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Abstract

This article deals with the development of a numerical method for the compressible Euler system valid for all Mach
numbers: from extremely low to high regimes. In classical fluid dynamic problems, one faces both situations in which
the flow is subsonic, and consequently acoustic waves are very fast compared to the velocity of the fluid, and situations
in which the fluid moves at high speed and compressibility may generate shock waves. Standard explicit fluid solvers
such as Godunov method fail in the description of both flows due to time step restrictions caused by the stiffness of the
equations which leads to prohibitive computational costs. In this work, we develop a new method for the full Euler
system of gas dynamics based on partitioning the equations into a fast and a low scale. Such a method employs a
time step which is independent of the speed of the pressure waves and works uniformly for all Mach numbers. Cell
centered discretization on Cartesian meshes is proposed. Numerical results up to the three dimensional case show the
accuracy, the robustness and the effectiveness of the proposed approach.

Keywords: All Mach number flow solver, Asymptotic preserving, Implicit-Explicit Runge-Kutta schemes,
Incompressible flows, Multidimensional Euler equations.

1. Introduction

The equations which model high speed and low speed inviscid flows are well known and have been studied for
more than a century [61]. These models are respectively referred to as the compressible Euler equations and the
incompressible ones. However, there are situations in which the fluid may be only slightly compressible or situations
in which the fluid exhibits very fast pressure waves in some regions of the domain and not in others, or even fast waves
are present only for short times compared to the scale of observation. In all these cases, it is interesting to analyze from
a theoretical point of view what happens if one performs the passage from incompressible to compressible scaling and
vice versa [56, 57, 81, 2, 62, 1]. It is probably equally interesting from the point of view of the applications to
dispose of numerical methods which are able to deal both with the incompressible and the compressible regimes
[50, 44, 74, 91, 58, 20, 42, 69, 66, 45, 41, 73, 67, 24, 27, 25, 23, 43, 16, 18, 39, 55, 28, 30]. The compressible Euler
equations describe the conservation of density, momentum and energy, while the corresponding incompressible model
deals with a constraint on the divergence of the velocity, with an elliptic equation for the pressure and a linear transport
equation for the density moving at the average speed of the flow. These two models can be connected by a rescaling
procedure in which the Mach number, i.e. the ratio between the flow and the sound speeds, is put into evidence in the
compressible model and then is set to zero through a limit analysis. This situation implies a fluid flow almost at rest,
and, the pressure waves to move at large speed compared to the average speed of the gas.
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Unfortunately, the aforementioned models cannot deal with all occurrences encountered in practical cases. In
fact, in many problems, the presence of low and high Mach number flows becomes evident during the study of the
phenomena and cannot be predicted before starting the simulation. Thus, one needs to be able to describe these
situations with the same numerical scheme since switching the scheme during the time marching is not a strategy that
can be followed. However, this causes many difficulties from the numerical point of view because standard numerical
methods suffer from the stiffness of the equations, while domain decomposition techniques which may couple the two
models are difficult to be set into practice, as pointed out for instance in [7]. Since the problem involves a fast time
scale, one possible solution is given by the use of implicit time integrators. On the other hand, it is well known that
implicit schemes are not simple to be applied due to the non linearity of the system. Furthermore, the necessity to
employ high order in space schemes complicates the realization of such methods. In the recent past, an alternative
strategy to treat problems with multiple time scales has been proposed, which consists in treating implicitly only
one part of the system to be solved while keeping the remaining explicit. This approach considerably facilitates the
development of the schemes since it diminishes the complexity of the non linear systems to be inverted in order to
advance the solution in time. We refer to this class of schemes as Implicit-Explicit methods [3, 8, 72], that are a
particular case of the so-called partitioned schemes [48]. Thanks to this choice, it is possible to develop numerical
schemes which are stable for all values of the fast scale, independently on the prescribed value of the time step.
Moreover, if these schemes share also the property of being consistent with the limit model, they are often referred
to as Asymptotic Preserving methods. In the context of compressible-incompressible fluids, these techniques have
been developed by several authors in the last decade [26, 24, 25, 23, 43, 85, 16, 68, 18, 30, 29]. A semi-implicit finite
volume scheme introduced in [35], which shares similarities with the one here proposed, makes use of a staggered
grid spatial discretization. Staggered meshes in the context of semi-implicit schemes for incompressible fluids have
also been considered in [86, 88, 11, 12]. In two recent works [30, 29], first and second order Asymptotic Preserving
methods have been developed for the low Mach number limit for the simplified isentropic Euler case. In [94] a semi-
implcit scheme for atmospheric flows is proposed where the separation of acoustic and advective components of the
hyperbolic flux is carried out in the characteristic space, while in [95] a correction to deal with non-hyperbolic flux
splitting is presented. High order discontinuous Galerkin methods on staggered grids for compressible flows have
been presented in [87].

In the present work, we extend the previous study to the full Euler equations with the intent of simulating up to
three dimensional flows. Compared to the isentropic Euler situation, here the difficulties are related to search for the
minimum number of terms to treat implicitly in the full Euler system, and, to deal with the non linearity of the system
which arises in the scheme. All these aspects increase in complexity by the fact that multidimensional problems are
solved. In the following, we first present a first order in time and space method and then we extend our analysis
to general second order in time Implicit-Explicit (IMEX) methods coupled with a second order space discretization
approach. The time marching technique is based on IMEX Runge Kutta method for the time and TVD second order
discretization for the space [60]. In [29], we focused on the analysis of the development of L2 and L∞ stable methods
and on the differences that arise if one stability condition is assured instead of the other. In this work, we only consider
the weaker L2 stability requirement for sake of shortness and simplicity. We postpone the development of schemes
which are also able to assure the L∞ stability condition to future investigations. We only recall that it has been proved
[40] that the L∞ and the Total Variation Diminishing (TVD), also named Strong Stability Preserving (SSP), properties
cannot be assured for an unconstrained implicit in time scheme of order greater than one, and, thus, remedy to this
negative result should be studied. In [29], a solution constructing high resolution algorithms by combining schemes
of different nature has been proposed. We intend to extend and study in details this possibility for the full Euler case
in some next future work.

The article is organized as follows. In Section 2, we recall the governing equations, the low Mach scaling and we
give the details of the formal passage from the compressible to the incompressible model. In Section 3, we introduce
a first order scheme which works for all values of the Mach number. We start by discussing the semi discrete in time
case in 3.1, then we give the details of the full time and space discretization for the one dimensional case in Section 3.2
and we end with the three dimensional first order case in Section 3.4. The second order extension in time and space of
our method is proposed in Section 4, namely the time semi discretization is discussed in Section 4.1 while the space
second order extension in Section 4.2. The numerical results showing the effectiveness of the proposed approach are
given in Section 5. A concluding Section finalizes the article.
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2. Governing equations

We consider a bounded domain Ω ∈ Rd with the space dimension d ∈ {1, 2, 3}. The space and time variables are
respectively denoted by x ∈ Ω and t ∈ R+. The compressible Euler equations read

∂tρ + ∇x · q = 0, (1)

∂t q + ∇x ·

(
q ⊗ q
ρ

)
+ ∇x p = 0, (2)

∂tE + ∇x ·

(
(E + p)

q
ρ

)
= 0, (3)

where ρ(t, x) > 0 is the density of the fluid, q(t, x) = (ρ(t, x) u(t, x)) ∈ Rd the momentum, u(t, x) represents the
velocity vector, E(t, x) is the total energy and p ≡ p(ρ, q, E) is the fluid pressure defined by the following equation of
state

p ≡ p(ρ, q, E) = (γ − 1)
(
E −

1
2
|q|2

ρ

)
. (4)

The parameter γ = cp/cv ≥ 1 is a characterization of the fluid and represents the ratio of specific heats, namely the
heat capacity at constant volume cv and at constant pressure cp. In the following, the state variables are often gathered
into one (d + 2)-vector Q = (ρ, q, E). The low Mach number limit can be obtained from this model by rescaling the
equations in the following way:

ρ̃ = ρ/ρ0, ũ = u/u0, p̃ = p/p0, Ẽ = E/p0, x̃ = x/x0, t̃ = t/t0, (5)

where ρ0, p0, x0, t0 and u0 = x0/t0 are typical values encountered in the problems under consideration. Now, by
defining ε = ρ0u2

0/p0, inserting (5) into system (1)-(4) and omitting the tildes, one obtains the rescaled Euler equations

∂tρ + ∇x · q = 0, (6)

∂t q + ∇x ·

(
q ⊗ q
ρ

)
+

1
ε
∇x p = 0, (7)

∂tE + ∇x ·

(
(E + p)

q
ρ

)
= 0, (8)

and the corresponding rescaled equation of state

p = (γ − 1)
(
E −
ε

2
|q|2

ρ

)
. (9)

The quantity ε > 0 is related to the Mach number M through the relation M = u0/c =
√
ε/γ, where c is the sound

speed given by c2 =

(
∂p
∂ρ

)
s
= γ

p
ρ

, s being the entropy [56, 64].

The Low-Mach regimes correspond to situations in which the sound speed in the fluid is very high compared to
the speed of the fluid itself, and consequently to small values of ε. In such situations, if an explicit scheme is used, the
rescaled sound speed dictates a severe CFL stability condition that drastically limits the maximum admissible size of
the time step. Indeed, for instance for d = 3 and setting x = (x, y, z) and u = (u, v,w), the eigenvalues of the Jacobian
matrix in the direction x are λ1x = u − c/

√
ε, λ2x = u (multiplicity 3) and λ3x = u + c/

√
ε (the same results hold for

the directions y and z changing u by v and w, respectively). The time-step ∆t = tn+1 − tn must then satisfy the CFL
condition, which is given by

∆t ≤
1

max(|u ± c/
√
ε|)

∆x
+

max(|v ± c/
√
ε|)

∆y
+

max(|w ± c/
√
ε|)

∆z

,
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where ∆x, ∆y and ∆z are the respective space steps for the different directions. Then, ∆t is of order
√
ε and tends to 0

with ε. Furthermore, even if this constraint is satisfied, it is well known (see [42], [41] or [27]) that explicit schemes
suffer from a consistency problem in the limit ε → 0. Indeed, they are not capable to capture the right asymptotic
regime.

