered instead: see remarks 1,
4 and 7 in the case of the Dirichlet boundary conditions. Let us now assume that k is a tensor satisfying
the following hypothesis:

Assumption 3 k is a piecewise C* function from Q to R™? such that for all z € Q, k(x) is a symmetric
matriz and such that there exists ko € RY such that k(x)& - & > ko for a.e. x € Q and for all § € R
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Then one may still write the finite volume scheme and obtain some error estimates, but the assumptions
on the mesh have to be modified see Remark 1 and [10], see also the modified scheme of Coudiére et al
[5] for this case. However if the mesh is cartesian and if for all x € Q the matrix k(z) is diagonal then it
is “aligned” with the grid and the analysis is similar to the (non constant) scalar case of Equation (2).
Finite volumes are known to be well adapted to the discretization of conservation equations, particularly
in the presence of convection terms. Their theoretical study has recently been undertaken. Two main
directions are usually followed in order to obtain convergence properties of finite volume schemes. The
first one consists in writing the finite volume as a finite element or mixed finite element method by using
some numerical integration, see for instance [1], [2], [18], [19] or [20]; the convergence then follows from
the general finite element framework. The second one, see for example [5], [6], [12], [9], [21], [14] or
[22], consists in establishing the convergence by using the direct formulation of the finite volume scheme
together with some appropriate discrete functional analysis tools. This last approach is considered here.
A discrete system is obtained for each type of boundary condition. Existence and uniqueness (sometimes
up to a constant like in the continuous case) of the approximate solution is proven. The stability of
the scheme is shown in each case by establishing some estimates on the approximate solution which are
independent of the mesh size. If the exact solution is assumed to be at least in H?(f2), one may then
establish the convergence of the scheme by proving error estimates. A first one in a discrete H} norm is
obtained and a second one in L? norm follows with the help of discrete Poincaré inequalities. It is also
possible to prove error estimates in the L% norm, see [4], for all ¢ such that 1 < ¢ < +oo if d = 2 and
such that 1 < ¢ <6 if d = 3 establishing discrete Sobolev’s imbeddings.

This work is divided in four sections. The first one introduces the admissible meshes which are needed
for the discretization of the elliptic problem, and the three following sections correspond to the three
types of boundary conditions which we consider here. Homogeneous Dirichlet conditions were studied
in eg. [12], [21], [9], [14], with different assumptions on the data and the mesh; to our knowledge,
nonhomogeneous Dirichlet, Neumann and Robin boundary conditions have only been considered up to
now in [6] with some simplifying assumptions; the convergence of the method for Neumann and Robin
conditions requires some additional work compared to that of the Dirichlet case. In the case of Neumann
boundary conditions, a “discrete Poincaré-Wirtinger” inequality needs to be proven in order to obtain an
L? error estimate. The stability results for both Neumann and Robin boundary conditions are obtained
by using a discrete trace inequality which we prove to be true for piecewise constant functions. In the
case of the Robin condition, it is interesting to note that an artificial upwinding has to be introduced in
the treatment of the boundary condition in order for the scheme to be well defined with no additional
condition on the mesh.

2 Admissible meshes

Definition 1 (Admissible meshes) A finite volume mesh of Q, denoted by T, is given by a family of
“control volumes”, which are open polygonal (or polyhedral) convex subsets of Q (with positive measure),
a family of subsets of Q0 contained in hyperplanes of R?, denoted by € (these are the edges (if d =2) or
sides (if d = 3) of the control volumes), with strictly positive (d — 1)-dimensional measure, and a family
of points of Q denoted by P. The finite volume mesh is said to be admissible if the properties (i) to (iv)
below are satisfied and restricted admissible if the properties (i) to (v) below are satisfied.

(i) The closure of the union of all the control volumes is Q;
(ii) For any K € T, there erists a subset Ex of € such that 0K = K\ K = Uyeg, 0. Let & = UgerEk-

(iii) For any (K,L) € T? with K # L, either the (d — 1)-dimensional Lebesgue measure of K 0L is 0
or KNL =5 for some o € £, which will then be denoted by K|L.

(iv) The family P = (2 ) ket 8 such that xxx € K (for all K € T) and, if o = K|L, it is assumed that
Tx # xr, and that the straight line Dy 1, going through xx and g, is orthogonal to K|L.



(v) For any o € & such that o C 99, let K be the control volume such that o € Ex. If xx ¢ o, let
Dk » be the straight line going through x i and orthogonal to o, then the condition Dy , No # 0 is
assumed; let Yy, = Dk o NO.

In the sequel, the following notations are used. The mesh size is defined by: size(T) = sup{diam(K),
K € T}, where diam(K) is the diameter of K € T. Forany K € T ando € £, m(K) is the d-dimensional
Lebesque measure of K (i.e. area if d = 2, volume if d = 3), m(c) the (d — 1)-dimensional measure of
o, and nk , denotes the unit normal vector to o outward to K. The set of interior (resp. boundary)
edges is denoted by Einy (resp. Eext), that is Eny = {0 € E; 0 ¢ N} (resp. Eoxt = {0 € E; 0 C IN}).
The set of neighbours of K is denoted by N(K), that is N(K) = {L € T; 30 € €k, 7 = KN L}. If
o = K|L, we denote by dy or dg|r, the Euclidean distance between xx and xy (which is positive) and
by di o the distance from xi to 0. If 0 € Ex N Eexs, let d, denote the Euclidean distance between g
and Yy, (then, dy = di ). For any o € E; the “transmissibility” through o is defined by 7, = m(o)/d, if
dy #0 and 7, = 0 if d, = 0 In some results and proofs given below, there are summations over o € &y,
with & = {o € &; d, # 0}. For simplicity, (in these results and proofs) € = &y is assumed.

Admissible (or restricted admissible) meshes include, for instance, meshes made with triangles and rect-
angles in two space dimensions, and also Voronoi meshes: the latter consists in building a mesh using the
orthogonal bisectors from a given family of points (for more details see [7]). Admissible meshes will be
used for the Neumann boundary conditions. Property (v) of the restricted admissible meshes is needed
for the Dirichlet and Robin boundary conditions.

Remark 1 In the case of the operator div(kV.) which is considered in Equation (2) where k is a function
from Q to R or R™? which satisfies Assumption 2 or 3, admissible meshes must satisfy the following
additional condition:

(vi) For any K € T, the restriction ki of the function k to any given control volume K belongs to
Cl(K).
Furthermore if k is a piecewise C* function from Q to R**?, the orthogonality conditions (iv) and (v)

have to be modified into:

(iv)’ For any K € T, let kx denote the mean value of k on K, that is

1
kx = M/Kk(x)dw

The set T is such that there exists a family of points
P = (vk)rer such that vx = Npcer Dok € K,

where Dk 41 s a straigth line perpendicular to o with respect to the scalar product induced by k}l
such that Dk oMo =Dp sk No # 0 if o = K|L. Furthermore, if o = K|L, let y, = Dg o, No(=
Dr.okxNo) and assume that xx # xy,.

v)’ For any 0 € Eoxt, le e the control volume such that o € Ex and let Dk o1 be the strai ine

> F Yy Eext, let K be th trol vol h that & d let Dg o1, be the straight li
going through g and orthogonal to o with respect to the scalar product induced by k}l; then, there
exists Yo € 0 NDg oi; let go = (Y5 ).

3 Dirichlet boundary conditions

The first type of boundary condition which we consider is a Dirichlet condition:

D), zedn, (3)



where g € HY/2(0Q).

Let us denote by §” a function of H'(f2) such that 5(§”) = ¢g”, where 7 denotes the trace operator from
HY(Q) into H'/?(09).

Under Assumption 1, there exists a unique variational solution u € H*(£2) of (1), (3) by the Lax-Milgram
Theorem. That is to say, u satisfies u = @ + g where @ € H}(2) is the unique solution to

/Q(Ww) V() + div(v(@) () 6(x) + b(z) i(x) 6(z) ) d
= /Q (—VﬁD(:c) Vo(z) — div(v(z) §P () ¢(x) — b(x) P () ¢(x) + f(z) ¢(m)) dz,

for all ¢ € H} ().
In order to obtain an error estimate, we shall need some more regularity on the boundary condition
(however, the definition of the finite volume and its convergence require less regularity, see Remark 2):

Assumption 4 ¢P € H3/2(99).

3.1 Discretization

The approximate finite volume solution which is sought here is constant on each cell of the mesh. The
discrete unknowns are denoted by (ux ) ke7. The principle of classical finite volume schemes is to integrate
the equation on each cell of the mesh in order to obtain an equation which is sometimes called the balance
equation, for each control volume.

Let K € T, using Green’s formula, one has:

/K [—Au(m) +div(v(m) U($))+b(m)u(x):| dx
=y /U[—Vu(x)Jrv(a:) w(z)| ng dy(x)+/Kb(x)u(x)dx:/Kf(x) iz,

oelk

where dry is the integration symbol for the (d — 1)-dimensional Lebesgue measure on the considered
hyperplane.

For all K € T and all o € £k, let us denote by Fg , the approximate diffusion flux (respectively by Vi o,
the approximate convection flux) that is to say an approximation of fo —Vu(x) -ng , dy(z) (respectively
of [ v(z) ng,u(x)dy(z)).

In order to prove the convergence of the scheme, one needs two basic properties. The first one, called
conservativity of the scheme, states that the numerical flux through a given edge is conservative, i.e.:

Fro=-Fr, forall K € T, L € N(K) and where o = K|L. (4)

The second one is that ﬁFK,U is a consistent approximation of ﬁ [, —Vu(z) -ng , dy(z) (for more
details see Lemmas 2 and 3). The same properties are required for Vi ;.
The numerical diffusion flux Fi , is chosen as:

ur, — UK

Fxo=-m(K|L) if o = K|L, (5)

dyr

and
FK’gdK’g = —m(a) (ug —UK) if o GEextﬁé'K. (6)

The numerical convective flux Vi , is obtained with an upstream scheme, that is:

VK,G‘ = VUK,oc Uo,+ (7)



with

Vi = / V() o dy(@), (8)

and
ug if vg e >0,
if o = K|L, Ugt =
uy, ~ otherwise, )
ug ifovges >0,
if 0 € Eext NEK, Ug 4 =
Uy  otherwise.
and where we set
Ue = gD(yU)a (10)

with y, defined in Definition 1.

Remark 2 If Assumption 4 is weakened to gP € L?(00), gP is no longer defined pointwise, but (10) may
be replaced by u, = ﬁ [, 9% (y) dy(y), where dv stands for the (d — 1)-dimensional Lebesque measure
on o. In this latter case we do not obtain an error estimate but only a convergence result as in [7].

