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Abstract

We study here the convergence of a finite volume scheme for a coupled system of an hyperbolic and an elliptic

equations defined on an open bounded set of IR
2.

On the elliptic equation, a four points finite volume scheme is used then an error estimate on a discrete H
1 norm

of order h is proved, where h defines the size of the triangulation.

On the hyperbolic equation, one uses an upstream scheme with respect to the flow, then using an estimate on

the variation of the approximate solution, the convergence of the approximate solution toward a solution of the

coupled system is shown, under a stability condition.

Résumé

On étudie ici la convergence d’un schéma de type volumes finis pour un système formé d’une équation elliptique

et d’une équation hyperbolique linéaires, définies sur un ouvert borné de IR
2.

Pour l’équation elliptique un schéma volumes finis à quatre points est utilisé, une inégalité discrète de Poincaré

pour les fonctions à moyenne nulle, est établie afin de montrer une estimation d’erreurs en norme H
1 discrète, de

l’ordre de la taille des mailles.

Sur l’équation hyperbolique, on utilise un schéma décentré vers l’amont de l’écoulement, à l’aide d’une estimation

faible sur la variation de la solution approchée, on montre, sous une condition de stabilité, la convergence de cette

solution vers la solution faible du problème.

1 Introduction

One considers a problem coming from the modelization of a diphasic flow in a porous medium. In a
simplified case it leads to the determination of the velocity u of one of the two phases and of the pressure
P .

Let Ω be an open bounded polygonal connected set of IR2, one notes Γ = ∂Ω.
Let g ∈ L∞(Γ), u0 ∈ L∞(Ω) and u ∈ L∞(Γ+ × IR+), be given,

with Γ+ = {γ ∈ Γ ; g(γ) ≥ 0}, one assumes

∫

Γ

g(γ) dγ = 0 ;

then one considers the problem defined by :

∆P (x) = 0, x ∈ Ω(1)

ut(x, t) − div(u(x, t) ∇P (x)) = 0, x ∈ Ω, t ∈ IR+(2)

with following boundary conditions and initial condition :

∇P (γ).n(γ) = g(γ), γ ∈ Γ(3)

u(γ, t) = u(γ, t), γ ∈ Γ+, t ∈ IR+(4)

u(x, 0) = u0(x), x ∈ Ω(5)

where n is the outward unit normal to Γ.
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More precisely, one searches u in L∞(Ω× IR+) and P in H1(Ω) solutions of (1)-(5) in the following weak
sense :

∫

Ω

∇P (x).∇Φ(x) dx −

∫

Γ

g(γ)Φ(γ) dγ = 0 for all Φ ∈ H1(Ω)

and
∫

Ω

∫

IR+

u(x, t)
∂ϕ

∂t
(x, t) dx dt −

∫

Ω

∫

IR+

u(x, t)∇P (x).∇ϕ(x, t) dx dt

+

∫

Ω

u0(x)ϕ(x, 0) dx +

∫

Γ

∫

IR+

u(γ, t)ϕ(γ, t) g+(γ) dγ dt = 0

for all ϕ ∈ C∞
c (Ω+ × IR+) with Ω+ = Ω ∪ Γ+

Note that the test functions ϕ are equal to zero on Γ− = {γ ∈ Γ ; g(γ) < 0} but not necessarily on Γ+.

To discretize these equations, a finite volume scheme is used, then the results presented by R. Eymard
and T. Gallouët in [5] and R. Herbin in [8] are generalized. Indeed the system considered in [5] is the
same as the one presented here but the authors use a coupled finite element-finite volume scheme, then
discrete unknowns are localized at the vertices of the meshes whereas in this note they are localized at the
cells centers. For this scheme they prove a convergence property toward a weak solution of system (1)-(5).
The scheme used on the pressure is a finite element scheme, hence the convergence of the approximate
solution of the elliptic equation follows from the finite element framework. In this note one uses a four
points finite volume scheme for the pressure, then a convergence proof is given by generalizing the results
of R. Herbin in [8]. One of the two essential differences comes from boundary condition, since in [8]
the boundary condition is a Dirichlet condition whereas here a Neumann condition is considered, then
estimates are changed by boundary terms. In particular, for our estimate it is necessary to count the
number of triangles which are “after” a given triangle in all directions, while in [8] only one direction
is sufficient. In a same way, to prove the error estimate in discrete H1 norm, the discrete L2 norm of
the error is majorized by its discrete H1

0 norm, assuming the solution’s mean value equal to zero since
problem’s solutions differ from a constant, whereas in [8] the discrete L2 norm of the error is majorized
by the sum of its discrete H1

0 norm and of its discrete L2 norm on the boundary.
The second difference comes from the assumptions on the meshes. In [8] all the meshes must have a
measure of same order, whereas here deformations of the meshes are authorized (see section 2.1).
On the velocity an upstream finite volume scheme with respect to the flow is used, then, under a stability
condition, the convergence of the approximate solution toward a solution of the hyperbolic equation is
shown. To prove this result, one needs an estimate on the variation of the approximate solution, it uses
an estimate on discrete H1 norm of the approximate solution of the elliptic equation, this result in [5] is
given by the finite element framework. Other results on the existence and the uniqueness of solutions of
hyperbolic equations are given in [7], [3], [1], [10].
Numerical experiments on the comparison between finite element scheme and finite volume scheme, done
by J.M. Fiard and R. Herbin in [6] for a conduction problem and by R. Herbin and O. Labergerie in [9]
for a diffusion-convection problem, have shown that the approximation of fluxes is better for the finite
volume scheme. Furthermore, comparison between the scheme presented here and the weighted finite
volume scheme of R. Eymard and T. Gallouët have also been done in [6] on a system more general than

(1)-(5), where (1) is changed by div
(

f(u(x, t))∇P (x)
)

= 0, x ∈ Ω. This numerical test shows that the

scheme presented here gives better results than those given by the weighted finite volume scheme. Other
authors have been interested by finite volume scheme on triangular meshes, see for instance [11]. In [11],
results are restricted to particular meshes, whereas, here, as it has been already remark, the assumptions
are most general.
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2 Discretization

Before discretizing the elliptic and the hyperbolic equations, one first gives assumptions on the triangu-
lation.

2.1 Assumptions on the triangulation

Let T = (Kj)1≤j≤L be a triangulation of Ω which satisfies :

there exists η such that for any θ angle of an element of T , one has :

η < θ <
π

2
− η(6)

One defines hj =
√

S(Kj), where S(Kj) denotes the 2D Lebesgue measure of Kj , then the assumption
(6) gives the following result :

there exists α1 > 0 and α2 > 0, depending only on η, such that for all side a of the triangulation, the
length l(a) of a verifies :

α1.hj ≤ l(a) ≤ α2.hj(7)

if a is an edge of the cell Kj .

Then one defines h ∈ IR∗
+ by h =

L
max
j=1

hj .

