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Abstract

This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB)

model of plasma physics. This model consists of the pressureless gas dynamics

equations coupled with the Poisson equation and where the Boltzmann relation

relates the potential to the electron density. If the quasi-neutral assumption is

made, the Poisson equation is replaced by the constraint of zero local charge and

the model reduces to the Isothermal Compressible Euler (ICE) model. We compare

a numerical strategy based on the EPB model to a strategy using a reformulation

(called REPB formulation). The REPB scheme captures the quasi-neutral limit

more accurately.
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1 Introduction

The goal of this paper is to analyze various schemes for the Euler-Poisson-Boltzmann

model of plasma physics. The Euler-Poisson-Boltzmann (EPB) model describes the

plasma ions through a system of pressureless gas dynamics equations subjected to an

electrostatic force. The electrostatic potential is related to the ion and electron densities

through the Poisson equation. The Boltzmann relation provides a non-linear relationship

between the potential and the electron density which allows to close the system. More

precisely, the Euler-Poisson-Boltzmann model is written

∂tn+∇ · (nu) = 0, (1.1)

m(∂t(nu) +∇ · (nu⊗ u)) = −en∇φ, (1.2)

−∆φ =
e

ǫ0
(n− n∗ exp(

eφ

kBT
)). (1.3)

Here, n(x, t) ≥ 0, u(x, t) ∈ R
d and φ(x, t) ∈ R stand for the ion density, ion velocity and

electric potential respectively, which depend on the space-variable x ∈ R
d and on the time

t ≥ 0. We suppose that the ions bear a single positive elementary charge e and we denote

by m, their mass. The electron temperature T is supposed uniform and constant in time.

ǫ0 and kB respectively refer to the vacuum permittivity and the Boltzmann constant. The

operators ∇, ∇· and ∆ are respectively the gradient, divergence and Laplace operators

and u ⊗ u denotes the tensor product of the vector u with itself. n∗ is usually fixed by

either imposing zero total charge

∫

Rd

(n(x, t)− n∗ exp(
eφ(x, t)

kBT
)) dx = 0,
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or by assuming that the net charge is zero at a given point x∗ (for instance at the bound-

ary):

n(x∗, t)− n∗ exp(
eφ(x∗, t)

kBT
) = 0.

For simplicity, this work is restricted to dimension d = 1 but the concepts extend to di-

mensions d ≥ 2 without additional difficulties and numerical applications will be reported

in future work.

The ion pressure force is neglected. This is a commonly made assumption in plasma

physics [5, 20] for elementary text books of plasma physics. The inclusion of an ion

pressure term would not modify the subsequent analysis and is omitted for simplicity.

Additionally, the pressureless system has interesting multi-valued solutions which are lost

in the case of the non-pressureless model [23, 24, 25].

If the quasi-neutral assumption is made, the Poisson equation (1.3) is replaced by the

constraint of zero local charge:

n = n∗ exp(
eφ

kBT
),

In this context, we can write

n∇φ = n∗ exp(
eφ

kBT
)∇φ =

kBT

e
∇(n∗ exp(

eφ

kBT
)) =

kBT

e
∇n, (1.4)

and the quasi-neutral Euler-Poisson-Boltzmann model coincides with Isothermal Com-

pressible Euler (ICE) model:

∂tn+∇ · (nu) = 0,

m(∂t(nu) +∇ · (nu⊗ u)) +∇(nkBT ) = 0.
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The passage from EPB to ICE can be understood by a suitable scaling of the model,

which highlights the role of the scaled Debye length:

λ =
λD
L
, λD =

(

ǫ0kBT

e2n∗

)1/2

, (1.5)

where L is the typical size of the system under consideration. λD measures the spatial

scale associated with the electrostatic interaction between the particles. The dimensionless

parameter λ is usually small, which formalizes the fact that the electrostatic interaction

occurs at spatial scales which are much smaller than the usual scales of interest. However,

there are situations, for instance in boundary layers, or at the plasma-vacuum interface,

where the electrostatic interaction scale must be taken into account. This means that the

choice of the relevant macroscopic length L may depend on the location inside the system

and that in general, the parameter λ may vary by orders of magnitude from one part of

the domain to another one. The scaling will be presented in more detail in section 2.

This paper is concerned with discretization methods for the EPB model in situations

where λ can vary from order one to very small values. Therefore, the targeted schemes

must correctly capture the transition from the EPB to the ICE models. With this ob-

jective in mind, we will compare two strategies: a first one which uses the EPB model

in its original form, and a second one which reformulates the EPB model in such a way

that it explicitly appears as a perturbation of the ICE model. This reformulation uses

the Poisson equation in the form:

n = n∗ exp(
eφ

kBT
)− ǫ0

e
∆φ.
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Then, with the same algebra as for (1.4), we get:

n∇φ = n∗ exp(
eφ

kBT
)∇φ− ǫ0

e
∆φ∇φ

=
kBT

e
∇(n∗ exp(

eφ

kBT
))− ǫ0

e
(∇ · (∇φ⊗∇φ)−∇(

|∇φ|2
2

))

=
kBT

e
∇n+

ǫ0kBT

e2
∇∆φ− ǫ0

e
(∇ · (∇φ⊗∇φ)−∇(

|∇φ|2
2

)). (1.6)

We note that this expression is reminiscent of the Maxwell stress tensor. Then, the

EPB model is equivalently written as the following reformulated Euler-Poisson-Boltzmann

(REPB) model:

∂tn+∇ · (nu) = 0, (1.7)

m(∂t(nu) +∇ · (nu⊗ u)) +∇(nkBT ) =

= −ǫ0∇(
kBT

e
∆φ+

|∇φ|2
2

) + ǫ0∇ · (∇φ⊗∇φ), (1.8)

−∆φ =
e

ǫ0
(n− n∗ exp(

eφ

kBT
)). (1.9)

In this way, the ICE appears at the left-hand side of (1.7), (1.8). The scaling analysis

will show that the right-hand side of (1.8) is of order λ2 and is therefore negligible (if the

gradients of the potential are smooth) in the limit λ→ 0.

The goal of this paper is to propose and analyze two schemes for the EPB model which

provide the correct ICE limit when λ→ 0: the first one is based on the initial formulation

EPB and the second one, on the reformulated form REPB. To present the schemes, we
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note that both EPB and REPB can be put under the form

∂tn+∇ · (nu) = 0,

m(∂t(nu) +∇ · (nu⊗ u)) +∇p(n) = S(n,∇φ),

−∆φ =
e

ǫ0
(n− n∗ exp(

eφ

kBT
)),

with

p(n) = 0, S(n,∇φ) = −en∇φ,

in the case of EPB and

p(n) = nkBT, S(n,∇φ) = −ǫ0∇(
kBT

e
∆φ+

|∇φ|2
2

) + ǫ0∇ · (∇φ⊗∇φ),

in the case of the REPB.

Both schemes use the following time-semi-discretization which is implicit in the Poisson

equation and in the source terms of the momentum equation:

δ−1(nk+1 − nk) +∇ · ((nu)k) = 0,

m(δ−1((nu)k+1 − (nu)k) +∇ · ((nu)k ⊗ uk)) +∇p(nk) = S(nk+1,∇φk+1),

−∆φk+1 =
e

ǫ0
(nk+1 − n∗ exp(

eφk+1

kBT
)).

Here, δ is the time step and the exponent k ∈ N refers to the approximation at time

tk = kδ (i.e. nk(x) ≈ n(x, tk), . . . ). For the EPB model, this discretization is classical

[18]. For both systems, in spite of its implicit character, the recursion can be solved in

an explicit way, by first updating the mass equation to find nk+1, then using the Poisson

equation to find the potential φk+1 and finally using the momentum equation to find uk+1.
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Of course, the space operators have to be discretized as well and a simple shock-capturing

method is used, namely the Local Lax-Friedrichs or Rusanov scheme [22, 28, 16]. A time-

splitting is used where the hydrodynamic equations are evolved without the source terms.