For all K € 7, let fx and bg denote the mean value of f and b on K that is to say

1 1
fx = 7/ f@)de and bg = 7/ b(x) dx. (11)
m(K) Jk m(K) Jk
Then the considered finite volume scheme is defined by the following equations:
Z (FK,a + UKo Ua,+>+m(K) b uxe = m(K) fx. (12)
c€EK

Remark 3 The definition of the diffusion flux on a boundary edge (6) allows di , =0, in this case one
has ug = u, and Fi , becomes an unknown.

Remark 4 In the case of a non constant diffusion coefficient as in Equation (2) where k is a function
from Q to R satisfying Assumption 2 or from Q to R satisfying Assumption 3, one considers admis-
sible meshes satisfying (vi) of Remark 1 and in the tensor case also (iv)" and (v) instead of (iv) and (v).
For K €T and o € Ek, let

1
kr,o = ‘/ k(z)drng o
n(K) Jic F
(where | - | denotes the Euclidean norm). Note that in the scalar case, this yields in fact kx o, =

m(%) S k(x)dx. The exact diffusion flures k(x)Vu-ng s on an edge o of the mesh may then be approz-
imated in a consistent way (see [6] and [10]) by replacing the formulae (5) and (6) by:

e internal edges:
Fro=—To(ur —uk), if o € &ng, 0 = K|L, (13)
where
kK,okL,a .
kK,adL,o + ‘ZCL,adK,o'7

T = m(o

e boundary edges:

Fro=—Ts(Usc —UK), if 0 € Eext and xx & 0, (14)
where
kK o
o = m(o) o



3.2 Existence, uniqueness and stability of the approximate solution

The proof of existence and uniqueness of the approximate solution may be performed by establishing a
discrete maximum principle

Proposition 1 Under Assumptions 1 and 4, let T be an admissible mesh in the sense of Definition 1.
Let (uo)oetons (fK)reT, (bk)KeT and (Vi o)ocew, ket be defined by (10), (11) and (8). If fr >0 for
all K € T, and uy > 0, for all 0 € Eext, then if (ux)xer 5 a solution to (12), (5), (6), (7), (9), then
ug >0 forall K €T.

The proof of this maximum principle may be found in [6] or [9] using a strong formulation and in [7]
for a weak formulation. It immediately yields the existence and uniqueness of the solution to the finite
volume scheme. We may therefore now define the approximate finite volume solution uz by:

ur(z) =ux forae. ze K KeT, (15)

where (ug)ker is the unique solution to (5)-(12).
The following stability estimate on the approximate solution was proven in [7] in the more general case
of a semilinear convection diffusion equation.

Lemma 1 Under Assumptions 1 and 4, let T be an admissible mesh in the sense of Definition 1, and
let:

¢ . ( . . di,» . . dK,a) (16)
= min( min min ——— min min
KeT oeéx diam(K) ' KeT oeéx dy /'

Let ur be defined by ur(z) = ux for a.e. v € K, and for any K € T where (ux)ker 18 the solution to

(5)-(12).

Then there exists C € R, only depending on Q, gP, ¢, M = maxger card(Ek), b and f, such that:

lurllir <C  and |lur| 2@ <C. (17)

3.3 Error estimates

In this section, one proves the convergence of the approximate solution us towards the exact solution
to (1), (3) assuming u € C?(Q) or u € H?(2) and an additional assumption on the mesh. To do this, we
establish error estimates in a discrete Hj norm. Some similar results are also in [5], [6], [9] and [12].
Let us now define the discrete H} norm of a piecewise constant function from 2 to RR.

Definition 2 (Discrete H} norm) Let T be an admissible finite volume mesh in the sense of Defini-
tion 1. For u which is constant on each control volume of T, that is to say u(x) = ug for a.e. x € K,
K € T, one defines the discrete H} norm by

1/2
[ullvz = (Zn (DUU)2> :

oce&

where Dyu = |ug —ur] if 0 € Eng, 0 = K|L, Dyu = |ug| if 0 € Eext NEK, To and the sets €, Eint, Eext
and Ex are defined in Definition 1.

Remark 5 Let o € &y and assume 0 = K|L with K € T and L € N(K). One can see the difference
quotient Dyu/d, as a discrete normal gradient of u on o and therefore also on the diamond shaped dual
cell defined by the vertices of o and xk and xp, note that the measure of this dual cell is dy m(0o)/d,
where d = 2 or 3 is the space dimension. Let 0 € Eqxy and assume o € Ex with K € T. Again in this
case, assuming u = 0 on 0Q, the difference quotient Dyu/d, can be seen as a discrete gradient of u on
o and so on a dual cell defined by the vertices of o and xx of measure d, m(c)/2.

1/2
Hence ||ull1,7 = (Zd“ m(a)(DUu/dg)2> can be seen as a discrete Hi norm of u.
ocef



Let us now state the error estimates under some regularity assumption on the solution.

Theorem 1 (C? regularity) Under Assumptions 1 and 4, let T be a restricted admissible mesh in the
sense of Definition 1 and ur be the solution to (5)-(12) and (15). Assume that the unique variational
solution u of Problem (1), (3) satisfies u € C%(Q). Let er be defined by er(z) = ex = u(rg) — ug if
reK, KeT.

Then, there exists C > 0, only depending on u, v, b, d and 2, such that

||€T||177 < C'size(T), (18)
where || - ||1,7 is the discrete H} norm defined in Definition 2. Furthermore:
ler|lz20) < Csize(T). (19)

Theorem 2 (H? regularity) Under Assumptions 1 and 4, let T be a restricted admissible mesh in the
sense of Definition 1 and let
. . dK,cr
¢ i e (R)
Let ur be defined by (5)-(12) and (15). Assume that the unique variational solution u to (1) and (3)
belongs to H?(Q). Let er be defined by er(z) = ex = u(rg) —ug ifr € K, K € T.
Then, there exists C, only depending on u, v, b, Q, d and ¢, such that (18) and (19) hold.

Remark 6

1. Inequality (18) (resp. (19)) yields an estimate of order 1 for the discrete HE norm (resp. L? norm)
of the error on the solution. Note also that, using u € C1(Q) (or u € H(2)), one deduces, from
(19), the existence of C, only depending on u, b, v, d and Q (or u, b, v, d, Q and (), such that
[l — uT||L2(Q) < C'size(T).

»”

2. In Theorem 2, the function et is still well defined and so is the quantity “Vu-n,” on o, for all
o € . Indeed, since u € H*(Y) and d < 3, one has u € C(Q), then u(zy) is well defined for all
control volume K € T and Vu-n, belongs to L?(a) (for the (d— 1)-Lebesgue measure on o) for all
oef.

3. Note that, under Assumptions 1 and 4 with b = v = gP = 0 the (unique) variational solution of
(1), (3) is necessarily in H*(Q) provided that §) is convex.

4. Thanks to (i) of Definition 1, ¢, in Theorem 2, is always defined. The important fact is that the
constant C' in the error estimates (18) and (19) depends on (.

5. In Theorem 2 if one considers rectangular meshes for which the points xx are located at the centers
of the cells, then ¢ depends on the ratio of the length and the width of rectangles; if one considers
meshes which are made out of triangles for which the points x i are located at the intersection of the
orthogonal bisectors of the triangles, then all angles of triangles must be lower that w/2 + n where
1 is a positive constant and ¢ depends only on 7.

6. In the case of the pure diffusion operator, one may approximate the diffusive fluxes through the mesh
interfaces up to the second order with the same difference quotient by using appropriate meshes such
as rectangles or Voronoi meshes. Indeed if y, is the mid-point of [xk,xr] for any 0 = K|L € &y,
the proof of Lemma 8 may be adapted to show that the consistency error on the flur Rk , defined
in (24) below is of order 2 with respect to the mesh size size(T) instead of 1 as in (26) below. This
is in good agreement with numerical results which are presented in the recent paper [3] for a related
co-volume scheme. In the case of the diffusion-convection operator however the consistency error
of the upwind approximation of the convection flux remains of order one for any mesh. Hence the
order one estimate which we obtain here seems to be sharp for the upwind scheme. Order one is
also obtained in the numerical results of [3] for the convective case.



Proof of Theorems 1 and 2

One proceeds in two steps. In the first step, one proves that the approximation of the fluxes is consistent.
In the second step, one establishes error estimates using this property and the conservativity of the scheme

(see (4)).
Step 1 (Consistency)

Let Iﬁ be a control volume and o € £x. We define the exact diffusion flux FKJ and the exact convection
flux Vi o by:

FK,U = 7/ Vu(z) - ng ody(x) and VK,U = / u(z)v(z) - ng odvy(z). (20)
Next for all K € 7 and all 0 € &k, let i, and Vi be defined by:

u(rr) — u(zk)

Ff , = —m(K|L) , ifo = K|L € Ex N Eints (21)

dK|r
dK .« F[*(J =—m(0o) (u(ys) —u(zk)), ifo € Eext NEk, (22)
VI);,U = UK,U“(QJU,Jr)v (23)

where z, . = xx (resp. xp) if 0 € &ng, 0 = K|L and vk, > 0 (resp. vk, < 0) and z, 4 = xx (resp.
Yo) if 0 € Ex N Eext and vk, > 0 (resp. vk, < 0). Then, the consistency error on the diffusion and
convection fluxes may be defined as

1 1

Rico = s (FKJ - F;(J) and 1o = s (VK,U - v;w). (24)

Moreover, we define
1
pr = i /K b(z) (u(z) — u(zx)) d. (25)

Thanks to the regularity of u and v, a Taylor expansion immediately yields the following lemma which
gives the consistency of scheme in a finite volume sense when u € C%(Q).

Lemma 2 Under Assumptions 1 and 4, let T be a restricted admissible mesh in the sense of Definition 1.
Assume that the unique variational solution u of Problem (1), (3) satisfies u € C*(Q). Then there exists
C > 0, only depending on u, b and v, such that

|RK,U| + ‘TK’J| + pk| < Csize(T),
for any K € T and o € €k, where Rk », k.o and px are defined by (24) and (25).
We prove a similar lemma when u only belongs to H2(£2).

Lemma 3 Under Assumptions 1 and 4, let T be a restricted admissible mesh in the sense of Definition 1

¢ = min min _dro
KeT oeéx diam(K)'

For K €T, let Vo ={tex + (1 —t)z, x € 0, t € [0,1]}. For o € &, let Vo = Vi o UVL » where K
and L are the control volumes such that 0 = K|L. For 0 € et NEk, let Vo = Vi 0.

Assume that the unique variational solution u to (1), (3) belongs to H*(Q). Then there exists Cy, only
depending on d and (, and Cs, only depending on d, v, { and p such that for all K € T and all o € E,

|Rk, | < Cisize(T) (m(U)dU)_1/2||u||H2(V6), (26)

rKo| < Cosize(T) (m(0) dy) ™" [lullwrww,), (27)



and
|pxc| < |[Blloo size(T) m(K) P |[ullwox)- (28)
for all p > d and such that p < +oo if d=2 and p <6 if d = 3,
where, for all p such that 1 < p < 4o00:
d

Hu”%/l.,p(va) = HUHIL)p(VU) + Z ||Diu||IL)p(vG),
i=1

D; is the (weak) derivative with respect to the component z; of 2 = (21, -, 2q)" € R.

