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Abstract

We are interested in the existence of travelling-wave solutions to a system which

modelizes the motion of an uncharged impurity in a Bose condensate. We prove that

in space dimension one, there exist travelling-waves moving with velocity c if and only

if c is less than the sound velocity at infinity. In this case we investigate the structure

of the set of travelling-waves and we show that it contains global subcontinua in

appropriate Sobolev spaces.
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1 Introduction.

This paper is devoted to the study of a special kind of solutions of a system describing
the motion of an uncharged impurity in a Bose condensate. In dimensionless variables, the
system reads

(1.1)






2i
∂ψ

∂t
= −∆ψ + 1

ε2
(|ψ|2 + 1

ε2
|ϕ|2 − 1)ψ

2iδ
∂ϕ

∂t
= −∆ϕ + 1

ε2
(q2|ψ|2 − ε2k2)ϕ.

Here ψ and ϕ are the wavefunctions for bosons, respectively for the impurity, δ = µ
M

where µ is the mass of impurity and M is the boson mass (δ is supposed to be small),
q2 = l

2d
, l being the boson-impurity scattering length and d the boson diameter, k is

a dimensionless measure for the single-particle impurity energy and ε is a dimensionless
constant (ε = ( aµ

lM
)

1

5 , where a is the “healing length”; in applications, ε ∼= 0.2). Assuming
that we are in a frame in which the condensate is at rest at infinity, the solutions must
satisfy the “boundary conditions”

(1.2) |ψ| −→ 1, ϕ −→ 0 as |x| −→ ∞.
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This system (originally introduced by Clark and Gross) was studied by J. Grant and
P. H. Roberts (see [5]). Using formal asymptotic expansions and numerical experiments,
they computed the effective radius and the induced mass of the uncharged impurity.

We consider here the system (1.1) in a one dimensional space and we look for solitary
waves, that is for solutions of the form

(1.3) ψ(x, t) = ψ̃(x− ct), ϕ(x, t) = ϕ̃(x− ct).

This kind of solutions corresponds to the case where the only disturbance present in the
condensate is that caused by the uniform motion of the impurity with velocity c. In view
of the boundary conditions, we seek for solutions of the form

(1.4) ψ̃(x) = (1 + r̃(x))eiψ0(x), ϕ̃(x) = ũ(x)eiϕ0(x)

with r̃(x) −→ 0, ũ(x) −→ 0 as |x| −→ ∞. By an easy computation we find that the real
functions ψ0, ϕ0, r̃, ũ must satisfy

(1.5) ψ′
0 = c(1 − 1

(1 + r̃)2
),

(1.6) ϕ′
0 = cδ,

(1.7) r̃′′ = c2
( 1

(1 + r̃)3
− (1 + r̃)

)
+

1

ε2

(
(1 + r̃)3 − (1 + r̃) +

1

ε2
(1 + r̃)ũ2

)
,

(1.8) ũ′′ =
(q2

ε2
(1 + r̃)2 − c2δ2 − k2

)
ũ.

From (1.6) we see that necessarily ϕ0(x) = cδx+C. Note that the system is invariant under
the transform (ψ, ϕ) 7−→ (eiαψ, eiβϕ), so the integration constants in (1.5) and (1.6) are
not important. Thus all we have to do is to solve the system (1.7)-(1.8). Thereafter it will
be easy to find the corresponding phases from (1.5)-(1.6) and (1.4) will give a solitary-wave
solution of (1.1).

After the scale change ũ(x) = 1
ε
u(x

ε
), r̃(x) = r(x

ε
), we find that the functions r and u

satisfy

(1.9) r′′ = (1 + r)3 − (1 + r) − c2ε2
(
1 + r − 1

(1 + r)3

)
+ (1 + r)u2,

(1.10) u′′ = (q2(1 + r)2 − λ)u,

where

(1.11) λ = ε2(c2δ2 + k2).

The equation r′′ = (1 + r)3 − (1 + r) − v2

4

(
1 + r − 1

(1+r)3

)
+ (1 + r)U , where U is a

positive Borel measure, was studied in [7]. In the case U ≡ 0, it has been shown that this
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equation has only the trivial solution r ≡ 0 if |v| ≥
√

2 ; for 0 < |v| <
√

2, it also admits
the solution

(1.12) rv(x) = −1 +

√
v2

2
+ (1 − v2

2
) tanh2(

√
2 − v2

2
x).

Moreover, any other nontrivial solution is of the form rv(·−x0) for some x0 ∈ R. Equation
(1.10) is linear in u ; more precisely, u must be an eigenvector of the linear operator
− d2

dx2 + q2(1 + r)2 corresponding to the eigenvalue λ = ε2(c2δ2 + k2).
It is now clear that except for translations, the only solutions of (1.9)-(1.10) of the form

(r, 0) are (0, 0) and (r2cε, 0) (the latter one exists only for |cε| < 1√
2
). We call these solutions

the trivial solutions of (1.9)-(1.10). We will prove that there exist non-trivial solutions of
(1.9)-(1.10) in a neighbourhood of (r2cε, 0) (for suitable values of the parameter λ) and we
will study the global structure of the set of non-trivial solutions.

It has been shown (see e.g. [7] and references therein) that using the Madelung’s
transform ψ =

√
ρeiψ0 , the first equation in (1.1) can be put into a hydrodynamical form

(i.e. it is equivalent to a system of Euler equations for a compressible inviscid fluid of
density ρ and velocity ∇ψ0). In this context, 1

ε
√

2
represents the sound velocity at infinity.

It will be proved at the beginning of section 3 that (1.1) does not possess non-constant
travelling-vaves moving with velocity |c| ≥ 1

ε
√

2
. Hence we will assume throughout that

|c| < 1
ε
√

2
.

Observe that the system (1.9)-(1.10) has a good variational formulation : its solutions
are critical points of the “energy” functional. Indeed, since 1 + r̃ = |ψ̃| ≥ 0, it is clear
that we must have r̃ ≥ −1. Therefore we will seek for solutions r of (1.9) with r > −1.
Let V = {r ∈ H1(R) | inf

x∈R

r(x) > −1}. It is obvious that V is open in H1(R) because

H1(R) ⊂ C0
b (R) by the Sobolev embedding. A pair (r, u) ∈ V ×H1(R) satisfy (1.9)-(1.10)

if and only if (r,u) is a critical point of the C∞ functional E : V ×H1(R) −→ R,

(1.13)

E(r, u) =
∫

R

|r′|2dx+
1

2

∫

R

(
(1 + r)2 − 1

)2(
1 − 2c2ε2

(1 + r)2

)
dx

+
∫

R

u2(1 + r)2dx+
1

q2

∫

R

|u′|2dx− λ

q2

∫

R

u2dx.

However, E(r, ·) is quadratic in u for any fixed r and it would be very difficult to find
critical points of E by using a classical topological argument.

In this paper we use bifurcation theory to show the existence of nontrivial solitary waves
for the system (1.1). Note that this system (or equivalently (1.9)-(1.10)) is invariant by
translations. To avoid the degeneracy of the linearized system due to this invariace, we
work on symmetric function spaces. Consequently, the travelling-waves that we obtain will
also present a symmetry. To be more precise, we will use the spaces

H = H2
rad(R) = {u ∈ H2(R) | u(x) = u(−x), ∀x ∈ R} and

L = L2
rad(R) = {u ∈ L2(R) | u(x) = u(−x), a.e. x ∈ R}.

Clearly H∩V is an open set of H. We define S : (H∩V )×H −→ L, T : R×H×H −→ L,

(1.14) S(r, u) = −r′′ + (1 + r)3 − (1 + r) − c2ε2
(
1 + r − 1

(1 + r)3

)
+ (1 + r)u2,
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(1.15) T (λ, r, u) = −u′′ + (q2(1 + r)2 − λ)u.

It is obvious that S and T are well defined and of class C∞ (recall that H ⊂ C1
b (R) and

H is an algebra). Clearly r and u satisfy the system (1.9)-(1.10) if and only if S(r, u) = 0
and T (λ, r, u) = 0.

In the next section, we will study the structure of the set of nontrivial solutions in a
neighbourhood of the trivial ones. It follows easily from the Implicit Function Theorem
that there are no nontrivial solutions of (1.9)-(1.10) in a neighbourhood of (λ, 0, 0) for
λ < q2 (see the proof of Theorem 3.8). It is well-known that we may have nontrivial
solutions arbitrarily close to (λ, r2cε, 0) if and only if the differential d(r,u)(S, T )(λ, r2cε, 0) is
not invertible. For λ < q2, we will see that d(r,u)(S, T )(λ, r2cε, 0) is not invertible if and only
if λ is an eigenvalue of the particular Schrödinger operator given by (1.10). In this case
we show that all the nontrivial solutions in a neighbourhood of (λ, r2cε, 0) form a smooth
curve in R × H× H.

It is natural to ask how long such a branch of solutions exists. Recently, there were
obtained general global bifurcation results for C1 Fredholm mappings of index 0 which
apply to a broad class of elliptic equations in RN (see, e.g., [9], [10]). Using the ideas and
techniques developed in [11] it can be proved that for any fixed λ < q2, the mapping
(S, T (λ, ·, ·)) : (H∩V )×H −→ L×L is Fredholm of index 0. By a general global bifurcation
theorem (a variant of Theorem 6.1 in [9]) one can prove that either the branch of nontrivial
solutions of (1.9)-(1.10) starting from a bifurcation point (λ, r2cε, 0) is noncompact in R×
H×H or it meets [q2,∞)×H×H (note that [q2,∞) is the essential spectrum of the linear
Schrödinger operator appearing in (1.10)).

To obtain further information (such as unboundedness) about the branches of nontrivial
solutions, a key ingredient would be the properness of the operator (S, T ), at least on closed
bounded sets. Unfortunately, it is easy to see that the operator (S, T ) is not proper on
closed bounded sets. Indeed, it suffices to take rn = r2cε(· − n) + r2cε(·+ n) and to observe
that (S, T )(λ, rn, 0) −→ (0, 0) as n −→ ∞, the sequence (rn) is bounded in H but has no
convergent subsequence.