Then, the Poisson equation is solved with the value of the density found at the end of the

first step of the splitting. With the newly computed value of the potential, the evolution

of the hydrodynamic quantities due to the source terms are computed.

In section 3, we will show that both schemes are Asymptotic-Preserving. The Asympto-

tic-Preserving property can be defined as follows. Consider a singular perturbation prob-

lem P λ whose solutions converge to those of a limit problem P 0 when λ→ 0 (here P λ is

the EPB model and P 0 is the ICE model). A scheme P λ
δ,h for problem P λ with time-step

δ and space-step h is called Asymptotic Preserving (or AP) if it is stable independently of

the value of λ when λ → 0 and if the scheme P 0
δ,h obtained by letting λ → 0 in P λ

δ,h with

fixed (δ, h) is consistent with problem P 0. This property is illustrated by the commutative

diagram below:

P λ
δ,h

(δ,h)→0−−−−→ P λ





y
λ→0





y
λ→0

P 0
δ,h

(δ,h)→0−−−−→ P 0

The concept of an AP scheme has been introduced by S. Jin [19] for diffusive limits of

kinetic models and has been widely expanded since then.

In section 3, we will perform a linearized stability analysis which shows that both

schemes are stable independently of λ in the limit δ → 0, provided that the usual CFL

condition of the ICE model is satisfied. However, the scheme based on the REPB for-

mulation has several advantages over the one based on the EPB form. A first advantage
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lies in the fact that the hydrodynamic part of the EPB model is a pressureless gas dy-

namics model, which is weakly unstable and can produce delta concentrations (see e.g.

[2, 3, 4, 6, 7]). By contrast, the hydrodynamic part of the REPB is the usual ICE model,

which is strongly hyperbolic, and which is much more stable than the pressureless gas

dynamics model. A second advantage is the fact that the limit λ → 0 of the REPB-

based scheme provides a conservative discretization of the ICE model, while that of the

EPB-based scheme leads to a scheme in non-conservative form. We can expect that the

accuracy of the PB-based scheme degrades when λ ≪ 1 for solutions involving disconti-

nuities, which is not the case for the REPB-based scheme.

To illustrate the theoretical findings, one-dimensional numerical simulations are pre-

sented in section 5, following a discussion of the spatial discretization in section 4. First,

setting λ = 1, analytic solutions can be derived in the form of solitary waves thanks to the

Sagdeev potential theory [5]. Both schemes are compared to these analytical solutions,

and show a similar behavior, with a slightly larger numerical diffusion in the case of the

REPB scheme. Then a Riemann problem test case consisting of two outgoing shock waves

is investigated. In the λ≪ 1 regime, the REPB scheme captures the right hydrodynamic

shocks while the EPB scheme develops spurious oscillations. This confirms the better

behavior of the REPB scheme in the λ ≪ 1 regime. Finally, a test-problem related to

multivalued solutions and proposed in [23, 24] is investigated. In this case, both schemes

shows a similar behavior. To summarize, the REPB scheme captures well the λ ≪ 1 limit

but is slightly more diffusive in the λ = O(1) regime. But the extra numerical diffusion is

mild and then shows that the REPB scheme is superior to and should be preferred over
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the EPB scheme in most situations.

We conclude this section by some bibliographical remarks. The Euler-Poisson-Boltzmann

model has been recently analyzed in the context of sheath dynamics [25] and multi-valued

solutions have been computed using level set methods [23, 24]. Numerical schemes for the

quasineutral limit of plasma problems has been the subject of vast literature, mostly for

the Vlasov-Poisson equation and for Particle-in-Cell (PIC) methods. It is virtually im-

possible to cite all relevant references and we only refer to the seminal ones [9, 21, 26, 27].

For fluid models of plasmas, the literature is comparatively less abundant. We can refer

to the pioneering work [18], and more recently to [8, 10, 29, 30]. Recently, AP-schemes for

the two-fluid Euler-Poisson model [11, 15] or Vlasov-Poisson model [1, 12] in the quasineu-

tral limit have been proposed. The drift-fluid limit of magnetized plasmas has also been

considered [13, 14] as well as other applications such as small Mach-number flows [17].

However, none of these works is concerned with Boltzmannian electrons.

2 The EPB model and the scaling

In this section we present a derivation of the EPB model from the two fluid Euler-Poisson

system and we introduce its scaling. From now on, we will restrict ourselves to one-

dimensional models.

10



2.1 Derivation of the EPB model

We consider a plasma composed of two species of charged particles: positively charged

ions and electrons. The ions are supposed singly charged. The modeling of such a plasma

by means of fluid equations uses a system of compressible Euler equations for each species,

coupled by the Poisson equation. We denote by mi,e the ion and electron masses, ni,e the

ion and electron densities and ui,e the ion and electrons mean velocities. We denote by e

the elementary charge (i.e. the ion charge is +e > 0 and the electron charge is −e < 0).

We assume that the ion temperature is negligible so that the ions follow a pressureless gas

dynamics model. Electrons are assumed isothermal with a non-zero constant and uniform

temperature Te. Then the electron pressure law satisfies pe = nekBTe where kB denotes

the Boltzmann constant. The balance laws for both species are given by

∂tni + ∂x(niui) = 0, (2.1)

mi(∂t(niui) + ∂x(niu
2
i )) = −eni∂xφ, (2.2)

∂tne + ∂x(neue) = 0, (2.3)

me(∂t(neue) + ∂x(neu
2
e)) + ∂x(nekBTe) = ene∂xφ, (2.4)

where φ denotes the electric potential. It satisfies the Poisson equation:

−ǫ0∂2xφ = e(ni − ne), (2.5)

where ǫ0 is the vacuum permittivity.

The electrons being much lighter than the ions, it is legitimate to take the limitme → 0
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in the electron momentum equation. In this limit, we formally obtain:

∂x(nekBTe) = ene∂xφ.

Integration with respect to x leads to the Boltzmann relation:

ne = n∗ exp

(

eφ

kBTe

)

, (2.6)

where n∗ is fixed by some condition (e.g. vanishing total charge or vanishing local charge

at one given point such as a boundary point, see section 1). The Boltzmann relation

shows that the electron density automatically adjusts to the potential. The EPB model

therefore consists of the ion mass and momentum conservation equations (2.1), (2.2),

the Poisson equation (2.5) and the Boltzmann relation (2.6). With a change of notation

ni → n, ui → u, mi → m, Te → T , we find the EPB model (1.1)-(1.3) which has been

introduced in section 1.

We note that, in the present one-dimensional setting, the electron velocity ue can

be computed from the electron density equation (2.3), thanks to the value of ne and

therefore, of φ, obtained by the resolution of the EPB model. Therefore, the computation

of ue is decoupled from the computation of the other unknowns ni, ui and φ involved in

the EPB model and will be discarded in the present work. In two or higher dimensions,

the computation of ue requires the resolution of the electron momentum equation, which

takes the form in the small electron mass limit:

∂t(neue) +∇ · (neue ⊗ ue) + ne∇ψ = 0, (2.7)

where ψ = limme→0(m
−1
e (kBT lnne − eφ)). The quantity ψ plays the same role as the

pressure in the incompressible Euler equation. It is computed thanks to the electron
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density equation (2.3) which appears as a (non-zero) divergence constraint on ue. In

this sense, the limit me → 0 is similar to the ’low Mach-number’ limit of isentropic

compressible gas dynamics. However, the question of the resolution of (2.7) is left to

future work.

2.2 Scaling of the EPB model

In this section, we return to the EPB model in the form (1.1)-(1.3) and, with the notations

of section 1, we introduce a scaling of the physical quantities. Let x0, t0, u0, φ0 and n0 be

space, time, velocity, potential and density scales. Scaled position, time, velocity, potential

and density are defined by x̄ = x/x0, t̄ = t/t0, ū = u/u0 , φ̄ = −φ/φ0 and n̄ = n/n0.