Some notations will be useful to describe the numerical scheme :

NOTATIONS

Text =
{

j ∈ {1, . . . , L} ; Kj ∈ T , Kj ∩ Γ 6= Ø
}

Aext the set of the edges of the triangulation which are on the boundary Γ of Ω

Aint the set of the edges of the triangulation which are in Ω

g+(γ) = max(g(γ), 0) and g−(γ) = (−g)+

For all Kj ∈ T , 1 ≤ j ≤ L one notes :

ci(j) the edges of Kj , i = 1, 2 or 3

xj the intersection of the orthogonal bisectors of the edges of Kj

g+
ij =

∫

ci(j)

g+(γ) dγ and g−ij =

∫

ci(j)

g−(γ) dγ, i = 1, 2 or 3, if ci(j) ∈ Aext

gij = g+
ij − g−ij , i = 1, 2 or 3, if ci(j) ∈ Aext

τext(j) the set of the suffix i = 1, 2 or 3 such that ci(j) ∈ Aext

τj the set of the suffix of the neighbours of Kj

cjk = ∂Kj ∩ ∂Kk for all k ∈ τj

djk = d(xj , cjk) + d(xk, cjk), for all k ∈ τj , where d is the euclidian distance of IR2

xjk the center of the side cjk
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2.2 Discretization of the elliptic equation

To discretize (1), a four points finite volume scheme is used ; the principle of the finite volume schemes,
(see [4]), is to integrate equations on each control volume (here Kj ∈ T ), so one has :

∫

∂Kj

∇P (γ).nKj
(γ) dγ = 0

where nKj
denotes the outward unit normal to ∂Kj .

One approximates P by PT with PT (x) = Pj if x ∈ Kj , so the discretized equation can be given by
approximating the flux of P through one edge ci(j) of Kj by :















l(cjk)
(Pk − Pj)

djk
if ∃ k ∈ {1, . . . , L} such that ci(j) = cjk

∫

ci(j)

g(γ) dγ if ci(j) ∈ Aext

Then one has :
∑

k∈τj

l(cjk)
(Pk − Pj)

djk
+

∑

i∈τext(j)

gij = 0 for all j ∈ {1, . . . , L}(8)

with the convention
∑

∅

= 0.

One can remark that on the domain’s boundary the approximation of the flux is exact.

2.3 Discretization of the hyperbolic equation

Before discretizing (2), one defines the time step δ, so let T be a triangulation of Ω which satisfies the
assumption (6) and α ∈ ]0, 1[, then one chooses δ ∈ IR∗

+ which satisfies the following conditions :



















1 − δ
5

S(Kk)
l(cjk)

(Pj − Pk)

djk
> α ∀ (j, k) ∈ S

1 − δ
5

S(Kj)
g+

ij > α ∀ j ∈ Text

(9)

where S = { (j, k) ∈ {1, . . . , L}2
; (Kj ,Kk) ∈ T × T , k ∈ τj and Pj > Pk}

One notes tn = n δ for all n ∈ IN .

To discretize (2), first an Euler scheme explicit in time is used, and as for the elliptic equation, one
integrates (2) on each control volume :

∫

Kj

u(x, tn+1) − u(x, tn)

δ
dx −

∫

∂Kj

u(γ, tn) ∇P (γ).nKj
dγ = 0

One approximates u by uT ,δ with uT ,δ(x, t) = un
j if x ∈ Kj and t ∈ [tn, tn+1[. Then an upstream discrete

value with respect to the flow is chosen for u at the interfaces of meshes, and at the boundary.

One defines u0
j for all j ∈ {1, . . . , L} by u0

j =
1

S(Kj)

∫

Kj

u0(x) dx

and un
ji for all j ∈ Text and for i ∈ τext(j) by un

ji =
1

δ l(ci(j))

∫ tn+1

tn

∫

ci(j)

u(γ, t) dγ dt
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So, the discretized equation is given by :

S(Kj) (un+1
j − un

j ) − δ
∑

k∈τj

un
jk l(cjk)

(Pk − Pj)

djk
− δ

∑

i∈τext(j)

(un
ji g+

ij − un
j g−ij) = 0

for all j ∈ {1, . . . , L} and all n ∈ IN(10)

where un
jk =







un
j if Pj > Pk

un
k else

3 Convergence of the four points finite volume scheme for the

elliptic equation

Let T be a triangulation of Ω which satisfies the property (6).
One proves in this section the existence of solutions (Pj)1≤j≤L of (8) and that these solutions differ only
from a constant, proving the following result :

Proposition 1 Let g ∈ L∞(Γ), one defines for all j ∈ {1, . . . , L} : gij =

∫

ci(j)

g(γ) dγ if ci(j) ∈ Aext.

Then :

1. if
∑

i∈τext(j)

gij = 0 ∀ j ∈ {1, . . . , L} and (Pj)1≤j≤L satisfy (8) then

Pj = Pk ∀ j, k ∈ {1, . . . , L}

2. if (Pj)1≤j≤L satisfy (8) then

L
∑

j=1

∑

i∈τext(j)

gij = 0

3. if

∫

Γ

g(γ) dγ = 0 then there exists (Pj)1≤j≤L solutions of (8) and solutions differ only from a con-

stant

Furthermore one proves the numerical scheme’s convergence proving an error estimate on discrete H1

norm of order h :

Theorem 1 Let g ∈ L∞(Γ), one denotes by P the weak solution of (1), (3) such that

L
∑

j=1

S(Kj)P (xj) = 0,

where xj is the intersection of the orthogonal bisectors of the edges of Kj, one supposes g such that P is
in C2(Ω).

Let (Pj)1≤j≤L satisfy (8) and
L
∑

j=1

S(Kj)Pj = 0, one defines the error by ej = Pj − P (xj) for all j ∈

{1, . . . , L}.
Then there exists C1 and C2 positive, independent of T such that :

(

L
∑

j=1

∑

k∈τj

(ek − ej)
2

djk
l(cjk)

)1/2

≤ C1.h and

(

L
∑

j=1

S(Kj) |ej |
2

)1/2

≤ C2.h
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3.1 Proof of Proposition 1

Proof of the first part of the Proposition 1

One supposes that ∀ j ∈ {1, . . . , L}
∑

i∈τext(j)

gij = 0 and (Pj)1≤j≤L satisfy (8).

Let j0 ∈ {1, . . . , L} such that Pj0 = min
{

Pk ; k ∈ {1, . . . , L}
}

Thanks to (8), one has :
∑

k∈τj0

l(cj0k)
Pk − Pj0

dj0k
+

∑

i∈τext(j0)

gij0 = 0

But according to assumptions
∑

i∈τext(j0)

gij0 = 0 ; and l(cj0k) > 0, dj0k > 0 and Pk − Pj0 ≥ 0

∀ k ∈ τj0 , so one has :
Pk = Pj0 ∀ k ∈ τj0

Using the fact that Ω is connected, one obtains by induction : Pj = Pk ∀ j, k ∈ {1, . . . , L}

Proof of the second part of the Proposition 1

Supposing that (Pj)1≤j≤L satisfy (8) and summing these equations one gets :

L
∑

j=1

∑

i∈τext(j)

gij = 0

Proof of the third part of the Proposition 1

One supposes that

∫

Γ

g(γ) dγ = 0.

Then thanks to the first part of this Proposition, (8) is a linear system which has a kernel of dimension
1.
So, thanks to the second part of this Proposition, the image space of this linear system is the set of the

B ∈ IRL, B = t(b1, b2, . . . , bL) such that

L
∑

j=1

bj = 0.