Proof of Lemma 3

First note that thanks to Sobolev’s imbeddings, if u € H?(Q2) then u € WHP(Q) for all p such that
1<p<+ooifd=2andsuch that 1 <p <6 if d =3. Then (27) and (28) are well defined.

Let o € €. Since u € H*(2), the restriction of u to V, belongs to H%(V,). The space C?(V,) is dense in
H?(V,) (see, for instance, [17], this can be proved quite easily by a regularization technique). Then, using
a density argument, one needs only to prove (26), (27) and (28) for u € C?(V,). Therefore let us first
assume that u € C%(V,). The density argument will be proven for (26) in the sequel. It is straightforward
for (27) and (28).

First, one proves (26) if o € &p. Let K and L be the two control volumes such that ¢ = K|L. It is
possible to assume, for simplicity of notations and without loss of generality, that o = 0 x &, with some
o C IRd_l, and zxg = (—dK’g,O)t, xrr = (dL’g,O)t.

A Taylor expansion, using u € C%(V,) gives, for a.e. (for the (d — 1)-Lebesgue measure) = = (0, %) € o,

u(a:L)—u(x):Vu(a:)~(a:L—x)—|—/O H(u)(tex+ (1 —t)ap)(xp —x) - (v — z) tdt,

where H(u)(z) denotes the Hessian matrix of u at point z, and

u(xK)—u(x):Vu(x)-(xK—x)+/0 Hu)(te+ (1 —t)zx)(zx — ) - (xx — x) tdt.

Remark that z; — rx = ng »d,; substracting one equation off the other and integrating over o yields
|Rk,-| < Bk,s + BL,s, with, for some C5 only depending on d,

Cs

Bk, = (o), /0/0 |H(u)(tx + (1 —t)zk)||ek —:13|%dtdw(m)7

d
where |H (u)(2)|> = Zw.:l |D; Dju(z)]?.
The quantity By, , is obtained from By , by changing K in L. One uses a change of variables in Bk ;.
Indeed, one sets z = tz + (1 —t)x . Since |rx —z| < diam(K) and dz = t9~! dg , dt dy(z), one obtains,
using 2, = (t — 1) dg.o, 2 = (21,%)" with z € R,

Oy (dian(K)? (daco)*
el | WO |

This gives with the Cauchy-Schwarz inequality,

d—3 jam 2 1/2 1/2
BK,USC?’(dK’“zn(U)(jU () ( /V - |H(u)(z)2dz> < /v e d;)(dm dz) - (29)

For d = 2, remarking that m(Vk ) = (dx,o m(0))/2, (29) gives

1/2
Cs5 (diam(K))? 2
BK)U < \/5(1’11(0’) dg)l/Q (da dK,o')l/2 </VK)0 |H(U)(Z>| dZ) .

BK,O’ S dz.




A similar estimate holds on By, , by changing K in L and dk , in dr, . Since di o, dr o > (diam(K) and
doe = dk,s +dr,o > 2(¢diam(K), these estimates on By, and By, , yield (26) for some C only depending

on d and (.
For d = 3,
Cs (diam (K))? 2 Ciy size(T)
3 2 3
Bree = (o) 2 dicy) 172 </VK G dz) < V2 mo) dyiz Wl

With a similar estimate on By, ,, this yields (26) for some C' only depending on d and (.

Now, one proves (26) if 0 € Eoxt. Let K be the control volume such that o € £x. One can assume,
without loss of generality, that xx = 0 and 0 = dg » X & with & C R, The above proof gives (see
Definition 1 for the definition of y, ), with some Cj only depending on d and (,

2 (size(T))?

u(yo)—u(xx)_ 1 w(z) -n x ~— u)(2)|?dz
ey [T o] <eSEEE [ were @)

dK,o‘

with 6 = {(dx »/2,2/2),Z €6}, and Vs = {tyo + (1 —t)z, x € 5, t € [0,1]} U {tzx + (1 — )z, z € F,
t € [0,1]}. Note that m(6) = m(c)/2%! and that V5 C V,.

One has now to compare I, = ﬁ [, Vu(z) -ng  dy(z) with I; = ﬁ [ Vu(z) -ng dy(x). A Taylor
expansion gives

10)//l H(u)(xK+t(x_xK))(x_xK)'nK,gdtd’y(x),

IO'_ & =
m(

The change of variables in this last integral z = zx + t(x — 2 ), which gives dz = 2d , t~ 1 dt dy(z),
yields, with E, = {tz+ (1 —t)zx,z €0, t € [%, 1]} and some Cs only depending on d (note that ¢ > %),

Cs

Io = 13| < ——F—
‘ | m(J) dK’J

/ H () (=) |z — 2xc|dz.
E,

Then, using once more the Cauchy-Schwarz inequality and |x — zx | < diam(K),

m(a)d, /E'H< VG < = /VI“ )(2) 2z, (31)

o o

|Ia' - I&|2 S

with some Cg only depending on d.

Inequalities (30) and (31) yield (26) for some C only depending on d and ¢ for u € C%(V,). Taking C
convenient for o € &y and Eexy gives (26) for all o € €.

Now for the density argument, let u € H?(V,) and let (u,)nen C C?(V,) be a sequence which converges
to u in the H%(V,) norm. Thanks to the previous result, one has

() — un(zK)

dK,o

_ m<10) LVW@ ngc o dy(2)] < Csize(T) (m(0) dy) ™ [Junl |20,

Thanks to Sobolev imbeddings the sequence (u,)nenw C C%(V,) converges to u € H2(V,) uniformly and
the sequence (Vu, - ng,, C L?(0) converges to Vu - nk , in L?(c) and therefore in L' (o). Hence one
pass to the limit in the left hand side term and obviously in the right hand side too. This gives (26) for
some C only depending on d and ¢ for u € H(V,).

Let us now prove (27) in the case o € Ey; let 0 = K|L with K € 7 and L € N(K). One assumes
VKo > 0 (the case vk » < 0 works in the same way) so

el = |ty [ ¥ (u60) = o)) )

10



It is possible to assume, for simplicity of notations and without loss of generality, that ¢ = 0 x &, with
some & C R and zx = (—dg 4,0)*. A Taylor expansion, using u € C*(V,) gives with = = (0,%)! € &

I7K,o| < sup |v( 51ze // Vu (t—1)dko,t ~)‘dtcla?.

z€Q

Let p > d be such that p < +o00 if d = 2 and p < 6 if d = 3, let p’ be its conjugate exponent that is
% + i = 1. Thanks to Hoélder’s inequality:

1/p
ko] < sup [v(z)] 32 (// [Vt = 1) ot )\td—ld,(,gdtdgz>

zeQ
1
1
[
sJo (tdfldK )p p

/
Using a change of variables such that (%,t) — z = ((¢t — 1) dk,»,t %) and remarking that %(d —-1) =

1/p’.

(p' —1)(d —1) < 1 since p > d, one obtains

—1/p 1 1 1/p
ol < M) ol ie(T) (mie) ) ([ iy )

sup, g |v(z)| . -1/p
— Sy o lullwrn ) size(T) (m(@) o) - (32)

(1-@-1@-1)

Remarking that d, = di s +dr,» > 2(diam(K) > 2(dk,, one obtains (27) for some C only depending
on v, ¢ and p.

Now let us prove (27) for 0 € Eexy NEk, K € T. If vk, > 0, the proof of (27) is identical to the case
0 € Eint, SO One assumes Vi , < 0; hence:

el =g [ ) 1 (a0) - ) r (o).

One can assume, without loss of generality, that zx = 0 and 0 = di » X & with ¢ C R4, We introduce

&= {(%e, $),x € ¢}. Note that m(d) = Qd(fl), then:
1
@ i+ [ ).

2
1
<oV (o oo -
Then using a Taylor expansion, a change of variables and Holder’s inequality (for more details see the
proof of (32)), one has:

u(y) - u(?JU)

rko| < Cllullwioy,) size(T) (m(a)d,) 7,

for any p > d such that p < 400 if d =2 and p <6 if d = 3 and where C' only depends on v, d and p.
Finally let us prove (28). Using a Taylor expansion, one obtains

|16]] oo size(T

Using the change of variables such that z — z =tz + (1 — t) zx and denoting by K; the image of K by
this change of variables, one obtains:

o < Pt 7 ) P

11




where Yk, is the characteristic function of K;.
Thanks to Hélder’s inequality and using m(K;) < t9m(K), one has:

1/p’
bl size(T) [* vr (m(K) bl size(T) '
lpr| < W/@ /K |[Vu(z)|P dz Tdt < W ||U||W11P(K)/O Wdta

for all p > d such that p < +o0 if d =2 and p < 6 if d = 3. As p > d we obtain (28). This concludes the
proof of Lemma 3 and also step 1.

Step 2 (Error estimates)

Now, one proves Estimates (18) and (19).
As u is the exact solution to (1), (3), for all K € 7, one has:

S (Fro + Vo) + / b(w) u(z) do / f(z) da. (33)
c€EK K K
Substracting (12) off the previous equation, using (24) and the regularity of u yields
Z ((FI*{,U - FK,U) + (VI‘;,U - VK,U)) + bK m(K)eK = _m(K) PK — Z m(a)(RK,O' + TK,U)7
o€l o€l
Multiplying the result by ex, summing for K € 7, and noting that
SN (Fiw — Fro)ex = D IDoel? 7 = el 7,
KeToelk oc&
yields
2
lerlr+ Y 3 vxocosen+ [ ba) (er(e)* do 31

KeToEEK Q

< — Zm(K) PK €K — Z Z m(o)(Ri,o + Tk,0)eK,

KeT KeToelk

where |Dye| is defined in Definition 2 and e, 4 = u(To +) — Uy +-

)

Reordering the summation over the set of edges, one has

1
S 3 ot = Xt (s o) o = 5 Xt (fene = e+ (e = 2,),

KeToelk ge€ o€l
where v, = | [ v(z) - n, dy(z)|, n, being a unit normal vector to o, and e, _ is the downstream value
to o with respect to v, that is to say if o = K|L, then e, — = ex if vg, <0, and e, _ = er, otherwise;
if 0 € Ex N Eext, then e, =ug if vg , <0 and e, _ = 0 otherwise.

Now note that:
;gva (€r+—e5_)= IgT (/()K v(z) ~an7(:¢)) €% = /Q(divv(as))eQT(x)d:c.