A possible way to bypass these limitations is to use the incompressible Euler equations (IE) obtained as the low
Mach number limit of the compressible Euler equations (CE), i.e. lim

ε→0
CE = IE. This limit is formally recalled in the

next Section. However, this solution can be used only if the fluid is incompressible in the entire computational domain.
For situations such that compressible zones coexist with incompressible ones, alternative remedies should be studied.
This is the case of asymptotic stable schemes which are free of time step constraints related to fast temporal scales.
To construct such schemes, it is necessary to determine what are the terms, in the compressible Euler equations, that
carry the sound waves information. In [90], it has been shown that the pressure term in the momentum equations
and the enthalpy term in the energy equation are those generating these fast sound waves that constrain the time step.
Therefore, in the sequel we choose to implicitly discretize these terms to avoid a restrictive stability condition for low
Mach number flows.

We end this section by providing notations useful in the sequel. The specific enthalpy h is given by

h = e + p, (10)

where e is the internal energy e given by
e =

p
γ − 1

. (11)

Then, the total energy is the sum of the internal energy e and the kinetic energy k =
ε

2
ρ|u|2 (respectively k =

1
2
ρ|u|2 in

physical variables), and the total energy flux in (3) can be reformulated according to [90] as

u(E + p) = k u + h u. (12)

The compressible Euler equations can be written in expanded form in the three dimensional case by the equations

Qt + Fx + Gy +Wz = 0, (13)

where the vectors of conservative variables Q and the fluxes (F(Q),G(Q),W(Q)) explicitly write

Q =


ρ
ρu
ρv
ρw
E

 , F(Q) =



ρu

ρu2 +
1
ε

p

ρuv
ρuw

u(k + h)


, G(Q) =



ρv
ρvu

ρv2 +
1
ε

p

ρvw
v(k + h)


, W(Q) =



ρw
ρuw
ρvw

ρw2 +
1
ε

p

w(k + h)


, (14)

with x = (x, y, z) ∈ Ω and u = (u, v,w). Additional useful relations (respectively the scaled and the non scaled ones)
are

E = e + k = e +
ε

2
ρ|u|2, E = e + k = e +

1
2
ρ|u|2. (15)

Before introducing the numerical scheme, we give the details of the formal derivation of the low-Mach (or incom-
pressible) limit of the compressible Euler equations which will be useful in the analysis of the numerical scheme.

2.1. Low Mach limit and Incompressible Euler equations

The rigorous low-Mach limit of the compressible Euler system has been widely studied in the last years [2, 56, 57,
62, 81]. In the isentropic case, the solutions are known to converge to the solution of the corresponding incompressible
Euler equations independently from the choice of the initial data (well prepared/consistent or not to the limit regime).
Results in the case of non-isentropic Euler equations with general initial data can be found in [64] in the free space
Ω = Rd, in [1] for an exterior domain and in a bounded toroidal domain in [65].
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Here, we briefly recall the formal limit for a general bounded domain in the simplified case of well-prepared initial
conditions. We supplement system (6)-(9), or equivalently (9)-(15), with the permeability boundary condition

u(t, x) · ν(x) = 0, ∀x ∈ ∂Ω, t > 0, (16)

where ν(x) denotes the unit outward normal vector to the boundary ∂Ω of the domain Ω. We consider well prepared
boundary conditions

(ρ,u, p)(t = 0, x) = (ρ0(x),u0(x), p0(x)), ∀x ∈ Ω, (17)

where
ρ0(x) ≥ 0, p0(x) = p0 + εp̃0(x) ≥ 0, u0(x) = u0(x) +

√
εũ0(x), ∇x · u0(x) = 0, (18)

where p0 is a fixed constant. We assume that all quantities ρ, u, p and E, solutions of (6)-(9), converge respectively
towards some values ρ0, u0, p0 and E0 when ε tends to 0. Then, multiplying the momentum equations and passing to
the limit lead to ∇x p0 = 0 and, consequently, p0(t, x) = p0(t). The low Mach limit of the equation of state (9) yields
moreover E0(t, x) = E0(t) = p0(t)/(γ − 1). Integrating now the limit of the energy equation (8) on the domain, using
the Green formula and the limit permeability condition (16), gives

|Ω| E′0(t) + (E0(t) + p0(t))
∫
∂Ω

u0(x, t) · ν(x) dσ(x) = |Ω| E′0(t) = 0,

where dσ is the d − 1-dimensional Lebesgue measure on ∂Ω. Then, E0(t) = E0(0) = p0/(γ − 1) and p0(t) = p0.
By considering again the energy equation (8), one notices that the constant limit pressure implies the incompress-

ibility condition ∇x ·u0 = 0. Finally, assuming that p1 = limε→0
1
ε

(
p − p0

)
exists, we recover the incompressible limit

system [1], that is

∂tρ0 + ∇x · q0 = 0, (19)

∂t q0 + ∇x ·

(
q0 ⊗ q0

ρ0

)
+ ∇x p1 = 0, (20)

∇x · u0 = 0. (21)

We can observe that p = p0 + εp1 + o(ε2) and that p1 is implicitly defined by the constraint ∇x · u0 = 0 and explicitly
given by the equation

−∇x ·

(
1
ρ0
∇x p1

)
= ∇x((u0 · ∇x)u0).

In addition, the density conservation equation reduces to ∂tρ0 + u0 · ∇xρ0 = 0, which is a pure transport equation at
the velocity u0. Note that if ρ0 is initially constant then ρ0 remains constant for all times and the explicit equation for
p1 becomes

−∆x p1 = ∇x : (ρ0 u0 ⊗ u0).

The incompressible system can also be expressed using the energy variable, remarking that

lim
ε→0

1
ε

(
E −

p0

γ − 1

)
= lim
ε→0

1
ε

(
E − E0

)
=

1
γ − 1

lim
ε→0

(
1
ε

(
p − p0

)
+

1
2
|q|2

ρ

)
=

p1

γ − 1
+

1
2
|q0|

2

ρ0
.

Then, defining E1 by E1 =
p1

γ − 1
+

1
2
|q0|

2

ρ0
, we obtain E = E0 + εE1 + o(ε2) and system (19)-(21) becomes

∂tρ0 + ∇x · q0 = 0, (22)

∂t q0 + ∇x ·

(
q0 ⊗ q0

ρ0

)
+ (γ − 1)∇xẼ1 −

γ − 1
2
∇x

(
|q0|

2

ρ0

)
= 0, (23)

∇x · u0 = 0. (24)
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3. A first order numerical scheme

In this Section, we introduce and discuss a first order in time and space discretization of the Euler equations
(13). We start from a semi discretization in time in the general d−dimensional space, then we derive a full space-
time discretization in one space dimension and we end by giving the details of the full discretized three dimensional
algorithm.

3.1. A first order time discretization

In this part, we discuss the semi-implicit time discretization we decide to follow and we study its properties. The
class of schemes considered hereafter belong to the so-called IMEX (IMplicit-EXplicit) time discretization methods
(see [24, 25, 85, 30, 29, 8, 10, 9, 3, 72]). In particular, following [90], the fluxes in the governing equations (14) are
split into a non stiff part (Fe,Ge,We), which will be discretized explicitly, and a stiff part (Fi,Gi,Wi), which will be
discretized implicitly. This partition write

F = Fe + Fi,

=


ρu
ρu2

ρuv
ρuw
uk

 +



0
p
ε
0
0

hu


,

G = Ge + Gi,

=


ρv
ρvu
ρv2

ρvw
vk

 +



0
0
p
ε
0
hv


,

W = We + Wi,

=


ρw
ρwu
ρwv
ρw2

wk

 +



0
0
0
p
ε

hw


. (25)

The explicit fluxes contribute to the advection sub-system, while the implicit ones correspond to the pressure (or
sound) waves in the fluid. In [90] a detailed study of the eigenstructure of both explicit-advection and implicit-pressure
sub-systems prove that both are hyperbolic systems. Therefore, the problem can be recast as

Qt +
(
Fe + Fi

)
x
+

(
Ge + Gi

)
y
+

(
We +Wi

)
z
= 0, (26)

that yields the first order in time semi-discretization

Qn+1 + ∆t
(
Fi

x(Qn+1) + Gi
y(Qn+1) +Wi

z(Q
n+1)

)︸                                                        ︷︷                                                        ︸
Implicit

= Qn − ∆t
(
Fe

x(Qn) + Ge
y(Qn) +We

z (Qn)
)︸                                             ︷︷                                             ︸

Explicit

. (27)

For the sake of clarity and compact notation in the description of the methods, let us call Li = (Fi,Gi,W i) the implicit
operator and Le = (Fe,Ge,We) the explicit one. In this way, the scheme (27) is rewritten as

Qn+1 = Qn − ∆t∇x · Li(Qn+1) − ∆t∇x · Le(Qn). (28)

We show in Lemma 1 that this choice is enough to ensure the asymptotic consistency of the semi-discrete scheme,
i.e. the consistency with the incompressible limit. In [30, 29] it is has been shown on a simplified problem mimicking
the isentropic model that stability can be also ensured with a CFL related to the eigenvalues of the explicit part of the
matrix. We believe that such a study can be extended to the present system in its linearised form. Nevertheless, we
did not perform a stability analysis in this work and we postpone such analysis to future investigations. Instead, we
show in the numerical results presented in Section 5 that stability is indeed assured independently on the speed of the
fast pressure waves.

The construction of numerical schemes which are capable to capture a limit model starting from another set of
equations, such as the example described in the previous Section of the compressible equations which reduce to
the incompressible ones, is closely connected with the notion of asymptotic-preserving schemes (see Figure 1 for a
visual explanation). Here, in agreement with [25, 26, 72], we give the following definitions of asymptotic preserving
methods for system (14).

Definition 1. A consistent time discretization method for (14) supplemented by the equation of state (9) of stepsize ∆t
is said
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Pε

Pε
∆t

∆t → 0 ∆t → 0

ε→ 0

ε→ 0

6

-

P0

P0
∆t

6

-

Figure 1: Pε is the original singular perturbation problem, i.e. the compressible Euler model, and Pε
∆t its numerical approximation characterized

by a discretization parameter ∆t. The asymptotic-preserving (AP) property corresponds to the request that for a given ∆t independent of ε, when
ε→ 0, Pε

∆t is a consistent and stable discretization of P0, which is the incompressible Euler model.

- Strong asymptotic preserving if, independently of the initial data, it is asymptotically stable and consistent.
That is if, it is stable for time steps ∆t which can be chosen independently of ε, and it becomes a consistent time
discretization method for the limit system (19)-(21) in the limit ε→ 0.

- Weak asymptotic preserving if, it is asymptotically stable and it is asymptotically consistent when the initial
data are well prepared to the limit equations. That is if, it is stable for time steps ∆t which can be chosen
independently of ε, and if it becomes a consistent time discretization method for the limit system (19)-(21) in
the limit ε→ 0.