In order to obtain a more precise description of the branches of nontrivial solutions
and to avoid troubles due to the lack of properness, we choose a different approach : we
reformulate the problem and we work on some weighted Sobolev space (which is a subspace
of H). In section 3, we use a variant of the Global Bifurcation Theorem of Rabinowitz
([12]) to obtain global branches of solutions of (1.9)-(1.10) in that space. Note that the use
of a slowly increasing weight (for example, (1+x2)s for s > 0) is sufficient to eliminate the
lack of properness and to obtain global branches of travelling-waves. It is worth to note
that for λ < q2, any nontrivial travelling-wave which is in H also belongs to the weighted
space which is used (i.e., there is no loss of solutions). We show that there exists exactly
one branch of nontrivial solutions bifurcating from the curve (λ, r2cε, 0) if q ≤ 1√

2 ln 2
. The

number of these branches is increasing with q and tends to infinity as q −→ ∞. We will
prove that any of these branches is either unbounded (in the weighted space) or λ tends
to q2 along it. On the other hand, we prove that there are no nontrivial solutions of
(1.9)-(1.10) for λ > q2.
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2 Local curves of solutions

In order to prove a local existence result of nontrivial solitary waves for the system (1.1),
we have to study the properties of the linear operator A = − d2

dx2 + q2(1 + r2cε)
2, which

can be written as A = − d2

dx2 + q2r2cε(2 + r2cε) + q2. Since −1 < r(x) < 0 for any x ∈ R,
the function r2cε(2 + r2cε) is everywhere negative (and even). Actually, in a slightly more
general framework, we will study the operator L = − d2

dx2 + V (x) for a negative potential
V , the properties of A being then deduced from those of L by a shift. For any λ ≤ 0, we
also consider the Cauchy problem

(2.1)

{
−u′′(x) + V (x)u(x) = λu(x),
u(0) = 1, u′(0) = 0.

If V is continuous and even (i.e., V (x) = V (−x)), it is clear that problem (2.1) has an
unique global solution which is also even. We denote by uλ this solution and by n(λ) the
number of zeroes of uλ in (0,∞).

Proposition 2.1 Let V ∈ L2 ∩L∞(RN), V 6≡ 0 be continuous, less than or equal to zero,
even, and satisfy lim

x−→±∞
V (x) = 0. The operator L = − d2

dx2 +V (x) : H −→ L is self-adjoint

and has the following properties :
i) σess(L) = [0,∞).
ii) L has at least one negative eigenvalue.
iii) Any eigenvalue of L is simple.
iv) For any λ < 0 and ε > 0, there exists C > 0 such that

(2.2) |u(m)
λ (x)| ≤ Ce

√
−λ+ε|x|, m = 0, 1, 2.

If λ < 0 is an eigenvalue and 0 < ε < −λ, there exist C1, C2,M > 0 such that

(2.3) C1e
−
√
−λ+ε|x| ≤ |u(m)

λ (x)| ≤ C2e
−
√
−λ−ε|x| on [M,∞), m = 0, 1, 2.

v) For any λ ≤ 0, the number of eigenvalues of L in (−∞, λ) is exactly n(λ), the number
of zeroes of uλ in (0,∞).

vi) If
∫ ∞

0
x|V (x)|dx <∞, then L has at most 1 +

∫ ∞

0
x|V (x)|dx negative eigenvalues.

Proof. i) The operator − d2

dx2 +V (x) on L2(R) (with domain H2(R)) is self-adjoint, so it is
easy to see that L is self-adjoint. Multiplication by V is a relatively compact perturbation
of −∆ and it follows from a classical theorem of Weyl that σess(L) = σess(−∆) = [0,∞).

ii) It suffices to show that there exists u ∈ H such that 〈Lu, u〉L < 0 and it will
follow from the Min-Max Principle (see [13], Theorem XIII.1, p.76) that L has negative
eigenvalues. Consider an even function u ∈ C∞

0 such that u ≡ 1 on [−1, 1] and u is
non-increasing on [0,∞). Let un(x) = u( x

n
). Then

〈Lun, un〉L =
1

n

∫

R

|u′(x)|2dx+
∫

R

|u(x
n

)|2V (x)dx −→
∫

R

V (x)dx < 0

as n −→ ∞, so 〈Lun, un〉L < 0 for n sufficiently large.
iii) Clearly, λ is an eigenvalue of L if and only if uλ ∈ H. If this is the case, it is obvious

thatKer(L−λ) = Span{uλ}. Since L is self-adjoint, we haveKer(L−λ)∩Im(L−λ) = {0},
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so for any n ∈ N∗ we have Ker(L− λ)n = Ker(L− λ) = Span{uλ}, that is λ is a simple
eigenvalue.

iv) By (2.1), uλ and u′λ cannot vanish simultaneously, so uλ must change sign any time
it vanishes and uλ has only isolated zeroes. There exists d > 0 such that V (x)−λ > −λ

2
> 0

on [d,∞) because V (x) −→ 0 as x −→ ∞. Two situations may occur :
1◦. There exists x0 > d such that uλ(x0) and u′λ(x0) have the same sign, say, they

are positive. Then u′′λ = (V (x) − λ)uλ, so u′′λ will remain positive after x0 as long as
uλ > 0, which implies that u′λ is increasing, hence it remains positive as long as uλ > 0.
Consequently, uλ is increasing after x0 as long as it remains positive, which implies that
uλ is positive and increasing on [x0,∞). Since u′λ(x) ≥ u′λ(x0) > 0 for any x > x0, we
have necessarily lim

x→∞
uλ(x) = ∞. By (2.1) we find that lim

x→∞
u′′λ(x) = ∞, so we have also

lim
x→∞

u′λ(x) = ∞. Let f(x) = (u′λ(x))
2 and g(x) = u2

λ(x). Clearly, f(x) −→ ∞, g(x) −→ ∞
as x −→ ∞ and

f ′(x)

g′(x)
=
u′′λ(x)

uλ(x)
= V (x) − λ −→ −λ as x −→ ∞.

L’Hôspital’s rule implies that lim
x→∞

f(x)
g(x)

= −λ, which gives lim
x→∞

u′
λ
(x)

uλ(x)
=

√
−λ. Thus for any

ǫ > 0, there exists xǫ > 0 such that

(2.4)
√
−λ− ǫ <

u′λ(x)

uλ(x)
<

√
−λ+ ǫ on [xǫ,∞).

Integrating (2.4) from xǫ to x we get for any x > xǫ,

√
−λ− ǫ(x− xǫ) < ln uλ(x) − ln uλ(xǫ) <

√
−λ+ ǫ(x− xǫ),

that is

(2.5) uλ(xǫ)e
√
−λ−ǫ(x−xǫ) < uλ(x) < uλ(xǫ)e

√
−λ+ǫ(x−xǫ) for any x > xǫ.

Note that the above situation always occurs if uλ has a zero in (d,∞). Indeed, if
uλ(x0) = 0, then necessarily uλ(x) and u′λ(x) have opposite signs for x < x0 and x close to
x0 (because if uλ and u′λ have the same sign at some x1 ∈ (d, x0), we have just seen that
uλ cannot vanish in after x1). But uλ changes sign at x0 and u′λ(x0) 6= 0, hence uλ and u′λ
have the same sign just after x0.

2◦. The functions uλ and u′λ have opposite sign in (d,∞). Replacing uλ by −uλ if
necessary, we may suppose that uλ > 0 and u′λ < 0 in (d,∞) (observe that u′λ cannot vanish
because it also changes sign at any zero and we would be in case 1◦). So uλ is decreasing and
positive on (d,∞). Let l = lim

x→∞
uλ(x). Clearly, l ≥ 0. If l > 0, then u′′λ(x) −→ −λl > 0

as x −→ ∞ by (2.1), which implies u′λ(x) −→ ∞ as x −→ ∞, a contradiction. Thus
necessarily l = 0. Also, u′λ is increasing on (d,∞) (because u′′λ(x) = (V (x) − λ)uλ(x) > 0)
and negative, so it also has a limit at infinity. Since uλ converges (to zero) at infinity, we
must have lim

x→∞
u′λ(x) = 0. Now we may apply l’Hôspital’s rule to get

lim
x→∞

(u′λ(x))
2

u2
λ(x)

= lim
x→∞

u′′λ(x)

uλ(x)
= lim

x→∞
(V (x) − λ) = −λ.
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Thus
u′

λ
(x)

uλ(x)
−→ −

√
−λ as x −→ ∞ because uλ and u′λ have opposite sign at infinity. Given

ǫ > 0, there exists M > d such that

(2.6) −
√
−λ + ǫ <

u′λ(x)

uλ(x)
< −

√
−λ− ǫ on [M,∞).

Integrating (2.6) on [M,x] we obtain, as in case 1◦,

(2.7) uλ(M)e−
√
−λ+ǫ(x−M) < uλ(x) < uλ(M)e−

√
−λ−ǫ(x−M) for any x > M.

Finally, (2.2) and (2.3) follow from (2.5), respectivey (2.7) and the fact that lim
x→∞

u′′
λ
(x)

uλ(x)
= −λ,

lim
x→∞

u′
λ
(x)

uλ(x)
= ±

√
−λ. It is obvious that λ is an eigenvalue of L if and only if uλ ∈ H, i.e. if

and only if we are in case 2◦. Therefore assertion iv) is proved.
Note also that uλ has only a finite number of zeroes. Indeed, it follows from the above

arguments that uλ has at most one zero in (d,∞) and we know that any zero is isolated,
so there are only finitely many zeroes in [0, d].

The proofs of v) and vi) are rather classical and are similar to the proofs of Theorems
XIII.8 and XIII.9 p. 90-94 in [13]. The bound on the number of eigenvalues given by vi) is
due to Bargmann (see [13] and references therein). 2

Corollary 2.2 The linear operator A = − d2

dx2 +q2(1+r2cε)
2 (considered on L with domain

D(A) = H) is self-adjoint and has the following properties :
i) A ≥ 2c2ε2q2 and σess(A) = [q2,∞).
ii) A has at least one eigenvalue in [2c2ε2q2, q2).
iii) Any eigenvalue of A is simple. If µ < q2 is an eigenvalue and uµ is a corresponding

eigenvector, then for any ǫ > 0, there exist C1, C2,M > 0 such that

(2.8) C1e
−
√
q2−µ+ǫ|x| ≤ |u(m)

µ (x)| ≤ C2e
−
√
q2−µ−ǫ|x| if |x| ≥M, m = 0, 1, 2.

iv) Let Nq be the number of eigenvalues of A in [2c2ε2q2, q2). We have Nq < 1+(2 ln 2)q2.
In particular, if q ≤ 1√

2 ln 2
, then A has exactly one eigenvalue less than q2.

v) We have Nq −→ ∞ as q −→ ∞.

It can be proved that there exist c1, c2, q0 > 0 such that c1q ≤ Nq ≤ c2q for any q ≥ q0, but
we will not make use of this result in what follows.