Then, one obtains

Z Z VK, 0€o+EK > %/(divv(az))e%(w)dm,

KeTocEk Q

and so, using this result in (34),

lerlr + [ (S5 4 b0) ) ol < = Som(K) peew — 3 3 mlo)Buc + e (39

KeT KeToelk

12



Let us now deal with the consistency error terms: By Young’s inequality, for all 4 > 0, one has

— Zm( )oK ex < ”eT”L?(Q 25 Z

KeT KeT

Hence if u € C%(Q), using Lemma 2, one obtains, for all § > 0:

— Zm(K P €K < 7|\e7||L2 @ T ? (size(T))?, (36)

KeT

where C' only depends on u, b and 2.
If u is only in H?(f2), thanks to Lemma 3 and to Hélder’s inequality one has, for all § > 0 and all p > d
such that p < +ocoifd=2and p<6if d = 3:

5 bl| oo size(T))? _
- E m(K) pr erc < Sllerl|7zo) + {1Ploe stze(T))” E m(K)'~2/7 [ s
246
KeT KeT
g (11l oo size(T)) -
§||€T|| 2() T 75 [ e m(Q)P=2/P,

choosing p = 4, one obtains (36) for all § > 0, where C only depends on b, u and €.

Furthermore, thanks to the conservativity property of the scheme (see (4)), one has Rx » = —Rpr , and
Tk = —TLe for 0 € &ng such that 0 = K|L. Let R, = |Rk»| and 7, = |rk | if 0 € Ex. Reordering
the summation over the edges and using Young’s inequality, one obtains

|Z Z J(Rio+TKo)eK| < Zm (Dye)(Ry +75)

KeTo€elk e

< Iy-m(o) Zm (Ro +74)2. (37)

-2 d
ceg 9 UEE

Now, using Lemma 2, if u € C?(2), or Lemma 3 (with p = 4) and Holder’s inequality, if u is only in
H?(€) (for more details see the proof of inequality (36)), and remarking that Y- .. m(o)d, = dm(Q),
(37) yields the existence of C, only depending on u, v, d and Q if u € C?(Q) and on u, v, d, ¢ and § if
u is only in H?(f2), such that

I m(o) (R + rcolen] < gller g +C (size(T))2

KeToelk

Hence, (35), (36) and the previous inequality yield for all 6 > 0

1 di 1) 1 .
slerltr+ [ (T3 4 b0)) e < GllerlBay +C (143) (DR, 38)
Q

where C' depends only on b, u, v, d and Q if u € C?(Q) and on b, u, v, d, ¢ and Q if u is only in H?().
If there exists 6 > 0 such that divv/2 + b > §/2, this inequality yields Estimate (18) and Estimate (19).

Otherwise, to obtain Estimate (18), one uses the inequality (38) with § = the positivity of

2 (diam(€2))2’

divv/2 + b and a discrete Poincaré inequality which is proved in [9] or [7] and which we recall here:

Lemma 4 (Discrete Poincaré inequality) Let T be an admissible finite volume mesh in the sense of
Definition 1 and u be a function which is constant on each cell of T, that is uw(z) =uk ifr € K, K €T.
Then

[ull 2y < diam(Q)[[ull,T,

where || - |17 is the discrete H} norm defined in Definition 2.
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Using the above lemma once more and Estimate (18) gives Estimate (19).
This concludes the proofs of Theorems 1 and 2 and shows that the numerical solution converges towards
the exact solution to (1), (3). n

Remark 7 The error estimates of Theorems 1 and 2 still hold if a non constant piecewise C' diffusion
scalar coefficient is considered i.e. if k satisfies Assumption 2 and if Equation (2) is discretized by the
scheme (7)-(15).

In the general tensor case however, some more restrictive assumptions are needed on the mesh in order
to obtain an error estimate: see [6] and [10]. More precisely, in the error estimate (18) and (19), the
real number C' now depends on (3 and (s € R4 such that

Gi (size(T))? < m(K) < G (size(7))?,
C18ize(T) < m(o) < (osize(T),
C1size(T) < dy, < (osize(T).

4 Neumann boundary conditions

The second boundary condition we consider is a Neumann condition:

Vu(z) -n(z) = ¢V (z), x€0Q, (39)
where
Assumption 5 b = 0 a.e. on Q, divv =0 on Q, v-n = 0 on 99Q, and g € HY?(0Q) satisfies the
Jfollowing compatibility relation: [, g™ (z) dy(z) + [, f(x)dx = 0.

Then under Assumptions 1 and 5, by Lax-Milgram Theorem, there exists a unique variational solution
u € H'(Q) such that [, u(z)de = 0, of (1), (39). That is to say u € H'(Q) such that [, u(z)dz =0
satisfies for all ¢ € H(Q)

/Q(VU(x) -Vo(r) + div(v(x) U(x))¢(x)) de — /

o0

o™ (@) 7(6) () dr(x) + / f(2) é(x) d,

where 7 denotes the trace operator from H'(Q) to H'/?(9Q) and dv is the integration symbol for the
(d — 1)-dimensional Lebesgue measure.

Remark 8 The assumptions b = 0, divv =0 and v -n = 0 are sufficient to prove the coercivity of the
bilinear form of the variational formulation. However, if the hypotheses on v and b of Assumption 5 are
not satisfied, we do not need a compatibility relation. This latter case is therefore treated in section 5
which deals with Robin boundary conditions.

4.1 Discretization

We use the same notations as in the previous section. Let 7 be an admissible mesh in the sense of
Definition 1 and ux be the discrete unknown associated with the control volume K for all K € 7. Let
us integrate Equation (1) on each cell of the mesh; the diffusion flux is discretized on interior edges only
since it is known on the boundary of §2; an upstream scheme is used for the convection term and one

obtains:
Z (FK,U +UK,U ua,Jr): m(K) fK + Z 957 (40)
0 €EKNEint 0 €ER NEext

where Fk , is defined by (5) if 0 € &, 0 = K| L,

g = / @) dy(m) 0 € Eun (41)
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and where vk , and fx are defined by (8) and (11) and u, + is defined by:

UK lf ’UK,(7 Z O,
if o = K|L, Ut = (42)
uy, ~ otherwise.

4.2 Existence, uniqueness and stability of the approximate solution

One proves the following proposition which gives the existence of the approximate solution and the
uniqueness up to a constant like in the continuous case.

Proposition 2 Under Assumptions 1 and 5, let T be an admissible mesh in the sense of Definition 1.
Then, there ezists a solution ur to (15), (40), (41), (42), (5), (8) and (11). This solution is unique up
to a constant.

Proof of Proposition 2

Let us first study the kernel of the linear operator defined by the left hand side of (40). For all K € 7,
suppose that > e e g¥+m(K) fx = 0. Let us denote by Kg a cell of 7 such that ug, = minger ug.
Since divv =0 on Q@ and v-n =0 on 99, one has 3, e g, , [, v(x)-ng, s dy(z) = 0; then, using the
numerical scheme (40), one gets:

Uy, —u
> —m(KolL) % + > UKo (e —uK,) =0.
LEN (Ko) Kol L TEEKY NEins

Now remarking that ur, < uy, for all L € N(Ko) and Y ce. e VKoo (Uo+ — UK,) < 0, one obtains
oM€int ) )

ur, = ug, for any neighbour L of Ky. Since €2 is connected, one has u;, = ug for all (K,L) € T2. So the
dimension of the kernel of the linear operator defined by the left hand side of (40) is 1. Let us now study
its image. First note that its dimension is card(7) — 1 where card(7) is the number of control volumes
of the mesh.

Summing Equation (40) over K € 7, remarking that v-n =0 on 09 and vk, = —vr, for all K € T
and all L € N(K), one obtains:

Z ( Z gév—i-m(K)fK) Z/(mgN(a:)dv(x)—F/ﬂf(x)da::O.

KeT \o€&extNEk

So assuming [, g™ () dy(x) + [, f(x) dz = 0 there exists a solution to (15), (40), (41),(42), (5), (8) and
(11) and this solution is unique up to a constant.
Let us introduce, like in the Dirichlet case, the discrete H! semi-norm of a function from € to IR which
is constant on each control volume (or cell) of 7.

Definition 3 (Discrete H! semi-norm) Let 7 be an admissible finite volume mesh in the sense of
Definition 1. Let u be a function which is constant on each control volume of T, that is u(x) = ug if
x € K, K €T, one defines the discrete H' semi-norm by

1/2
lul1,r = ( 3 m;:) (Dgu)2> ,

g€Eint

where Dyu = |ug —ur| if 0 = K|L and the set Ey is defined in Definition 1.

Let us now give an estimate on the approximate solution.

15



Lemma 5 Under Assumptions 1 and 5, let T be an admissible mesh in the sense of Definition 1. Let
ur be the solution to (15), (40), (41), (42), (5), (8) and (11) such that [, ur(z)dr = a.
Then there exists C € Ry depending only on 2 such that

furlir < C (lg¥ Iz + 1z + ). (43)

where |.|1,7 is defined in Definition 8

Proof of Lemma 5

Let K € 7, we multiply (40) by ux and we sum the result over K € 7, we obtain:

Z Z (UKULuKm(J) +UK7gug7+uK) = Z m(K) fix ukx + Z Z girVUK.

d
KET 0€ExNEint K|L KeT KET 0€EKNEexs
o=K|L

Now let us note that:

Z Z U —ur, UKHI(O') _ Z md(G) (DUU)Q (44)

dg|r

KeT ccExNEint 0€Eint
oc=K|L
Furthermore, for o € &y, 0 = KJ|L, let uy— = ug if vk, < 0 and u,— = uy otherwise and v, =
|vk,s| = |vL,o|. Then, one has
Z Z Z 2
VK, o0 Ug,+ UK = Vo ((uo,-‘r) — Ug,+ ua,—) (45)
KeT oe€xNEins 0EEint
o=K|L
2 2 2
_ (Yo, + — Ug,—) (Uo,+) (ug,—) > 1 2
= E Vo + — Z 3 § § VKo (UK)
2 2 2 2
0E€Eint KeT 0€&ing

_ %/Qdiv(v(m)) (uT(m))Q de — %/ v(z) - n(x) (u7)2 dy ().

o0

Therefore by Assumption 5 and Young’s inequality, we get for all § > 0:

1
furl? 7 <6 (9™ I320m + 1132 )+ 75 (lurllien) + lurla)).

where ur () = ug for almost every = € 0, 0 € Eext N Ek.-
In order to conclude, one uses Lemmas 6 and 7, which are stated and proved below and obtains

C 2
2 N2 2 2 2
lurlir <90 (Hg I2200) + ||f||L2(Q))+g (|UT|1,T + Q) a )

for all 6 > 0 and where C only depends on €.
Choosing 6 = 2C' gives (43).