These definitions do not imply that the scheme preserves the order of accuracy in time in the stiff limit ε → 0. In
this latter case we say that the scheme is asymptotically accurate (AA). The definition of consistent or well-prepared
initial data is given in the following.

Definition 2. The initial data for equation (14) and the relative equation of state (9) are said consistent or well-
prepared if

pε(t = 0, x) = p0 + εp1(x), p0, p1(x) ∈ R+, uε(t = 0, x) = u0(x) + εu1(x), ∇ · u0(x) = 0.

That is, if the pressure field reduces to a constant value in the limit, and the divergence of the velocity field is equal
to zero in the same limit.

In what follows, we will consider the development of asymptotic preserving and asymptotically accurate schemes
using the general setting of IMEX Runge-Kutta methods [3, 71]. We start by giving a formal proof that this first order
in time explicit-implicit approach (28) provides a consistent discretization of the limit model when ε→ 0.

Lemma 1. We denote by (ρn
ε(x),un

ε(x), En
ε(x))n≥1 the solution of the semi discrete numerical scheme (28) with the

permeability boundary condition un(x) · ν(x) = 0, ∀x ∈ ∂Ω,∀ n ≥ 0, Then:

1. assuming that initial data are well prepared to the incompressible regime, i.e. for all x ∈ Ω, p0(x) = p0 ∈ R
+

and ∇ · u0(x) = ∇ · u0(x) = 0, the semi discrete numerical scheme (28) is asymptotic consistent, i.e. in the limit
ε→ 0 it becomes a consistent discretization of system (19)-(21). This discretization is given for all n ≥ 0 by

ρn+1(x) − ρn(x)
∆t

+ un(x) · ∇xρ
n(x) = 0, (29)

(ρn+1un+1)(x) − (ρnun)(x)
∆t

+ ∇x ·
(
(ρnun)(x) ⊗ un(x)

)
+∇x pn+1

1 (x) = 0, (30)

∇x · un+1(x) = 0. (31)
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2. For general initial data, the semi discrete numerical scheme (28) is strongly asymptotically consistent from the
second time iteration (n ≥ 2). This means that in the limit ε→ 0 it becomes a consistent discretization of system
(19)-(21). This is given for all n ≥ 1 by equation (30) and

ρn+1(x) − ρn(x)
∆t

+ ∇x ·
(
(ρnun)(x)

)
= 0, if n = 1 (32)

ρn+1(x) − ρn(x)
∆t

+ un · ∇x
(
ρn(x)

)
= 0, if n ≥ 2 (33)

∇x · un+1(x) =


0, if n ≥ 2,

−

∫
Ω

p0(x) dx − |Ω| p0(x)

∆t γ
∫
Ω

p0(x) dx
, if n = 1. (34)

Proof. We assume that for all n ≥ 1 all quantities ρn
ε(x), un

ε(x), pn
ε(x) and En

ε(x), which are solutions of (28), converge
respectively towards some values ρn(x), un(x), pn(x) and En(x) when ε tends to 0. Under this hypothesis, multiplying
by ε the momentum equations of (28) and letting ε tend to zero, gives, for all n ≥ 0, ∇x pn+1(x) = 0, i.e. the pressure
at time index (n + 1) is constant independently on the initial data. From the equation of state (28), we have

En+1
ε (x) = en+1

ε (x) +
ε

2
ρn+1
ε (x) |un+1

ε (x)|2 =
pn+1
ε (x)

(γ − 1)
+
ε

2
ρn+1
ε (x) |un+1

ε (x)|2,

that gives En+1(x) = pn+1(x)/(γ − 1) for all n ≥ 1, in the limit ε → 0. The limit of the energy equation yields, for all
n ≥ 1, all x ∈ Ω and all initial data

En+1(x) = En(x) − ∆t (en+1(x) + pn+1(x))∇x · un+1(x). (35)

Thus, integrating this equation on the domain, using the Green formula and the limit of the permeability boundary
condition leads to

|Ω|En+1(x) =
∫
Ω

En(x) dx − ∆t(en+1(x) + pn+1(x))
∫
∂Ω

un+1(x) · ν(x) dσ(x) =
∫
Ω

En(x) dx. (36)

Now, if initial data are well prepared, this implies that for the first time step we have

p1(x)
γ − 1

= E1(x) =
1
|Ω|

∫
Ω

E0(x) dx =
1
|Ω|

∫
Ω

p0(x)
γ − 1

dx =
1
|Ω|

∫
Ω

p0

γ − 1
dx =

p0

γ − 1
.

Consequently, for all n ≥ 1, both pressure and energy remain constant: pn+1 = p0, En+1 = p0/(γ − 1). Using
again (35), gives now for all n ≥ 0, ∇x · un+1(x) = 0, i.e. equations (29)-(31). Assuming finally that the following
limit for ε→ 0 exists

lim
ε→0

1
ε

(
pn+1
ε − pn+1

)
= lim
ε→0

1
ε

(
pε,n+1 −

1
|Ω|

∫
Ω

p0(x) dx
)
= pn+1

1 ,

and passing to the limit into the momentum equation of (28), we obtain (30).
We discuss now the case in which initial data are not well prepared to the limit incompressible system. In this

case, we have again that for n = 1 the energy is projected over a constant state: = E1(x) = 1
|Ω|

∫
Ω

E0(x) dx. However,

since the initial condition does not force constant values for pressure and consequently for the energy, we have that
the incompressibility condition is not preserved neither at the beginning ∇x · u0 , 0 nor for the first time step. This is
given precisely by

∇x · u1 = −
E1 − E0(x)
∆t (e1 + p1)

. (37)

Nevertheless, from n = 2, following equation (36), we have En+1 = En which means that energy is constant in space
and thus ∇x · un+1(x) = 0, i.e. we are solving equations (29)-(31). The equation for pn+1

1 is obtained as done for the
case of well prepared initial data passing to the limit in equation (28). This concludes the proof.

In the next Section, we give the details of the one dimensional time and space discretization and we discuss in
practice how we solve the implicit terms in the non linear system (28).
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3.2. A full time and space Asymptotic Preserving scheme for the Euler equations
We present now the full space and time discretization of system (26) for the one-dimensional case. We will

then extend this scheme in Section 3.4 to the full three dimensional setting. In one space dimension, the governing
equations read

Qt + Fx = 0, x ∈ Ω ⊂ R, t ∈ R+0 , Q ∈ ΩQ ⊂ R
3, (38)

with the vector of conservative variables given by Q = [ρ, ρu, E]T . The flux vector is split into an explicit and implicit
part according to (25), hence obtaining

F = Fe + Fi =

 ρuρu2

uk

 +


0
p
ε

h
ρ

q

 . (39)

The computational domain reduces to Ω = [xmin, xmax] and it is discretized with a total number Nx of control volumes

of uniform size ∆x =
xmax − xmin

Nx
. A cell-centered discretization is used, where index i ∈ [1,Nx] denotes the cell,

while i ± 1/2 refers to the interface between cell i and i ± 1, respectively. The cell center is located at xi and the

interface is consistently located at xi+1/2 =
1
2

(xi + xi+1) = xi + ∆x/2. Because of the Implicit-Explicit approach, we
choose a time step which is restricted by a CFL condition that is only driven by the eigenvalues of explicit part and,
as such, it is only dependent on the fluid velocity u, and not by the rescaled sound speed

c
√
ε

, that is

∆t ≤ CFL
∆x

maxi |2 un
i |
, (40)

thus making our numerical method particularly well suited for the discretization of low Mach number flows. We stress
that a similar approach but on staggered grids has been recently proposed in [35] for general equations of state.

Let us introduce the explicit operator Fe
[
mn

i

]
which applies to a generic cell quantity mn

i :

Fe [
mn

i
]
= mn

i −
∆t
∆x

(
f m
i+1/2 − f m

i−1/2

)
, (41)

where the numerical fluxes f m
i±1/2 are chosen to be of Rusanov-type

f m
i+1/2 =

1
2

(
f (mn

i+1) + f (mn
i )
)
−

1
2
|an

i+1/2|
(
mn

i+1 − mn
i

)
, an

i+1/2 = max
(
| f ′(mn

i+1)|, | f ′(mn
i )|

)
,

f m
i−1/2 =

1
2

(
f (mn

i ) + f (mn
i−1)

)
−

1
2
|an

i−1/2|
(
mn

i − mn
i−1

)
, an

i−1/2 = max
(
| f ′(mn

i )|, | f ′(mn
i−1)|

)
,

(42)

with f (·) being the physical flux and | f ′(mn
i )| denoting the maximum eigenvalue of the Jacobian matrix associated

to the flux f (·), i.e. the maximum speed of the flow u at the interface at time index n, since we have separated the
pressure and the average speed contributions. The governing system (38) with the flux splitting (39) is then discretized
using (41) for Fe and a centred numerical flux for the implicit part Fi. Following [30], we believe that this choice is
sufficient for a obtaining an L2 stable scheme. We postpone such a study to future investigations.

In details, the resulting numerical scheme reads as follows.

1. Density equation with mn
i ≡ ρ

n
i :

ρn+1
i = Fe [

ρn
i
]
. (43)

2. Momentum equation with mn
i ≡ qn

i = (ρu)n
i :

qn+1
i = Fe [

qn
i
]
−
∆t

2 ε∆x

(
pn+1

i+1 − pn+1
i−1

)
, (44)

where the implicit discretization of the pressure corresponds to the use of the Rusanov flux without numerical
dissipation.
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3. Energy equation with mn
i ≡ kn

i :

En+1
i = Fe [

En
i
]
−
∆t

2∆x

(
h̃n+1

i+1/2

(
qn+1

i+1 + qn+1
i

)
− h̃n+1

i−1/2

(
qn+1

i + qn+1
i−1

))
, (45)

where the enthalpy on the interfaces is defined as

h̃n+1
i+1/2 =

hn+1
i

ρn+1
i

qn+1
i +

hn+1
i+1

ρn+1
i+1

qn+1
i+1

qn+1
i + qn+1

i+1

. (46)

If the fluid is at rest, thus the denominator vanishes in (46), the enthalpy at the interface is simply computed by

the arithmetic average: h̃n+1
i+1/2 =

1
2

hn+1
i

ρn+1
i

+
hn+1

i+1

ρn+1
i+1

. Note that the implicit flux in the discrete energy equation (45)

is not a standard centred approximation but instead it corresponds to a mean centred approximation. This choice
is enough to avoid a checkerboard effect in the resulting elliptic equation for the pressure [80] we will derive
later on in this article.