We choose x0 to be the typical size of the system (for instance an inter-electrode distance

or the size of the vacuum chamber). The velocity scale is chosen equal to the ion sound

speed u0 = (kBT/m)1/2. We note that the ion sound speed is constructed with the ion

mass but with the electron temperature. This is clear from the ICE model (see section

1). We also choose n0 = n∗. Finally, φ0 = kBT/e is the so-called thermal potential. Note

that we have introduced a sign change in the potential scaling because we find it more

convenient to work in terms of the electron potential energy rather than in terms of the

electric potential.

Inserting this scaling and omitting the bars gives rise to the EPB model in scaled
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form:

∂tn
λ + ∂x(n

λuλ) = 0, (2.8)

∂t(n
λuλ) + ∂x(n

λuλuλ) = nλ∂xφ
λ, (2.9)

λ2∂2xφ
λ = nλ − e−φλ

. (2.10)

where λ is the scaled Debye length (1.5).

It will be useful to consider the linearized EPB model about the state defined by

nλ = 1, uλ = 0, φλ = 0 (which is obviously a stationary solution). Expanding nλ = 1+εñλ,

uλ = εũλ and φλ = εφ̃λ, with ε ≪ 1 being the intensity of the perturbation to the

stationary state, and retaining only the linear terms in ε, we find the linearized EPB

model:

∂tñ
λ + ∂xũ

λ = 0, (2.11)

∂tũ
λ = ∂xφ̃

λ, (2.12)

λ2∂2xφ̃
λ = ñλ + φ̃λ. (2.13)

Introducing n̂λ, ûλ, φ̂λ, the partial Fourier transforms of ñλ, ũλ, φ̃λ with respect to x, we

are led to the system of ODE’s:

∂tn̂
λ + iξûλ = 0, (2.14)

∂tû
λ = iξφ̂λ, (2.15)

−λ2ξ2φ̂λ = n̂λ + φ̂λ, (2.16)

where ξ is the Fourier dual variable to x. We note that the general solution of this model
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takes the form








n̂λ

ûλ









=
∑

±

es
λ
±
t









n̂λ
±

ûλ
±









, (2.17)

with

sλ
±
= ± iξ

(1 + λ2ξ2)1/2
, (2.18)

and nλ
±
, uλ

±
are given functions of ξ, fixed by the initial conditions of the problem. In

particular, since sλ
±
are pure imaginary numbers, the L2 norm of the solution is preserved

with time.

Now, we investigate the quasi-neutral limit λ→ 0 in the next section.

2.3 The quasineutral limit: the ICE model

Formally passing to the limit λ→ 0 in the EPB model in scaled form and supposing that

nλ → n0, uλ → u0, φλ → φ0, we are led to the following model:

∂tn
0 + ∂x(n

0u0) = 0,

∂t(n
0u0) + ∂x(n

0u0u0) = n0∂xφ
0,

0 = n0 − e−φ0

.

As a consequence of the last relation (which imposes to the ions to satisfy the Boltzmann

relation of the electrons), we can write (see also (1.4)):

n0∂xφ
0 = e−φ0

∂xφ
0 = −∂x

(

e−φ0
)

= −∂xn0, (2.19)
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and, inserting this relation into the momentum equation leads to:

∂t(n
0u0) + ∂x(n

0u0u0) + ∂xn
0 = 0.

Therefore, the quasineutral limit λ → 0 consists of the Isothermal Compressible Euler

system (ICE) complemented by the Boltzmann relation for the potential:

∂tn
0 + ∂x(n

0u0) = 0,

∂t(n
0u0) + ∂x(n

0u0u0) + ∂xn
0 = 0,

n0 = e−φ0

.

Similarly to the EPB model, the ICE model can be linearized about the state defined

by n0 = 1, u0 = 0, φ0 = 0. We find (with the same notations as for the EPB model), in

Fourier space:

∂tn̂
0 + iξû0 = 0,

∂tû
0 + iξn̂0 = 0.

The general solution of this model takes the same form (2.17) as for the linearized EPB

model with sλ
±
replaced by s0

±
= ±iξ. We note that (see (2.18))

s0
±
= lim

λ→0
sλ
±
.

Therefore, the wave speeds of the linearized EPB model converge to those of the linearized

ICE model (which are nothing but the acoustic wave speeds). There is no singularity of

the limit λ → 0 as regards the wave-speeds. In this respect the quasineutral limit λ → 0

is not a singular limit. This fact contrasts with the situation of the quasineutral limit
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of the 2-fluid Euler system, where the electron plasma oscillation frequency converges to

infinity. Therefore, we expect that the numerical treatment of the quasineutral limit in

the Euler-Poisson-Boltzmann case will be easier.

2.4 Reformulation of the EPB model

To better capture the transition from the EPB model to the ICE model, it is useful to

reformulate the EPB model in such a way that it explicitly appears as a perturbation of

the ICE model. Using (2.10), in the spirit of (2.19), we can write (see also (1.6)):

nλ∂xφ
λ =

(

e−φλ

+ λ2∂2xxφ
λ
)

∂xφ
λ

= ∂x

(

−e−φλ

+
λ2

2
(∂xφ

λ)2
)

= ∂x

(

λ2∂2xxφ
λ − nλ +

λ2

2
(∂xφ

λ)2
)

.

We note that some simplification arises in the 1-dimensional case, compared to the multi-

dimensional case of (1.6). Inserting this expression in the momentum equation leads to

the reformulated EPB systems (REPB):

∂tn
λ + ∂x(n

λuλ) = 0, (2.20)

∂t(n
λuλ) + ∂x(n

λuλuλ) + ∂xn
λ = λ2∂x

(

∂2xxφ
λ +

1

2
(∂xφ

λ)2
)

, (2.21)

nλ − e−φλ

= λ2∂2xφ
λ. (2.22)

In this formulation, the ICE model explicitly appears at the left-hand side of (2.20)-

(2.22). Additionally, the remaining terms, at the right-hand side of the equations are

formally of order λ2. Therefore, the EPB model explicitly appears as an order O(λ2)
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perturbation of the ICE model.

We stress the fact that the REPB model is equivalent to the original EPB model.

However, at the discrete level, schemes based on the REPB model may differ from those

based on the EPB model. The goal of the present article is to compare the properties

of schemes based on these two formulations, in relation to their Asymptotic-Preserving

(AP) properties when λ→ 0.

Remark 2.1 A formal expansion (using a Chapman-Enskog methodology) up to the first

order in λ2 of the EPB model leads to the following model:

∂tn
λ + ∂x(n

λuλ) = 0,

∂t(n
λuλ) + ∂x(n

λuλuλ) + ∂xn
λ = −λ2nλ∂x

(

1

nλ
∂2x (log nλ)

)

+O(λ4).

We see that the EPB is a perturbation of the ICE model by a dispersive term with a third

order derivative in nλ. For this reason, in the sequel, the λ = O(1) regime will be referred

to as the dispersive regime, while the λ≪ 1 will be referred to as the hydrodynamic regime.

3 Time semi-discretization, AP property and linearized

stability

3.1 Time-semi-discretization and AP property

We denote by δ the time step. For any function g(x, t), we denote by gm(x) an ap-

proximation of g(x, tm) with tm = mδ. We present two time-semi-discretizations of the
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problem. The first one is based on the EPB formulation, and the second one, on the

REPB formulation.

3.1.1 Time-semi-discretization based on the EPB formulation

Classically, when dealing with Euler-Poisson problems, the force term in the momentum

equation is taken implicitly. In the case of the two-fluid model (when the electrons are

modeled by the compressible Euler equations instead of being described by the Boltzmann

relation), S. Fabre has shown that this implicitness is needed for the stability of the scheme

(an explicit treatment of the force term leads to an unconditionally unstable scheme [18]).