Proof. Recall that r2cε is given by (1.12). We have A = − d2

dx2 + q2V (x) + q2, where the

function V given by V (x) = (1+r2cε(x))
2−1 = (1−2c2ε2)

(
−1+tanh2(

√
1−2c2ε2

2
x)
)

is even,

negative, tends exponentially to zero as x −→ ±∞ and inf
x∈R

V (x) = 2c2ε2 − 1. Obviously,

µ is an eigenvalue of A if and only if µ− q2 is an eigenvalue of − d2

dx2 + q2V (x), so i), ii) and
iii) follow at once from Proposition 2.1. An easy computation gives

∫ ∞

0
x|V (x)|dx = (1 − 2c2ε2)

∫ ∞

0
x
(
1 − tanh2(

√
1 − 2c2ε2

2
x)
)
dx

= 2
∫ ∞

0
y(1 − tanh2 y)dy = 2

∫ ∞

0
y(tanh y − 1)′dy = 2 ln 2.

Now iv) is a direct consequence of Proposition 2.1, vi).
v) Fix n ∈ N, n ≥ 1 and take n symmetric functions ϕ1, . . . , ϕn ∈ C∞

0 (R), ϕi 6≡ 0, such
that supp(ϕi) ∩ supp(ϕj) = ∅ if i 6= j. Clearly,

〈Aϕi, ϕi〉L − q2〈ϕi, ϕi〉L =
∫

R

|∇ϕi|2dx+ q2
∫

R

V (x)|ϕi(x)|2dx −→ −∞ as q −→ ∞
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hence there exists q0 > 0 such that for any q ≥ q0 and any i = 1, . . . , n we have 〈Aϕi, ϕi〉L−
q2〈ϕi, ϕi〉L < 0. Since the ϕi’s have disjoint supports we get

〈A
( n∑

i=1

αiϕi
)
,
n∑

i=1

αiϕi〉L − q2||
n∑

i=1

αiϕi||2L

=
n∑

i=1

|αi|2
( ∫

R

|∇ϕi|2dx+ q2
∫

R

V (x)|ϕi(x)|2dx
)
< 0

Therefore we have found an n-dimensional subspace of H, Vn = Span{ϕ1, . . . , ϕn} such
that 〈Au, u〉L − q2||u||L < 0 for any u ∈ Vn and any q ≥ q0. By the Min-Max Principle
(see, e.g., [13], Theorem XIII.1 p.76) it follows that for q ≥ q0, A has at least n eigenvalues
less than q2, that is Nq ≥ n if q ≥ q0. This proves v). 2

We have the following result concerning the existence of non-trivial solitary waves:

Theorem 2.3 Let λ∗ < q2 be an eigenvalue of A and let u∗ be a corresponding eigenvector.
There exists η > 0 and C∞ functions

s 7−→ (λ(s), r(s), u(s)) ∈ R ×H × (u⊥∗ ∩ H)

defined on (−η, η) such that λ(0) = λ∗, r(0) = 0, u(0) = 0 and

S(r2cε + sr(s), s(u∗ + u(s))) = 0, T (λ(s), r2cε + sr(s), s(u∗ + u(s))) = 0.

Moreover, there exists a neighbourhood U of (λ∗, r2cε, 0) in R×H×H such that any solution
of S(r, u) = 0, T (λ, r, u) = 0 in U is either of the form (λ(s), r2cε + sr(s), s(u∗ + u(s))) or
of the form (λ, r2cε, 0).

That is, r = r2cε + sr(s), u = s(u∗ + u(s)) are nontrivial solutions of (1.9)-(1.10) for
λ = λ(s).

Let g2cε : (−1,∞) −→ R, g2cε(x) = (1+x)3−(1+x)−c2ε2
(
1+x− 1

(1+x)3

)
. Then S(r, u)

can be written as S(r, u) = −r′′ + g2cε(r) + (1 + r)u2. It is easily seen that drS(r2cε, 0) =
− d2

dx2 + g′2cε(r2cε).
For the proof of Theorem 2.3, we need the following lemmas :

Lemma 2.4 The linear operator J := − d2

dx2 + g′2cε(r2cε) : H −→ L has the following
properties :

i) J is self-adjoint, invertible and has the essential spectrum σess(J) = [2 − 4c2ε2,∞).
ii) J has exactly one negative eigenvalue and any eigenvalue of J is simple.

Proof. i) The linear operator B = − d2

dx2 + g′2cε(r2cε) with domain D(B) = H2(R) is
self-adjoint in L2(R). We claim that Ker(B) = Span{ d

dx
r2cε}. Indeed, we have

(2.9)
d2

dx2
r2cε = g2cε(r2cε).

Thus r′′2cε ∈ C1(R). Differentiating (2.9) with respect to x we get d
dx
r2cε ∈ Ker(B).

Conversely, let h ∈ Ker(B). Then h′′ = g′2cε(r2cε)h, so that

(h′r′2cε)
′ = h′′r′2cε + h′r′′2cε = hg′2cε(r2cε)r

′
2cε + h′g2cε(r2cε) = (hg2cε(r2cε))

′.

Hence h′r′2cε = hg2cε(r2cε) + C on R. Taking the limits as |x| −→ ∞, we get C = 0, so
h′r′2cε = hg2cε(r2cε) = hr′′2cε. Since r′2cε 6= 0 on (−∞, 0) and on (0,∞), on each of these
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intervals we have
(

h
r′
2cε

)′
=

h′r′
2cε−hr′′2cε

(r′
2cε)2

= 0. Thus there exist constants C1, C2 such that

h(x) = C1r
′
2cε(x) on (−∞, 0) and h(x) = C2r

′
2cε(x) on (0,∞). Consequently, h′(x) =

C1r
′′
2cε(x) = C1g(r2cε(x)) on (−∞, 0) and h′(x) = C2r

′′
2cε(x) = C2g2cε(r2cε(x)) on (0,∞).

But h′ is continuous because h ∈ H2(R) and therefore C1 = C2, which proves our claim.
Since r′2cε /∈ H, it is clear that the restriction of B to H is one-to-one from H into L.

It remains to prove that BH = L. It is well-known that Im(B) = Ker(B)⊥ = (r′2cε)
⊥

since B is self-adjoint. We have L ⊂ Im(B) because r′2cε is an odd function. Let f ∈ L.
Clearly there exists r ∈ H2(R) such that Br = f . Let r̃(x) = r(−x). It is easy to see that
Br̃ = f , hence there exists C such that r − r̃ = Cr′2cε. Then r − 1

2
Cr′2cε = 1

2
(r + r̃) ∈ H

and B(r − 1
2
Cr′2cε) = f .

Now it is clear that J , which is the restriction of B to H, is self-adjoint in L and
invertible. The function g′2cε(r2cε) tends (exponentially) to g′2cε(0) = 2− 4c2ε2 as x −→ ∞.
It follows from Weyl’s theorem that σess(J) = σess(B) = [2 − 4c2ε2,∞). This completes
the proof of i).

ii) It follows from Proposition 2.1 iii) and v) that any eigenvalue of J is simple and the
number of negative eigenvalues of J is exactly the number of zeroes of u in (0,∞), where
u is the solution of the Cauchy problem

(2.10)

{
−u′′ + g′2cε(r2cε)u = 0 in [0,∞),
u(0) = 1, u′(0) = 0.

We use the following simplified version of the well-known Sturm oscillation lemma (this
is also a paticular case of Lemma 5 in [8]) :

Sturm oscillation lemma. Let Y and Z be nontrivial solutions of the differential
equation

−ϕ′′ + h(x)ϕ = 0

on some interval (µ, ν), where h is continuous on (µ, ν). If Y and Z are linearly indepen-
dent and Y (µ) = Y (ν) = 0, then Z has at least one zero in (µ, ν).

From this lemma it follows at once that J has at most one negative eigenvalue. Indeed,
suppose that J has at least two negative eigenvalues. Then the solution u of (2.10) has at
least two zeroes in (0,∞), say, x1 < x2. But the function r′2cε also satisfies the differential
equation in (2.10) and obviously u and r′2cε are linearly independent (because r′2cε(0) = 0).
Using Sturm’s oscillation lemma, we infer that r′2cε must have a zero on (x1, x2), which is
absurd because r′2cε(x) > 0 on (0,∞).

Now let us prove that J has (at least) one negative eigenvalue. We argue again by
contradiction and we suppose that J has no negative eigenvalues. Then the solution
u of (2.10) has no zeroes in [0,∞), consequently u(x) > 0 for any x ∈ [0,∞). Since
g′2cε(r2cε(x)) −→ 2 − 4c2ε2 > 0 as x −→ ∞, repeating the argument used in the proof of
Proposition 2.1 iv) we infer that either u(x) −→ ∞ or u(x) −→ 0 as x −→ ∞. In the
latter case we have also

|u(m)(x)| ≤ Ce−
√

2−4c2ε2−δ|x|, m = 0, 1, 2

for some constant C > 0, δ ∈ (0, 2 − 4c2ε2) and x sufficiently large. Consequently, u ∈ H

and 0 is an eigenvalue of J . But this is excluded by i). Therefore we must have u(x) −→ ∞
as x −→ ∞.

Since u(0) = 1, we have u > 0 in a neighbourhood of 0. Note that g′2cε(r2cε(0)) =
(5 + 3

2c2ε2
)(c2ε2 − 1

2
) < 0, hence g′2cε(r2cε) < 0 near 0. From (2.10) we get u′′(x) < 0 for
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x > 0 and x close to 0. We have u′(0) = 0, so there exists δ > 0 such that u′(x) < 0
on (0, δ]. We may choose δ so small that u(δ) > 0 and r′′2cε(δ) > 0 (note that r′′2cε(0) =

g2cε(r2cε(0)) = (1−2c2ε2)2

2
√

2cε
> 0). Let β = u(δ)

r′
2cε(δ)

> 0 and let h(x) = βr′2cε(x)−u(x). Clearly, h

is a solution of the differential equation in (2.10) and h(δ) = 0, h′(δ) = βr′′2cε(δ)−u′(δ) > 0.
Hence h(x) > 0 for x > δ and x close to δ. On the other hand, we have lim

x−→∞
h(x) = −∞,

so there exists η > δ such that h(η) = 0. Since both r′2cε and h satisfy the differential
equation in (2.10), by the Sturm oscillation lemma we infer that r′2cε must have a zero in
(δ, η), which is absurd. This finishes the proof of Lemma 2.4. 2

Lemma 2.5 We have:
i) Ker(T (λ∗, r2cε, ·)) = Span(u∗);
ii) Im(T (λ∗, r2cε, ·)) = u⊥∗ ∩ L.

The proof is obvious.

Proof of Theorem 2.3. Let Ṽ = {r ∈ H | sup
x∈R

|r(x)| < 1} and I = (−
√

2cε,
√

2cε). Clearly

Ṽ is open in H. We define F : I × R× Ṽ × (H ∩ u⊥∗ ) −→ L× L by

F (s, λ, r, u) =










1

s
S(r2cε + sr, s(u∗ + u))

1

s
T (λ, r2cε + sr, s(u∗ + u))




if s 6= 0,

(
(drS(r2cε, 0).r
T (λ, r2cε, u∗ + u)

)

if s = 0.