The proposed numerical method is built along the lines of [35] and it leads to a non linear system to be solved in order
to advance the solution in time from n to (n + 1). This solution can be obtained by splitting the total energy En+1

i into
an internal and a kinetic contribution according to (15). Then, one can insert the momentum equation (44) into the
energy equation (45) obtaining

en+1
i + kn+1

i = Fe [
En

i
]

−
1
2
∆t
∆x

h̃n+1
i+1/2

[(
Fe

[
qn

i+1

]
+ Fe [

qn
i
])
−

1
2
∆t
ε∆x

(
pn+1

i+2 − pn+1
i + pn+1

i+1 − pn+1
i−1

)]
+

1
2
∆t
∆x

h̃n+1
i−1/2

[(
Fe [

qn
i
]
+ Fe

[
qn

i−1

])
−

1
2
∆t
ε∆x

(
pn+1

i+1 − pn+1
i−1 + pn+1

i − pn+1
i−2

)]
, (47)

where the kinetic energy at time tn is computed as

kn+1
i =

1
2
ρn+1

i

qn+1
i

ρn+1
i

2

. (48)

In the energy equation (47), the variables which are already known at time tn+1 are the density ρn+1
i , because the

continuity equation is solved explicitly by (43), and the explicit operators Fe
[
qn

i

]
and Fe

[
En

i

]
. The resulting system

of equations is strongly nonlinear. In order to reduce this non linearity, one can first observe that for an ideal gas,
the internal energy is a linear function of p, namely e =

p
γ − 1

, according to (11). Then, one can rely on a Picard

algorithm to converge to the solution at time tn+1 by selecting only the pressure terms as implicit ones in the iterative
method. Thanks to this strategy, the following mildly nonlinear system is obtained for the pressure pn+1,r+1

i as the only
unknown at each Picard iteration r:

−
1
4
∆t2

∆x
h̃n+1,r

i+1/2 pn+1,r+1
i+2 −

1
4
∆t2

∆x

(
h̃n+1,r

i+1/2 − h̃n+1,r
i−1/2

)
pn+1,r+1

i+1

+

(
ε∆x
γ − 1

+
1
4
∆t2

∆x

(
h̃n+1,r

i+1/2 + h̃n+1,r
i−1/2

))
pn+1,r+1

i

+
1
4
∆t2

∆x

(
h̃n+1,r

i+1/2 − h̃n+1,r
i−1/2

)
pn+1,r+1

i−1 −
1
4
∆t2

∆x
h̃n+1,r

i−1/2 pn+1,r+1
i−2 = ε∆xbr

i , (49)

where we have multiplied by ε each sides of the equations, and br
i is the known right hand side:

br
i =

(
Fe [

En
i
]
− kn+1,r

i

)
−
∆t

2∆x

(
h̃n+1,r

i+1/2Fe
[
qn

i+1

]
+

(
h̃n+1,r

i+1/2 − h̃n+1,r
i−1/2

)
Fe [

qn
i
]
− h̃n+1,r

i−1/2Fe
[
qn

i−1

])
. (50)

The scope of the next Lemma is to prove that the system (49) admits an unique solution for all ε > 0.

10



Lemma 2. Let us assume Dirichlet boundary conditions, then system (49) is well posed for all ε > 0.

Proof. In the following, for simplicity, we omit all the exponents in the variables. System (49) can be rewritten for all
i = 1, · · · ,Nx as

ε∆x
γ − 1

pi −
∆t2

2∆x

[
h̃i+1/2

( pi+2 + pi+1

2
−

pi + pi−1

2

)
− h̃i−1/2

( pi+1 + pi

2
−

pi−1 + pi−2

2

)]
= ε∆x bi.

Multiplying this equation by (pi + pi−1)/2 + (pi+1 + pi)/2 and summing over the index i, gives

ε

γ − 1

Nx∑
i=1

∆x pi

( pi + pi−1

2
+

pi+1 + pi

2

)
−
∆t2

2∆x

 Nx∑
i=1

h̃i+1/2

( pi+2 + pi+1

2
−

pi + pi−1

2

) ( pi + pi−1

2
+

pi+1 + pi

2

)
−

Nx∑
i=1

h̃i−1/2

( pi+1 + pi

2
−

pi−1 + pi−2

2

) ( pi + pi−1

2
+

pi+1 + pi

2

) = Nx∑
i=1

ε∆x bi

( pi + pi−1

2
+

pi+1 + pi

2

)
.

Then, remarking that

pi (pi + pi−1 + pi+1 + pi) = p2
i +

1
2

p2
i + pi pi+1 +

1
2

p2
i+1 +

1
2

p2
i + pi pi−1 +

1
2

p2
i−1 −

1
2

p2
i+1 −

1
2

p2
i−1

= p2
i −

1
2

p2
i+1 −

1
2

p2
i−1 + (pi + pi+1)2 + (pi + pi−1)2,

observing that
∑Nx

i=1

(
p2

i −
1
2 p2

i+1 −
1
2 p2

i−1

)
= 0, and by changing the indexes in the third sum on the left hand side

(using the Dirichlet boundary conditions), we get

ε

2 (γ − 1)

Nx∑
i=1

∆x
(
(pi + pi+1)2 + (pi + pi−1)2

)
−
∆t2

2∆x

 Nx∑
i=1

h̃i+1/2

( pi+2 + pi+1

2
−

pi + pi−1

2

) ( pi + pi−1

2
+

pi+1 + pi

2

)
−

Nx∑
i=1

h̃i+1/2

( pi+2 + pi+1

2
−

pi + pi−1

2

) ( pi+1 + pi

2
+

pi+2 + pi+1

2

) = Nx∑
i=1

ε∆x bi

( pi + pi−1

2
+

pi+1 + pi

2

)
.

Finally, relying on the Cauchy-Schwarz and Young inequalities and canceling the equal terms in the second and in
the third sum, we obtain

∆x ε
2 (γ − 1)

Nx∑
i=1

(pi + pi+1)2 + (pi + pi−1)2 −
∆t2

2∆x

 Nx∑
i=1

h̃i+1/2

( pi+2 + pi+1

2
−

pi + pi−1

2

) pi + pi−1

2

−

Nx∑
i=1

h̃i+1/2

( pi+2 + pi+1

2
−

pi + pi−1

2

) pi+2 + pi+1

2

 ≤ ∆x ε (γ − 1)
4

Nx∑
i=1

|bi|
2 +

∆x ε
4 (γ − 1)

Nx∑
i=1

(
(pi + pi−1)2 + (pi+1 + pi)2

)
.

This gives

∆x ε
2 (γ − 1)

Nx∑
i=1

(pi + pi+1)2 +
∆t2

2∆x

Nx∑
i=1

h̃i+1/2

( pi+2 + pi+1

2
−

pi + pi−1

2

)2
≤
∆x ε (γ − 1)

4

Nx∑
i=1

|bi|
2. (51)

Then, if bi = 0, we obtain pi + pi+1 = 0 and using the Dirichlet boundary condition, this gives pi = 0 for all i and thus
the well posedness of the system.

The system (49)-(50) can be written in compact matrix form as

Tr pn+1,r+1 = ε∆xbr, (52)

with pn+1,r+1 =
(
pn+1,r+1

1 , . . . , pn+1,r+1
Nx

)
representing the vector of unknown pressures, and br =

(
br

1, . . . , b
r
Nx

)
the right

hand side entries given by (50). The system matrix Tr involves only positive quantities, namely pressure, enthalpy,
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time step and mesh size and has a pentadiagonal form. In particular, if ε = 0, system (49) admits a constant in space
pressure field which precise value depends on the chosen boundary conditions. This implies that the enthalpy is also
constant in space. These two conditions finally give the incompressibility condition, i.e. ∂xu = 0, and, the asymptotic
consistency with the incompressible limit also at the fully discrete level. The system matrix Tr is not proved to be
symmetric, thus the pressure system is solved relying on the GMRES algorithm [97].

The initialization of all quantities defined at the first Picard iteration (r = 1) are taken as

pn+1,1
i = (γ − 1) En

i − kn
i , qn+1,1

i = Fe [
qn

i
]
, kn+1,1

i = Fe [
(ρE)n

i
]
− en

i . (53)

Thus, the iterative Picard algorithm and the time evolution of the solution work in the following way. Equation (52)
provides a new pressure pn+1,r+1

i , then the momentum equation (44) provides a new value for qn+1,r+1
i

qn+1,r+1
i = Fe [

(ρu)n
i
]
−

1
2
∆t
∆x

(
pn+1,r+1

i+1 − pn+1,r+1
i−1

)
, (54)

from which we can update the enthalpy (46) and the kinetic energy (48). Typically, from our numerical experiments,
a total number of Rp = 2 iterations are sufficient to obtain convergence of the nonlinear system (49)-(50). Therefore,
after Rp Picard iterations, we set:

pn+1
i = pn+1,Rp

i , qn+1
i = qn+1,Rp

i . (55)

Once the solution at time index (n + 1) in terms of pressure, enthalpy and momentum is found, then the total energy
is updated thanks to the conservative equation (45). This concludes one time step of the proposed scheme.

Remark 1. In cases of high Mach number flows, additional stability can be required. If this is the case, the centered
discretization (44) employed for the pressure field can be supplemented with a numerical dissipation as done for the
explicit operator F[qn

i ] in (42), thus leading to a modified scheme for the momentum equation. This reads

qn+1
i = qn+1

i −
1
2

si+1/2

(
pn+1

i+1 − pn+1
i

)
−

1
2

si−1/2

(
pn+1

i − pn+1
i−1

)
, (56)

where
si+1/2 =

(
|un

i+1/2| +max
(
cn

i+1, c
n
i

)) 1
γ − 1

, si−1/2 =
(
|un

i−1/2| +max
(
cn

i , c
n
i−1

)) 1
γ − 1

. (57)

The choice of the numerical disspation in (57) is different from the one proposed in [90] and it makes use of a Rusanov–
type scheme that can be very general and allows for applications to different systems of governing equations, thus not
being limited only to the Euler equations [96].