Additionally, this implicitness still gives rise to an explicit resolution, since the mass

conservation can be used to update the density, then the Poisson equation is used to

update the potential, and finally the resulting potential is inserted in the momentum

equation to update the velocity.

We will reproduce this strategy here and consider the following time-semi-discretization

based on the EPB formulation:

δ−1(nλ,m+1 − nλ,m) + ∂x(n
λ,muλ,m) = 0,

δ−1(nλ,m+1uλ,m+1 − nλ,muλ,m) + ∂x(n
λ,muλ,muλ,m) = nλ,m+1∂xφ

λ,m+1,

λ2∂2xφ
λ,m+1 = nλ,m+1 − e−φλ,m+1

.

This scheme is Asymptotic-Preserving. Indeed, letting λ → 0 in this scheme with a
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fixed δ leads to

δ−1(n0,m+1 − n0,m) + ∂x(n
0,mu0,m) = 0,

δ−1(n0,m+1u0,m+1 − n0,mu0,m) + ∂x(n
0,mu0,mu0,m) = n0,m+1∂xφ

0,m+1,

0 = n0,m+1 − e−φ0,m+1

. (3.1)

By using (3.1) and the same algebra as for (2.19), we find that this scheme is equivalent

to

δ−1(n0,m+1 − n0,m) + ∂x(n
0,mu0,m) = 0,

δ−1(n0,m+1u0,m+1 − n0,mu0,m) + ∂x(n
0,mu0,mu0,m) + ∂x(n

0,m+1) = 0,

0 = n0,m+1 − e−φ0,m+1

,

which provides a semi-implicit discretization of the ICE model, with an implicit treatment

of the pressure term in the momentum conservation equation.

However, when the scheme is discretized in space, the algebra leading to (2.19) is

no longer exact. Let us denote by Dφ0,m+1 the discretization of the space derivative

operator ∂xφ
0,m+1. Then, the limit λ → 0 of the fully discrete scheme gives rise to the

approximation n0,m+1D(lnn0,m+1) of the space derivative ∂x(n
0,m+1) instead of the natural

derivative Dn0,m+1. In particular, this expression is not in conservative form. Therefore,

the use of this scheme may lead to a wrong shock speed if shock waves are present in the

solution.

Another drawback of this scheme is the lack of pressure term in the momentum equa-

tion. As a consequence, the hydrodynamic part of the model is a pressureless gas dynamics
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model, which is a weakly ill-posed model (with, e.g. the possibility of forming delta con-

centrations [2, 3, 4, 6, 7]). The weak instability may lead to spurious oscillations in the

solution.

For these reasons, another scheme, based on the REPB formulation, is proposed in

the next section.

3.1.2 Time-semi-discretization based on the REPB formulation

We reproduce the same strategy (i.e. an implicit evaluation of the force term in the

momentum conservation equation) starting from the REPB formulation. This leads to

the following scheme:

δ−1(nλ,m+1 − nλ,m) + ∂x(n
λ,muλ,m) = 0, (3.2)

δ−1((nλ,m+1uλ,m+1)− (nλ,muλ,m)) + ∂x(n
λ,muλ,muλ,m) + ∂xn

λ,m =

= λ2∂x

(

∂2xφ
λ,m+1 +

1

2
(∂xφ

λ,m+1)2
)

, (3.3)

λ2∂2xφ
λ,m+1 = nλ,m+1 − e−φλ,m+1

. (3.4)

Formally passing to the limit λ→ 0 with fixed δ in this scheme leads to the following

scheme:

δ−1(n0,m+1 − n0,m) + ∂x(n
0,mu0,m) = 0, (3.5)

δ−1((n0,m+1u0,m+1)− (n0,mu0,m)) + ∂x(n
0,mu0,mu0,m) + ∂xn

0,m = 0, (3.6)

0 = n0,m+1 − e−φ0,m+1

. (3.7)

Eqs. (3.5), (3.6) are the standard time-semi-discretization of the ICE model. We now

note that the pressure term ∂xn
0,m is explicit (it was implicit in the scheme based on the

21



EPB formulation). Additionally, if a space discretization is used, the discretization of this

term will stay in conservative form, by contrast to the EPB-based scheme. Finally, the

hydrodynamic part of the scheme (3.2)-(3.4) is based on the ICE model, not on the pres-

sureless gas dynamics model. Therefore, its discretization will avoid the possible spurious

oscillations that might appear in the EPB-based scheme in the presence of discontinuities

or sharp gradients.

3.2 Linearized stability analysis of the time-semi-discretization

The goal of this section is to analyze the linearized stability properties of both schemes.

More precisely, we want to show that both schemes are stable under the CFL condition

of the ICE model, irrespective of the value of λ when λ → 0. This property is known

as ’Asymptotic-Stability’ and is a component of the Asymptotic-Preserving property (see

section 1). Indeed, the faculty of letting λ→ 0 in the scheme with fixed δ is possible only

if the stability condition of the scheme is independent of λ in this limit. We will prove

L2-stability uniformly with respect to λ for the linearization of the problem (2.14)-(2.16).

In general, time semi-discretizations of hyperbolic problems are unconditionally un-

stable. This is easily verified on the discretization (3.5)-(3.7) of the ICE model. This is

because the skew adjoint operator ∂x has the same effect as a centered space-differencing.

For fully discrete schemes, stability is obtained at the price of adding numerical viscosity.

To mimic the effect of this viscosity, in the present section, we will consider the linearized

Viscous Euler-Poisson-Boltzmann (VEPB) model, which consists of the linearized EPB

model (2.11)-(2.13) with additional viscosity terms (in this section, we drop the tildes for
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notational convenience):

∂tn
λ + ∂xu

λ − β∂2xn
λ = 0,

∂tu
λ − β∂2xu

λ = ∂xφ
λ,

λ2∂2xφ
λ = nλ + φλ.

where β is a numerical viscosity coefficient. We keep in mind that, in the spatially

discretized case, β proportional to the mesh size h:

β = ch, (3.8)

with the constant c to be specified later on. Similarly, the linearized Reformulated Viscous

Euler-Poisson-Boltzmann (RVEPB) model is written:

∂tn
λ + ∂xu

λ − β∂2xn
λ = 0,

∂tu
λ + ∂xn

λ − β∂2xu
λ = λ2∂3xφ

λ,

λ2∂2xφ
λ = nλ + φλ.

The time discretization of these two formulations (which are also linearizations of the

EPB or REPB-based schemes with added viscosity terms) are given by

δ−1(nλ,m+1 − nλ,m) + ∂xu
λ,m − β∂2xn

λ,m = 0, (3.9)

δ−1(uλ,m+1 − uλ,m)− β∂2xu
λ,m = ∂xφ

λ,m+1, (3.10)

λ2∂2xφ
λ,m+1 = nλ,m+1 + φλ,m+1, (3.11)
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for the EPB-based scheme and by

δ−1(nλ,m+1 − nλ,m) + ∂xu
λ,m − β∂2xn

λ,m = 0, (3.12)

δ−1(uλ,m+1 − uλ,m) + ∂xn
λ,m − β∂2xu

λ,m = λ2∂3xφ
λ,m+1, (3.13)

λ2∂2xφ
λ,m+1 = nλ,m+1 + φλ,m+1, (3.14)

for the REPB-based one.

Passing to Fourier space with ξ being the dual variable to x, and eliminating φ̂λ,m+1,

we find the following recursion relations:

δ−1(n̂λ,m+1 − n̂λ,m) + iξûλ,m + βξ2n̂λ,m = 0,

δ−1(ûλ,m+1 − ûλ,m) +
iξ

1 + λ2ξ2
n̂λ,m+1 + βξ2ûλ,m = 0,

for the EPB-based scheme and

δ−1(n̂λ,m+1 − n̂λ,m) + iξûλ,m + βξ2n̂λ,m = 0,

δ−1(ûλ,m+1 − ûλ,m) + iξn̂λ,m − iλ2ξ3

1 + λ2ξ2
n̂λ,m+1 + βξ2ûλ,m = 0,

for the REPB-based one.