It is easily seen that F is C∞ because

F1(s, λ, r, u) = 1
s
(S(r2cε + sr, s(u∗ + u)) − S(r2cε, 0))

= 1
s

∫ 1

0

d

dt
S(r2cε + tsr, ts(u∗ + u))dt

= 1
s

∫ 1

0
drS(r2cε + tsr, ts(u∗ + u)).sr + duS(r2cε + tsr, ts(u∗ + u)).s(u∗ + u)dt

=
∫ 1

0
drS(r2cε + tsr, ts(u∗ + u)).r + duS(r2cε + tsr, ts(u∗ + u)).(u∗ + u)dt

and F2(s, λ, r, u) = T (λ, r2cε + sr, u∗ + u).

It is also clear that F (0, λ∗, 0, 0) =

(
0
0

)

and

d(λ,r,u)F (0, λ∗, 0, 0)(λ̃, r̃, ũ) =

(
0

−λ̃u∗

)

+

(
drS(r2cε, 0).r̃

0

)

+

(
0

T (λ∗, r2cε, ũ)

)

In view of Lemmas 2.4 and 2.5, d(λ,r,u)F (0, λ∗, 0, 0) is invertible. By the Implicit Function
Theorem, there exist η > 0 and C∞ functions defined on (−η, η),

s 7−→ (λ(s), r(s), u(s)) ∈ R ×H × (H ∩ u⊥∗ )

10



such that λ(0) = λ∗, r(0) = 0, u(0) = 0 and F (s, λ(s), u(s), r(s)) = (0, 0). It is obvious
that for s 6= 0, (λ(s), (r2cε + sr(s), s(u0 + u(s)))) satisfy the system (1.9)-(1.10). Finally,
the uniqueness part in Theorem 2.3 is proved exactly in the same way as in the Bifurcation
from a Simple Eigenvalue Theorem. 2

Remark 2.6 Let λ(s), r(s), u(s) be given by Theorem 2.3. We have λ̇(0) = 0, u̇(0) = 0
and

(2.11) λ̈(0) = − 4q2

||u∗||2L
〈(1 + r2cε)u

2
∗, J

−1((1 + r2cε)u
2
∗)〉L,

where the dots denote derivatives with respect to s and J is the operator in Lemma 2.4.
To see this, we differentiate with respect to s the equation T (λ(s), r2cε + sr(s), u∗ +

u(s)) = 0 and then we take s = 0 to obtain

(2.12) − d2

dx2
u̇(0) + [q2(1 + r2cε)

2 − λ∗]u̇(0) − λ̇(0)u∗ = 0,

that is (A − λ∗)u̇(0) − λ̇(0)u∗ = 0. But Im(A − λ∗) and Ker(A − λ∗) = Span{u∗} are
orthogonal (because A is self-adjoint), so (2.12) implies that λ̇(0) = 0 and u̇(0) = 0.

We differentiate twice with respect to s the equation T (λ(s), r2cε+sr(s), u∗+u(s)) = 0,
then we take s = 0 to get

(2.13) (A− λ∗)ü(0) + 4q2(1 + r2cε)ṙ(0)u∗ − λ̈(0)u∗ = 0.

Substracting the equation −r′′2cε + g2cε(r2cε) = 0 from the equation S(r2cε + sr(s), s(u∗ +
u(s))) = 0 and then dividing by s we get

(2.14) − d2

dx2
r(s) +

∫ 1

0
g′2cε(r2cε + tsr(s)) dt · r(s) + s(1 + r2cε + sr(s))(u∗ + u(s))2 = 0.

We differentiate (2.14) with respect to s, then we take s = 0 to obtain

− d2

dx2
ṙ(0) + g′2cε(r2cε)ṙ(0) + (1 + r2cε)u

2
∗ = 0,

that is Jṙ(0) + (1 + r2cε)u
2
∗ = 0, which can still be written as

(2.15) ṙ(0) = −J−1((1 + r2cε)u
2
∗).

Taking the scalar product of (2.13) with u∗ we find λ̈(0)||u∗||2L = 4q2〈1 + r2cε)u
2
∗, ṙ(0)〉L.

We replace ṙ(0) from (2.15) in the last equality to obtain (2.11).

3 Global branches of solutions

Our purpose is to obtain information about the global structure of the set of nontrivial
solutions of (1.9)-(1.10). We give a nonexistence result first.

Proposition 3.1 i) The system (1.9)-(1.10) does not admit solutions (λ, r, u) ∈ R× V ×
H1(R) with (r, u) 6= (0, 0) if c ≥ 1

ε
√

2
.

ii) Suppose that c < 1
ε
√

2
and let (λ, r, u) ∈ R × V ×H1(R) be a nontrivial solution of

the system (1.9)-(1.10). Then 2c2ε2q2 < λ ≤ q2 and −1+
√

2cε < r(x) ≤ 0 for any x ∈ R.
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Proof. Let (λ, r, u) ∈ R×V ×H1(R) be a solution of (1.9)-(1.10). Since H1(R) ⊂ Cb(R),
the equations (1.9)-(1.10) imply that r′′ and u′′ are continuous, hence r, u ∈ C2(R).

If u ≡ 0 and c ≥ 1
ε
√

2
, the only solution of (1.9) which tends to zero at ±∞ is r ≡ 0

(this was proved in [7], but can be easily deduced from the arguments below). From now
on we suppose that u 6≡ 0. Multiplying (1.10) by u and integrating we find

(3.1)
∫

R

|u′|2dx+ q2
∫

R

(1 + r)2|u|2dx = λ
∫

R

|u|2dx.

Since u 6≡ 0, we have necessarily λ > 0. Let

G2cε(s) =
∫ s

0
g2cε(τ)dτ = 1

4
((1 + s)2 − 1)2

(
1 − 2c2ε2

(1+s)2

)
. Multiplying (1.9 ) by r′ gives

(3.2) −1

2
[(r′)2]′ + [G2cε(r)]

′ +
1

2
[(1 + r)2]′u2 = 0,

and multiplying (1.10) by u′ leads to

(3.3) −1

2
[(u′)2]′ +

1

2
q2(1 + r)2(u2)′ − λ

2
(u2)′ = 0.

From (3.2) and (3.3) we get

(3.4) −1

2
[(r′)2]′ − 1

2q2
[(u′)2]′ + [G2cε(r)]

′ +
1

2
[(1 + r)2u2]′ − λ

2q2
(u2)′ = 0.

Integrating (3.4) from −∞ to x and taking into account that r(x) −→ 0, r′(x) −→ 0,
u(x) −→ 0 and u′(x) −→ 0 as x −→ ±∞ we obtain

(3.5) |r′|2(x) +
1

q2
|u′|2(x) +

( λ
q2

− (1 + r(x))2
)
u2(x) = 2G2cε(r(x)) for any x ∈ R.

Suppose that there exists x0 ∈ R such that r(x0) < min(−1 +
√
λ
q
,−1 +

√
2cε). Then

λ
q2

− (1 + r(x0))
2 > 0 and the left hand side of (3.5) is positive at x0 (because u(x0) =

u′(x0) = 0 and (1.10) would imply u ≡ 0) while G2cε(r(x0)) < 0, a contradiction. Thus

r(x) ≥ min(−1 +
√
λ
q
,−1 +

√
2cε) for any x ∈ R.

Suppose that λ ≤ 2c2ε2q2 ( that is,
√
λ
q

≤
√

2cε). Then we have (1 + r(x))2 ≥ λ
q2

for

any x ∈ R and (3.1) gives

∫

R

|u′|2dx+ q2
∫

R

(
(1 + r)2 − λ

q2

)
u2dx = 0,

which implies u ≡ 0, again a contradiction. Therefore we have λ > 2c2ε2q2 and r(x) ≥
−1+

√
2cε for any x ∈ R. This is impossible if

√
2cε > 1 because r(x) −→ 0 as x −→ ±∞.

Hence we cannot have other solutions than (λ, 0, 0) if
√

2cε > 1. From now on we
suppose that

√
2cε ≤ 1. In this case we have r ≤ 0 on R by the Maximum Principle.

Indeed, the function g2cε is strictly increasing and positive on (0,∞). Suppose that r
achieves a positive maximum at x0. Then r′′(x0) ≤ 0. On the other hand, from (1.9) we
infer that r′′(x0) = g2cε(r(x0)) + (1 + r(x0))u

2(x0) > 0, which is absurd.
If

√
2cε = 1 we have seen that 0 ≥ r(x) ≥ −1 +

√
2cε = 0, hence r ≡ 0. Then (1.10)

becomes u′′ = (q2 − λ)u ; together with the boundary condition u(x) −→ 0 as x −→ ±∞,
this gives u ≡ 0. Thus i) is proved.
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From now on we suppose throughout that 2c2ε2 < 1. Clearly, if r(x0) = −1 +
√

2cε
for some x0 ∈ R, then (3.5) would imply u(x0) = u′(x0) = 0 (because λ > 2c2ε2q2), hence
u ≡ 0 by (1.10), which is impossible. Hence 0 ≥ r(x) > −1 +

√
2cε for any x ∈ R.

It only remains to show that we cannot have nontrivial solutions with λ > q2. Suppose
that (λ, r, u) is such a solution. First, observe that r cannot vanish because (3.5) would
give a contradiction. We prove that r decays sufficiently fast at infinity. Take 0 < ǫ <
λ
q2

− 1.There exists Mǫ > 0 such that (1 + r(x))2 ≤ 1 + ǫ on [Mǫ,∞) (because r(x) −→ 0

as x −→ ∞). Using (3.5), we have on [Mǫ,∞)

0 ≤
( λ
q2

− 1 − ǫ
)
u2(x) ≤ 2G2cε(r(x)),

hence 0 ≤
(
λ
q2

− 1 − ǫ
)
u2(x)
|r(x)| ≤ 2 |G2cε(r(x))|

|r(x)| . Passing to the limit as x −→ ∞ we obtain

lim
x→∞

u2(x)
r(x)

= 0. Dividing (1.9) by r we get

(3.6)
r′′(x)

r(x)
=
g2cε(r(x))

r(x)
+ (1 + r(x))

u2(x)

r(x)
−→ g′2cε(0) > 0 as x −→ ∞.

Since r′′ must have at least one zero between two zeroes of r′, (3.6) shows that r′ has no
zeroes in some neighbourhood of infinity. In that neighbourhood we have

(|r′(x)|2)′
(r2(x))′

=
r′′(x)

r(x)
−→ g′2cε(0) > 0 as x −→ ∞.