Then, as

L
∑

j=1

bj =

∫

Γ

g(γ) dγ = 0, there exists (Pj)1≤j≤L solutions of (8) and these solutions differ only

from a constant.

3.2 Proof of Theorem 1

Definition of the consistency error on the fluxes

As it has been remark in section 2.2, fluxes are exact on the domain’s boundary, then one defines the
consistency error only at the interfaces of meshes.

The exact flux on the side cjk in the direction of Kj to Kk is :

F cjk
(Kj) =

1

l(cjk)

∫

cjk

∇P (γ).nKj
(γ) dγ

and the approximate flux on the side cjk in the same direction is :

Fcjk
(Kj) =

Pk − Pj

djk
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One defines the consistency error, denoted by Rcjk
(Kj), by :

Rcjk
(Kj) = F cjk

(Kj) −
P (xk) − P (xj)

djk

One can remark that the conservativity of exact and approximate fluxes implies :

Rcjk
(Kj) = −Rcjk

(Kk)

Now the following result is proved :

Lemma 1 Under the assumptions of Theorem 1, there exists a constant CR ≥ 0 independent of T such
that :

|Rcjk
(Kj)| ≤ CR.h ∀j, k ∈ {1, . . . , L}

Proof of Lemma 1

Using a first order Taylor expansion one proves that there exists C1 ≥ 0 and C2 ≥ 0 depending only on
α1, α2 and on the second order derivative of P such that :

|Rcjk
(Kj)| ≤

∣

∣

∣

∣

∣

1

l(cjk)

∫

cjk

∇P (γ).nKj
dγ −∇P (xjk).nKj

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∇P (xjk).nKj
−

P (xk) − P (xj)

djk

∣

∣

∣

∣

∣

≤ C1.h + C2.h

So the proof of Lemma 1 is completed.

Let ek = Pk − P (xk) be the error on the cell Kk for all k ∈ {1, . . . , L}, then one proves the first result of
Theorem 1, i.e. the following property :

There exists C ≥ 0 independent of T such that :

(

L
∑

j=1

∑

k∈τj

(ek − ej)
2

djk
l(cjk)

)1/2

≤ C.h(11)

Proof of the inequality (11)

Thanks to (1) one has :
∑

k∈τj

l(cjk) F cjk
(Kj) +

∑

i∈τext(j)

gij = 0(12)

One subtracts (8) from (12), one multiplies by ej and one sums over j, then using the conservativity of
the exact and approximate fluxes, the properties (6) and (7), the Lemma 1 and the Young inequality (for
more details see [8]), one gets :

L
∑

j=1

∑

k∈τj

(ek − ej)
2

djk
l(cjk) ≤

6 (α2)
2

α1
C2

R S(Ω)h2

where S(Ω) is the 2D Lebesgue measure of the domain Ω.

Then the proof of the inequality (11) is completed. Let’s complete the proof of Theorem 1.

Proof of Theorem 1

The L2 discrete error estimate is shown by using a discrete Poincaré-Wirtinger inequality, i.e. the following
result :
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There exists C > 0, independent of T , such that :

L
∑

j=1

S(Kj) |ej − m|2 ≤ C
∑

a∈Aint

|eK+
a
− eK−

a
|2

da
l(a)(13)

with m =
1

S(Ω)

L
∑

k=1

S(Kk) ek, where eK+
a

and eK−
a

are the errors on the both elements of T for which a

is an edge and da is defined as follows :
for all a ∈ Aint there exists j and k in {1, . . . , L} such that a = cjk then da = djk.

This result will be proved in four steps :

Step 1 :

Let P be a square included in Ω and the both directions D1 and D2 defined by P, see figure 1.

(24,18)(190,18) (182.000,16.000)(190.000,18.000)(182.000,20.000) 4.000(71,49)(71,18) 4.000(124,49)(124,18)

Figure 1:

One notes d = |b − c| and one chooses for coordinate system the coordinate system defined by any point
of IR2 and the both directions D1 and D2.
Let Aint,P be the set of the sides a of Aint such that a ∩ P 6= ∅.

Let Kj and Kk in T such that Kj∩P 6= ∅ and Kk∩P 6= ∅, x = (x1, x2) ∈ Kj∩P and y = (y1, y2) ∈ Kk∩P,
one denotes by [x,y] the line segment delimited by x and y, and one defines :

Ax1,x2,y2
(respectively Ax1,y1,y2

) the set of the sides of Aint such that the intersection with the
line segment [(x1, x2), (x1, y2)] (respectively [(x1, y2), (y1, y2)]) is a point.

A
(2)
x1 (respectively A

(1)
y2 ) the set of the sides of Aint,P such that the intersection with the line defined

by (x1, 0) (respectively (0, y2)) and parallel to D2 (respectively D1) is a point.

Then one has :

ej − ek ≤
∑

a∈Ax1,x2,y2

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣+
∑

a∈Ax1,y1,y2

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

a.e. y ∈ P ∩ Ω, ∀ x ∈ P ∩ Ω
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Integrating over Kk ∩ P and summing over k, one obtains for all x ∈ P ∩ Ω :

d2 |ej − mP | ≤

∫ c

b

∫ c

b

∑

a∈A
(2)
x1

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣ dy1 dy2 +

∫ c

b

∫ c

b

∑

a∈A
(1)
y2

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣ dy1 dy2

with mP =
1

S(P)

L
∑

k=1

S(Kk ∩ P) ek.

For all a ∈ Aint, let θa be the angle between a and D1, then swapping the summation and the integral
in the second terms, one has :

d |ej − mP | ≤ d
∑

a∈A
(2)
x1

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣
+

∑

a∈Aint,P

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣
l(a) cos θa

Using the Cauchy Schwarz inequality, one gets :

d2 |ej − mP |
2 ≤ d2







∑

a∈A
(2)
x1

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

sin θa da






×







∑

a∈A
(2)
x1

sin θa da







+





∑

a∈Aint,P

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2



×





∑

a∈Aint,P

l(a)2





and then :

|ej − mP |
2 ≤

(

d + 2α2 h
)

∑

a∈A
(2)
x1

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

sin θa da
+ 3α2

(

1 +
4α2 h

d

)

∑

a∈Aint,P

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

Integrating over [b, c] with respect to x1 and swapping the summation and the integral, one has for all
x2 ∈ [b, c] :

∑

Kj∈R
(1)
x2

l
(

Kj ∩ D(1)
x2

)

|ej − mP |
2 ≤ C1 d

∑

a∈Aint,P

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

da
l(a)(14)

where D
(1)
x2 is the line defined by the point (0, x2) and the direction D1, R

(1)
x2 is the set of the triangles

which are cut by D
(1)
x2 and C1 = d + 2α2 h +

6 (α2)
2

α1

(

d + 4α2 h
)

.