The characteristic equations for these two recursion formulas are

q2 − 2q(1− βξ2δ − ξ2δ2

2(1 + λ2ξ2)
) + (1− βξ2δ)2 = 0, (3.15)

and

q2 − 2q(1− βξ2δ +
λ2ξ4δ2

2(1 + λ2ξ2)
) + (1− βξ2δ)2 + ξ2δ2 = 0, (3.16)
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respectively, where q is the characteristic root. Each of these quadratic equations has two

roots qλ
±
(ξ) which provide the two independent solutions of the corresponding recursion

formulas. Their most general solution is of the form









n̂λ,m(ξ)

ûλ,m(ξ)









=
∑

±

(qλ
±
(ξ))m









n̂λ
±
(ξ)

ûλ
±
(ξ)









, ∀m ∈ N,

where nλ
±
(ξ) and uλ

±
(ξ) depend on the initial condition only. A necessary and sufficient

condition for L2 stability is that |qλ
±
(ξ)| < 1. However, requesting this condition for all

ξ ∈ R is too restrictive. To account for the effect of a spatial discretization in this analysis,

we must restrict the range of admissible Fourier wave-vectors ξ to the interval [−π
h
, π
h
].

Indeed, a space discretization of step h cannot represent wave-vectors of magnitude larger

than π
h
. This motivates the following definition of stability:

Definition 1 The scheme is stable if and only if

|qλ
±
(ξ)| ≤ 1, ∀ξ such that |ξ| < π

h
. (3.17)

Now, our goal is to find sufficient conditions on δ such that either schemes are stable.

More precisely, we prove:

Proposition 2 For both the EPB-based scheme (3.9)-(3.11) or the REPB-based scheme

(3.12)-(3.14), there exists a constant C > 0 independent of λ when λ → 0 such that if

δ ≤ Ch, the scheme is stable.
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This condition states that the schemes are stable irrespective of how small λ is. We

say that the schemes are ’Asymptotically-Stable’ in the limit λ → 0. We note that this

stability condition is similar to the CFL condition of the ICE model, which is the limit

model when λ→ 0.

Proof: We first define conditions such that the constant term of the quadratic equations

(3.15) or (3.16) is less than 1. For the EPB-based scheme (see 3.15), this condition is

δ ≤ 1/βξ2, for all ξ such that |ξ| ≤ π/h. For reasons which will become clear below, we

rather impose:

δ ≤ 1

2βξ2
, ∀ξ such that |ξ| ≤ π

h
, (3.18)

which, with (3.8), is equivalent to:

δ ≤ C1h, with C1 =
1

2cπ2
. (3.19)

For the REPB-based scheme (see 3.16), this condition is

δ ≤ 2β

β2ξ2 + 1
, ∀ξ such that |ξ| ≤ π

h
,

or, with (3.8):

δ ≤ C1h, with C1 =
2c

1 + c2π2
. (3.20)

Now, under these conditions, we are guaranteed that the two roots satisfy (3.17) if and

only if the discriminant of the quadratic equation is non-positive. Indeed, in this condition,

the two roots are conjugate complex numbers and their product, i.e. the square of their

module, which is equal to the constant term of the quadratic equation, is less than one.
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It is a matter of computation to check that the discriminant has the same sign as the

expression F (δ) given by:

F (δ) = δ2 + 4β(1 + λ2ξ2)δ − 4
1 + λ2ξ2

ξ2
, (3.21)

in the case of the EPB-based scheme and by

F (δ) = δ2 − 4β
1 + λ2ξ2

λ2ξ2
δ − 4

1 + λ2ξ2

λ4ξ6
,

in the case of the REPB-based scheme.

In the case of the EPB-based scheme, we use (3.18) to estimate the second term of

F (δ) in (3.21):

F (δ) ≤ δ2 − 2
1 + λ2ξ2

ξ2
,

and a sufficient condition for F (δ) to be non-positive is that δ ≤
√
2(1 + λ2ξ2)1/2|ξ|−1.

This relation is true for all ξ such that |ξ| ≤ π/h if δ ≤
√
2π−1(h2 + λ2π2)1/2 and a

sufficient condition is that δ ≤ C2h, with C2 =
√
2π−1. Now, taking C = min{C1, C2}

with C1 given by (3.19) leads to the result. In fact, the optimal numerical viscosity is

such that C1 = C2, i.e. c = (2
√
2π)−1. In the case of the REPB scheme, we estimate

F (δ) by

F (δ) ≤ δ2 − 4β
1 + λ2ξ2

λ2ξ2
δ,

and a sufficient condition for F (δ) to be non-positive is that δ ≤ 4β(1 + λ2ξ2)(λ2ξ2)−1.

In view of (3.8), this relation is true for all ξ such that |ξ| ≤ π/h if δ ≤ 4c(λ2π2)−1h(h2 +

λ2π2)1/2 and a sufficient condition is that δ ≤ C2h, with C2 = 4c. Now, taking C =

27



min{C1, C2} = C1 with C1 given by (3.20) leads to the result. The optimal numerical

viscosity can be chosen to minimize C, which leads to c = π−1. This ends the proof of

statement 2.

As a conclusion, we can see that both the EPB-based and REPB-based schemes have

similar Asymptotic-Stability properties as λ → 0. Therefore, they must be selected

on the basis of other criteria. The fact that the REPB-based scheme has a well-posed

hydrodynamic part and leads to a discretization of the ICE model in conservative form

in the limit λ→ 0 are indications that this scheme should be preferred to the EPB-based

scheme. In the next section, we will present numerical results that support this statement.

4 Spatial discretization

We introduce (Cj)
N
j=1 a uniform subdivision of the computational domain Ω ∈ R such

that Ω = ∪N
j=1Cj. The interface between Cj and Cj+1 is the point xj+1/2. We denote by

Um
j the approximate vector of the density and momentum at time tm on the cell Cj,

Um
j =









nm
j

(nu)mj









.

We use a time-splitting method to compute the density and momentum at time tm+1.

There are three steps to pass from Um to Um+1 which are described below.
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4.1 Hydrodynamic part

The first step of the splitting is the finite-volume computation of the state U# such that

U# − Um
j

δ
+
Fm
j+1/2 − Fm

j−1/2

h
= 0,

where Fj+1/2 is the numerical flux computed at the interface xj+1/2.

We have used a Local Lax-Friedrichs [22] (or Rusanov [28] or degree 0 polynomial

[16]) solver. This solver is an improved version of the Lax-Friedrich solver which has been

successfully used in conjunction with AP-schemes for the two-fluid Euler-Poisson problem

(see [11]) or for small Mach-number flows [17]. This solver depends on a local estimate of

the maximal characteristic speed. This estimate proceeds as follows. We introduce

(a+)mj+1/2 = max
(

umj+1/2 + 1, umj+1 + 1
)

and (a−)mj+1/2 = min
(

umj − 1, umj+1/2 − 1
)

,

where umj+1/2 = (umj +umj+1)/2. Then, the local maximal characteristic velocity is estimated

by

amj+1/2 = max
(

|(a−)mj+1/2|, |(a+)mj+1/2|
)

,

and the numerical flux at xj+1/2 is given by:

Fj+1/2 =
1

2

(

F (Um
j ) + F (Um

j+1) + amj+1/2

(

Um
j − Um

j+1

))

. (4.1)

The time step δ must satisfy the CFL condition δ
h
≤ max amj+1/2 to ensure stability. In

practice, the time step is chosen at each iteration to enforce this stability condition. As

for boundary conditions, we impose fictitious states Ul and Ur across the left and right

boundaries respectively and compute the corresponding fluxes across the boundaries using

the same formula (4.1).
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4.2 Potential update

The second step of the time-splitting is the computation of the potential. We use n# to

compute φm+1 with the discretized Poisson equation given by a finite difference approxi-

mation of the Poisson equation.