Since r(x) −→ 0 and r′(x) −→ 0 at infinity, we may apply l’Hôspital’s rule to get

lim
x→∞

(
r′(x)
r(x)

)2
= g′2cε(0). We know that r and r′ have constant sign in a neighbourhood

of infinity and they cannot have the same sign because r tends to 0 at infinity, so neces-

sarily lim
x→∞

r′(x)
r(x)

= −
√
g′2cε(0). The argument already used in the proof of Proposition 2.1

shows that for any ǫ > 0, there exists Cǫ > 0 such that

|r(x)| ≤ Cǫe
−
√
g′
2cε(0)−ǫ x for any x ∈ [0,∞).

Of course that a similar estimate is valid on (−∞, 0]. In particular, r2 +2r is a continuous,
bounded function on R and lim

x→±∞
|x|(r2(x) + 2r(x)) = 0. Moreover, multiplication by

r2 +2r is a bounded aperator on L2(R), hence it is also bounded with respect to − d2

dx2 with
relative bound zero. Consequently, by the Kato-Agmon-Simon Theorem (see, e.g., [13],
Theorem XIII.58 p. 226), the operator − d2

dx2 + q2(r2 + 2r) (with domain H2(R) and range
L2(R)) cannot have eigenvalues embedded in the continuous spectrum (0,∞). This means
exactly that the operator − d2

dx2 + q2(1 + r)2 has no eigenvalues in (q2,∞) and contradicts
the existence of a non-tivial solution (λ, r, u) with λ > q2. 2

We will use the following variant of the Global Bifurcation Theorem of Rabinowitz :

Proposition 3.2 Let E be a real Banach space and Ω ⊂ R×E an open set. Suppose that
G : Ω −→ E is compact on closed, bounded subsets ω ⊂ Ω such that dist(ω, ∂Ω) > 0 and is
of the form G(a, u) = L(a, u)+H(a, u), where L and H satisfy the following assumptions :

a) L(a, ·) is linear, compact for any fixed a and (a, u) 7−→ L(a, u) is continuous and
compact on closed, bounded subsets ω ⊂ Ω such that dist(ω, ∂Ω) > 0.
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b) For any closed, bounded subset ω ⊂ Ω such that dist(ω, ∂Ω) > 0, there exists a
function hω such that hω(s) −→ 0 as s −→ 0 and

||H(a, u)|| ≤ ||u||hω(||u||) for any (a, u) ∈ ω.

c) There exists a0 and ǫ > 0 such that
• (a0, 0) ∈ Ω,
• for any a ∈ [a0 − ǫ, a0 + ǫ] \ {a0} we have Ker(Id− L(a, ·)) = {0},
• if a1 ∈ [a0 − ǫ, a0) and a2 ∈ (a0, a0 + ǫ], then

ind(Id− L(a1, ·), 0) 6= ind(Id− L(a2, ·), 0).
Let

S = {(a, u) ∈ Ω | u 6= 0 and u = G(a, u)}
be the set of nontrivial solutions of the equation u = G(a, u). Then S∪{(a0, 0)} possesses a
maximal subcontinuum (i.e. a maximal closed connected subset) Ca0 which contains (a0, 0)
and has at least one of the following properties :

i) Ca0 is unbounded ;
ii) dist(Ca0 , ∂Ω) = 0 ;
iii) Ca0 meets (a1, 0), where a1 6= a0 and Ker(Id− L(a1, ·)) 6= {0}.
From the first assertion in c) it follows that the index ind(Id − L(a, ·), 0) = deg(Id −

L(a, ·), B(0, ρ), 0) is well defined for any a ∈ [a0 − ǫ, a0 + ǫ]\ {a0}. By a) and the homotopy
invariance of the Leray-Schauder degree, it is a continuous function of a. So we have
necessarily Ker(Id−L(a0, ·)) 6= {0} (since otherwise ind(Id−L(a0, ·), 0) would be defined
and ind(Id − L(a, ·) 0) would be constant for a ∈ [a0 − ǫ, a0 + ǫ], contradicting the last
assertion in c)).

The proof of Proposition 3.2 is similar to that of Theorem 1.3, p. 490 in [12] (see also
Corollary 1.12 in [12]).

Next, we give a reformulation of problem (1.9)-(1.10) suitable for the use of Proposition
3.2.

Equation (1.9) can be written as −r′′+g2cε(r)+(1+r)u2 = 0, where g2cε(x) = (1+x)3−
(1+x)−c2ε2

(
1 + x− 1

(1+x)3

)
. We will seek for solutions of the form r(x) = r2cε(x)+w(x).

Taking into account that r2cε satisfies −r′′2cε + g2cε(r2cε) = 0, equation (1.9) becomes

(3.7) −w′′ + g2cε(r2cε + w) − g2cε(r2cε) + (1 + r2cε + w)u2 = 0.

Note that g′2cε(0) = 2− 4c2ε2 > 0, thus the linear operator − d2

dx2 + g′2cε(0) (with domain H

and range L) is invertible, so equation (3.7) is equivalent to
(3.8)

w = −
(
− d2

dx2 + g′2cε(0)
)−1

[g2cε(r2cε + w) − g2cε(r2cε) − g′2cε(r2cε)w + (1 + r2cε + w)u2]

−
(
− d2

dx2 + g′2cε(0)
)−1

[(g′2cε(r2cε) − g′2cε(0))w].

In the same way, equation (1.10) can be written as

−u′′ + (q2 − λ)u = q2(1 − (1 + r2cε + w)2)u.

For λ < q2, the linear operator − d2

dx2 + q2 − λ is invertible and (1.10) becomes

(3.9) u = −q2
(
− d2

dx2
+q2−λ

)−1
[(r2

2cε+2r2cε)u]−q2
(
− d2

dx2
+q2−λ

)−1
[(w2+2wr2cε+2w)u].
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We denote

H1(w, u) =
(
− d2

dx2 + g′2cε(0)
)−1

[g2cε(r2cε + w) − g2cε(r2cε) − g′2cε(r2cε)w + (1 + r2cε + w)u2],

H2(λ, w, u) = q2
(
− d2

dx2 + q2 − λ
)−1

[(w2 + 2wr2cε + 2w)u],

Aλ(u) = A(λ, u) = q2
(
− d2

dx2 + q2 − λ
)−1

[(r2
2cε + 2r2cε)u],

B(w) =
(
− d2

dx2 + g′2cε(0)
)−1

[(g′2cε(r2cε) − g′2cε(0))w].

It is easy to see that Aλ, B : L −→ H are linear and continuous. Denote V2cε = {r ∈
H | r + r2cε ∈ V }. It is obvious that V2cε is open in H. Since H ⊂ C1

b (R) and H is an
algebra, H1 and H2 are well-defined and continuous from V2cε×H and (−∞, q2)×H×H,
respectively, to H.

If λ < q2, then (λ, r, u) satisfies the system (1.9)-(1.10) if and only if (λ, w, u) (where
w = r − r2cε) satisfies the system (3.8)-(3.9) which is equivalent to

(3.10)

(
w
u

)

= −
(
B 0
0 Aλ

)(
w
u

)

−
(

H1(w, u)
H2(λ, w, u)

)

.

We have already shown in Introduction that we cannot expect to have properness for
problem (1.9)-(1.10). The counterexample that we have seen is essentially due to the
invariance by translations of the system and to the fact that we have localized solutions.
Of course that passing from (1.9)-(1.10) to (3.10) should not prevent the same problems
to appear. To overcome this difficulty, we shall work on some weighted Sobolev space. As
a “weight”, we take a function W : R −→ R which satisfies the following properties :

(W1) W is continuous and even, i.e. W (x) = W (−x);

(W2) W ≥ 1 and lim
x→∞

W (x) = ∞;

(W3) There exists CW > 0 such that W (a+ b) ≤ CW (W (a) +W (b)).

It follows easily from (W1) and (W3) that there exist K, s > 0 such that W (x) ≤ K|x|s for
|x| ≥ 1. Indeed, from (W3) we infer that ∀a ∈ R, W (2na) ≤ (2CW )nW (a). If x ∈ [2n−1, 2n]
and M = max

x∈[0,1]
W (x), then

W (x) ≤ (2CW )nW (
x

2n
) ≤ 2CWM(2CW )n−1 = 2CWM2(n−1)(1+log2 CW ) ≤ 2CWMx1+log2 CW .

In particular, we get

(W4) ∀a > 0, e−a|·|W (·) ∈ L1 ∩ L∞(R).

For a function W satisfying (W1)-(W3) we consider the spaces

LW = {ϕ ∈ L |Wϕ ∈ L},

HW = {ϕ ∈ H |Wϕ,Wϕ′,Wϕ′′ ∈ L},
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endowed with the norms ||ϕ||LW
= ||Wϕ||L2, respectively ||ϕ||2

HW
= ||Wϕ||2L2 + ||Wϕ′||2L2 +

||Wϕ′′||2L2. Equiped with these norms, LW and HW are Hilbert spaces. It is clear that
||ϕ||L2 ≤ ||ϕ||LW

, ||ϕ||H2 ≤ ||ϕ||HW
and LW (respectively HW ) is a dense subspace of L

(respectively of H).

Lemma 3.3 The embedding HW ⊂ C1
b (R) is compact.

Proof. It is clear that the embeddings HW ⊂ H2(R) ⊂ C1
b (R) are continuous. To

prove compactness, consider an arbitrary sequence un ⇀ 0 in HW and let us show that
un −→ 0 in C1

b (R). Fix ǫ > 0. Let K = sup
n

||un||HW
. There exists M > 0 such that

W (x) ≥ K
ǫ

if |x| ≥ M . It follows that ||un||H2((−∞,M)∪(M,∞)) ≤ ǫ. By the Sobolev embedding
theorem, we have ||un||L∞((−∞,M ]∪[M,∞)) + ||u′n||L∞((−∞,M ]∪[M,∞)) ≤ CSǫ. On the other hand
un|[−M,M ] ⇀ 0 in H2(−M,M). Since the embedding H2(−M,M) ⊂ C1([−M,M ]) is
compact, it follows that un −→ 0 in C1([−M,M ]), so ||un||L∞([−M,M ]) + ||u′n||L∞([−M,M ]) ≤ ǫ
if n is sufficiently big. Thus ||un||L∞(R) + ||u′n||L∞(R) ≤ (CS + 1)ǫ for n sufficiently big. As
ǫ was arbitrary, we infer that un −→ 0 in C1

b (R) and the lemma is proved. 2

Lemma 3.4 Let W satisfy (W1)-(W3). For any a > 0, the operator − d2

dx2 +a : HW −→ LW

is bounded and invertible. Moreover, the norm of (− d2

dx2 + a)−1 is uniformly bounded in
L(LW ,HW ) when a remains in a compact subinterval of (0,∞).