Lemma 6 (Discrete Poincaré-Wirtinger inequality) Let 7 be an admissible mesh in the sense of
Definition 1. Let u be a function which is constant on each cell of T, that is u(zx) =ug ifr € K, K€ T.
Then

2
lullZagey < Cluf? 7 +2 (m(©)~ ( [ uta) dm) ,

where C' only depends on Q and | - |17 is defined in Definition 3.
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Proof of Lemma 6

Let 7 be an admissible mesh and u be a function which is constant on each cell of 7. Let mgq(u) be the
mean value of u over (2, that is

1
mq(u) = w/ﬂu(m)dm

Note that
ull72(q) < 2llu = ma(u)l|F2q) + 2(ma(uw)*m(Q),

and therefore the proof of Lemma 6 is reduced to the proof of the existence of D > 0, only depending on
Q, such that
lu = ma(u)|Z2(q) < Dluli 7. (46)

The proof of (46) may be decomposed into three steps (indeed, if € is convex, the first step is sufficient).

Step 1 (Estimate on a convex part of Q)
Let w be an open convex subset of Q, w # () and m,,(u) be the mean value of w on w. In this step, one
proves that there exists Cy, depending only on w, such that

1
[u(z) = my(u)[[72(,) < mcomﬁ,:r' (47)

(Taking w = Q, this proves (46) and Lemma 6 in the case where w is convex.)

Noting that
[ @) = ma)a / [ @)ty

(47) is proved provided that there exists Cy € ]R+, only depending on w, such that

/ / 2 di dy < Coluf? ;. (48)

For o € &g, let the function x, from RY x IRY to {0,1} be defined by

Xo(z,y) =1, if 2,y €W, [x,y|No #0,
Xo(z,y) =0, fx¢w ory¢w or [x,y] No =0.

(Recall that [z,y] = {tx + (1 —t)y, t € [0,1]}.) For a.e. z,y € w, one has, with Dyu = |Jug — ug| if
o € &Ent, 0 = K|L,
2
(u(@) — u®)? < ( 3 1Dulxo(z 1)

oc€&int

(note that the convexity of w is used here) which yields, thanks to the Cauchy-Schwarz inequality,

‘Dau‘z
(U(I‘) 7u(y))2 § Z ﬁXU(xay) Z doco,y—mXo(zay)v (49)
0'651 t v 0-7y_‘/E Uegiﬂt
with
Coy—x — Ny,
Y \y - Jvl

recall that n, is a unit normal vector to o, and that xx — z;, = +dsn, if 0 € &y, 0 = K|L. For a.e.
T,y € w, one has

y—x
ly — ||’

(xx —xr)-

Z daca,ywaa (CL’, y) =

€&
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for some convenient control volumes K and L, depending on z and y (the convexity of w is used again
here). Therefore,

Z doCoy—zXo(2,y) < diam(w).

0E€Eint

Thus, integrating (49) with respect to = and y in w,

/w /w (u(z) — u(y))?dzdy < diam(w) /w /w 3 an(m,y)dxd%

AoCo oy
0CEmy 0 YT

which gives, by a change of variables,

/w/w(u(x) — u(y))*dedy Sdiam(w)/ (> Dol /wxg(xw—kz)da:)dz. (50)

d dyc
R 0€Em O TF

Noting that, if |z] > diam(w), x,(z,x + z) =0, for a.e. z € w, and
/ Xo(#, 2 4 2)dz < m(0)|z - n,| = m(0)|z|c,.. for ae. z € RY,

therefore, with (50):

/ / (u(z) — u(y))*dwdy < (diam(w))*m(B,) > % 7

0€Eint

where B, denotes the ball of R? of center 0 and radius diam(w).
This inequality proves (48) and then (47) with Cyp = (diam(w))?m(B,) (which only depends on w).
Taking w = 2, it concludes the proof of Lemma 6 in the case where €2 is convex.

Step 2 (Estimate with respect to the mean value on a part of the boundary)

In this step, one proves the same inequality than (47) but with the mean value of u on a (arbitrary) part
I of the boundary of w instead of m,,(u) and with a convenient C; depending on I,  and w instead
of Co.

More precisely, let w be a polygonal open convex subset of Q and let I C dw, with m(I) > 0 (m(I) is
the (d — 1)-Lebesgue measure of ). Assume that I is included in a hyperplane of IR?. Let yu be the
“trace” of u on the boundary of w, that is yu(x) = ug if € OwNK, for K € T (if € KN L, the choice
of vyu(z) between ugx and uy does not matter). Let my(u) be the mean value of yu on I. This step is
devoted to the proof of the existence of Cy, only depending on €2, w and I, such that

lu(z) = mr(u)|Za) < Cululi 7. (51)

For the sake of simplicity, only the case d = 2 is considered here. Since I is included in a hyperplane, it
may be assumed, without loss of generality, that I = {0} x J, with J C IR and w C R4 x IR (one uses
here the convexity of w).

Let a = max{z1, = (z1,22)" € @} and a = (a,)" € w. In the following, a is fixed. For a.e.
x = (21,22)" € w and for a.e. (for the 1-Lebesgue measure) y = (0,%) € I (with 5 € J), one sets
z(z,y) = ta+ (1 — t)y with ¢t = z1/a. Note that, thanks to the convexity of w, z(z,y) = (21, 22)" € &,
with z; = z1. The following inequality holds:

*(u(z) —yuly)) < Ju(z) —u(z(z,9)] + [u(z(2,9)) = yu(y)]-

In the following, the notation C;, ¢ € IN*, will be used for quantities only depending on €2, w and 1.
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Let us integrate the above inequality over y € I, take the power 2, from the Cauchy-Schwarz inequality,
an integration over x € w leads to

/(u(x) —my(u))’dr < 7/ /(u(x) — u(z(z,y))2dy(y)de
+%/ /I(“(Z(x’y)) —u(y))? dy(y) da.

Then,

with, since w is convex,
2
A= [ [ 1Dculote2te.00) dr o) o
WS ety

and

B :/w/l( Z |D‘7U|XU(Z($7y)ay))2d’Y(y) dl‘

oc€&int

Recall that, for £, € @, x,(&,n) = 1if [§,7]No # 0 and x,(&,7) =01if [§,7] N o = 0. Let us now look
for some bounds of A and B of the form Clul} ;.

The bound for A is easy. Using the Cauchy-Schwarz inequality and the fact that

Z Ca,wfz(w,y)do'xtf (l‘, Z(J?, y)) < dla‘m(w)

o€Eint

(recall that ¢y, = \# -n,| (for n € R?\ 0) gives

U2 X, z\x
ASCQ/W/I Z |DU |XU( } ( 7y))dllid’)/(y)

Co e d
CE€Ems o,x—z(z,y)%o

Since 21 = w1, one has ¢, 5 (2y) = Coe, With e = (0, 1)t. Let us perform the integration of the right
hand side of the previous inequality, with respect to the first component of x, denoted by x1, first. The
result of the integration with respect to x; is bounded by |u\%7 Then, integrating with respect to x»
and y € I gives A < Cs|ul} 7.

In order to obtain a bound B, one remarks, as for A, that

U2 zZ\x
B§C4/w/1 Z ‘DU ‘XJ( ( 7y)7y) dacdv(y)

. Coy—z(ay)do

In the right hand side of this inequality, the integration with respect to y € I is transformed into an
integration with respect to £ = (£1,&2)" € o, this yields (note that ¢y (4,y) = Co,a—y)

oCEm 0 o Cla—y(e) |a—&

where y(£) = s€ + (1 — s)a, with s&; + (1 — s)a = 0, and where 1), is defined by

Yo(2,8) =1, if y(§) € I and & < 2y
1%(337&) = 07 if y(f) g I or 61 > 7.

Noting that ¢; 4y ¢) > C5 > 0, one deduces that

2 _
s ¥ 2 [ ([ vaw 92 ) v < caur

o€Eint 7 a= £|
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with, for instance, C7 = Cg(diam(w))?. The bounds on A and B yield (51).

Step 3 (proof of (46))
Let us now prove that there exists D € R, only depending on 2 such that (46) hold. Since Q is a
polygonal set (d = 2 or 3), there exists a finite number of disjoint convex polygonal sets, denoted by
{Q1,...,Q,}, such that @ = U ,Q;. Let I; ; = Q; N Q;, and B be the set of couples (i,5) € {1,...,n}?
such that ¢ # j and the (d — 1)-dimensional Lebesgue measure of I; ;, denoted by m(I; ;), is positive.
Let m; denote the mean value of u on €;, ¢ € {1,...,n}, and m, ; denote the mean value of u on I, ;,
(i,7) € B. (For 0 € &g, in order that u be defined on o, a.e. for the (d — 1)-dimensional Lebesgue
measure, let K € 7 be a control volume such that o € €k, one sets u = uxg on o.) By definition,
m; ; = Mj; for all (’L,j) € B.
Step 1 gives the existence of C;, i € {1,...,n}, only depending on €2 (since the ; only depend on ),
such that

lu—mill3egy) < Cilull 7. Vi€ {1,....n}, (52)

Step 2 gives the existence of C; j, 4, j € B, only depending on €2, such that
[ —mi jl320,) < Cijlulf 7, V(i,j) € B.

Then, one has (m; —m; ;)?m(;) < 2(C; + C; ;)|ul? 7, for all (i,j) € B. Since § is connected, the
above inequality yields the existence of M, only depending on Q, such that |m; —m;| < M|ul|, 7 for all
(i,7) € {1,...,n}?, and therefore |mq(u) —m;| < M|u|y 7 for all i € {1,...,n}. Then, (52) yields the
existence of D, only depending on 2, such that (46) holds. This completes the proof of Lemma 6.

n

Lemma 7 Let T be an admissible finite volume mesh in the sense of Definition 1 and u be a function
which is constant on each cell of T and each edge of Eext, that is u(z) = ug if x € K, K € T and
w(z) =u, ifx € 0, 0 € Eext. Let T C I such that its (d—1)-dimensional measure m(I') # 0 and O C Q
such that its d-dimensional measure m(QO) # 0. Then there exists C, only depending on 2, such that

ey < € (fuldz + ey ) (53)
and

e o < € 2z + lulzo) ) (54)
where | - |1 1 is the discrete H norm defined in Definition 4.

Proof of Lemma 7

We proceed in two steps. The first two steps deal with the proof of (53) while the third step deals with
(54). The first step consists in proving (53) on a part of 2 with a boundary containing I'. In the second
step we use a discrete trace inequality which is stated in Lemma 8 to conclude the proof of the announced
result on .