With the same arguments, one can prove the following result for all x1 ∈ [b, c] :

∑

Kj∈R
(2)
x1

l
(

Kj ∩ D(2)
x1

)

|ej − mP |
2 ≤ C1 d

∑

a∈Aint,P

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

da
l(a)(15)

One concludes by integrating (14) with respect to x2 so :

L
∑

j=1

S(Kj ∩ P) |ej − mP |
2 ≤ C1 d2

∑

a∈Aint,P

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

da
l(a)(16)

Step 2 :
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In this step the inequalities (15), (14) and (16) are proved over half of the square P denoted T , i.e the
triangle (A,B,D) (see figure 1).
Using the orthogonal symmetry in relation to [BD], the problem is the same as the one of the step 1,
then with the same notations, one has the following results :

∑

Kj∈R
(1)

b

l
(

Kj ∩ D
(1)
b

)

|ej − mT |
2 ≤ 2C1 d

∑

a∈Aint,T

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

da
l(a)

∑

Kj∈R
(2)

b

l
(

Kj ∩ D
(2)
b

)

|ej − mT |
2 ≤ 2C1 d

∑

a∈Aint,T

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

da
l(a)

and :
L
∑

j=1

S(Kj ∩ T ) |ej − mT |
2 ≤ C1 d2

∑

a∈Aint,T

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

da
l(a)

Step 3 :

One proves the result over an ordinary triangle of Ω.
So let an ordinary triangle T of Ω and a right-angle triangle T , see figure 2.

(44.000,117.000)(42.000,125.000)(40.000,117.000) (42,125)(42,18)(187,18) (179.000,16.000)(187.000,18.000)(179.000,20.000)

Figure 2:

Then there exists a linear application F which transforms T in T defined as follow :

F :

(

x

y

)

−→

(

x

y

)

=









x

l1
−

y

l1 tan θ

y

l2 sin θ









As T =

L
⋃

j=1

(

Kj ∩ T

)

then T =

L
⋃

j=1

(

F
(

Kj ∩ T
)

)

Let the function e defined from T to IR by e(x, y) = ej if (x, y) ∈ F
(

Kj ∩ T
)

.

One has the following result :
there exists η such that for all triangulation T = (Kj)1≤j≤L of Ω one has, for all angle of an element of
T :

η < θ <
π

2
− η

10



Then there exists η(η, F ) such that for all angle of an element of
(

F (Kj)
)

1≤j≤L
:

θ > η(η, F )

but one can have : θ ≥
π

2
.

So one defines (Tk)1≤k≤L′ a triangulation of F (Ω) such that :

1. ∀ k ∈ {1, . . . , L′}, there exists j ∈ {1, . . . , L} such that :

Tk ⊂ F (Kj)

2. for all θ angle of an element of (Tk)1≤k≤L′ , one has :

η(η, F ) < θ <
π

2
− η(η, F )

According to the step 2, one has:

L
∑

j=1

S

(

F
(

Kj ∩ T
)

)

∣

∣ej − mT

∣

∣

2
=

L′

∑

k=1

S
(

Tk ∩ T
) ∣

∣ej − mT

∣

∣

2
≤ C

∑

a∈A
int,T

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

da
l(a)

where mT is the mean value of e over T .

Remarking that :

∑

a∈A
int,T

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

da
l(a) ≤ Cα1,α2,η,F

∑

a∈A
int,T

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

= Cα1,α2,η,F

∑

a∈Aint,T

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

and that

mT = mT =
1

S(T )

L
∑

j=1

S(Kj ∩ T ) ej , one gets :

L
∑

j=1

S

(

F
(

Kj ∩ T
)

)

|ej − mT |
2 ≤ Cα1,α2,η,F

∑

a∈Aint,T

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

Thus :

S

(

F
(

Kj ∩ T
)

)

=

∫

F
(

Kj∩T
)

dx dy =
1

l1 l2 sin θ

∫

Kj∩T

dx dy =
1

l1 l2 sin θ
S(Kj ∩ T )

So, one obtains :

L
∑

j=1

S(Kj ∩ T ) |ej − mT |
2 ≤ l1 l2 sin θ Cα1,α2,η,F

∑

a∈Aint,T

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

With the same arguments, one proves the following inequalities :

∑

Kj∈RI

l (Kj ∩ I) |ej − mT |
2 ≤ l1 Cα1,α2,η,F

∑

a∈Aint,T

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

(17)
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∑

Kj∈RJ

l (Kj ∩ J) |ej − mT |
2 ≤ l2 sin θ Cα1,α2,η,F

∑

a∈Aint,T

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

(18)

where RI (respectively RJ ) is the set of the triangles K of T such that K ∩ I (respectively K ∩ J) is not
emptyset.

Step 4 :

Let a subset T of Ω which is the union of two triangles T1 and T2, one denotes ∂T1 ∩ ∂T2 by I.

As m =
S(T1)m1 + S(T2)m2

S(Ω)
, one can write :

L
∑

j=1

S(Kj ∩ T1) |ej − mT |
2 ≤ 2





L
∑

j=1

S(Kj ∩ T1) |ej − m1|
2

+ S(T1)
S(T2)

S(Ω)
|m2 − m1|

2





According to the step 3 one has :

L
∑

j=1

S(Kj ∩ T1) |ej − mT |
2 ≤ 2



C S(T1)
∑

a∈Aint,T1

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

+ S(T1)
S(T2)

S(Ω)
|m2 − m1|

2





Then it just remains to estimate the difference between m2 and m1.

Let x = (x1, x2) ∈ I, so :

|m2 − m1|
2 ≤ 2

(

|e(x1, x2) − m2|
2

+ |e(x1, x2) − m1|
2
)

Integrating over I and thanks to the inequalities (17) and (18), one has :

l(I) |m2 − m1|
2 ≤ 2C





∑

a∈Aint,T1

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

+
∑

a∈Aint,T2

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2





Then :

L
∑

j=1

S(Kj ∩ T1) |ej − mT |
2 ≤ C





∑

a∈Aint,T1

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

+
∑

a∈Aint,T2

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2





With the same arguments, one can prove the following result :

L
∑

j=1

S(Kj ∩ T2) |ej − mT |
2 ≤ C





∑

a∈Aint,T1

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

+
∑

a∈Aint,T2

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2





and then :
L
∑

j=1

S(Kj ∩ T ) |ej − mT |
2 ≤ C

∑

a∈Aint

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

As we have supposed that Ω is a finite union of triangles, one has :

L
∑

j=1

S(Kj) |ej − m|2 ≤ C
∑

a∈Aint

∣

∣

∣
eK+

a
− eK−

a

∣

∣

∣

2

where C does not depend of the triangulation T .

One concludes remarking that
α1

2α2
≤

l(a)

da
for all a ∈ Aint, so :

12



L
∑

j=1

S(Kj) |ej − m|2 ≤
α2

2α1
C
∑

a∈Aint

∣

∣

∣eK+
a
− eK−

a

∣

∣

∣

2

da
l(a)

Remark 1 If the boundary condition is a Dirichlet condition, then this proof can be generalized, it is
closed to those given by R. Herbin in [8].
In this case one considers a direction D which is parallel to none edges of the mesh.
Let j ∈ {1, . . . , L} and x ∈ Kj, then one denotes by Ajx, the set of the edges such that the intersection
between these sides and the line which contains x and parallel to D is not empty set.
One can write :

|ej |
2 ≤ C dΩ

∑

a∈Ajx

|eK+
a
− eK−

a
|2

da cos θa

where θa is the angle between a and D.