Proof. It is clear that

||(− d2

dx2
+ a)v||LW

= || − v′′ + av||LW
≤ C||v||HW

,

so the operator is bounded. Since − d2

dx2 + a : H −→ L is bounded and invertible, it is clear

that the restriction of − d2

dx2 + a to HW is one to one and for any f ∈ LW ⊂ L there exists

an unique v ∈ H such that (− d2

dx2 + a)v = f . It remains only to prove that v ∈ HW and

||v||HW
≤ ||f ||LW

. Using the Fourier transform we get (ξ2 + a)v̂(ξ) = f̂(ξ) or equivalently

v̂(ξ) = 1
ξ2+a

f̂(ξ). Since F(e−
√
a|·|)(ξ) = 2

√
a

ξ2+a
, we infer that

(3.11) v =
1

2
√
a
(e−

√
a|·|) ∗ f.

From (3.11) we get

|v(x)W (x)| = 1
2
√
a
W (x)

∣∣∣∣
∫

R

e−
√
a|x−y|f(y)dy

∣∣∣∣

≤ CW

2
√
a

∫

R

W (x− y)e−
√
a|x−y||f(y)|+ e−

√
a|x−y|W (y)|f(y)|dy

≤ C1(a)[((We−
√
a|·|) ∗ |f |)(x) + (e−

√
a|·|) ∗ (|f |W )(x)],

that is |vW | ≤ C1(a)[(We−
√
a|·|) ∗ |f | + e−

√
a|·| ∗ (|f |W )]. But

||(We−
√
a|·|) ∗ |f | ||L2 ≤ ||We−

√
a|·|||L1||f ||L2 ≤ ||We−

√
a|·|||L1 ||f ||LW

and
||e−

√
a|·| ∗ (|f |W )||L2 ≤ ||e−

√
a|·|||L1||Wf ||L2

so we obtain from (3.11) that

(3.12) ||v||LW
≤ C2(a)||f ||LW

,
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where C2(a) remains bounded if a ∈ [d, e], 0 < d < e <∞.
In the same way, we have v̂′(ξ) = iξv̂(ξ) = iξ

ξ2+a
f̂(ξ), hence v′(x) = −1

2
ζa ∗ f(x), where

ζa(x) = sgn(x)e−
√
a|x|. Repeating the above argument we find

(3.13) ||v′W ||L2 ≤ C3(a)||f ||LW
,

where C3(a) remains bounded if a is in a compact interval of (0,∞).
Finally, using the equation satisfied by v we get v′′ = −f + av, hence

(3.14) ||v′′W ||L2 ≤ ||f ||LW
+ a||v||LW

≤ (1 + aC2(a))||f ||LW
.

Lemma 3.4 follows from (3.12), (3.13) and (3.14). 2

Note that the operator − d2

dx2 +a : HW −→ LW is not invertible if the weight W increases
too fast at infinity. Indeed, if f ∈ C∞

0 (R) and f ≥ 0, it is easily seen (e.g., from (3.11))
that the solution v of −v′′ + av = f behaves like e−

√
a|·| at ±∞. If we take W (x) = eb|x|

and a < b2, then v does not belong to HW , so − d2

dx2 + a : HW −→ LW is not surjective.

The next lemma shows that we do not loose solutions if we work in HW instead of H.

Lemma 3.5 Let (λ, r, u) be a solution of (1.9)-(1.10) with r ∈ H, u ∈ H and λ < q2.
Then r and u belong to HW .

Proof. We have already seen in Proposition 3.1 that −1 +
√

2cε < r ≤ 0. Applying
Proposition 2.1 iv) (see also Corollary 2.2, iii)) for V (x) = q2(r2(x) + 2r(x)), we infer that

for any ǫ > 0, u, u′ and u′′ decay at ±∞ faster than e−
√
q2−λ−ǫ|x|, hence u ∈ HW .

Since g′2cε(0) > 0 and r(x) −→ 0 as |x| −→ ∞, there exists M > 0 such that
r(x)g2cε(r(x)) ≥ 1

2
g′2cε(0)r2(x) if |x| > M .

Consider a symmetric function χ ∈ C∞
0 (R) such that χ ≡ 1 on [−1, 1], χ is non-

increasing on [0,∞) and supp(χ) ⊂ [−2, 2]. We multiply (1.9) by xr(x)χ( x
n
) and integrate

on [0,∞). Integrating by parts, we get :

(3.15)

∫ ∞

0
|r′|2(x)xχ( x

n
)dx− 1

2
r2(0) − 1

2

∫ ∞

0
r2(x)

(
2
n
χ′( x

n
) + x

n2χ
′′( x
n
)
)
dx

+
∫ M

0
g2cε(r(x))r(x)xχ( x

n
)dx+

∫ ∞

M
g2cε(r(x))r(x)xχ( x

n
)dx

+
∫ ∞

0
(1 + r(x))u2(x)r(x)xχ( x

n
)dx = 0.

By the Monotone Convergence Theorem, the first integral in (3.15) tends to
∫ ∞

0
|r′(x)|2xdx

as n −→ ∞, while the fourth integral tends to
∫ ∞

M
g2cε(r(x))r(x)xdx. The other three

integrals converge as n −→ ∞ by Lebesgue’s theorem on dominated convergence. Letting
n −→ ∞ in (3.15) we obtain :

(3.16)

∫ ∞

0
|r′|2(x)xdx− 1

2
r2(0) +

∫ M

0
g2cε(r(x))r(x)xdx

+
∫ ∞

M
g2cε(r(x))r(x)xdx+

∫ ∞

0
r(x)(1 + r(x))xu2(x)dx = 0.

Since the second and the last integral in (3.16) are finite (because u decays exponentially

at ±∞), we infer that
∫ ∞

0
|r′|2(x)xdx <∞ and

∫ ∞

M
g2cε(r(x))r(x)xdx <∞. Consequently,

|x| 12 r′(x) and |x| 12 r(x) belong to L2(R).
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We have g2cε(s) = g′2cε(0)s + h(s)s2, where h is continuous on (−1,∞), hence h(r(x))
is bounded. Equation (1.9) can be written as

(3.17) −r′′ + g′2cε(0)r = −(1 + r)u2 − h(r)r2,

which gives, as in the proof of Lemma 3.4,

(3.18) r = − 1

2
√
g′2cε(0)

e−
√
g′
2cε

(0)|·| ∗ ((1 + r)u2 + h(r)r2).

Suppose that |x|αr(x) ∈ L2(R) for some α > 0. Since |x|βu(x) ∈ Lp(R) for any β > 0 and
1 ≤ p ≤ ∞, we have :

(3.19)
|x|2α|r(x)| ≤ C[(| · |2αe−

√
g′
2cε

(0)|·|) ∗ ((1 + r)u2 + h(r)r2)(x)

+e−
√
g′
2cε(0)|·| ∗ ((1 + r)u2| · |2α + h(r)(| · |αr)2)](x)

and we infer that | · |2αr ∈ Lp(R) for 1 ≤ p ≤ ∞.

We have already proved that |x| 12 r(x) ∈ L2(R), so it follows easily by induction that
|x|σr(x) ∈ Lp(R) for any σ > 0 and 1 ≤ p ≤ ∞. Since W (x) ≤ K|x|s for some K, s > 0,
we infer that (1 + r)u2 + h(r)r2 ∈ LW . Now it follows form (3.17) and Lemma 3.4 that
r ∈ HW and Lemma 3.5 is proved. 2

Now we turn our attention to the operators A, B, H1 and H2 appearing in (3.10).

Lemma 3.6 We have :
i) For any λ ∈ (−∞, q2), Aλ : HW −→ HW is linear, compact and the mapping

(λ, u) 7−→ Aλ(u) is continuous from (−∞, q2)×HW to HW and compact on closed bounded
subsets of [d, e] ×HW for −∞ < d < e < q2.

ii) The linear operator B : HW −→ HW is compact.
iii) H1 : ((V − r2cε) ∩ HW ) × HW −→ HW is continuous, compact on closed bounded

subsets ω1 of ((V − r2cε)∩HW )×HW such that dist(ω1, (HW \ (V − r2cε))×HW ) > 0 and

(3.20) ||H1(w, u)||HW
≤ Cω1

(||w||2
HW

+ ||u||2
HW

).

iv) H2 : (−∞, q2) × HW × HW −→ HW is continuous, compact on closed bounded
subsets of [d, e] ×HW ×HW for −∞ < d < e < q2 and

(3.21) ||H2(λ, w, u)||HW
≤ Cd,e(||w||2HW

+ ||w||4
HW

+ ||u||2
HW

) for any λ ∈ [d, e].

Proof. It is easy to see that un ⇀ u∗ in HW and vn ⇀ v∗ in HW imply that unvn −→ u∗v∗
in LW . Indeed, (un) and (vn) are bounded in HW and by Lemma 3.3 we have

(3.22) ||unvn−u∗v∗||LW
≤ ||vn−v∗||L∞||un||LW

+ ||un−u∗||L∞||v∗||LW
−→ 0 as n −→ ∞.

i) It is now clear that u 7−→ (r2
2cε + 2r2

2cε)u is a linear compact mapping from HW to
LW and we get i) by using Lemma 3.4 and the resolvent formula

(
− d2

dx2
+q2−λ1

)−1−
(
− d2

dx2
+q2−λ2

)−1
= (λ1−λ2)

(
− d2

dx2
+q2−λ1

)−1(− d2

dx2
+q2−λ2

)−1
.

ii) is obvious.
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iii) Let ω1 be as in Lemma 3.6. We claim that there exists η > 0 such that for any
(w, u) ∈ ω1 we have inf

x∈R

(w(x)+ r2cε(x)) ≥ −1+ η. We argue by contradiction and suppose

that there exists a sequence (wn, un) ∈ ω1 such that an := inf
x∈R

(wn(x) + r2cε(x)) = (wn +

r2cε)(xn) tends to −1. The sequence (wn) is bounded in HW , hence we may assume (passing
to a subsequence if necessary) that wn ⇀ w∗ in HW . By Lemma 3.3, wn+r2cε −→ w∗+r2cε
in C1

b (R). Since w∗(x) + r2cε(x) −→ 0 as x −→ ∞, the sequence (xn) is bounded, say,
xn ∈ [−M,M ]. Take χ ∈ C∞

0 (R) such that supp(χ) ⊂ [−M − 1,M + 1] and χ ≡ 1 on
[−M,M ]. Then inf

x∈R

(wn(x)+r2cε(x)−(an+1)χ(x)) = wn(xn)+r2cε(xn)−(an+1)χ(xn) = −1,

so that wn + r2cε − (an + 1)χ 6∈ V and

dist(wn,HW \ (V − r2cε)) ≤ dist(wn, wn − (an + 1)χ) = |1 + an| ||χ||HW
−→ 0

as n −→ ∞, contradicting the fact that (wn, un) ∈ ω1. This proves the claim.
For a given w ∈ V − r2cε, we have

(g2cε(r2cε + w) − g2cε(r2cε) − g′2cε(r2cε)w)(x) =
∫ 1

0
g′2cε(r2cε + tw)w(x)dt− g′2cε(r2cε)w(x)

= w2(x)
∫ 1

0

∫ 1

0
g′′2cε(r2cε + tsw)(x)ds t dt = w2(x)h1(w)(x),

where h1(w)(x) =
∫ 1

0

∫ 1

0
g′′2cε(r2cε + tsw)(x)ds t dt.