λ2h−2(φm+1
j−1 − 2φm+1

j + φm+1
j+1 ) + e−φm+1

j = n#
j .

The boundary conditions are given by φl = − log n#
l on the left hand side of the domain

and φr = − log n#
r on the right hand side of the domain. The non-linear system is solved

with newton method. This iterative algorithm needs a good initial guess of the solution

to be efficient. The initial guess is the potential at previous time φm. For the first step,

we choose the quasi-neutral potential (φ0
j) = (− log n0

j) as an initial guess.

4.3 Source term

In the REPB form, the source term Q at the right-hand side of (3.3) can be written

according to:

Q = λ2
(

∂x(∂
2
xxφ) + ∂xφ ∂

2
xφ

)

,

This expression is discretized thanks to a finite difference approximation. For a cell Cj in

the domain, the source term Qj is given by centered finite difference approximation:

Qj =
λ2

2h3
((φj+2 − 2φj+1 + 2φj−1 − φj−2) + (φj+1 − 2φj + φj−1) (φj+1 − φj−1)) .
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On the first cell C1 the source term is computed using a decentered finite difference

approximation:

Q1 =
λ2

h3

(

(φ3 − 3φ2 + 3φ1 − φl) +
1

2
(φ2 − 2φ1 + φl) (φ2 − φl)

)

,

and similarly in the last cell.

5 Numerical results

We present three classes of numerical results : the first test case is a solitary wave travelling

in a plasma. This test case shows the ability of the numerical schemes to handle the

dispersive regime. The second test case is related to the quasi-neutral limit λ → 0 of

the Euler-Poisson-Boltzmann model: it is a Riemann problem to check the ability of the

scheme to handle hydrodynamic phenomena like shocks. The last test case has been

previously investigated by Liu and Wang in [23, 24] and corresponds to the occurrence of

multi-valued solutions in the semi-classical setting.

5.1 Soliton test case

5.1.1 Description

The dispersive nature of the Euler-Poisson system is shown in [25]. Therefore, the EPB

system, like other nonlinear dispersive models such as the KdV equation, exhibits solitary

wave solutions. These special solutions are particularly convenient to test the ability of

the EPB and REPB schemes to capture the dispersive regime. Solitary waves also provide
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interesting quantitative checks. Indeed, while travelling through the plasma, the soliton

maintains its shape and velocity. Therefore, one can check the accuracy of the numerical

schemes by observing how well they preserve the soliton shape and velocity over time.

We now summarize the establishment of this special solution. We refer to [5] for a de-

tailed description and physical considerations. For this derivation, we use non-dimensional

units and we now precise the corresponding scaling units. The space scale related to these

solitons is the Debye length λD. For this reason, we take λ = 1 in all this section. The

size of the computational domain is equal to several Debye lengths (about 50λD are used

in the subsequent simulations). The density of the undisturbed plasma (away from the

support of the solitary wave) is chosen as the characteristic density and in dimensionless

units, is equal to 1, so that the electron density is equal to e−φ where φ is the electrostatic

potential energy.

In the frame moving with the wave, we denote by ns, us, φs the density, velocity and

potential of the plasma. These quantities are constant in time, and satisfy the following

relations:

∂x(nsus) = 0,

∂x(nsusus) = ns∂xφs,

∂2xφs = ns − e−φs .

The momentum being uniform in x, we write q = nsus = n0u0 where n0 = ns(0) and

u0 = us(0). The momentum conservation law can be written as ∂xq
2/ns = ns∂xφs.

32



Consequently, we have ∂x (q
2/n2

s) = 2∂xφs. For all x ∈ [0, xmax], we get:

1

2

(

q2

n2
s

)

(x)− 1

2

(

q2

n2
s

)

(0) = φs(x)− φs(0). (5.1)

The potential being defined up to an additive constant, we choose this constant such that

φs(0) = 0. The ion density is then given by

ns(x) =

(

1

n2
0

+
2φs

n2
0u

2
0

)−1/2

, (5.2)

In the present analysis, we assume that n0 = 1, i.e. n0 is equal to the density of the

undisturbed plasma. Inserting this relation in the Poisson equation yields the following

equation for the potential:

∂2xφs =

(

1 +
2φs

u20

)−1/2

− e−φs , (5.3)

with the condition

φs(0) = 0. (5.4)

One needs another condition at x = 0 to set up a Cauchy problem for (5.3). Note that

φs ≡ 0 is an obvious solution of equation (5.3) and satisfies the homogeneous condition

∂xφs(0) = 0. It corresponds to the state of the undisturbed plasma. To capture a non-

trivial solution, we must alter this condition by a small disturbance, setting it to

∂xφs(0) = η, (5.5)

with η ’small’.

The behavior of these solutions can be clarified thanks to the theory of the Sagdeev

potential (which is a primitive with respect to φs of the right-hand side of (5.3)). Details
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on this study can be found in [5]. Here we just recall that shock waves in a cold-ion

plasma can exist only for 1 < u0 < 1.6 (Bohm criterion). The sign of η determines the

type of solution which can be found: a positive η leads to potential barrier that forms a

sheath, whereas a negative value gives rise to a monotonic transition to a negative φ which

forms a solitary wave corresponding to a potential and density disturbance propagating to

the right (for instance) with velocity u0. There is no analytic solution to equation (5.3).

Resorting to numerical simulation is the only way to determine these solutions. Details

about this numerical method are given below. Once the soliton potential is known, the

density is computed thanks to (5.2). Since the present analysis has been performed in a

co-moving frame with the soliton, moving with velocity u0, the velocity in the laboratory

frame is us + u0 with us = q/ns. In the subsequent numerical simulations ns, u0 + us, φs

are taken as an initial condition for the scheme.

5.1.2 Numerical results for the soliton test case

In this test case, where the Debye length and the size of the computational domain are of

the same order, both the EPB and REPB schemes are expected to be correct. However,

this test case provides a way to achieve quantitative comparisons of the numerical solutions

to an analytical reference solution. These comparisons permit to quantify the order of

accuracy and amount of numerical diffusion of the two schemes. The analytical solution

is easily obtained at time t by a spatial translation of the solution at time 0 of a distance

u0t.

This test case is implemented as follows. The boundary conditions are periodic, which
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ensures that the soliton can be tracked on long simulation times without the need for a

large computational domain. The length L of the computational domain is defined in

relation to the choice of the initial condition as explained below. We denote by tL = L/u0

the travel time of the soliton in the domain [0, L] . First a numerical solution of (5.3)

with initial conditions (5.4), (5.5) is computed with an explicit finite difference scheme on

a mesh of step ∆xref and provides the reference solution. ∆xref is chosen small enough to

provide an almost ’exact’ reference solution.

For suitable η and u0 given by the study of the Sagdeev potential [5], the potential

oscillates in space for positive x. One wants a single potential well to initialize the scheme.

To this aim the number of nodes N ref is taken such that the initial condition shows a single

peak. Moreover, it is such that φref
Nref is close enough to 0 to ensure that periodic boundary

conditions will be accurate enough. This reference solution is interpolated to provide an

initial condition for the EPB and REPB schemes, and to compute numerical errors on

the density, momentum and potential.

The results of this comparisons are now commented. Figure 1 and 2 show the density

and velocity in a soliton at times 0, tL/5, 2tL/5 and tL, computed with the reformu-

lated scheme. The shape of the initial condition is conserved with time, but the peak is

damped and does not return to its original location after tL. This effect is due to the

numerical diffusion, which is inherent to the numerical method, and can be observed with

the classical scheme as well. In order to accurately compare the reformulated and classical

schemes, one needs to perform a more precise study of this damping. The forthcoming

convergence study uses six grids, with a range of space steps from h to h/64, where h
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corresponds to 250 cells. It confirms that both schemes are first order in space, and even

if the REPB scheme suffers from a larger numerical diffusion than the classical one, both

provide satisfactory results for this test case.
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Figure 1: Density (left) and momentum (right) as a function of space, for a soliton moving

to the right, at time 0, tL/5, 2tL/5 and tL, computed with the REPB scheme. At time

tL the wave has travelled through the whole computational domain. The damping of the

density and velocity peaks are clearly visible due to the large space step, ∆x = h/4.