3.3. Exact preservation of pressure and velocity across a contact discontinuity
In this part, we discuss the ability of our novel scheme to preserve a class of exact solutions of the compressible

Euler equation. In particular, we study the capability of the fully discrete scheme to maintain a pressure equilibrium
across a contact wave. This condition has been studied in [5], for instance, and it consists in verifying that a con-
stant pressure and a constant velocity field are preserved through a discontinuity in the fluid density during the time
evolution of the solution. To that aim, let us consider the following initial conditions for all i = 1, . . .Nx:

ρi(t = 0) = ρ0
i =

{
ρL x ≤ xD

ρR x > xD
, ui(t = 0) = u0

i = u0, pi(t = 0) = p0
i = p0, i = 1, . . .Nx, (58)

with xD representing a given position inside the domain and ρL , ρR being non-negative real numbers. In this case,
one has for the first time step

Fe
[
ρ0

i

]
= ρ0

i −
∆t
∆x

(
f ρ,0i+1/2 − f ρ,0i−1/2

)
= ρ1

i , (59)

Fe
[
q0

i

]
= q0

i −
∆t
∆x

(
f q,0
i+1/2 − f q,0

i−1/2

)
= ρ0

i u0 −
∆t
∆x

u0

(
f ρ,0i+1/2 − f ρ,0i−1/2

)
= ρ1

i u0, , (60)

Fe
[
E0

i

]
= e0

i + k0
i︸ ︷︷ ︸

=E0
i

−
∆t
∆x

u2
0

2

(
f ρ,0i+1/2 − f ρ,0i−1/2

)
= e0

i + ρ
0
i

u2
0

2
−
∆t
∆x

u2
0

2

(
f ρ,0i+1/2 − f ρ,0i−1/2

)
=

p0

γ − 1
+ ρ1

i

u2
0

2
. (61)
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Now, thanks to (59)-(61), one can observe that the equations (44) and (45) are solved by pn+1
i = p0 and un+1

i = u0 thus
guaranteeing the preservation of the exact solution. Indeed, under the above hypothesis we get from (44)

q1
i = Fe

[
q0

i

]
−
∆t

2 ε∆x
(p1

i+1 − p1
i−1) = ρ1

i u0, i = 1, . . .Nx, (62)

and then by dividing the momentum q1
i at time level 1 by the density ρ1

i from (60) one obtains

u1
i =

q1
i

ρ1
i

=
ρ1

i u0

ρ1
i

= u0, i = 1, . . .Nx. (63)

Substituting this result into the energy equation (45) leads to

E1
i =

p0

γ − 1
+ ρ1

i

u2
0

2
−
∆t

2∆x
γu0

γ − 1

(
p1

i+1 − p1
i−1

)
=

p0

γ − 1
+ ρ1

i

u2
0

2
=

p1
i

γ − 1
+ ρ1

i

u2
0

2
, (64)

which proves that p1
i = p0 and u1

i = u0 with ρ1
i = ρ

0
i −

∆t
∆x

(
f ρ,0i+1/2 − f ρ,0i−1/2

)
are a solution of the proposed numerical

scheme corresponding to a shift of the density profile at speed u0. Finally, being the structure of the solution preserved
from time index n = 0 to n = 1, then the solution remains preserved for all n ≥ 1. Numerical evidences of this property
are reported in Section 5.2, where a moving contact wave at low Mach number is shifted in time exactly preserving a
constant pressure and velocity background field.

3.4. Multi-dimensions extension
In this part, we discuss the multi-dimensional extension of the previously introduced numerical scheme. The

computational domain Ω = [xmin, xmax] × [ymin, ymax] × [zmin, zmax] is paved with Nx × Ny × Nz uniform cells of size
∆x × ∆y × ∆z. A cell is labeled by three indices i, j,k, namely one for each direction, while a face is referred to as
i+1/2, j,k, i, j+1/2,k or i, j,k+1/2 and, any unit normal vector to a face is denoted by n. The cell center is located at point

xi, j,k = (xi, y j, zk) and a face center is at point xi+1/2, j,k =

(
1
2

(xi + xi+1), y j, zk

)
. By definition we have the normal

component of the velocity with respect to a face given by

u · ex = u, u · ey = v, u · ez = w, (65)

where e are the canonical unit vectors, that is ex = (1, 0, 0), ey = (0, 1, 0), ez = (0, 0, 1). The numerical method in
3D follows the same path as its one dimensional version. Any generic cell-centered quantity mi, j,k is advected by a
combination of an explicit and implicit flux. The explicit part reads

Fe[mn
i, j,k] = mn

i, j,k −
∆t
∆x

(
f m
i+1/2, j,k − f m

i−1/2, j,k

)
−
∆t
∆y

(
gm

i, j+1/2,k − gm
i, j−1/2,k

)
−
∆t
∆z

(
ωm

i, j,k+1/2 − ω
m
i, j,k−1/2

)
, (66)

where the numerical fluxes are given by

f m
i+1/2, j,k =

1
2

(
f (mn

i+1, j,k) + f (mn
i, j,k)

)
−

1
2
|umax

i+1/2, j,k |
(
mn

i+1, j,k − mn
i, j,k

)
,

gm
i, j+1/2,k =

1
2

(
g(mn

i, j+1,k) + g(mn
i, j,k)

)
−

1
2
|vmax

i, j+1/2,k |
(
mn

i, j+1,k − mn
i, j,k

)
,

ωm
i, j,k+1/2 =

1
2

(
ω(mn

i, j,k+1) + ω(mn
i, j,k)

)
−

1
2
|wmax

i, j,k+1/2|
(
mn

i, j,k+1 − mn
i, j,k

)
,

with the speeds at the interfaces

|umax
i+1/2, j,k | = max

(
|un

i+1, j,k |, |u
n
i, j,k |

)
, |vmax

i, j+1/2,k | = max
(
|vn

i, j+1,k |, |v
n
i, j,k |

)
, |wmax

i, j,k+1/2| = max
(
|wn

i, j,k+1|, |w
n
i, j,k |

)
.

The density ρn
i, j,k is then computed as

ρn+1
i, j,k = Fe[ρn

i, j,k], (67)
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while the three components of the momentum equation verify

(ρu)n+1
i, j,k = Fe[(ρu)n

i, j,k] −
1
2
∆t
ε∆x

(
pn+1

i+1, j,k − pn+1
i−1, j,k

)
, (68)

(ρv)n+1
i, j,k = Fe[(ρv)n

i, j,k] −
1
2
∆t
ε∆y

(
pn+1

i, j+1,k − pn+1
i, j−1,k

)
, (69)

(ρw)n+1
i, j,k = Fe[(ρw)n

i, j,k] −
1
2
∆t
ε∆z

(
pn+1

i, j,k+1 − pn+1
i, j,k−1

)
, (70)

where one notices that, as for the one dimensional case, the pressure is taken implicitly using a Rusanov flux without
adding any numerical viscosity. The energy equation is expressed by

En+1
i, j,k = Fe

[
En

i, j,k

]
−

1
2
∆t
∆x

(
h̃n+1

i+1/2, j,k

(
(ρu)n+1

i+1, j,k + (ρu)n+1
i, j,k

)
− h̃n+1

i−1/2, j,k

(
(ρu)n+1

i, j,k + (ρu)n+1
i−1, j,k

) )
−

1
2
∆t
∆y

(
h̃n+1

i, j+1/2,k

(
(ρv)n+1

i, j+1,k + (ρv)n+1
i, j,k

)
− h̃n+1

i, j−1/2,k

(
(ρv)n+1

i, j,k + (ρv)n+1
i, j−1,k

) )
−

1
2
∆t
∆z

(
h̃n+1

i, j,k+1/2

(
(ρw)n+1

i, j,k+1 + (ρw)n+1
i, j,k

)
− h̃n+1

i, j,k−1/2

(
(ρw)n+1

i, j,k + (ρw)n+1
i, j,k−1

)
. (71)

Then, by writing the total energy En+1
i, j,k as the sum of internal en+1

i, j,k and kinetic energy kn+1
i, j,k , given by

en+1
i, j,k =

pn+1
i, j,k

γ − 1
, kn+1

i, j,k =
1
2
ρn+1

i, j,k


 (ρu)n+1

i, j,k

ρn+1
i, j,k

2

+

 (ρv)n+1
i, j,k

ρn+1
i, j,k

2

+

 (ρw)n+1
i, j,k

ρn+1
i, j,k

2  ,
one recasts the energy equation by substituting the momentum equations (68)-(69)-(70) into (71) yielding

pn+1
i, j,k

γ − 1
= Fe

[
En

i, j,k

]
− kn+1

i, j,k

−
1
2
∆t
∆x

h̃n+1
i+1/2, j,k

[(
Fe

[
(ρu)n

i+1, j,k

]
+ Fe

[
(ρu)n

i, j,k

])
−

1
2
∆t
ε∆x

(
pn+1

i+2, j,k − pn+1
i, j,k + pn+1

i+1, j,k − pn+1
i−1, j,k

)]
+

1
2
∆t
∆x

h̃n+1
i−1/2, j,k

[(
Fe

[
(ρu)n

i, j,k

]
+ Fe

[
(ρu)n

i−1, j,k

])
−

1
2
∆t
ε∆x

(
pn+1

i+1, j,k − pn+1
i−1, j,k + pn+1

i, j,k − pn+1
i−2, j,k

)]
−

1
2
∆t
∆y

h̃n+1
i, j+1/2,k

[(
Fe

[
(ρv)n

i, j+1,k

]
+ Fe

[
(ρv)n

i, j,k

])
−

1
2
∆t
ε∆y

(
pn+1

i, j+2,k − pn+1
i, j,k + pn+1

i, j+1,k − pn+1
i, j−1,k

)]
+

1
2
∆t
∆y

h̃n+1
i, j−1/2,k

[(
Fe

[
(ρv)n

i, j,k

]
+ Fe

[
(ρv)n

i, j−1,k

])
−

1
2
∆t
ε∆y

(
pn+1

i, j+1,k − pn+1
i, j−1,k + pn+1

i, j,k − pn+1
i, j−2,k

)]
−

1
2
∆t
∆z

h̃n+1
i, j,k+1/2

[(
Fe

[
(ρw)n

i, j,k+1

]
+ Fe

[
(ρw)n

i, j,k

])
−

1
2
∆t
ε∆z

(
pn+1

i, j,k+2 − pn+1
i, j,k + pn+1

i, j,k+1 − pn+1
i, j,k−1

)]
+

1
2
∆t
∆z

h̃n+1
i, j,k−1/2

[(
Fe

[
(ρw)n

i, j,k

]
+ Fe

[
(ρw)n

i, j,k−1

])
−

1
2
∆t
ε∆z

(
pn+1

i, j,k+1 − pn+1
i, j,k−1 + pn+1

i, j,k − pn+1
i, j,k−2

)]
. (72)

