Université Paul Sabatier

Année 2007-2008

Option Informatique et Mathématiques, Licence 1ère année

Devoir à la maison à rendre en cours la semaine du 12 novembre

Problème 1

On se propose dans ce problème d'analyser le coût d'un emprunt banquaire. Un couple décide d'emprunter une somme $C \in]0, +\infty[$ sur une durée de $d \in \mathbb{N}^*$ années. Leur banque leur propose un emprunt avec un taux annuel $\tau \in]0, +\infty[$. Chaque mois, le couple versera une somme constante $e \in]0, +\infty[$, appelée la mensualité, contituée d'une fraction du capital à rembourser et d'intérêts à payer. On définit $m=12\times d$ le nombre de mensualités de l'emprunt et $T=\tau/12$ le pourcentage d'intérêts mensuel. Ce pourcentage signifie que chaque début de mois, le couple doit payer des intérêts pour un montant égal à T fois le capital restant dû (c.-à-d. non encore remboursé).

On note $l=1, \dots m$ les mois pendant lesquels l'emprunt court, l=1 étant le premier et l=m le dernier. On introduit alors une numérotation inversée qui va faciliter les calculs, c'est à dire qu'on note n=m-l+1 pour tout $l=1, \dots m$. Ainsi, n=1 correspond au dernier mois, n=2 l'avant dernier,..., n=m au premier mois.

Pour calculer les mensualités, on introduit deux suites réelles

 $I_n =$ part des intérêts à payer le mois n, $C_n =$ part du capital à rembourser le mois n,

pour $n=1,\cdots,m.$ On peut alors écrire les deux équations suivantes :

1. La mensualité est la somme des parts des intérêts et du capital à payer chaque mois

$$I_n + C_n = e, (1)$$

pour tout $n = 1, \dots, m$.

2. À la fin de l'emprunt, tout le capital à été remboursé

$$\sum_{n=1}^{m} C_n = C. \tag{2}$$

Question 1 Traduire par une relation mathématique la règle suivante "Au mois n, la part d'intérêts à payer est T fois le capital restant dû". En déduire la relation suivante

$$T\sum_{k=1}^{n} C_k + C_n = e. (3)$$

Question 2: En utilisant (3), montrez que pour tout $n = 1, \dots, m$ on a

$$T C_{n+1} + C_{n+1} - C_n = 0,$$

Question 3 : Déduisez en une relation de récurrence pour la suite (C_n) , puis C_n en fonction de C_1 pour tout $n = 1, \dots, m$.

Question 4 : Pour tout $n=1,\cdots,m$, insérez dans (2), l'expression de C_n déterminée dans la question précédente. Déduisez en la valeur de C_1 .

Question 5 : Pour tout $n = 1, \dots, m$, déterminez C_n et I_n en fonction de n, T et C.

Question 6 : Calculez la mensualité e et déduisez en le coût du crédit c'est à dire la somme des intérêts payés. Déterminez la limite de e lorsque m tend vers $+\infty$.

Question 7 : Le couple décide d'emprunter 100 000 Euros, le taux de la banque est $\tau = 4.8$.

 ${\bf Question~7.1:} {\bf Si} {\bf \ le \ couple \ décide \ d'emprunter \ sur \ 15 \ ans, \ déterminez \ la \ mensualité ainsi que le coût du crédit.$

Question 7.2 : Quels sont la mensualité et le coût du crédit si le couple décide d'emprunter sur 7.5 ans au lieu de 15 ans ? Même question pour une durée de 30 ans.

Question 7.3: Comparez les coûts de ces trois configurations d'emprunt.

Question 7.4 : Ce couple gagne 3000 Euros par mois, déterminez la durée minimale de l'emprunt sachant que les mensualités ne peuvent pas dépasser le tiers de leur revenu mensuel.

Exercice 2

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence

$$u_{n+1} = (u_n)^2 (1 - (u_n)^2),$$

pour tout $n \ge 0$ et $u_0 \in]0,1[$ donné.

- Montrez par récurrence que

$$0 \le u_n \le \frac{1}{n+1},$$

pour tout $n \geq 0$. Attention, on demande une rédaction complète, soigneusement rédigée.

- Déduisez en la limite de (u_n) lorsque $n \to +\infty$. Là encore justifiez soigneusement tout ce que vous écrivez.