The numerical convergence of the schemes in space is investigated by comparison with

the reference solution; at time t/5 the L∞ relative error with the reference solution is

computed. For instance the density error is

εEPB(n) =
max ||nnum − nref ||∞

||nref ||∞
,

where nref is the density of the reference solution, i.e. the initial density translated by L/5,

and nnum is the density computed with the classical scheme. Such errors are defined for

the reformulated scheme and for the momentum and potential. The schemes are tested

on six grids, made of 250, 500, 1000, 2000, 4000, 8000 and 16000 cells. Table 1 and figure 3
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Figure 2: Density (left) and momentum (right) as a function of space, for a soliton moving

to the right, at time 0, tL/5, 2tL/5 and tL, computed with the REPB scheme. At time tL

the wave has travelled through the whole computational domain. The solution at time tL

can be superimposed to the solution at time 0, since the grid is fine enough (∆x = h/64)

and the numerical diffusion is very small.

confirm that both numerical schemes are first order in space. The REPB scheme suffers

from a larger numerical dissipation than the EPB scheme.

The numerical dissipation of the schemes can be measured in another way. Indeed, the

amplitude of the numerical soliton is damped with time. The following study quantifies

the damping rates of both the EPB and REPB schemes. This study is performed on

a long time simulation: its final time is 2tL. This study compares the damping rate of

the density amplitude over one time increment ∆t (not related with the numerical time

step), at different times of the simulation. The time increment ∆t is tL/5. The density

amplitude nmax((k + 1)∆t) is compared to the density amplitude at the previous time

increment nmax(k∆t) for 0 ≤ k ≤ 9. We measure the decrement of the amplitude ∆k
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N εEPB(n) εREPB(n) εEPB(nu) εREPB(nu) εEPB(φ) εREPB(φ)

h 0.053 0.102 0.111 0.215 0.066 0.116

h/2 0.028 0.060 0.060 0.131 0.028 0.066

h/4 0.014 0.035 0.032 0.073 0.014 0.035

h/8 7.6× 10−3 18.5× 10−3 1.64× 10−2 3.87× 10−2 7.12× 10−3 18.4× 10−3

h/16 3.86× 10−3 9.57× 10−3 8.40× 10−3 2.00× 10−2 3.50× 10−3 9.42× 10−3

h/32 1.76× 10−3 4.67× 10−3 3.83× 10−3 1.00× 10−2 2.31× 10−3 4.71× 10−3

h/64 8.89× 10−4 2.37× 10−3 1.97× 10−3 5.09× 10−3 1.07× 10−3 2.41× 10−3

Table 1: Comparison of the error in L∞ norm for the density, momentum and potential

with various space grid sizes using the EPB and REPB schemes. The computation of the

error is made with the analytical solution for the soliton test case
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Figure 3: Comparison of the error in L∞
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tential with various spacial mesh sizes ∆x

for the EPB and REPB schemes. Both

schemes are first order in space.
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between k∆t and (k + 1)∆t as follows:

∆k =
1

∆t

∣

∣

∣

∣

ln

(

nmax((k + 1)∆t)

nmax(k∆t)

)∣

∣

∣

∣

(5.6)

The damping rate of the wave amplitude appears on figure 4 for both the EPB and REPB

schemes. Two spatial grids are used for this comparison: a coarse grid with 1000 cells

and a fine grid with 16000 cells. The REPB scheme shows a larger dissipation than the

classical one. The evolution of the damping rates with simulation time is similar for

the two schemes : on a coarse grid the peak is damped faster at the beginning of the

simulation.

1 2 3 4 5 6 7 8 9 10
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

k

∆ k

Damping on soliton (density amplitude )

EPB coarse
REPB coarse
EPB fine
REPB fine

Figure 4: Comparison of the damping rates for the density amplitude of the soliton for

the EPB and REPB schemes on two different spatial mesh sizes: a coarser grid with 1000

cells and a finer grid with 16000 cells are used for both schemes.
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5.2 Riemann problem

The previous test case, in which the domain size and Debye length are of the same order

of magnitude, was designed for the dispersive regime λ = O(1). The present test case

aims at investigating how the schemes perform in the hydrodynamic (or quasi-neutral)

regime λ ≪ 1. Therefore, in this test case, values of λ ranging from small to very small

small are used. When λ is small, the REPB model explicitly appears as a perturbation

of the ICE model, which is a strongly hyperbolic and conservative model. Therefore the

REPB-based scheme should be accurate in the hydrodynamic regime, in particular for the

computation of solutions involving discontinuities. By contrast, the hydrodynamic part

of the EPB model is a pressureless gas dynamics model, which is not strictly hyperbolic,

and is thus weakly unstable. For this reason, the EPB-based scheme is expected to be

less accurate in the small Debye length limit. The present test problem aims at testing

the validity of these predictions.

The test case is a shock tube problem involving two outgoing shock waves. The initial

density is a constant, while the initial velocity has a jump at x = 0 between the constants

uL = +1 and uR = −1. The density in the intermediate state of the Riemann problem

is larger and the velocity is zero. Two outgoing shock waves appear on each side of this

intermediate state. The computational domain is [−0.2; 0.2]. The dimensionless Debye

length λ varies from 10−2 to 10−4.

The value λ = 10−2 is large enough for singularities near the shock waves to appear,

due to the dispersive nature of the Euler-Poisson-Boltzmann model. In the semi-classical
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setting, the framework of multi-valued solutions [23, 24] can be used to explain the qual-

itative features of the classical solutions. Indeed, classical solutions keep a signature of

these underlying multi-valued solutions, in the form of singularities (when the number

of branches changes) and oscillations (when several branches co-exist and the solution

’oscillates’ between these branches). In the λ → 0 limit, the entropic solutions of the

ICE model capture the average value of these oscillations, but not the details of them.

As we will see, the EPB-based scheme keeps better track of these oscillations but when

the mesh size does not resolve the Debye length, the oscillations become mesh-dependent.

On the other hand, the REPB-based scheme directly provides the entropic solution of the

limiting ICE model and is better suited to capture the average value of these oscillations

(i.e. the weak limit of the solutions of the EPB model when λ→ 0).

Fig. 5 confirms that the numerical solution provided by the EPB-based scheme in

under-resolved situation is mesh-dependent. It displays the density computed by the

EPB-based schemes for two different mesh sizes. The density peaks computed on the finer

mesh are much finer and higher than those computed on the coarse mesh. By contrast,

the velocity and potential remain finite regardless of the mesh size (not displayed). Fig.

6 shows the velocity and potential computed with the EPB-based scheme compared to

the REPB-based scheme. Like in the soliton test case, the REPB-based scheme shows a

slightly larger numerical dissipation.

The value λ = 10−4 is small enough to observe the hydrodynamic regime. Both

schemes show an accurate determination of the shock speed but the EPB scheme leads

to spurious oscillations in the neighborhood of the shock. These oscillations are shown
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Figure 5: Density as a function of space for the Riemann shock-wave problem at time

t = 0.2 with dimensionless Debye length λ = 10−2. Left: classical scheme with a coarse

grid (N = 2000). Right: classical scheme with a fine grid (N = 32000). Density peaks

are sharpened when the mesh size decreases
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on figure 7. They are mesh dependent and occur even with smaller dimensionless Debye

length λ. Whatever the mesh size is the solution computed with the reformulated REPB

scheme does not present such oscillations.
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Figure 7: Density as a function of space for the Riemann shock-wave problem at time t =

0.1 and t = 0.2 with dimensionless Debye length λ = 10−4. Left: EPB and REPB-based

schemes on a coarse grid (N = 2000). Right: same schemes on a fine grid (N = 32000).