As for the one dimensional case, in the above equation, the variables which are already known at time tn+1 are the
density ρn+1

i , because the continuity equation is solved explicitly, and the explicit operators F[(ρu)n
i, j,k], F[(ρv)n

i, j,k] and
F[(ρw)n

i, j,k]. The resulting system of equations is strongly nonlinear in the pressure unknown. To solve this system
we rely again on a Picard algorithm to converge to the solution at time tn+1 by selecting only the pressure terms as
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implicit in the iterative method. Following this strategy, the resulting nonlinear system is given by

−
1
4
∆t2

∆x2 h̃n+1,r
i+1/2, j,k pn+1,r+1

i+2, j,k −
1
4
∆t2

∆y2 h̃n+1,r
i, j+1/2,k pn+1,r+1

i, j+2,k −
1
4
∆t2

∆z2 h̃n+1,r
i, j,k+1/2 pn+1,r+1

i, j,k+2

−
1
4
∆t2

∆x2

(
h̃n+1,r

i+1/2, j,k − h̃n+1,r
i−1/2, j,k

)
pn+1,r+1

i+1, j,k −
1
4
∆t2

∆y2

(
h̃n+1,r

i, j+1/2,k − h̃n+1,r
i, j−1/2,k

)
pn+1,r+1

i, j+1,k −
1
4
∆t2

∆z2

(
h̃n+1,r

i, j,k+1/2 − h̃n+1,r
i, j,k−1/2

)
pn+1,r+1

i, j,k+1

+

(
ε

γ − 1
+

1
4
∆t2

∆x2

(
h̃n+1,r

i+1/2, j,k + h̃n+1,r
i−1/2, j,k

)
+

1
4
∆t2

∆y2

(
h̃n+1,r

i, j+1/2,k + h̃n+1,r
i, j−1/2,k

)
+

1
4
∆t2

∆z2

(
h̃n+1,r

i, j,k+1/2 + h̃n+1,r
i, j,k−1/2

))
pn+1,r+1

i, j,k

+
1
4
∆t2

∆x2

(
h̃n+1,r

i+1/2, j,k − h̃n+1,r
i−1/2, j,k

)
pn+1,r+1

i−1, j,k +
1
4
∆t2

∆y2

(
h̃n+1,r

i, j+1/2,k − h̃n+1,r
i, j−1/2,k

)
pn+1,r+1

i, j−1,k +
1
4
∆t2

∆z2

(
h̃n+1,r

i, j,k+1/2 − h̃n+1,r
i, j,k−1/2

)
pn+1,r+1

i, j,k−1

−
1
4
∆t2

∆x2 h̃n+1,r
i−1/2, j,k pn+1,r+1

i−2, j,k −
1
4
∆t2

∆y2 h̃n+1,r
i, j−1/2,k pn+1,r+1

i, j−2,k −
1
4
∆t2

∆z2 h̃n+1,r
i, j,k−1/2 pn+1,r+1

i, j,k−2 = εb
r
i , (73)

where the right hand side reads

br
i, j,k =

(
F

[
En

i
]
− kn+1,r

i

)
−

1
2
∆t
∆x

(
h̃n+1,r

i+1/2, j,kFe
[
(ρu)n

i+1, j,k

]
+

(
h̃n+1,r

i+1/2, j,k − h̃n+1,r
i−1/2, j,k

)
Fe

[
(ρu)n

i, j,k

]
− h̃n+1,r

i−1/2, j,kFe
[
(ρu)n

i−1, j,k

])
,

−
1
2
∆t
∆y

(
h̃n+1,r

i, j+1/2,kFe
[
(ρv)n

i, j+1,k

]
+

(
h̃n+1,r

i, j+1/2,k − h̃n+1,r
i, j−1/2,k

)
Fe

[
(ρv)n

i, j,k

]
− h̃n+1,r

i, j−1/2,kFe
[
(ρv)n

i, j−1,k

])
,

−
1
2
∆t
∆z

(
h̃n+1,r

i, j,k+1/2Fe
[
(ρw)n

i, j,k+1

]
+

(
h̃n+1,r

i, j,k+1/2 − h̃n+1,r
i, j,k−1/2

)
Fe

[
(ρw)n

i, j,k

]
− h̃n+1,r

i, j,k−1/2Fe
[
(ρw)n

i, j,k−1

])
. (74)

As for the one dimensional case, the iterative system involves only positive quantities, namely pressure, enthalpy, time
step and mesh size. In particular, if ε = 0, system (73) admits a constant in space pressure field as solution which
value depends on the imposed boundary conditions. This implies that the enthalpy is also constant in space. These
two conditions finally give the incompressibility condition, i.e. ∇x.u = 0, and the asymptotic consistency with the
incompressible limit at the fully discrete level. The initialization of all quantities defined at the first step of the Picard
iterative solver (r = 1) directly follows what already presented for the one dimensional case, given by (53). Thus,
the iterative Picard algorithm works in the following way: equation (73) provides a new pressure pn+1,r+1

i, j,k , then the

momentum equations (68)-(70) give a new value for (ρu)n+1,r+1
i, j,k , (ρv)n+1,r+1

i, j,k , (ρw)n+1,r+1
i, j,k from which we can update the

enthalpy and the kinetic energy. Once the solution at time index (n+ 1) in terms of pressure, enthalpy and momentum
is found, then the total energy is updated thanks to equation (72). This concludes one time step of the proposed
scheme.
Thanks to the semi-implicit discretization finally, the CFL condition is only dictated by the fluid velocity u, and not
by the sound speed c, hence

∆t ≤ CFL
min(∆x,∆y,∆z)
maxi, j,k |2 un

i, j,k |
. (75)

4. A second order in time and space scheme for the Euler equations in all Mach regimes

In this part we discuss how the first-order accurate scheme proposed in the previous Section can be extended
to a scheme with second order accuracy in time and space. We first discuss the time marching approach through a
semi-discretization of the Euler equations (13) and we study its properties. In a second part, we give the details of the
discretization of the space variables.

4.1. A second-order in time scheme

The second-order in time extension is based on an Implicit-Explicit (IMEX) Runge-Kutta approach [3, 71, 72,
31, 8, 32, 9, 6]. In this work, to improve the time accuracy of our first order method, we use the second-order
Ascher, Ruuth and Spiteri [3] tableaux denoted in the following by ARS(2,2,2), where the arguments in the acronym
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means that the explicit and the implicit schemes have both two stages (first and second number) and are second order
accurate (third number), the same holds true for the global scheme. We recall that implicit methods of order higher
than one for hyperbolic problems cannot be TVD [40] and this situation does not change when IMEX methods are
employed [29]. In this work, as explained in the Introduction, we do not focus on this limit imposed on the high order
schemes and we propose a second order scheme which, in principle, may not assure L∞ stability. Possible remedies
are postponed to future investigations. The Butcher tableaux of the ARS(2,2,2) discretization are detailed in Table 1,
where β = 1 −

√
2/2 and α = 1 − 1/(2β). Remarking that α = β − 1 and 1 − α = 2 − β, the following scheme for the

E
xp

lic
it 0 0 0 0

β β 0 0
1 α 1 - α 0
α 1 - α 0

Im
pl

ic
it 0 0 0 0

β 0 β 0
1 0 1 - β β

0 1 - β β

Table 1: Butcher tableaux for the ARS(2,2,2) time discretization. Left panel: explicit tableau. Right panel: implicit tableau. β = 1−

√
2

2
, α = β−1.

Euler equations (14) is obtained:

Qn,⋆ − Qn

∆t
+ β∇x · Li(Qn,⋆) + β∇x · Le(Qn) = 0, (76)

Qn+1 − Qn

∆t
+ (β − 1)∇x · Le(Qn) + (2 − β)∇x · Le(Qn,⋆) + (1 − β)∇x · Li(Qn,⋆) + β∇x · Li(Qn+1) = 0. (77)

The partition between Li = (Fi,Gi,W i), the implicit operator, and, Le = (Fe,Ge,We), the explicit one is the same of
the first order case. In the following, we furnish a formal proof that the scheme (76)-(77) provides a consistent and
second order accurate discretization of the limit model (19)-(21) when ε→ 0.

Lemma 3. We denote by (ρn
ε(x),un

ε(x), En
ε(x))n≥1 the solution of the semi discrete numerical scheme (76)-(77) with

the boundary condition un(x) · ν(x) = 0, ∀x ∈ ∂Ω,∀ n ≥ 0. Then, if the initial data are well prepared, the semi
discrete numerical scheme is asymptotically consistent and accurate, i.e. in the limit ε → 0 it becomes a consistent
and second order in time discretization of system (19)-(21) from n ≥ 1. Moreover, from n ≥ 2, the scheme becomes a
consistent and second order time discretization of the limit system (19)-(21) independently on the initial data.

Proof. We assume that, for all n ≥ 1, all quantities ρn
ε(x), un

ε(x), pn
ε(x) and En

ε(x), solutions of (76)-(77), converge
respectively towards some values ρn(x), un(x), pn(x) and En(x) when ε tends to 0. Under this hypothesis, multiplying
by ε the momentum equations of (76) and letting ε tend to zero, gives ∇x pn,⋆(x) = 0, i.e. the pressure at time level
(n, ⋆) is constant. From the equation of state (28), we have

En,⋆
ε (x) = en,⋆

ε (x) +
ε

2
ρn,⋆
ε (x) |un,⋆

ε (x)|2 =
pn,⋆
ε (x)

(γ − 1)
+
ε

2
ρn,⋆
ε (x) |un,⋆

ε (x)|2,

which gives En,⋆(x) = pn,⋆(x)/(γ − 1) in the limit ε → 0. Since the explicit part of the energy equation depends on
the kinetic term which goes to zero in the limit, for all x ∈ Ω the limit yields

En,⋆(x) = En(x) − β∆t (en,⋆(x) + pn,⋆(x))∇x · un,⋆(x). (78)

Thus, integrating this equation on the domain, using the Green formula and the boundary condition gives

|Ω|En,⋆(x) =
∫
Ω

En(x) dx − β∆t(en(x) + pn(x))
∫
∂Ω

un(x) · ν(x) dσ(x) +

−β∆t(en,⋆(x) + pn,⋆(x))
∫
∂Ω

un,⋆(x) · ν(x) dσ(x) =
∫
Ω

En(x) dx, (79)

which means that both pressure and energy are projected over constant states ( p̃0, E0) at the intermediate stage level
(n, ⋆) if initial data are well prepared, i.e. E0(x) = E0. Using again (78), gives under the hypothesis of consistent
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initial data ∇x · un,⋆(x) = 0, and

(ρn,⋆un,⋆)(x) − (ρnun)(x)
∆t

+ β∇x ·
(
(ρnun)(x) ⊗ un(x)

)
+β∇x pn,⋆

1 (x) = 0,

where we have assumed that the following limit for ε→ 0 exists

lim
ε→0

1
ε

(
pn,⋆
ε − pn,⋆

)
= lim
ε→0

1
ε

(
pn,⋆
ε −

1
|Ω|

∫
Ω

p0(x) dx
)
= pn,⋆

1 .