To prove iii) it suffices to show that for any sequence (wn, un) ∈ ω1 such that wn ⇀ w∗
and un ⇀ u∗ in HW , we have H1(wn, un) −→ H1(w∗, u∗) in HW . In view of Lemma 3.4, it
suffices to show that

(3.23) h1(wn)w
2
n + (1 + r2cε + wn)u

2
n −→ h1(w∗)w

2
∗ + (1 + r2cε + w∗)u

2
∗ in LW .

The sequence (wn) being bounded in HW , there exists K > 0 such that −1+min(η,
√

2cε) ≤
r2cε(x) + stwn(x) ≤ K for any x ∈ R, n ∈ N and s, t ∈ [0, 1]. Since g′′2cε is uniformly
continuous on [−1 + min(η,

√
2cε), K], it is standard to prove that h1(wn) −→ h1(w∗) in

L∞(R) and then (3.23) follows from (3.22). Finally, using Lemma 3.4 we have for any
(w, u) ∈ ω1

||H1(w, u)||HW
≤ C||h1(w)w2 + (1 + r2cε + w)u2||LW

≤ Cω1
(||w||2

HW
+ ||u||2

HW
).

iv) From the preceeding arguments it is easy to see that the mapping (w, u) 7−→ (w2 +
2wr2cε + 2w)u is continuous from HW × HW to LW and the image of any bounded set in
HW ×HW is precompact in LW , so iv) follows from Lemma 3.4 and the resolvent formula
above. The estimate (3.21) is straightforward. 2

Lemma 3.7 For any λ < q2 we have :
i) Ker(IdHW

+Aλ) 6= {0} if and only if λ is an eigenvalue of the operator A = − d2

dx2 +
q2(1 + r2cε)

2. In this case we have Ker(IdHW
+ Aλ)

n = Span{uλ} for any n ∈ N∗.
ii) If λ is not an eigenvalue of A, then ind(IdHW

+ Aλ, 0) = (−1)n(λ) (where n(λ) is
the number of eigenvalues of A less than λ).

Proof. i) It is easy to see that u ∈ L and u+Aλu = 0 is equivalent to u ∈ H and Au = λu.
Recall that if λ < q2 is an eigenvalue of A in L, then the corresponding eigenvector uλ is
in HW by Corollary 2.2 iii). Consequently, we have Ker(IdHW

+Aλ) = Ker(IdL +Aλ) =
Ker(λIdH − A) = Span{uλ}.
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To prove i), it suffices to show that uλ 6∈ Im(IdL + Aλ). Suppose by contradiction
that there exists v ∈ L such that v + Aλv = uλ. This is equivalent to v ∈ H and
Av − λv = −u′′λ + (q2 − λ)uλ, that is −u′′λ + (q2 − λ)uλ ∈ Im(A − λ). Since A − λ is
self-adjoint on L, −u′′λ +(q2 −λ)uλ must be orthogonal (in L) to Ker(A−λ) = Span{uλ},
which gives

∫

R

|u′λ|2dx+ (q2 − λ)
∫

R

|uλ|2dx = 0, a contradiction.

ii) A well-known result of Leray and Schauder asserts that if K is a compact operator
on a real Banach space X and 1 is not an eigenvalue of K, then

ind(Id−K, 0) = (−1)β,

where β is the sum of all the (algebraic) multiplicities of eigenvalues of K greater than 1.
(see, e.g., [6], Theorem 4.6 p. 133).

Thus, for a given λ which is not an eigenvalue of A, we are interested by the eigenvalues
µ > 1 of −Aλ. Clearly, −Aλu = µu is equivalent to

q2
(
− d2

dx2
+ q2 − λ

)−1
((r2

2cε + 2r2cε)u) + µu = 0,

that is

−u′′ + q2(1 + r2cε)
2u+ q2

(
1 − 1

µ

)
[1 − (1 + r2cε)

2]u = λu.

In other words, µ > 1 is an eigenvalue of −Aλ if and only if λ is an eigenvalue of the
operator

Mµ = − d2

dx2
+ q2(1 + r2cε)

2 + q2
(
1 − 1

µ

)
[1 − (1 + r2cε)

2] = A+ q2
(
1 − 1

µ

)
[1 − (1 + r2cε)

2].

Remark that Mµ ≥ A for any µ ≥ 1 and σess(Mµ) = [q2,∞) by Weyl’s theorem. By
Proposition 2.1 iv), λ ∈ (−∞, q2) is an eigenvalue of Mµ considered as an operator on LW

if and only if λ is an eigenvalue of Mµ considered as an operator on L. We will work on L

because on this space Mµ is self-adjoint.
Given λ < q2 not an eigenvalue of A, we will prove that there are exactly n(λ) values

µ ∈ (1,∞) such that λ is an eigenvalue of Mµ.
For µ ∈ [1,∞), we define

(3.24) αn(µ) = sup
ϕ1,...,ϕn−1∈H

inf
ψ∈{ϕ1,...,ϕn−1}⊥

〈Mµψ, ψ〉L
||ψ||2

L

.

By the Min-Max Principle ([13], Theorem XIII.1 p. 76), either αn(µ) is the nth eigenvalue
of Mµ (counted with multiplicity) or αn(µ) = q2. By Proposition 2.1 iii), the eigenvalues
of Mµ are simple, thus we have αp(µ) < αn(µ) if p < n and αp(µ) < q2.

It is obvious that the functions µ 7−→ αn(µ) are increasing on [1,∞) because Mµ1
≤Mµ2

if 1 ≤ µ1 < µ2. In fact, αn is strictly increasing on {µ ∈ [1,∞) | αn(µ) < q2}. To see
this, consider µ1 < µ2 such that αn(µ2) < q2. Then α1(µ2), . . . , αn(µ2) are eigenvalues
of Mµ2

. Let u1, . . . , un ∈ H be corresponding eigenvectors with ||ui||L = 1. Clearly,
u1, . . . , un are mutually orthogonal in L and it is easily seen from the definition of Mµ that
〈Mµ1

ui, ui〉L < 〈Mµ2
ui, ui〉L = αi(µ2), i = 1, . . . , n. Remark that the quantity N(u) =
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( ∫

R

[1 − (1 + r2cε)
2]|u|2dx

) 1

2 is a norm on L. Since Span{u1, . . . , un} is finite-dimensional,

there exists N1 > 0 such that N(u) ≥ N1||u||L for any u ∈ Span{u1, . . . , un}. Therefore

(3.25)

〈Mµ1

( n∑

i=1

aiui
)
,
( n∑

i=1

aiui
)
〉L

= 〈Mµ2

( n∑

i=1

aiui
)
,
( n∑

i=1

aiui
)
〉L − 〈(Mµ2

−Mµ1
)
( n∑

i=1

aiui
)
,
( n∑

i=1

aiui
)
〉L

=
n∑

i=1

αi(µ2)|ai|2 − q2(
1

µ1
− 1

µ2
)
∫

R

[1 − (1 + r2cε)
2]

∣∣∣∣
n∑

i=1

aiui

∣∣∣∣
2

dx

≤ αn(µ2)||
n∑

i=1

aiui||2L − q2(
1

µ1

− 1

µ2

)N2
1 ||

n∑

i=1

aiui||2L.

Thus for any u in the n-dimensional subspace Span{u1, . . . , un} we have

〈Mµ1
u, u〉L ≤

(
αn(µ2) − q2

( 1

µ1
− 1

µ2

)
N2

1

)
||u||2

L
.

By the Min-Max Principle it follows that αn(µ1) ≤ αn(µ2) − q2
(

1
µ1

− 1
µ2

)
N2

1 .
A standard argument shows that each αn is continuous. Indeed, suppose by contra-

diction that µ∗ ∈ (1,∞) is a discontinuity point. Then necessarily l1 := sup
µ<µ∗

αn(µ) <

inf
µ>µ∗

αn(µ) := l2. Take 0 < ǫ < l2−l1
4

and µ1 < µ∗, µ2 > µ∗ such that q2
(

1
µ1

− 1
µ2

)
< ǫ.

Since αn(µ2) > l2 − ǫ, there exist ϕ1, . . . , ϕn−1 ∈ H such that 〈Mµ2
ψ, ψ〉L > l2 − ǫ for any

ψ ∈ {ϕ1, . . . , ϕn−1}⊥ with ||ψ||L = 1. We have

〈Mµ2
ψ, ψ〉L − 〈Mµ1

ψ, ψ〉L
= q2( 1

µ1
− 1

µ2
)
∫

R

[1 − (1 + r2cε)
2]|ψ|2dx ≤ q2(

1

µ1

− 1

µ2

)||ψ||2
L
< ǫ,

thus 〈Mµ1
ψ, ψ〉L > l2−2ǫ for any ψ ∈ {ϕ1, . . . , ϕn−1}⊥ with ||ψ||L = 1. Therefore αn(µ1) >

l2 − 2ǫ, which is a contradiction.
We have also for any u ∈ H,

〈Mµu, u〉L = ||u′||2L2 + q2||u||2
L
− q2

µ

∫

R

[1 − (1 + r2cε)
2]|u|2dx ≥ q2||u||2

L
− C

µ
||u||2

L
,

hence α1(µ) ≥ q2 − C
µ
−→ q2 as µ −→ ∞. Consequently, αn(µ) −→ q2 as µ −→ ∞ for any

n ≥ 1.
Note that λ < q2 is an eigenvalue of Mµ if and only if λ = αn(µ) for some n ∈ N∗. We

know that there are exactly n(λ) eigenvalues of A less than λ, say, λ1 < λ2 < . . . < λn(λ) <
λ. We have αi(1) = λi because M1 = A, the functions αi are strictly increasing (until they
reach the value q2, if this happens), continuous and tend to q2 at infinity. We infer that for
each i ∈ {1, . . . , n(λ)}, there exists exactly one value µi such that αi(µi) = λ. Moreover,
µ1 > µ2 > . . . > µn(λ) > 1. For any n > n(λ), we have αn(1) > λ, hence αn(µ) > λ for
µ ∈ (0,∞) because αn is increasing.