Integrating over Kj, summing over j and swapping summations and integrals, one gets :

L
∑

j=1

S(Kj) |ej |
2 ≤ C d2

Ω

(

∑

a∈Aint

|eK+
a
− eK−

a
|2

da
l(a) +

∑

a∈Aext

|eKa
|2

da
l(a)

)

and then one concludes with the error estimate in discrete H1
0 norm (see [8]).

4 Convergence of the numerical scheme for the hyperbolic equa-

tion

In this section one will prove the convergence of the solution of (10) toward a weak solution of problem
(2), (4), (5), proving the following Theorem :

Theorem 2 Let (Tq, δq)q∈IN be a sequence of triangulations of Ω and time steps which satisfy the prop-
erties (6) and the stability condition (9).

One notes Tq = (Kj)
(q)

1≤j≤L(q) and tn(q) = n δq.

Let the sequence (uTq,δq
)q∈IN with uTq,δq

(x, t) = u(q)n

j if x ∈ K
(q)
j and t ∈ [tn(q), t

n+1
(q) [, where

{

u(q)n

j ,

j ∈ {1, . . . , L(q)}, n ∈ IN
}

, is solution of the discretized equation (10) associated to the triangulation Tq

and the time step δq.
Then :

1 there exists a subsequence still denoted (uTq,δq
)q∈IN , which converges toward u when q → ∞, i.e.

when h goes to 0, in L∞(Ω × IR+) for the weak ⋆ topology, i.e. one has :

lim
q→∞

∫∫

Ω×IR+

uTq,δq
(x, t)ϕ(x, t) dx dt =

∫∫

Ω×IR+

u(x, t)ϕ(x, t) dx dt

for all ϕ ∈ L1(Ω × IR+).

2 u is a weak solution of problem (2), (4), (5), i.e. one has :
∫

Ω

∫

IR+

u(x, t)
∂ϕ

∂t
(x, t) dx dt −

∫

Ω

∫

IR+

u(x, t)∇P (x).∇ϕ(x, t) dx dt

+

∫

Ω

u0(x)ϕ(x, 0) dx +

∫

Γ

∫

IR+

u(γ, t)ϕ(γ, t) g+(γ) dγ dt = 0

for all ϕ ∈ C∞
c (Ω+ × IR+) with Ω+ = Ω ∪ Γ+.
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In order to prove the first part of this Theorem, one will prove in the subsection 4.1 an L∞(Ω × IR+)
estimate on the approximate solution.
Then to prove the second part, one will first show, in subsection 4.2, a weak estimate on the variation
of the approximate solution, and then, using this estimate, one will prove that u is a weak solution of
problem (2), (4), (5).

4.1 L∞(Ω × IR+) estimate on the approximate solution

Here one proves that the family (uTq,δq
)q∈IN is bounded in L∞(Ω× IR+), then, thanks to the sequential

weak ⋆ relative compactness of the bounded sets of L∞(Ω×IR+), it shows the existence of a subsequence,
still denoted (uTq,δq

)q∈IN , which converges in L∞(Ω × IR+) for the weak ⋆ topology when h goes to 0.

Let T be a triangulation of Ω and δ ∈ IR∗
+ which satisfy the property (6) and the stability condition (9).

Another expression of the equation (10) is :

un+1
j = un

j

(

1 +
δ

S(Kj)

(

∑

k∈τj , Pj>Pk

l(cjk)
(Pk − Pj)

djk
−

∑

i∈τext(j)

g−ij

))

+
δ

S(Kj)

(

∑

k∈τj , Pk>Pj

un
k l(cjk)

(Pk − Pj)

djk
+

∑

i∈τext(j)

un
ji g+

ij

)

for all j ∈ {1, . . . , L}.

So un+1
j is a linear combination of the un

k , 1 ≤ k ≤ L and un
ji i = 1, 2 or 3.

Then like in [5], thanks to (8) and to the stability condition (9), one has the following properties :

1. the sum of the coefficients of the combination is equal to 1

2. the coefficients of the combination are all positive

and one can write :

|un+1
j | ≤ max

(

sup
Kj∈T

|un
j |, sup

j∈Text, i=1,2,3
|un

ji|

)

≤ . . . ≤ max

(

sup
Kj∈T

|u0
j |, ||u||L∞(Γ+×IR+)

)

≤ max

(

||u0||L∞(Ω), ||u||L∞(Γ+×IR+)

)

Then (uTq,δq
)q∈IN is bounded in L∞(Ω × IR+).

4.2 Convergence of the numerical scheme

The L∞(Ω × IR+) stability gives the existence of a subsequence which converges to u in L∞(Ω × IR+)
for the weak ⋆ topology.
One will show that u is a solution of (2), (4), (5) in a weak sense.

Let T be a triangulation of Ω and δ ∈ IR∗
+ which satisfy the property (6) and the stability condition (9).

One considers ϕ ∈ C∞
c (Ω+ × IR+) with Ω+ = Ω ∪ Γ+, and one defines T such that, ∀ x ∈ Ω+,

supp
(

ϕ(x, .)
)

⊂ [0, T − 1] and such that there exists N ∈ IN such that N δ ≤ T < (N + 1) δ.

Multiplying (10) by
1

S(Kj)
ϕ(x, tn) and integrating over Kj , then summing over j and n, one gets :

E1h + E2h = 0

14



with :

E1h =

N
∑

n=0

L
∑

j=1

∫

Kj

S(Kj) (un+1
j − un

j )
1

S(Kj)
ϕ(x, tn) dx

E2h = −
N
∑

n=0

L
∑

j=1

δ

(

∑

k∈τj

un
jk (Pk − Pj)

l(cjk)

djk
+

∑

i∈τext(j)

(g+
ij un

ji − g−ij un
j )

)

×

∫

Kj

1

S(Kj)
ϕ(x, tn) dx

In a classical way one could show that :

lim
h→0

E1h = −

∫

Ω

∫

IR+

u(x, t)
∂ϕ

∂t
(x, t) dx dt −

∫

Ω

u0(x)ϕ(x, 0) dx

The proof of the following result will be given :

lim
h→0

E2h =

∫

Ω

∫

IR+

u(x, t)∇P (x).∇ϕ(x, t) dx dt −

∫

Γ

∫

IR+

u(γ, t)ϕ(γ, t) g+(γ) dγ dt

One defines E3h and E4h by :

E3h =

N
∑

n=0

δ

(

∑

(j,k)∈S

(un
j − un

k )
(Pk − Pj)

djk

∫

cjk

ϕ(γ, tn) dγ +

+
L
∑

j=1

∑

i∈τext(j)

(un
j − un

ji)

∫

ci(j)

ϕ(γ, tn) g(γ) dγ

)

E4h =
N
∑

n=0

δ

(

∫

Ω

uT ,δ(x, tn)∇P (x).∇ϕ(x, tn) dx −

∫

Γ

uT ,δ(γ, tn)ϕ(γ, tn) g(γ) dγ

)

The result will be proved in three steps.
The first step is the proof of the existence of a constant C ≥ 0, independent of T and δ, such that :

∣

∣

∣

∣

E3h − E2h

∣

∣

∣

∣

≤ C h1/2

According to (8) one has :