Otherwise, if initial data are not well prepared, the incompressibility condition is not in general verified. This means
that for the first time step, the velocity field obeys to

∇x · u0,⋆ = −
E0,⋆ − E0(x)
∆t (e0,⋆ + p0,⋆)

. (80)

We discuss now the second step of the Runge-Kutta method. We have again that multiplying by ε the momentum
equations of (77) and letting ε tend to zero, gives ∇x pn+1(x) = 0, i.e. the pressure at time level (n+ 1) is constant. The
energy equation yields

En+1(x) = En(x) − (1 − β)∆t (en,⋆(x) + pn,⋆(x))∇x · un,⋆(x) − β∆t (en+1(x) + pn+1(x))∇x · un+1(x). (81)

Now, by integration in space the above equation and using the boundary conditions, one ends with

|Ω|En+1(x) =
∫
Ω

En(x) dx, (82)

which means that the energy is projected over a constant state in the limit ε→ 0. On the other hand, the pressure field

is given, in the hypothesis of existence of the limit limε→0
1
ε

(
pn+1
ε − pn+1

)
, by

(ρn+1un+1)(x) − (ρnun)(x)
∆t

+ (β − 1)∇x ·
(
(ρnun)(x) ⊗ un(x)

)
+

+(2 − β)∇x ·
(
(ρn,⋆un,⋆)(x) ⊗ un,⋆(x)

)
+(1 − β)∇x pn,⋆

1 (x) + β∇x pn+1
1 (x) = 0. (83)

Finally, we have that the incompressibility constraint is satisfied if initial data are well prepared

∇x · un+1 = 0, ∀n ≥ 1, (84)

while this holds true only for n ≥ 2 for non well prepared initial data because

∇x · un+1 = −
En+1 − En

∆t (en+1 + pn+1)
= 0, n ≥ 2, (85)

and

∇x · u1 = −
E1 − E0(x)
∆t (e1 + p1)

, 0, (86)

for the first time step, since energy is not necessarily constant at time t = 0.

4.2. Second-order in space

In order to extend the space accuracy to a second order, we use a piecewise linear reconstruction of the conserved
variables supplemented with classical minmod limiter to avoid the development of spurious oscillations. For a cell
c := (i, j, k), the linear reconstruction polynomial wh(x, y, z) writes

wh,c(x, y, z) = Qc + (x − xc)αx,c + (x − yc)αy,c + (z − zc)αz,c, (87)
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where Qc = (ρc, qc, Ec) is the vector of conserved mean values, xc := (xc, yc, zc) denotes the position of the centroid
of cell c and Σc := (αx,c,αy,c,αz,c) is the vector of slopes in x, y and z direction. Due to the fact that we use a three-
dimensional Cartesian grid, the reconstruction is efficiently carried out dimension-by-dimension. Thus, let us consider
the x direction with cell c and its direct Neumann neighbors L := (i − 1, j, k) and R := (i + 1, j, k), which are nothing
but the so-called reconstruction stencil Sc := (L, c,R). The unknown reconstruction coefficient αx,c is computed by
applying a classical minmod limiter to the left αx,L and right αx,R slopes, that is

αx,c =


0 if αx,Lαx,R ≤ 0
αx,L if |αx,L| ≤ |αx,R|

αx,R if |αx,L| > |αx,R|

, (88)

where
αx,L =

Qc − QL

∆x
, αx,R =

Qc − QL

∆x
. (89)

Notice that the slopes are evaluated in (89) for each conserved variable of the Euler system contained in Qc. The
same procedure applies for y and z direction independently, hence obtaining explicit values for all the reconstruction
coefficients Σc ∈ R in (87). The reconstruction is carried out only for all terms evaluated at time tn because it is
needed to feed the numerical fluxes of the explicit operators detailed in Section 3.2. Notice that all implicit terms are
discretized with a centered second-order operator, which does not need any reconstruction procedure.

5. Numerical experiments

In this Section, we perform some numerical test cases which aim at demonstrating the accuracy and the robustness
of our numerical method. A wide range of Mach numbers are considered, enhancing the capability of the pressure
based implicit-explicit (P-IMEX) schemes to deal with strong shocks as well as smooth solutions. Specifically, we
consider an isentropic vortex flow for studying the convergence, a set of Riemann problems with shock waves, includ-
ing one Riemann problem that gives evidences about the asymptotic preserving property detailed in Sections 3.3 and
4.1. Finally, the Gresho vortex test problem is run at different Mach numbers and an explosion problem is performed
using approximately 6 million cells. Comparison with a fully explicit method is also proposed. If not specified, in all
the simulations shown hereafter, the CFL number is set to CFL = 0.95 in (40) and a total number of Rp = 2 has been
used for the iterative solver (49). Finally, the rescaled parameter is set to ϵ = 1 if not stated otherwise.

5.1. Isentropic vortex
The isentropic vortex problem was initially introduced in a two-dimensional setting [49] to test the accuracy of

numerical methods since the analytical solution is known and regular. On the computational domain Ω = [−5; 5]3,
the flow is characterized by ρ∞ = 1.0, u∞ = 1.0, v∞ = 1.0, w∞ = 0.0, p∞ = 1.0, with a normalized temperature
T ∗∞ = 1.0. A vortex centred on the z−axis line at (xc, yc) = (0, 0) supplements the background gas at time t = 0 with
the following conditions:

ρ = ρ∞ + δρ, u = u∞ + δu, v = v∞ + δv, w = w∞, T ∗ = T ∗∞ + δT
∗, (90)

where the perturbations for density and pressure read

δρ = (1 + δT ∗)
1
γ−1 − 1, δp = (1 + δT ∗)

γ
γ−1 − 1, (91)

with the temperature fluctuation δT ∗ = − (γ−1)ϵ2

8γπ2 e1−r2
. According to [49], the vortex strength is ϵ = 5 and the adiabatic

index is set to γ = 1.4, while the velocity field is affected by the following perturbations:(
δu
δv

)
=
ϵ

2π
e

1−r2
2

(
−y′

x′

)
, (92)

with r =
√

x′2 + y′2 and x′ = x − xc, y′ = y − yc. Periodic boundary conditions are prescribed and the final time is
tfinal = 1. The simulation has been run on a sequence of four successively refined Cartesian meshes on the xy plane
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with characteristic mesh size h(Ω) = Lchar/Nx with Lchar = 10. The exact solution is the time-shifted initial condition
at speed (u∞, v∞), thus we compute the errors in L2 norm for the density, velocity and pressure variables, and the
numerical order of convergence can be deduced for both space and time discretization, simultaneously. Tables 2 and
3 report the data obtained for the first order and second order P-IMEX schemes, respectively. Comparison against the
corresponding explicit algorithms are shown as well. The explicit methods are based on first order Godunov finite
volume schemes and on MUSCL TVD algorithms for the second order case. The formal order of accuracy is achieved
and the P-IMEX schemes are proven to be more accurate for order O(2).

Table 2: Numerical convergence results for the compressible Euler equations using the first order P-IMEX scheme and comparison with the
corresponding explicit method. The errors are measured in L2 norm and refer to the variables ρ (density), u (horizontal velocity) and p (pressure)
at time t = 1.

P-IMEX O1
h(Ω) ρL2 O(ρ) uL2 O(u) pL2 O(p)

5.00E-01 3.949E-01 - 1.149E-00 - 8.043E-01 -
3.82E-01 2.847E-01 1.2 8.140E-01 1.3 5.884E-01 1.2
3.15E-01 2.230E-01 1.3 6.308E-01 1.3 4.638E-01 1.2
2.71E-01 1.834E-01 1.3 5.152E-01 1.4 3.827E-01 1.3

EXPLICIT O1
h(Ω) ρL2 O(ρ) uL2 O(u) pL2 O(p)

5.00E-01 9.132E-01 - 2.139E-00 - 1.393E-01 -
3.82E-01 6.983E-01 1.0 1.601E-01 1.1 1.082E-01 0.9
3.15E-01 5.634E-01 1.1 1.277E-01 1.2 8.801E-01 1.1
2.71E-01 4.717E-01 1.2 1.062E-01 1.2 7.403E-01 1.2

Table 3: Numerical convergence results for the compressible Euler equations using the second order P-IMEX scheme and comparison with the cor-
responding explicit method (MUSCL-TVD discretization). The errors are measured in L2 norm and refer to the variables ρ (density), u (horizontal
velocity) and p (pressure) at time t = 1.

P-IMEX O2
h(Ω) ρL2 O(ρ) uL2 O(u) pL2 O(p)

5.00E-01 2.149E-01 - 4.565E-01 - 2.164E-01 -
3.82E-01 1.427E-01 2.0 2.559E-01 2.1 1.166E-01 2.3
3.15E-01 9.161E-02 2.3 1.673E-01 2.2 7.167E-02 2.5
2.71E-01 6.578E-02 2.2 1.184E-01 2.3 4.956E-02 2.5

EXPLICIT O2
h(Ω) ρL2 O(ρ) uL2 O(u) pL2 O(p)

5.00E-01 2.873E-01 - 6.620E-00 - 4.220E-01 -
3.82E-01 1.673E-01 2.0 3.966E-01 1.9 2.126E-01 2.5
3.15E-01 1.108E-01 2.1 2.621E-01 2.2 1.303E-01 2.6
2.71E-01 8.121E-02 2.1 1.848E-01 2.4 8.840E-02 2.6

5.2. Riemann problems in 1D

In this Section, we want to test the proposed numerical method against some classical Riemann problems whose
initial states are summarized in Table 4. For all the tests we use a 3D grid made of Nx = 200, Ny = 20 and Nz = 5 cells
on the computational domain Ω = [0; 1]× [0; 0.1]× [0; 0.1]. Periodic boundaries are set in y− and z− direction, while
Dirichlet conditions based on the initial state are imposed at x = 0 and x = 1. The Riemann problem RP1 and RP2,
known as Sod and Lax problems, represent two benchmarks in gas dynamics [89]. They both are constituted by a

19



right-moving shock wave, a left-moving rarefaction fan and an intermediate contact discontinuity. The Mach number
ranges from 0 to 1 for Sod problem and 0.17 to 0.87 for Lax. The results given by the P-IMEX schemes are depicted
in Figures 2 and 3, respectively, where both first and second order simulations are considered.