This test case shows that the EPB and REPB-based schemes have a very different

behavior when λ≪ 1. In such under-resolved situations, while the EPB scheme presents

mesh-dependent oscillations of finite amplitude, the REPB-based scheme provides an ac-

curate approximation of the entropic solution of the limiting ICE model. As a conclusion,

the REPB-based scheme should be preferred for the λ≪ 1 regime.
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5.3 Dispersive solutions test-cases

5.3.1 Description

In this section, we present test-cases which are inspired from [24]. In [24], the goal was to

explore the computation of multi-valued solutions in the semi-classical setting by means

of the level-set method. Here we consider only classical solutions. The first test case is

referred to as a five branch test case (because it corresponds to the occurrence of a five

branch multi-valued solutions in the semi-classical setting). The second test is a seven

branch test case (for the same reason). The initial densities of both test-cases are bumps

with a gaussian shape. This shape leads to a potential well which generates an induced

electric field. This electric field in turn contracts the density bump leading to a positive

feedback amplification. This effect can be further amplified by setting up appropriate

initial velocities. In the dispersive regime the amplification of the density peak can lead

to singularities, whereas in the hydrodynamic regime the density spreads out in the entire

computational domain and its profile remains smooth.

The emergence of singularities has been investigated by Liu and Wang [23, 24]. The

authors compute multi-valued solution for similar test cases but with the standard Poisson

equation (without the exponential term coming from the Boltzmann relation) that allows

the computation of analytical solutions. Here, no analytical solution is available but the

two schemes (EPB and REPB) are tested one against each other and against a numerically

computed reference solution on a very fine mesh. Due to the singularities appearing when

λ = 1 the numerical error is computed with the potential, which remains finite in every
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situation. The tests are run with λ = 1 and λ = 10−2 in order to explore both the

dispersive and hydrodynamic regimes. The results would be similar if λ was further

reduced.

5.3.2 Five-branch solution

The initial condition for this first test-case is given by

n0 =
1

π
e−(x−π)2 ,

u0 = sin3 x.

The computational domain is [0, 2π]. The initial density and velocity appear on figure

8 and 9, together with the numerical solutions computed at time t = 1 by means of the

EPB and REPB-based schemes. Table 2 shows the numerical error on the potential by

comparison against a solution computed with the classical scheme on a fine grid.

N εEPB(φ), λ = 1 εREPB(φ), λ = 1 εEPB(φ), λ = 10−2 εREPB(φ), λ = 10−2

8000 5× 10−5 1.4× 10−4 4.0× 10−4 7.6× 10−4

4000 1.5× 10−4 2.8× 10−4 1.0× 10−3 1.8× 10−3

2000 3.4× 10−4 5.4× 10−3 2.3× 10−3 3.7× 10−3

Table 2: Five-branch test case : comparison of the error in L∞ norm on the potential

for various grid sizes and dimensionless Debye length λ using the EPB and REPB-based

schemes.
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Figure 8: Density (left) and velocity (right) as a function of space for the five-branch

test case. The dimensionless Debye length λ is 1. Numerical solutions at time t = 1 are

computed with the EPB and REPB-based schemes on a grid with 2000 cells.
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Figure 9: Density (left) and velocity (right) as a function of space for the five-branch test

case. The dimensionless Debye length λ is 10−2. Numerical solutions at time t = 1 are

computed with the EPB and REPB-based schemes on a grid with 2000 cells.
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5.3.3 Seven-branch solution

The initial condition for this second test-case is given by

n0 =
1

π
e−(x−π)2 ,

u0 = sin(2x) cos x.

The initial density and velocity appear on figure 10 and 11, together with the numerical

solutions computed at time t = 1 using the EPB and REPB-based schemes. Table 3

shows the numerical error on the potential by comparison against a solution computed

with the classical scheme on a fine grid.

N εEPB(φ), λ = 1 εREPB(φ), λ = 1 εEPB(φ), λ = 10−2 εREPB(φ), λ = 10−2

8000 4.6× 10−5 4.5× 10−4 2.3× 10−4 7.6× 10−4

4000 1.4× 10−4 7.4× 10−4 6.7× 10−4 1.6× 10−3

2000 3.2× 10−4 1.2× 10−3 1.29× 10−3 3.5× 10−3

Table 3: Seven-branch test case : comparison of the error in L∞ norm on the potential for

various grid sizes and dimensionless Debye length λ using the classical and reformulated

Euler-Poisson-Boltzmann schemes.

5.3.4 Analysis of the results for the five and seven branch test cases

In both the dispersive (λ = 1) and hydrodynamic (λ = 10−2) regimes, the two schemes

give similar results. On figure 8, 9, 10 and 11, overlapping lines for the solution at time

t = 1 computed with the EPB and REPB-based schemes confirm this similar behavior.

48



0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Position x

D
en

si
ty

7 branches test case, time t = 1, λ = 10−0

t=0
EPB
REPB

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Position x

V
el

oc
ity

7 branches test case, time t = 1, λ = 10−0

t=0
EPB
REPB

Figure 10: Density (left) and velocity (right) as a function of space for the seven-branch

test case. The dimensionless Debye length λ is 1. Numerical solutions at time t = 1 are

computed with EPB and REPB-based schemes on a grid with 2000 cells.
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Figure 11: Density (left) and velocity (right) as a function of space for the seven-branch

test case. The dimensionless Debye length λ is 10−2. Numerical solutions at time t = 1

are computed with EPB and REPB-based schemes on a grid with 2000 cells.
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One can exhibit some differences thanks to the numerical convergence study. Tables 2

and 3 show the same differences between the two schemes as in the previously discussed

soliton test case. The error of the reformulated scheme is slightly larger than that of the

classical scheme, and this difference is more obvious when λ = 1.

6 Conclusion

In this paper, we have analyzed two schemes for the Euler-Poisson-Boltzmann (EPB)

model of plasma physics, and compared them in different regimes characterized by dif-

ferent values of the dimensionless Debye length λ. The dispersive regime corresponds to

λ = O(1) while the hydrodynamic regime is characterized by λ ≪ 1. When λ → 0, the

EPB model formally converges to the Isothermal Compressible Euler (ICE) model. The

first scheme we have considered is based on the original EPB formulation of the model.

The second one uses a reformulation (referred to as the REPB model) in which the model

more explicitly appears as a singular perturbation of the ICE Model.

We have provided a stability analysis of the two schemes, showing that both schemes

are stable in both the dispersive and hydrodynamic regimes, with stability constraints

on the time and mesh steps which are independent of λ when λ → 0. Finally, we have

tested them on three different one-dimensional test problems. The first test problem, the

soliton test, provides an analytical solution in the dispersive regime. The second test

problem, the Riemann problem with two expanding shock waves, is suitable to explore

the hydrodynamic regime. Finally, the third test problem involves singularity formation
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in the dispersive regime.

We have concluded that both scheme have similar behavior in the dispersive regime

(with a slightly increased, but perfectly acceptable numerical diffusion in the case of the

REPB-based schemes). By contrast, in the hydrodynamic regime, the EPB-based schemes

develop oscillations and singularities, which, in under-resolved situations (i.e. when the

time and space steps are too large to resolve the spatio-temporal variations of the solution)

prevent any grid convergence of the solution. By contrast, the REPB-based scheme well

captures the entropic solution of the ICE model, which provides a good approximation of

the weak limit of the dispersive (oscillatory) solutions of the EPB model in the small λ

regime.

Future works concern the extension of this analysis to the two- or multi-dimensional

case, the passage to second order schemes and the pursuit of the analytical investigations

of the accuracy and stability of the schemes in both regimes.
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