E2h =
N
∑

n=0

L
∑

j=1

δ

(

∑

k∈τj

(un
jk − un

j ) (Pj − Pk)
l(cjk)

djk
+

∑

i∈τext(j)

(un
j − un

ji) g+
ij

)

×

∫

Kj

1

S(Kj)
ϕ(x, tn) dx

E2h =

N
∑

n=0

δ

(

∑

(j,k)∈S

l(cjk)

S(Kk)
(un

j − un
k )

(Pj − Pk)

djk

∫

Kk

ϕ(x, tn) dx

+

L
∑

j=1

∑

i∈τext(j)

1

S(Kj)
(un

j − un
ji) g+

ij

∫

Kj

ϕ(x, tn) dx

)
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thus :

∣

∣

∣

∣

E2h − E3h

∣

∣

∣

∣

≤
N
∑

n=0

δ

(

∑

(j,k)∈S

|un
j − un

k |
(Pj − Pk)

djk

∣

∣

∣

∣

∣

∫

cjk

ϕ(γ, tn) dγ −
l(cjk)

S(Kk)

∫

Kk

ϕ(x, tn) dx

∣

∣

∣

∣

∣

+

L
∑

j=1

∑

i∈τext(j)

|un
j − un

ji |

∣

∣

∣

∣

∣

g+
ij

S(Kj)

∫

Kj

ϕ(x, tn) dx −

∫

ci(j)

ϕ(γ, tn) g(γ) dγ

∣

∣

∣

∣

∣

)

One defines :

D1 =

∣

∣

∣

∣

∣

∫

cjk

ϕ(γ, tn) dγ −
l(cjk)

S(Kk)

∫

Kk

ϕ(x, tn) dx

∣

∣

∣

∣

∣

D2 =

∣

∣

∣

∣

∣

g+
ij

S(Kj)

∫

Kj

ϕ(x, tn) dx −

∫

ci(j)

ϕ(γ, tn) g(γ) dγ

∣

∣

∣

∣

∣

Remarking that if ϕ ≡ C is constant then D1 = 0, one gets :

D1 =

∣

∣

∣

∣

∣

∫

cjk

(ϕ(γ, tn) − ϕ(xk, tn)) dγ −
l(cjk)

S(Kk)

∫

Kk

(ϕ(x, tn) − ϕ(xk, tn)) dx

∣

∣

∣

∣

∣

≤ C hj l(cjk)

Similarly one could show that :
D2 ≤ C hj g+

ij

and then :

∣

∣

∣

∣

E2h − E3h

∣

∣

∣

∣

≤ C δ

N
∑

n=0

∑

(j,k)∈S

hj l(cjk)
(Pj − Pk)

djk
|un

j − un
k |

+δ

N
∑

n=0

∑

j∈Text

∑

i∈τext(j)

hj g+
ij |un

j − un
ji|

To conclude, the following Lemma is proved :

Lemma 2 Let T be a triangulation of Ω and δ ∈ IR∗
+ which satisfy the property (6) and the stability

condition (9). Let T > 0, one defines N by N δ ≤ T < (N +1) δ and one supposes N ≥ 1, then one notes

EFh(T ) = δ

N
∑

n=0

(

∑

(j,k)∈S

hj l(cjk)
(Pj − Pk)

djk
|un

j − un
k | +

∑

j∈Text

∑

i∈τext(j)

hj g+
ij |un

j − un
ji|

)

Then there exists a constant C ≥ 0 independent of T and δ such that :

EFh(T ) ≤ C h1/2

Proof of Lemma 2

Let n ∈ IN , Kj ∈ T , one multiplies (10) by un
j and one sums over n and j, then using the following

property :

un+1
j un

j − (un
j )2 = −

1

2
(un+1

j − un
j )2 −

1

2
(un

j )2 +
1

2
(un+1

j )2
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one gets :

−
1

2

N
∑

n=0

L
∑

j=1

S(Kj) (un+1
j − un

j )2 − δ

N
∑

n=0

L
∑

j=1

(

∑

k∈τj

un
j un

jk l(cjk)
(Pk − Pj)

djk

+
∑

i∈τext(j)

(

un
j un

ji g+
ij − (un

j )2 g−ij

)

)

≤
1

2

L
∑

j=1

S(Kj) (u0
j )

2(19)

Let B1 and B2 be defined by :

B1 =

N
∑

n=0

L
∑

j=1

S(Kj) (un+1
j − un

j )2

B2 = δ

N
∑

n=0

L
∑

j=1

(

∑

k∈τj

un
j un

jk l(cjk)
(Pk − Pj)

djk
+

∑

i∈τext(j)

(

un
j un

ji g+
ij − (un

j )2 g−ij

)

)

Then one has :

B2 = δ

N
∑

n=0

(

∑

(j,k)∈S

(

(un
j )2 − un

j un
k

)

l(cjk)
(Pk − Pj)

djk
+

L
∑

j=1

∑

i∈τext(j)

(

un
j un

ji g+
ij − (un

j )2 g−ij

)

)

Remarking that :

(un
j )2 − un

j un
k =

1

2
(un

j − un
k )2 +

1

2
(un

j )2 −
1

2
(un

k )2 ∀ (j, k) ∈ S

∑

(j,k)∈S

(

(un
j )2 − (un

k )2
)

l(cjk)
(Pk − Pj)

djk
=

L
∑

j=1

∑

k∈τj

(un
j )2 l(cjk)

(Pk − Pj)

djk

and thanks to (8) :

(un
j )2

(

∑

k∈τj

l(cjk)
(Pk − Pj)

djk
+

∑

i∈τext(j)

(

g+
ij − g−ij

)

)

= 0 ∀ j ∈ {1, . . . , L}

one can write :

B2 =
δ

2

N
∑

n=0

(

∑

k∈τj

(un
j − un

k )2 l(cjk)
(Pk − Pj)

djk
−

L
∑

j=1

∑

i∈τext(j)

g+
ij

(

un
j − un

ji

)2

+
L
∑

j=1

∑

i∈τext(j)

(

(un
ji)

2 g+
ij − (un

j )2 g−ij

)

)

Furthermore according to (10) one has :

N
∑

n=0

L
∑

j=1

S(Kj) (un+1
j − un

j )2 =

N
∑

n=0

L
∑

j=1

δ2

S(Kj)

(

∑

k∈τj

(un
jk − un

j ) l(cjk)
(Pk − Pj)

djk

+
∑

i∈τext(j)

g+
ij

(

un
ji − un

j

)

)2
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The number of the neighbours of a triangle Kj is lower than 3, and the number of its sides on the
boundary is lower than 2, then thanks to the Cauchy-Schwarz inequality :

B1 ≤
N
∑

n=0

δ2

(

∑

(j,k)∈S

5

S(Kk)
(l(cjk))2 (un

j − un
k )2

(

(Pj − Pk)

djk

)2

+

L
∑

j=1

5

S(Kj)

∑

i∈τext(j)

(g+
ij)

2
(

un
ji − un

j

)2
)

Thus using this inequality and the last expression of B2 in (19) one gets :

δ

N
∑

n=0

(

∑

(j,k)∈S

θjk l(cjk)
(Pj − Pk)

djk
(un

j − un
k )2 +

L
∑

j=1

∑

i∈τext(j)