Table 4: Initialization of 1d test cases.

Name RP# tfinal xL xR xd ρL uL pL ρR uR pR

Contact 0 0.5 0 1 0.25 1000 0 105 0.01 0 105

Sod 1 0.2 0 1 0.5 1 0 1 0.125 0 0.1
Lax 2 0.14 0 1 0.5 0.445 1.698 3.528 0.5 0 0.571

The reference solution is well captured and the second-order P-IMEX scheme is more accurate, as expected. It
is particularly visible for Lax test, where, for the first order scheme, the left rarefaction interacts with the boundary
condition because the dissipation is too important (and the number of cells is not sufficiently high). The dissipation
is reduced when using a second-order scheme, therefore such spurious interaction does not occur. Moreover the
spreading of the shock wave and contact discontinuity is less pronounced with the second order version.
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Figure 2: RP1 test case — Sod problem — 1st and 2nd order IMEX schemes — Top: 3d view of the density variable — Bottom (left to right):
density, velocity and pressure (symbols) vs the exact solution (straight line).

Now, we consider the Riemann problem RP0 described in Table 4 where the initial density is a step-like function
of five orders of magnitude, ρL − ρR = 105, pL = pR = 105, uL = uR = u = 1. The Mach number ranges from
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Figure 3: RP2 test case — Lax problem — 1st and 2nd order IMEX schemes — Top: 3d view of the density variable — Bottom (left to right):
density, velocity and pressure (symbols) vs the exact solution (straight line).
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approximately 2.7 · 10−4 to 8.5 · 10−2. In Figure 4 we present the results obtained with the first and second order
P-IMEX schemes (density, velocity and pressure with symbols) versus the exact solution (straight line) on the bottom
panels. On the top panel we present an extruded three-dimensional view where the color and azimuth scale referred
to the density variable. As expected both schemes maintain a constant velocity and pressure, while the initial contact
discontinuity is numerically dissipated. The second-order IMEX scheme produces a sharper contact discontinuity.
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Figure 4: RP0 test case — Moving contact discontinuity — 1st and 2nd order IMEX schemes — Top: 3d view of the density variable — Bottom
(left to right): density, velocity and pressure (symbols) vs the exact solution (straight line).

5.3. Shock tube problem at different Mach numbers

We test the behavior of the novel P-IMEX schemes for different values of the Mach number. To this aim, let us
consider two regimes, namely ϵ = 10−2 and ϵ = 10−4. The initial condition for the shock tube problem is simply given
by

(ρ, u, v,w, p) =
{

(1, 0, 0, 0, 1 + ϵ) x < xs

(1, 0, 0, 0, 1) x ≥ xs
, (93)

with xs = 0.5. The computational domain is again the box Ω = [0; 1] × [0; 0.1] × [0; 0.1], with Dirichlet boundary
conditions in x−direction and periodic boundaries imposed elsewhere. We always use Ny = Nz = 5 control volumes,
while a total number of Nx = 500 and Nx = 1000 cells have been employed for ϵ = 10−2 and ϵ = 10−4, respectively.
The shock tube problems are run with the following schemes: i) second order explicit (MUSCL-TVD), ii) second order
P-IMEX and iii) first order in time and second order in space P-IMEX. A comparison for pressure and momentum
distribution is depicted in Figure 5, where one can clearly notice the non-monotonicity of the second order implicit
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P-IMEX scheme as expected. On the contrary, the first order P-IMEX method provides monotone results but highly
diffusive as also expected. The total number of time steps as well as the computational time needed for carrying
out the simulations are reported in Table 5. The lower is the Mach number, the more efficient becomes the P-IMEX
scheme which only performs one time step to finish the computation. The linear system for the unknown pressure is
solved using a matrix-free GMRES algorithm [97] without any preconditioner.

From this test we can conclude that the space limiter is not able to remove overshooting and undershooting of
the numerical solution in the case of an implicit time discretization as figured out in [40]. Thus, the violation of the
explicit CFL stability condition leads to spurious oscillations which remain bounded but do not disappear. A limiter
for this part of the numerical method would be necessary and it will be addressed in the future.

Table 5: Computational time and number of time steps needed for the simulation of the shock tube problems with different schemes.

ϵ = 10−2

Scheme Order in time CPU time [s] time steps

Explicit 2 1.8125 144
Implicit 2 1.8281 1
Implicit 1 1.6406 1

ϵ = 10−4

Scheme Order in time CPU time [s] time steps

Explicit 2 5.9062 261
Implicit 2 3.3437 1
Implicit 1 2.9218 1

5.4. Gresho vortex

In this Section we solve the so-called Gresho vortex problem [17] that is a known stationary solution of the Euler
equation. The solution, written in polar coordinates, reads

uθ(r) =


5r 0 ≤ r < 0.2
2 − 5r 0.2 ≤ r < 0.4
0 r ≥ 0.4

p(r) =


p0 +

25
2 r2 0 ≤ r < 0.2

p0 +
25
2 r2 + 4[1 − 5r − ln(0.2) + ln(r)] 0.2 ≤ r < 0.4

p0 − 2 + 4ln(2) r ≥ 0.4
ρ(r) = 1 (94)

where uθ(r) is the angular velocity, r =
√

x2 + y2 is the radius and p0 = ρ/γM2 is expressed in terms of the Mach
number. The velocity field can be obtained from uθ with a simple rotation, in particular (u, v) = uθ/r · (−y, x). In order
to test the proposed algorithm against different magnitudes of the Mach number, we will use M = 0.1, 0.01, 0.001.
The computational domain is Ω = [−0.5; 0.5] × [−0.5; 0.5] × [−0.05; 0.05], which is discretized with Nx = Ny = 80
and Nz = 5 control volumes. We impose the exact solution (94) as initial and boundary condition. We perform the
simulation up to the final time t f inal = 0.4 π using CFL = 0.15, in order to mimic the same setting adopted in [4]. The
comparison between exact and numerical results obtained with the novel second order P-IMEX scheme for several
Mach numbers is depicted in Figure 6 for Nx = Ny = 80. A very good agreement can be observed at all the values
of the Mach numbers. The resulting dissipation of the total energy K normalized with the initial kinetic energy K0 is
reported in Figure 7 for all the Mach numbers and for mesh size h1 = 1/40 and h2 = 1/80. It is clear from Figure 7
that the obtained values of the kinetic energy dissipation do not depend on the chosen Mach number. The resulting
profile is also in good agreement with others obtained in literature using an implicit shock capturing scheme, see [4],
showing a slightly less dissipative behavior for our P-IMEX schemes.
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5.5. 3D Explosion problem

Finally, the proposed second order P-IMEX scheme is checked against the well known three-dimensional explo-
sion problem [89]. This problem can be seen as the three-dimensional extension of the Sod problem already described
in Section 5.2. The initial condition is given by

(ρ, u, v,w, p) =
{

(1, 0, 0, 0, 1) r < Rs

(0.125, 0, 0, 0, 0.1) r ≥ Rs
, (95)

where r =
√

x2 + y2 + z2 and Rs = 0.5 is the radius of the sphere. We consider Ω = [−1; 1]3 and Dirichlet boundary
conditions everywhere. We use Nx = Ny = Nz = 180 elements so that the total number of elements is NE = 5′832′000,
as depicted in Figure 8. Furthermore γ = 1.4 and t f inal = 0.25. We run the test in parallel with MPI using 64 AMD
Opteron(TM) Processor 6272 CPU cores. The reference solution is obtained by considering the angular symmetry of
the problem in order to reduce the 3D Euler system to a 1D system in radial direction with geometric source term,
see [89]. The reference solution is actually computed employing a second order TVD scheme with Rusanov-type flux
on 20000 radial points. The resulting numerical solution at the final time t f inal = 0.25 is reported in Figure 9. In the
first panel of 9 we plot some isolines for ρ in the semi-space {x < 0} and show the radial symmetry of the obtained
solution. This property is not trivial since the mesh is not radially aligned. Finally, we report the scatter plot of the
main variables, considering all the 32′400 points in the slice {(x, y, z) | x = 0}. We observe a very good agreement
with the reference solution also for this three-dimensional problem.
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Figure 8: Computational mesh and density contours at time t = for the 3D explosion problem. The computational domain is divided in 64 partitions
corresponding to the MPI threads.

6. Conclusions and perspectives

In this article, a second order in space and time finite volume scheme for the solution of the compressible Euler
equations in a wide range of Mach numbers has been discussed. The numerical method is based on the splitting of the
fluxes into a non stiff and a stiff part. The first one corresponds to the advective contribution while the second one to
the pressure part which may be responsible of creating very fast waves compared to the speed of the flow. These two
different terms are then discretized, the first one explicitly while the second one implicitly. Second order of accuracy
in space has been achieved relying on a piecewise linear reconstruction operator with classical minmod limiter for the
explicit fluxes, while central finite difference discretization ensures the same accuracy for the implicit part as well.
IMEX Runge-Kutta time stepping guarantees that the novel methods are fully second order accurate even in time.

For the proposed scheme, we showed that the asymptotic preserving property is satisfied and that the theoretical
order of accuracy in the semi-discrete case for all values of the Mach number is maintained up to the incompressible
limit. An analysis of the properties of the method has also been performed in the fully discretized case for the first
order method.

The numerical results demonstrate that a wide spectrum of phenomena can be efficiently solved especially in the
low Mach regime by our method, the stability depending only on the speed of the fluid flow and not on the sound
speed. The method has been implemented on three-dimensional Cartesian grids and makes use of MPI parallelization.
Demonstration of applicability is shown by a set of test problems that span from high to low Mach flows, including
convergence studies.

In the future, we plan to extend the presented approach to the compressible Navier-Stokes equations in order
to obtain an efficient solver for viscous fluids. Moreover, the development of higher order accurate methods which
are consistent with the asymptotic incompressible limit of the Euler equations is the subject of future investigations.
Finally, the study of L∞ stable methods in the context of higher order time discretizations deserves to be analyzed in
the next future.
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Figure 9: Scatter plot of the numerical solution for the velocity norm |u| =
√

u2 + v2 + w2, pressure and density obtained with the new P-IMEX
method at time t f inal = 0.25 compared with the reference solution.
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