Step 1

We can assume without loss of generality that I' is included in a hyperplane of R, indeed if it is not we
can split ' in several parts included in hyperplanes of R? since Q is polygonal if d = 2 or polyhedral if
d = 3. For z,y € R?, one defines [z,y] = {tz+ (1 —t)y ; t € [0,1]}. Let us define

or) = {xEQ; Jy € T such that (z —y) -y =0 and [z, y] CQ}. (55)

Then we choose a coordinate system such that a point y € I" has for coordinate (0,7) with g € T C R
and such that if we consider a point x € O(T") with « = (x1,%), € I, then 21 > 0.
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Let us denote by 7 the first unit vector of the coordinate system, so n = (1,0) if d = 2 and n = (1,0, 0) if
d = 3. For o € £, we define x, from R x R? to {0,1} by xo(z,y) = 1 if 6 N [z,y] # 0 and x,(z,y) =0
otherwise.

For g € I, let denote by Dy, the semi-line defined by its origin (0, ) and the vector 7, and by a(g) the
real such that (a(9),9) € Dy, N O and [(0,9), ((7),7)] C Q.

Let y = (0,9) € T and x1 €]0, ()|, then

fuer, 5| < [u0,)] + Y (Do) xo ((@(3). 5).9).
oc€e€

where D,u is defined in Definition 4.
Using the Cauchy-Schwarz inequality, and setting ¢, = |n, - 7| where n, is a unit normal vector to o,
one gets

fu(er. ) < 20u(0.5) +2 (Z Bl s (1at@) )) (Zd o o ((e@).9) y)>.

oe€ oce€

Remarking that ) . ds ¢y Xo ((a(gj),g}%y)ﬁ diam(Q2) and integrating with respect to x; and g, one
obtains

[ullF200ry) < 2 llull7zry + 2 (diam(Q /Z 4 c. ( (ZJ%Q)&/) dy.
Since J; xo ((a(7),9),v) i < m(o) ¢, one has

e oy < € (Il + Iulld 7)
where C' only depends on 2. This concludes the first step.

Step 2 Proof of (53)

By compactness of the boundary of 0O(T") (where O(T') is defined by (55) and 0O(T") denotes its bound-
ary), there exists a finite number of hyperplanes of R%, {T';, i = 1,---, N}, such that dO(I') ¢ UN T
and I; NT; C R 2 fori,je {1,---, N}, i #j.

Let j € {1,---, N}, then, thanks to Lemma 8 which is stated and proved below, one has:

IvalZeqe,ne < O (lulaomy +llul ) (56)

whereyu denotes the “discrete trace” of u, that is yu = ug for all x € o such that o € oy N Ex and C;
only depends on {2.
Let us define

O(FjﬂQ):{er; Jy € T'; N Q such that (z —y) -y =0 and [;my]CQ\O(I‘)}

Then applying the first step to I'; N € instead of I, one gets

luls o nmy < Co (Il + luli )

where Cs only depends on (.
Then using (56)
HU||L2((’)(F nay < (C2+ C2Ch) <||UH2L2(O(F)) + HUH%'Z’) ;
and thanks to Step 1
bz ocr,nay < € (lulaq) + lulir)
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where C' only depends on €.
Tterating this process so long as a part of Q has not been reached, we obtain (53) where C only depends
on Q which concludes the proof of (53).

Step 3 Proof of (54)
Thanks to Lemma 8

lull3s 00y < € (lullfz o) + Il )

where C only depends on €.

Let us denote by 0O the boundary of O. We denote by ~vu the discrete trace of u on 90O, that is for all
x €00, ifx € K, K €T then vu(z) = uk, if ¢ € 0, 0 € Eoxt then yu(x) = uy, if x € 0, 0 € Eing,
o = K|L C 00 and K C O then yu(z) = uyr, finally if x € 0, 0 € & and 0 = K|L ¢ 0O then
yu(x) = ur or ug. Using (53), one gets

2 a0y < € (Ihull3eoo) + Iulli )

where C' only depends on €.
Using Lemma 8 once more, one obtains

Irelaoo) < € (Iull2o) + lul ),

where C' only depends on €.
These three results yield (54). This concludes the proof of Lemma 7. L]

Lemma 8 (Trace inequality) Let Q2 be an open bounded polygonal subset of ]Rd, d=2or3. LetT be
an admissible mesh in the sense of Definition 1, and u be a function from § to IR which is constant on
each control volume of the mesh. Let uk be the value of u in the control volume K. Let yu be defined by
yu = ug a.e. (for the (d —1)-dimensional Lebesgue measure) on o, if 0 € Eexy and o € Ex. Then, there
exists C, only depending on €2, such that

[vullz200) < C(lulr,7 + Jullz2())- (57)

Proof of Lemma 8

By compactness of the boundary of 9€, there exists a finite number of open hyper-rectangles (d = 2 or
3), {Ri,i=1,...,N}, and normalized vectors of R, {n;,i =1,..., N}, such that

8QCU£\;1RZ,
n-n(z) >a>0forallz € R,NIN i€ {l,...,N},
{z+tn,ze RNINLERL}INR, CQ,

where « is some positive number and n(z) is the normal vector to 90 at xz, inward to Q. Let {a;,i =
1,...,N} be a family of functions such that vazl ai(z) = 1, for all z € 99, a; € CX(R% R, ) and
«; = 0 outside of R;, for all i = 1,...,N. Let I'; = R; N 99; let us prove that there exists C; only
depending on « and «; such that

leiyul| p2r,) < Ci(lul,r + [|ullL2(0))- (58)

The existence of C, only depending on 2, such that (57) holds, follows easily (taking C = Zfil C;, and
using Zivzl a;(x) =1, note that o and «; depend only on ). It remains to prove (58).

Let us introduce some notations. For ¢ € £ and K € 7, define y, and xx from R x R to {0,1}
by xo(z,y) = 1, if [z,y] N £ 0, xo(z,y) = 0, if [z,y]No =0, and xx(z,y) = 1, if [z,y] N K # 0,
Xk (z,y) =0, if [z,y) N K = 0.
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Let ¢ € {1,...,N} and let « € I';. There exists a unique ¢t > 0 such that « +tn; € OR;, let y(z) = x + tn;.
For o € &, let 2,(z) = [z,y(z)] No if [z,y(z)] N o # O and is reduced to one point. For K € 7, let

£xc(), i (@) be such that [z, y(2)] N K = & (@), ne(@)] i [z, y(2)] N K # 0.

One has, for a.e. (for the (d — 1)-dimensional Lebesgue measure) « € T';,

@) < 30 ol @) (w = un) X @ y(@) + Y | (€)= sl (@) )ue e (. i),

0=K|LEEint KeT
that is,
|aiyu(z)[* < A(x) + B(x) (59)
with
Ay =20 > ez (@) (ux — ur)|xo (@, y(@)))%,
o=K|LEEns
=20 [(i(éx () — cilni (x)))urc[xr (2, y(x)))?.
KeT

A bound on A(z) is obtained for a.e. x € I';, by remarking that, from the Cauchy-Schwarz inequality:

< D Z |D ’LL| I’,]J(l’)) Z dUCJXJ(I7y(I))a

0€Eint 0EEint
where D; only depends on «; and ¢, = |n; - n,|. (Recall that D,u = |ug — ur|.) Since
S dooxo (@, y(@)) < diam(Q),
g€&int

this yields:
|Dyul?
doCo

A(z) < diam(Q)Dy Y

0€Eint

Xo (z,y(z)).

Then, since
1
/ Xo (&, y(@))dA () < ~¢om (o),
r; «

there exists Dy, only depending on €, such that
A= [ @) < Dalul 7.
r;

A bound B(z) for a.e. x € T; is obtained with the Cauchy-Schwarz inequality:

Bla) < Ds 3 v, y(@)ex(@) — mc(@)] 3 1€k (@) — nc (@) e (2 y(@)),

KeT KeT

where D3 only depends on «;. Since

. 1
> k(e (z)|xk (2, y(x)) < diam(€2) and / Xk (@,y(2))[Ek () — n (z)|dy(z) < —m(K),
KeT T o
there exists Dy, only depending on 2, such that
B= [ B@rw) < Doy

Integrating (59) over T';, the bounds on A and B lead (58) for some convenient C; and it concludes the
proof of Lemma 8. ]
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4.3 Error estimates

Theorem 3 (C? regularity) Under Assumptions 1 and 5, let T be an admissible mesh in the sense of
Definition 1. One assumes that the unique variational solution u € H*(S2), such that fQ xz)dx =0, of
Problem (1), (39) satisfies u € C?(2). Let ur be the solution to (15), (40), (41),(42), (5), (8) and (11),
such that ) pecqr m(K) ux = 3 eqr mM(K) u(z), where xx is defined in Definition 1. Let er be defined
byer(z) =ex =u(rg) —ug ifre K, KeT.

Then, there exists C > 0 only depending on u, v, d and Q0 such that

ler|i 7 < Csize(T), (60)
where | - |1 1 is the discrete H' semi-norm defined in Definition 3. Furthermore
ler |2y < Csize(T). (61)

Theorem 4 (H? regularity) Under Assumptions 1 and 5, let T be an admissible mesh in the sense of
Definition 1 and let

C . dK o
= min min ———-
KeT océx diam(K)

One assumes that the unique variational solution uw € H'(Q), such that Jou(z)dz = 0, of Problem
(1), (89) satisfies u € H?(Q). Let ur be the solution to (15), (40), (41),(42), (5), (8) and (11), such
that Y xer m(K)ux = > e M(K) u(rk ), where vk is defined in Definition 1. Let er be defined by
er(z) =ex =u(zg) —ug ifr e K, KeT.

Then, there exists C, only depending on u, v, d, Q and ¢, such that (60) and (61) hold.

Proof of Theorems 3 and 4

As u is the exact solution to (1), (39), one has:
0€EKNEint 0E€EK NEext

where Fk , and Vg , are defined by (20).
Substracting (40) off the previous equation yields

3 (F;(,G —FK’(,)+ 3 (v,gg - VK’0>: — Y wO)Rxko— Y. mo)rre. (62)
o=K|LEEns c€EKNEint o=K|LEEn c€EKNEint

where F'%  is defined by (21) and V| = vk su(%0,1), Vo € Ex N Einy, VK € T, where 7, = vk (resp.
xp) if 0 € Eng, 0 = K|L and vi » > 0 (resp. vk, < 0), finally Rk » and rg , are defined by (24).
Multiplying (62) by ek, summing for K € 7 and noting that

m
S Y (P Fio)ex = X Dol < i,
KeTo=K|LEEn: 0EEmt

where |- |7 7 is defined in Definition 3, yield

ler|} 7 + Z Z VK,0€o+ €K < — Z Z m(o) (Ri,o +TK.0) €K, (63)

KeTo=K|L€EEnt KeTo=K|LEEin

where €5+ = u(To4) — Up +-

Reordering the summation over the set of edges, one has

1
Z Z VK, 0€o,+€K = Z Vo <ea7+ - 807—) Cot+t =35 Z Vo ((80,4- —eo- ) + (€§,+ - eg)_)),

KGTJ:K‘LESiDt o€Eint 0E€Eint
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where, for all o € &, vo = | [, v(z) - ndy(z)|, n being a unit normal vector to o, and ey, _ is the
downstream value to o with respect to v, i.e. if 0 = K|L, then e, = ek if vk, <0, and e, = ¢y,
otherwise. Thanks to the assumptions divv = 0 on Q and v - n = 0 on 052, one obtains

T @)= Y w2 Y vk el

€&y 0€Eint KeTo€Ecxs

_ ;;;; ( /a Vi) an'y(a:)) k=1 /Q (divv(x))e2 (z)dz = 0.