θj g+
ij

(

un
ji − un

j

)2

+

L
∑

j=1

∑

i∈τext(j)

(un
j )2 g−ij

)

≤ δ

N
∑

n=0

L
∑

j=1

∑

i∈τext(j)

(un
ji)

2 g+
ij +

L
∑

j=1

S(Kj) (u0
j )

2

with :

θjk = 1 − δ
5

S(Kk)
l(cjk)

(Pj − Pk)

djk
> α

θj = 1 − δ
5

S(Kj)
g+

ij > α

So one can write the following inequality :

δ

N
∑

n=0

∑

(j,k)∈S

l(cjk)
(Pj − Pk)

djk
(un

j − un
k )2 + δ

N
∑

n=0

L
∑

j=1

∑

i∈τext(j)

g+
ij

(

un
ji − un

j

)2

≤
1

α
S(Ω) ||u0||

2
L∞(Ω) +

1

α
||u||2L∞(Γ+×IR+) T

∫

Γ+

g+(γ) dγ =
K

α

Using the Cauchy Schwarz inequality and the previous property one gets :

EFh(T ) ≤ h1/2

(

K

α

)1/2

×

(

δ

N
∑

n=0

∑

(j,k)∈S

hj l(cjk)
(Pj − Pk)

djk
+ δ

N
∑

n=0

L
∑

j=1

∑

i∈τext(j)

hj g+
ij

)1/2

But δ

N
∑

n=0

L
∑

j=1

∑

i∈τext(j)

hj g+
ij ≤ T h

∫

Γ

g+(γ) dγ = T hG+

with T and G+ independent of T and δ.

Still using the Cauchy Schwarz inequality, one has :

∑

(j,k)∈S

hj l(cjk)
(Pj − Pk)

djk
≤

(

∑

(j,k)∈S

h2
j

l(cjk)

djk

)1/2 (
∑

(j,k)∈S

l(cjk)

djk
(Pj − Pk)2

)1/2

But
α1

2α2
≤

l(cjk)

djk
≤ C ∀ (j, k) ∈ S, where C only depends on α1, α2 and on η, so :

(

∑

(j,k)∈S

h2
j

l(cjk)

djk

)1/2

≤

(

C
∑

(j,k)∈S

h2
j

)1/2

≤

(

C
S(Ω)

α1

)1/2

18



Thus to complete the proof of Lemma 2, it just remains to show that there exists a constant C ≥ 0,
independent of T and δ, such that :

∑

(j,k)∈S

(Pj − Pk)2

djk
l(cjk) ≤ C(20)

This result will be proved in four steps (another proof is possible, using the error estimate (11), see
Remark 2) :

Step 1 :

One shows that there exists a constant C1 ≥ 0 such that :

L
∑

j=1

∑

k∈τj

(Pj − Pk)2

djk
l(cjk) ≤ C1

(

∑

j∈Text

hj (Pj)
2

)1/2

(21)

Multiplying (8) by Pj and summing over j, one gets :

∣

∣

∣

∣

∣

L
∑

j=1

∑

k∈τj

l(cjk)
(Pk Pj − (Pj)

2)

djk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

L
∑

j=1

∑

i∈τext(j)

gij Pj

∣

∣

∣

∣

∣

Then thanks to Cauchy-Schwarz :

∣

∣

∣

∣

∣

L
∑

j=1

∑

i∈τext(j)

gij Pj

∣

∣

∣

∣

∣

≤ α
1/2
2 ||g||L∞(Γ)





∑

j∈Text

hj |Pj |
2





1/2



∑

j∈Text

l(ci(j))





1/2

≤ α
1/2
2 meas(Γ) ||g||L∞(Γ)





∑

j∈Text

hj |Pj |
2





1/2

where meas(Γ) is the 1D Lebesgue measure of Γ.

Furthermore one has :
∣

∣

∣

∣

∣

L
∑

j=1

∑

k∈τj

l(cjk)

djk
(Pk Pj − (Pj)

2)

∣

∣

∣

∣

∣

=
1

2

L
∑

j=1

∑

k∈τj

l(cjk)

djk
(Pj − Pk)2

and then :
L
∑

j=1

∑

k∈τj

l(cjk)

djk
(Pj − Pk)2 ≤ 2 α

1/2
2 meas(Γ) ||g||L∞(Γ)

(

∑

j∈Text

hj (Pj)
2

)1/2

Step 2 :

One shows that there exists C2 and C3 positive such that :

∑

j∈Text

hj (Pj)
2 ≤ C2

L
∑

j=1

∑

k∈τj

l(cjk)

djk
(Pj − Pk)2 + C3

L
∑

j=1

S(Kj) (Pj)
2(22)

Ω is a bounded polygonal open set, first Ω will be supposed convex. If Ω is convex, then one defines two
directions D1 and D2 and one breaks up the boundary of Ω in four parts, not necessary disjoint as on
the figure 3.
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(252,39)(426,39) (390,172)(390,20) 4.000(294,42)(314,23)(378,32)(385,42) (34,175)(34,20) (0,37)(173,37) (137,169)(137,17)

Figure 3:

One notes TΓ1
(respectively TΓ2

, TΓ3
, TΓ4

) the set of the suffix of the meshes which have sides on Γ1

(respectively on Γ2, Γ3, Γ4).

Let j ∈ TΓ1
and x̃ ∈ ∂Kj , then one defines :

D
(1)
jx̃ = {(x1, x2) ∈ Ω ; (x1, x2) is in the line which contains x̃ and parallel to D1}

A
(1)
jx̃ = {a ∈ Aint ; a ∩ D

(1)
jx̃ 6= ∅}

Let ϕ ∈ C∞(Ω) such that ∀ x ∈ Ω, 0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 ∀ x ∈ Γ1, and ϕ(x) = 0 ∀ x ∈ Γ3.

Then for all j ∈ TΓ1
one has :

(Pj)
2 ≤ |(Pj)

2 − (Pj ϕj)
2| +

∑

a∈A
(1)
jx̃

|(PK+
a

ϕK+
a
)2 − (PK−

a
ϕK−

a
)2| + (Pj0x̃

ϕj0x̃
)2

where j0x̃ is the suffix of the element of TΓ3
such that there exists i ∈ {1, 2, 3} such that ci(j0x̃)∩D

(1)
jx̃ 6= ∅,

so :

Pj
2 ≤

∑

a∈A
(1)

jx̃

(

∣

∣

∣

∣

(

PK+
a

ϕK+
a

)2

−
(

PK−
a

ϕK+
a

)2
∣

∣

∣

∣

+

∣

∣

∣

∣

(

PK−
a

ϕK+
a

)2

−
(

PK−
a

ϕK−
a

)2
∣

∣

∣

∣

)

+

∣

∣

∣

∣

Pj
2 −

(

Pj ϕj

)2
∣

∣

∣

∣

+

∣

∣

∣

∣

(

Pj0x̃
ϕj0x̃

)2

−
(

Pj0x̃
× 0
)2
∣

∣

∣

∣

But ϕ is in C∞(Ω) and belongs to [0, 1], then one has :

Pj
2 ≤

∑

a∈A
(1)

jx̃

(

∣

∣

∣

∣

PK+
a

2 − PK−
a

2

∣

∣

∣

∣

+C1 hK−
a

PK−
a

2

)

+C2

(

hj0x̃
Pj0x̃

2 + hj Pj
2

)
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where C1 = ||ϕ′||L∞(Ω)

2 (α2)
2

α1
and C2 = ||ϕ′||L∞(Ω) α1.

Integrating over Γ1, one obtains :

∑

j∈TΓ1

α1 hj Pj
2 ≤

∑

a∈Aint

(

∣

∣

∣
PK+

a

2 − PK−
a

2
∣

∣

∣
l(a) + C1 hK−

a
PK−

a

2 l(a)

)

+C2 α2





∑

j∈TΓ1

S(Kj)Pj
2 +

∑

j∈TΓ3

S(Kj)Pj
2





According to the Young inequality :

∑

j∈TΓ1

α1 hj Pj
2 ≤

∑

a∈Aint

(

1

2

∣

∣

∣PK+
a
− PK−

a

∣

∣

∣

2

+
∣

∣

∣PK+
a

2 + PK−
a

2
∣

∣

∣ l(a)
2

+ C1 hK−
a

PK−
a

2 l(a)

)

+C2 α2





∑

j∈TΓ1

S(Kj)Pj
2 +

∑

j∈TΓ3

S(Kj)Pj
2





then as
l(a)

da
≥

α1

2α2
for all a ∈ Aint one obtains :

∑

j∈TΓ1

hj (Pj)
2 ≤

α2

(α1)2

L
∑

j=1

∑

k∈τj

l(cjk)

djk
|Pj − Pk|

2 +
α2

α1

(

3α2 + C1 + C2

)

L
∑

j=1

S(Kj) (Pj)
2

Similarly one could prove the same result for TΓ2
, TΓ3

and TΓ4
. Then summing these inequalities, one

completes the second step with Ω convex.

If Ω is not convex then one breaks up its boundary Γ in p parts (Γi)1≤i≤p disjoint and for all i = 1, . . . , p,

one defines Γ
′

i as on the figure 4.

4.000(123,68)(130,26)(130,26) 4.000(176,63)(183,21)(183,21) (125,63)(178,51) 4.000(177,146)(168,113)

Figure 4:
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Then one defines for all i = 1, . . . , p, ϕ(i) ∈ C∞(Ω) such that ∀ x ∈ Ω, 0 ≤ ϕ(i)(x) ≤ 1, ϕ(i)(γ) = 1 if
γ ∈ Γi and ϕ(i)(γ) = 0 if γ ∈ Γ

′

i. Then similarly to the convex case one could prove (22).

Step 3 :

One supposes that :
L
∑

j=1

S(Kj)Pj = 0

it is always possible since solutions of (8) differ from a constant.
Then as one has proved (11), one could show that there exists a constant C4 ≥ 0 such that :

L
∑

j=1

S(Kj) (Pj)
2 ≤ C4

L
∑

j=1

∑

k∈τj

l(cjk)

djk
(Pj − Pk)2(23)
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Step 4 :

One concludes, remarking that :

∑

(j,k)∈S

l(cjk)

djk
(Pj − Pk)2 =

1

2

L
∑

j=1

∑

k∈τj

l(cjk)

djk
(Pj − Pk)2

then thanks to (21), (22) and (23) one has :

L
∑

j=1

∑

k∈τj

l(cjk)

djk
(Pj − Pk)2 ≤ C1

√

C2 + C3 C4

(

L
∑

j=1

∑

k∈τj

l(cjk)

djk
(Pj − Pk)2

)1/2

So the proof of the inequality (20) and of the Lemma 2 are completed, and then one has :
∣

∣

∣

∣

E3h − E2h

∣

∣

∣

∣

≤ C h1/2

Remark 2 As P is supposed to be in C2(Ω), the estimate (20) can also be given by the error estimate
in discrete H1

0 norm (11), but our proof of (20) does not use the property P ∈ C2(Ω) and then it could
be extended to more complex cases.

The second step is the proof of the following result :
∣

∣

∣

∣

E3h − E4h

∣

∣

∣

∣

≤ C h

E3h can also be written :

E3h =
N
∑

n=0

δ

L
∑

j=1

(

∑

k∈τj

un
j

(Pk − Pj)

djk

∫

cjk

ϕ(γ, tn) dγ+

∑

i∈τext(j)

(un
j − un

ji)

∫

ci(j)

ϕ(γ, tn) g(γ) dγ

)

and :

E4h =

N
∑

n=0

δ

L
∑

j=1

(

∑

k∈τj

un
j

∫

cjk

∇P (γ).nKj
(γ)ϕ(γ, tn) dγ +

∑

i∈τext(j)

(un
j − un

ji)

∫

ci(j)

ϕ(γ, tn) g(γ) dγ

)

then one gets :

∣

∣

∣
E3h − E4h

∣

∣

∣
≤

N
∑

n=0

δ

L
∑

j=1

∑

k∈τj

|un
j |

∫

cjk

∣

∣

∣

∣

(Pk − Pj)

djk
−∇P (γ).nKj

(γ)

∣

∣

∣

∣

|ϕ(γ, tn)| dγ

But according to (1) and (8) if ϕ ≡ ϕ(xjk, tn) is constant,
∣

∣

∣E3h − E4h

∣

∣

∣= 0, thus :

∣

∣

∣
E3h − E4h

∣

∣

∣
≤ T ||u0||L∞(Ω) Cϕ h

L
∑

j=1

∑

k∈τj

(

l(cjk)

∣

∣

∣

∣

∣

(Pk − Pj)

djk
−∇P (xjk).nKj

(xjk)

∣

∣

∣

∣

∣

+

∫

cjk

∣

∣

∣∇P (xjk).nKj
(xjk) −∇P (γ).nKj

(γ)
∣

∣

∣ dγ

)
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where Cϕ only depends on α2 and the first order derivative of ϕ.

Then one has :

∣

∣

∣E3h − E4h

∣

∣

∣ ≤ T ||u0||L∞(Ω) Cϕ h

L
∑

j=1

3 (C1 h2
j + C2 h2

j )

≤ 3 (C1 + C2) S(Ω)T ||u0||L∞(Ω) Cϕ h

One concludes remarking that :

lim
h→0

E4h =

∫

Ω

∫

IR+

u(x, t)∇P (x).∇ϕ(x, t) dx dt −

∫

Γ

∫

IR+

u(γ, t)ϕ(γ, t) g+(γ) dγ dt

which completes the proof of the numerical scheme’s convergence.

Remark 3 One can prove the same results for a system a little bit different than (1)-(5), where (3) is
changed by a Fourier condition :

∇P (γ).n(γ) + λP (γ) = g(γ) γ ∈ Γ

where λ > 0.

Then one must introduce some unknowns at the boundary. As fluxes are not exact on the boundary, the
error estimate, in discrete H1 norm, includes boundary terms.
The technic used to prove the error estimate in discrete H1

0 norm is closed to this used in this note.

Acknowledgements : I wish to thank Thierry Gallouët and Raphaele Herbin for their attention to this
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