Hence, (63) yields
|€7‘|%77— < - Z Z m(o)(Rk,oc +Tk,o)€K- (64)

KeToelk

Thanks to the conservativity property of the scheme (see (4)), one has Rx o = —Rp, and rg,o = —7p &
for o € &y such that 0 = K|L. Let R, = |Rk | and 7, = |rk | if 0 € Ex. Reordering the summation
over the edges and using Young’s inequality, one then obtains

| Z Z m(o)(Rk,oc +Tko)ex| < Z m(o)(Dse)(Rs +15) <

KeTo=K|LEEn: 0E€Eims

d

0€Ent 0€Eint

% 2 m(:) (Dge)2+% > m(0)ds (R +14)°. (65)

Using Lemma 2, if u € C2?(Q2), or Holder’s inequality and Lemma 3 (with p = 4), if u is only in H2(Q)
(for more details see the proof of inequality (36)), and remarking that ) . m(o)d, = dm(Q2), (64) and
(65) yield the existence of C, only depending on u, v, d and Q if u € C%(Q) and on u, v, d, Q and  if u
is only in H?(Q), such that

|6’T|%,T < C (size(T))%

This estimate gives (60). In order to obtain (61), we use a discrete Poincaré-Wirtinger inequality which
is given in Lemma 6. This concludes the proofs of Theorems 3 and 4. [

5 Robin boundary condition
The last type of boundary condition we consider is a Robin condition:

Vu(z) - n(z) + Mz)u(z) = ¢F (z), 2 €0Q, (66)
with

Assumption 6 g7 ¢ H'/2(09), A € L>(09Q) such that v -n/2 + X > 0 a.e. on OS). Furthermore, if
v(z) -n(x)/2+ A(z) =0 for almost every x € 90 then one assumes the existence of O C 2 such that its
d-dimensional measure m(Q) # 0 and such that div(v)/24+b# 0 a.e. on O.

Then, under Assumptions 1 and 6 the Lax-Milgram theorem ensures the existence of a unique variational
solution u € H(2) of (1), (66). That is to say u € H(Q) satisfies

[ [Vut@) - Vo) +div (v(o) uie) ) o) + bla) ) 6(@)] o+ [ @) uta)) 70)e) b (o)

o0

- / oF (2)7(8)() d () + / @) é(x)dr,  for all ¢ € H'(Q),
o0 Q

where 7 denotes the trace operator from H'(Q) into H'/?(9€) and dv is the integration symbol for the
(d — 1)-dimensional Lebesgue measure on 9.
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Remark 9 Assumptions 1 and 6 give the coercivity of the elliptic operator associated to the above vari-
ational equality. It does not need a compatibility relation, even in the case A = 0 a.e.; in this last case,
even though the boundary condition looks like a Neumann condition, the solution behaves as if the problem
were a Robin condition and the proof of the error estimate is the same as for a Robin condition. The
case A = 0 under assumptions 1 and 6 is therefore treated in this section.

5.1 Discretization

Let 7 be an admissible mesh in the sense of Definition 1. The discretization of the diffusion-convection
equation (1) with a Robin boundary condition is performed with the help of some auxiliary unknowns
which are defined on the edges of the boundary. These may be eliminated when solving the linear system.
We shall however keep them throughout our study because they simplify several expressions in the error
estimate. Hence in this section the discrete unknowns are (ux)xer U (U )oee...- In order to obtain the
discretized equation let us as usual integrate (1) on each cell of the mesh. Using a “four points” finite
volume scheme for the diffusion terms and an upstream scheme for the convection terms, one gets, for all
KeT,
Z [FK,J + VK,o ug7+} +bg m(K) U = m(K) K, (67)
c€EK
where, for all K € 7 and all 0 € £k, vk, fx and bx are defined by (8) and (11), ue 4 is defined by
(9). Furthermore Fi . is defined by (5) if 0 € &nt, 0 = K|L, and by (6) if 0 € Eext, and we set for all

o€ gext 1
7/)\(;10) dry(z). (68)

gk :/gF(x) dy(z) and A, = (o)

There remains to give the equations associated with the boundary unknowns (u,)see,.,. These are
obtained by discretizing (66). The discretization which we choose involves the upstream value u, 4+ in
order for the scheme to be well defined with no additional condition on the mesh (see remarks 10 and
11). It writes:

— ko + (m(a) As + UK,U) Ug — VK,g Ug,+ = gf, for all o € Ex N Eexts (69)
Remark 10
1. Using (6) and (69), one can eliminate u, for all 0 € Eext in (67) and obtain
((UK,UTO) dr,o + m(a)) ug +dg o gE

m(o) + (m(a) Ao + VK0 — (UKJJ_O)) dK,a’

U =

where for all a,b € R, aTb = max(a,b) and aLb = min(a,b). Again, the numerical unknowns are
(ur)KeT-

2. In order to discretize the boundary condition on an edge o € Eexy of K € T, we use a non centered
scheme summing and substracting vy . This choice is performed, even though to our knowledge
there is mo physical background to this choice, in order to prove existence, uniqueness and conver-
gence towards the exact solution, with no restriction on the mesh (see Remark 11), for X such that
there exists a subset of OQ with a non zero (d-1)-dimensional measure and such that A < 0 on this
subset. In fact, it would be more natural to discretize the boundary condition as follows:

—Fro+dom(0)u, =g5, Yo€EkNEexty VK ET. (70)

We shall give the idea of the proof for this scheme in Remarks 11 and 12 and see that for negative
values of A the convergence proof requires further assumtions on the mesh. Hence, (69) will be
preferred for the discretization of the boundary condition so as to be able to handle negative values
of X\ with no additional condition on the mesh.
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5.2 Existence, uniqueness and stability of the approximate solution

Let us first introduce as in the previous sections the discrete H' norm of a function which is constant on
each cell of the mesh and each edge on the boundary.

Definition 4 (Discrete H! norm) Let 7 be an admissible finite volume mesh in the sense of Defi-
nition 1. Let u be a function which is constant on each control volume of T and on each edge on the
boundary with u(z) =uk ifx € K, K € T, and u(x) = u, if ¢ € 0, 0 € Eoxt, one defines the discrete

H' semi-norm by
1/2
lul1,7 = (Zmd(a) (Dgu)2> :

ocg ¢

where Dou = lug —ur| if 0 € Eng, 0 = K|L and Dou = |ug — uy| if 0 € Ext NEK, K €T.

Proposition 3 Under Assumptions 1 and 6, let T be an admissible mesh in the sense of Definition 1.
Then there ezists a unique solution (uk)keT U (Us)ses.,, to (67), (69), (68), (5), (6), (8), (9) and (11).
Furthermore let ur be defined a.e. from Q to R by ur(x) = ug if v € K, K € T and ur(x) = uy if
T € 0, 0 € Eext; then there exists C € Ry depending only on  such that

[,z < C (9" 200 + I fllz2@ ), (71)

and
lurlizaom + oz 2@y < C (9" lz2om) + 1 lzaco)- (72)

Proof of Proposition 3
Let K € T and 0 € Eext N Ek, then we multiply (67) by ux and (69) by u,; summing the results, we get

> LK UL e m(o) + Y VKo o uk + b m(K) (uk)?

d
0 €EKNEing KL o€EK
oc=K]|L
U — Uy Uy — UK 1 9 1
+ Z m(o) UK + Us + | Ao + —— VKo | (Us)* — —— VK0 U + Usy
dK,a' dK,a' Hl(O') Hl(O')
0E€EKNEext

= Z m(K)quK+ Z uogf'

KeT 0€Eext

Summing the result over K € 7, using (44), (45) and Young’s inequality, one gets for all § > 0 and all
e>0

lurl? r +/Q (div(v(z)) +b(m)> (ur(z))? da

2
ug)? Uy )? VK &
+ Y 5 o (= U e P 4 (i) + 257 (002
KeT 0€€xNEext
2

1) €
g ||f||L2(Q) + - ||9 HL2(89) +3 ||UT||L2(Q ) HUTH%%E)Q)'

Remarking that for all K € 7 and all 0 € & N Ek, VKo (ug,Jr UK — % — Ug, 4+ Uy + %) > 0,

hence:
IUTI?,T+/Q (dw(g(”)) +b(x)> (uT(x))de/a

2 é
5 ||f||L2(Q) + - ||9F||L2(an) +35 ||UT||L2(Q) +5 ||UT||L2 (09)>

(A(m) + 2D (i) o @

Q

27



for all 6 > 0 and all € > 0.

Hence if there exists 6 > 0 and € > 0 such that div(v)/24+b > d/2 a.e. on Q and v-n/2+ X > /2 a.e.
on 09, (73) gives (71). Otherwise, thanks to Assumption 6 there are two cases.

The first one is when there exists I' C 9 such that its (d — 1)-dimensional measure m(I') # 0 and such

that i = inf,er (V(m) “n(z)/2 + A(m));ﬁ 0.

The second one is when there exists O C € such that its d-dimensional measure m(Q) # 0 and such that
i = infaco (div(v(x)) /2 + b(x))¢ 0.

In both cases one uses Lemma 7 in (73).

In the first case, one obtains

. 2 2 6 €
furf} 7 + o lur ley < 5 17132 + Zll9" 1200 + Ca (2 o cm) (llurWaqey + lur 2 7 ).

for all 6 > 0, all € > 0 and where Cg only depends on 2.

In the second case, one gets

. 2 2 e 0
urltr + illur o < 3 1 Ba) + 21" Boom + Ca (5 +5 140 ) (lurlaco) + lurlr).

for all 6 > 0, all € > 0 and where Cq only depends on §.
Then a well adapted choice of ¢ and e gives in both cases (71). And using once more Lemma 7 gives (72).

Now let us assume f =0 on Q and g = 0 on 99 then, thanks to (72), ux =0 for all K € 7 and u, =0
for all o € Eqxt. This proves uniqueness and therefore existence since the dimension of the space is finite
(equal to the number of discrete unknowns). ]

Remark 11 If the discretization (70) is used instead of (69), remarking that

S 5 (owevms = vo U o) o)

2
KeT 0€ExNEext

= Z Z {(UK;UG)Q VKo | + (m(o) Ao + UI;’J) (ug)Q] + Z Uy (UK — Uo) VKo |

KeT [oeErkNEext

computations similar to those of the above proof yield:

urr o+ [ (PG 40) (uro)? o

> [WWKUH(H](UMGJI;»G) W]+ X Ardicy m(o) ()

KeT |oe€fxNEext o€l ﬂfsxt
VK,o Z

2 2 1) €
<z ||f||%2(n) + g||9F||2L2(aQ) T3 HUTH%?(Q) T3 H“TH%?(SQ)v

for alld >0 and alle > 0. So if A > 0 a.e. on IR, this inequality gives Proposition 3, otherwise one
must assume some more restrictive assumption on the mesh as already mentionned in Remark 10; for
instance one might assume m(o)A, + %’UKJ + Aodi om(o) > 0 if vg o > 0.

We may now define the approximate solution by

{uT(x):uK ifreK, KeT,

ur(z) =u, ifze€o, o€ (74)

28



5.3 Error estimate

We prove in this section an error estimate in a discrete H' semi-norm assuming u € C2(2) or u € H2(Q)
(with more restrictive assumptions on the mesh in the latter case).

Theorem 5 (C? regularity) Under Assumptions 1 and 6, let T be a restricted admissible mesh in the
sense of Definition 1. Let ur be the solution to (74), (67), (69), (68), (5), (6), (8) and (11).

Assume that the unique variational solution u of Problem (1), (66) satisfies u € C*(Q). Let er be defined
byer(z) =ex =u(rg) —ux fr € K, KeT ander(z) = e; = u(Yy) — Uy if €0, 0 € Eoxt-

Then, there exists C only depending on d, u, v, b, A\ and  such that

ler|1,7 < Csize(T), (75)

where | - |1 7 is the discrete H} morm defined in Definition 4.
Furthermore
lez(lL2@) + ller(lL2o0) < C'size(T). (76)

One proves a similar result when v is only in H?(2), assuming more restrictive hypotheses on 7.

Theorem 6 (H? regularity) Under Assumptions 1 and 6, let T be a restricted admissible mesh in the
sense of Definition 1 and let
. . . dK,a

= Rip i (B
Let ur be the solution to (74), (67), (69), (68), (5), (6), (8) and (11). Assume that the unique variational
solution u of Problem (1), (66) satisfies u belongs to H*(Q)). Let er be defined by er(x) = ex =
ulzg) —ug ifr € K, K€T ander(z) = e = u(ys) — Uy if T € 0, 0 € Eoxt-
Then, there exists C, only depending on u, v, b, A, Q and {, such that (75) and (76) hold.

Proof of Theorems 5 and 6

One proceeds, like in the Dirichlet case, in two steps. In the first one, one proves the consistency of the
scheme, in a finite volume sense. Then in the second step, using this result and the conservativity of the
scheme (see (4)), one proves error estimates.

Step 1
For all K € T and all o € Ek let

PK = ﬁ}() /Kb(m) (u(z) —u(zg))de and rg, = L /Jv(as) ‘Np o (u(m) - u(xg7+)> dry(x),

m(0)

with g defined in Definition 1 and z, 4 = zg if vk > 0, 25+ = zp if vk <0 and o € Ex N Eing,
o=K]|L, finally 2, 1 =z, f vk, <0 and o € Eg N Eexs.
Furthermore, if 0 € Ex N &y, 0 = K|L, one has

Rico = oy [ (V) e = DY )

m(a) dK,U

and, if o € Ex N Eext xr is replaced by y, where y, is defined in Definition 1.
In a same way, one uses, for all 0 € Ex N Eoxt

Rio =i [ (Me)+via) ) (@) = ur)) o2, (77)

One recalls that Lemmas 2 and 3 hold. Moreover, using Taylor expansions, one proves the following
result:
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Lemma 9 Under Assumptions 1 and 6, let T be an admissible mesh in the sense of Definition 1. Assume
that the unique variational solution u of Problem (1), (66) satisfies u € C?(Q2). Then there exists C > 0,
only depending on u, v and \, such that

|]:3K7a| < C'size(T),
forany K € T and o € Ek.

With the same technique as was used for g, in Lemma 3 we prove a similar lemma when u is only in
H?(Q):

Lemma 10 Under Assumptions 1 and 6, let T be an admissible mesh in the sense of Definition 1 and
let

¢ = min min dKia
KeT oefx diam(K)

Assume that the unique variational solution, u, to (1), (66) belongs to H*(Q). Then there exists C, only
depending on A, d, v, ¢ and p such that, for all K € T and all 0 € €k,

|Ri.o| < Csize(T) (m(0) do) " [[ullwiow,), (78)

for all p > d and such that p < +00 if d=2 and p < 6 if d = 3, where V, is defined in Lemma 3.

This concludes the proof of the scheme consistency in a finite volume sense, i.e. step 1.
Step 2
Let K € T, since u is the exact solution to (1), (66), one has:

Z / (=Vu(z) ng e+ v(z) ngeu(z)) dy(z) —|—/ b(z)u(z) de = / f(z)dx,
o€ VO K K
Substracting (67) off the previous equation, one gets for all K € T

Yo ST wo) Y (o) + Y vk o + b m(K) ek

d d
CEERNEin K|L 0 EERNEext Ko oCEr
o=K|L

=-m(K)px — Y_ m(0) (Rk.c +7K.0), (79)

c€EK

where, for all 0 € Ex, ep 4 = ek if vk o >0, €5+ =ep if Vg, <0 and o € Eg N &int, 0 = K|L, finally
€o+ = €5 if Vg o <0 and o € Ex N Eexs.
In a similar way, using (66) and (69), one has for all K € T

€ — €K

m(o) + (m(a) Ao + vK,U> €s — VK ,0€o+ = M(0) (RK,J — RK,U + TK,(,). (80)

dK,U

We then multiply (80) by e,, we sum the result over o € i, we multiply (79) by ex, we sum these two
equalities and we finally sum the result over K € 7. Using for the left hand side term the same technique
as the one used in the proof of Proposition 3, one obtains

v(z) - n(z

|eT|?,7 +/Q (dw(;z(a:)) + b(m)) (er(z))? dz + /89 <)\(J:) + 2()) (er(z))?dx
< — Z m(K) px ex — Z Z m(o) (Rio +TK,0) €K

KeT KeT oe€k

+ Z Z m(o) (RK7U — Rk.o +TK.0) €o-

KeT 0€ExNEext
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Using Young’s inequality, Lemma 2 if u € C?(Q2) and Lemma 3 (with p = 4) and Holder’s inequality if u
is only in H%(Q) (for more details see the proof of Theorems 1 and 2), one gets for all § > 0

|eT|?,7 +/Q (dlv(;(x)) + b(x)) (er(z))? dz + /aQ <)\(J:) + v(x)Qn(a:)) (er(z))?dx

< 55 (size(7))* + |eTHL2(Q Z Z ) Rk, +7K,0) €K
KeT o€€k
+ Z Z m(o) (RK’J — Rk.o +TK.0) €0,
KET 0€EKNEur

where C only depends on u, b and  if u € C%(Q) and on u, b, Q and ( if u is only in H?(Q).

Thanks to the conservativity property of the scheme (see (4)), one has, for all ¢ € &, 0 = K|L,
Rk, = —Rp, and 7k, = —71». Then using this result, Young’s inequality, Lemma 2 if u € C?(Q) and
Lemma 3 (with p = 4) and Hélder’s inequality if u is only in H?(Q) (for more details see the proof of
Theorems 1 and 2)), one obtains

1 .
- Z Z RKa +7"Ka ex + Z Z m(o) Rk s €5 < §‘eT|%,T+C(Slze(T))2=

KeT o€k KeT o0€EgNEext

where C only depends on v, d, v and  if u € C?(Q) and on v, d, u,  and ¢ if u is only in H?(Q).
The two previous inequalities yield for all § > 0

ALy [ (B o) ertepar+ [ (3w + YD) (erpan

1 . ) -
<C (1 + (5) (size(7))* + §||67H%2(Q) - Z Z m(o) Rk .o €o,
KeT 0€EkNEexs
where C only depends on d, u, b, v, and Q if u € C?(Q) and on d, u, b, v, @ and ( if u is only in H%(Q).
Finally, using Young’s inequality, Lemma 9 if u € C?(Q) and Lemma 10 (with p = 4) and Hélder’s

inequality if u is only in H?(Q) (for more details see the proof of Theorems 1 and 2)), one obtains for all
e>0andalld>0

erlis / (d“;(x” " bu)) ferta?ae+ | (A(m) n W) (er(@))? da (81)

1 1 ) 0 €
<0 (L3 +1) 6T + gllerla + glerlaga,

where C only depends on d, u, b, v, A and Q if u € C?(Q) and on d, u, b, v, \, Q and ( if u is only in
H?(Q).

Remark 12 If A > 0 a.e. on 9Q and if one uses (70) instead of (69) in order to discretize the boundary
condition. One proves (81), using Remark 11 for the left hand side. For the right hand side, one introduces

ﬁ /U A(zx) (u(x) — u(ya)) dvy(z),

then using a technique similar to the one used in the above proof, one gets (81).

RK,G‘ =

Hence if there exists 6 > 0 and € > 0 such that div(v)/24+b > 6/2 a.e. on Q and v-n/2+ X > /2 a.e.
on 0), (81) gives (75) and (76). Otherwise, thanks to Assumption 6 there are two cases.
The first one is when there exists I' C 9 such that its (d — 1)-dimensional measure m(I') # 0 and such

that i = inf,er (v(m) “n(z)/2 + A(a:));é 0.

31



The second one is when there exists O C € such that its d-dimensional measure m(Q) # 0 and such that
i = infoco (div(v(m)) /2 + b(x))yé 0.

In both cases one uses Lemma 7 in (81).

In the first case, one obtains

|€T|%,T

. 11\, .
5 TW ||6TH%2(F) <C (1 + 5 + 6) (size(T))?

Cq 2 Cao 2
—|—7(5 + 609) ler 72y + 7(5 te+ 509) ler |1 7+

for all § > 0, all € > 0, where C only depends on \, d, u, b, v, and Q if u € C?(Q) and on A, d, u, b, v,
Q and ¢ if u is only in H%(Q2), and where Cgq only depends on ).

In the second case, one gets

|€T|%,T
2

. 1 1 .
+ 1 ||eTH%2(o) <C (1 + 5 + 5) (Slze(’T))2

C C
+5 (e 46Ca) lerliao) + 5 (e +0+30a) lerfir,
for all § > 0, all € > 0, where C only depends on A, d, u, b, v, and Q if u € C?(Q) and on A, d, u, b, v,
Q and ¢ if u is only in H?(Q2), and where Cgq only depends on §).

Then a well adapted choice of § and e gives in both cases (75) and using once more Lemma 7 yields (76).
This concludes the proof of Theorems 5 and 6. [
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