Thus we have shown that the operator −Aλ has exactly n(λ) eigenvalues greater than 1,
µ1 > µ2 > . . . > µn(λ). Moreover, Ker(µi +Aλ) = Ker(Mµi

−λ). We know by Proposition
2.1 iii) thatKer(Mµi

−λ) is one dimensional. If this kernel is spanned by a function vi, then
vi 6∈ Im(µi +Aλ). Indeed, µiu+Aλu = vi would imply (Mµi

− λ)u = 1
µi

(−v′′i + (q2 − λ)vi).
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Since M is self-adjoint, −v′′i +(q2−λ)vi would be orthogonal to Ker(Mµi
−λ) = Span{vi},

which gives a contradiction. Consequently, we have Ker(µi + Aλ)
n = Span{vi} for any

n ∈ N∗, that is µi is a simple eigenvalue of −Aλ.
As a consequence, we have ind(IdHW

+ Aλ, 0) = (−1)n(λ) and Lemma 3.7 is proved. 2

We are now in position to state the main result of this paper.

Theorem 3.8 Let S be the set of nontrivial solutions of the system (1.9)-(1.10) in R ×
(H∩V )×H. For any eigenvalue λm < q2 of A = − d2

dx2 +(1+r2cε)
2, the set S∪{(λm, r2cε, 0)}

contains a maximal closed connected subset Cm in (−∞, q2)×HW×HW such that Cm∩Cp = ∅
if m 6= p and Cm satisfies at least one of the two properties :

i) Cm is unbounded in R× HW × HW or
ii) there exists a sequence (λn, rn, un) ∈ Cm such that λn −→ q2 as n −→ ∞.

Proof.
We have already seen that (λ, r, u) ∈ (−∞, q2) × (H ∩ V ) × H is a nontrivial solution

of (1.9)-(1.10) if and only if (λ, r− r2cε, u) belongs to (−∞, q2)× (HW ∩ (V − r2cε))×HW

and satisfies the system (3.8)-(3.9) (or, equivalently, (3.10)).

Let E = HW × HW , Ω = (−∞, q2) × (HW ∩ (V − r2cε)) × HW , Lλ =

(
−B 0
0 −Aλ

)

and H(λ, w, u) =

(
−H1(w, u)

−H2(λ, w, u)

)

. Let G(λ, w, u) = Lλ(w, u) +H(λ, w, u). It is obvious

that on Ω, (3.10) is equivalent to the equation (w, u) = G(λ, w, u). It follows easily from
Lemma 3.6 that L and H satisfy the assumptions a) and b) in Proposition 3.2.

We claim that IdHW
+ B : HW −→ HW is invertible. Indeed, (IdHW

+ B)u = v is

equivalent to −u′′+g′2cε(r2cε)u =
(
− d2

dx2 + g′2cε(0)
)
v. By Lemma 2.4, there exists an unique

u ∈ H satisfying this equation. We have

−u′′ + g′2cε(0)u =

(

− d2

dx2
+ g′2cε(0)

)

v + (g′2cε(0) − g′2cε(r2cε))u ∈ LW

(recall that v ∈ HW and g′2cε(0)−g′2cε(r2cε) decays exponentially at infinity). Using Lemma
3.4, we infer that u ∈ HW .

For λ < q2, is is clear that IdHW×HW
− Lλ is not invertible if and only if IdHW

+Aλ is
not invertible, i.e. if and only if λ is an eigenvalue of A. Let λ1 < λ2 < . . . < λNq

< q2 be
the eigenvalues of A below q2. If λ is not an eigenvalue of A, we infer using Lemma 3.7 that
i(λ) := ind(IdHW×HW

−Lλ, 0) = ind(IdHW
+Aλ, 0)·ind(IdHW

+B, 0) = (−1)n(λ)ind(IdHW
+

B, 0) is constant on each of the intervals (−∞, λ1), (λi, λi+1), (λNq
, q2) and changes sign at

each λi. Consequently, Lλ also satisfies assumption c) in Proposition 3.2 at any point
(λi, 0, 0). Let S̃0 = {(λ, w, u) ∈ Ω | (w, u) 6= (0, 0) and (λ, w, u) satisfies (3.10)} and let
S̃ = S̃0 \ {(λ,−r2cε, 0) | λ ∈ (−∞, q2)}. Note that the solutions (λ,−r2cε, 0) of (3.10)
correspond to the solutions (λ, 0, 0) of (1.9)-(1.10) and S ∩ ((−∞, q2)× (V ∩HW )×HW ) =
S̃ + (0, r2cε, 0). We may apply Proposition 3.2 to infer that for any 1 ≤ m ≤ Nq, there
exists a maximal closed connected subset Dm (in Ω) of S̃0 ∪ {(λm, 0, 0)} which contains
(λm, 0, 0) and satisfies at least one of the following properties :

1◦. Dm is unbounded.
2◦. There exists a sequence (λn, wn, un) ∈ Dm such that λn −→ q2 as n −→ ∞.
3◦. There exists a sequence (λn, wn, un) ∈ Dm such that dist(wn, ∂((V −r2cε)∩HW )) −→

0, that is inf
x∈R

(wn(x) + r2cε(x)) −→ −1 as n −→ ∞.

4◦. The closure in Ω of Dm contains a point (λi, 0, 0) with i 6= m.
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Let us show first that Dm cannot meet {(λ,−r2cε, 0) | λ ∈ (−∞, q2)}. A straightforward
computation gives d(w,u)(IdE − G)(λ,−r2cε, 0) = IdE for any λ < q2. By the Implicit
Functions Theorem, there exists a neighbourhood Nλ of (λ,−r2cε, 0) in R × E such that
the only solutions of the equation (w, u) = G(λ, w, u) in Nλ are (µ,−r2cε, 0). Hence ∪λNλ

is a neighbourhood of {(λ,−r2cε, 0) | λ < q2} in Ω which contains no other solutions of
(3.10). Consequently, we have Dm ⊂ S̃.

By Proposition 3.1, for any (λ, w, u) ∈ S̃0 we have inf
x∈R

(w(x) + r2cε(x)) > −1 +
√

2cε,

hence Dm cannot satisfy property 3◦ above.
We will also eliminate the alternative 4◦. Observe that if (λ, r, u) ∈ (−∞, q2)×H×H

is a nontrivial solution of (1.9)-(1.10), then, in particular, u is an eigenvector of the linear
operator − d2

dx2 + q2(1 + r)2 corresponding to the eigenvalue λ. It is easily checked that this

operator is a compact perturbation of − d2

dx2 + q2, so it has the essential spectrum [q2,∞).

Since λ < q2, the operator − d2

dx2 + q2(1 + r)2 has only a finite number of eigenvalues less
than λ, say, p. We define z(λ, r, u) = p. By Proposition 2.1 v), we know that u has exactly
p zeroes in (0,∞). We also define z(λi, r2cε, 0) = i− 1. We have :

Lemma 3.9 The function z is continuous on (S ∪ {(λi, r2cε, 0) | i = 1, . . . , Nq}) ∩
((−∞, q2) × H ×H).

Assume for the moment that Lemma 3.9 holds. Obviously, the function z is also con-
tinuous for the R × E topology. Since z takes values in N, it must be constant on each
connected component of (S ∪ {(λi, r2cε, 0) | i = 1, . . . , Nq}) ∩ ((−∞, q2) × H × H) = (S̃ +
(0, r2cε, 0))∪{(λi, r2cε, 0) | i = 1, . . . , Nq}. In particular, it is constant on Dm+(0, r2cε, 0) and
we find z(Dm+(0, r2cε, 0)) = z(λm, r2cε, 0) = m−1. We have also z(Di+(0, r2cε, 0)) = i−1,
hence Dm and Di are disjoint if i 6= m (in fact, we see that the closures of Dm and Di in
(−∞, q2)×H×H are disjoint if i 6= m). Thus Dm cannot satisfy the alternative 4◦ above,
hence it necessarily satisfies one of the alternatives 1◦ or 2◦. Let Cm = Dm + (0, r2cε, 0). It
is now clear that Cm satisfies i) or ii) in Theorem 3.8. 2

Proof of Lemma 3.9. Let (λ, r, u), (νn, rn, un) ∈ (S ∪ {(λi, r2cε, 0) | i = 1, . . . , Nq}) ∩
((−∞, q2) × H × H) be such that z(λ, r, u) = p and (νn, rn, un) −→ (λ, r, u) as n −→ ∞.
Let µ1 < µ2 < . . . < µp+1 = λ be the eigenvalues of the operator B = − d2

dx2 + q2(1 + r)2 in

L and let u∗1, . . . , u
∗
p+1 = u be corresponding eigenvectors. Denote Bn = − d2

dx2 + q2(1+ rn)
2.

We prove that z(νn, rn, un) ≥ p if n is sufficiently big. There is nothing to do if
p = 0. Suppose that p ≥ 1. Take 0 < ǫ < µp+1−µp

4
and let n0 be suficiently big, so that

||(rn − r)(2 + rn + r)||L∞ < ǫ
q2

and λ − ǫ < νn < λ + ǫ for any n ≥ n0. For n ≥ n0 and

v ∈ Span{u∗1, . . . u∗p} we have

〈Bnv, v〉L = 〈Bv, v〉L + 〈(Bn − B)v, v〉L
≤ µp||v||2L + q2

∫

R

(rn − r)(2 + rn + r)|v|2dx ≤ (µp + ǫ)||v||2
L
< (νn − ǫ)||v||2

L
.

By the Min-Max Principle, Bn has at least p eigenvalues less than or equal to νn − ǫ, so
z(νn, rn, un) ≥ p.

Let µp+2 = sup
ϕ1,...,ϕp+1∈H

inf
ψ∈{ϕ1,...,ϕp+1}⊥

〈Bψ, ψ〉L
||ψ||2

L

. Since λ = µp+1 < q2 and λ is a simple

eigenvalue of B by Proposition 2.1 iii), we know by the Min-Max Principle that either
µp+2 = q2 or µp+2 is an eigenvalue of B and µp+2 > µp+1. Let ǫ ∈ (0, µp+2−µp+1

4
). Take

n0 as above and ϕ1, . . . , ϕp+1 ∈ H such that inf
ψ∈{ϕ1,...,ϕp+1}⊥

〈Bψ, ψ〉L
||ψ||2

L

≥ µp+2 − ǫ. For any
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ψ ∈ {ϕ1, . . . , ϕp+1}⊥, ψ 6= 0 we have :

〈Bnψ, ψ〉L = 〈Bψ, ψ〉L + 〈(Bn − B)ψ, ψ〉L ≥ (µp+2 − ǫ)||ψ||2
L
− ǫ||ψ||2

L
≥ (νn + ǫ)||ψ||2

L
.

It follows from the Min-Max Principle that for n ≥ n0, either Bn has at most p + 1
eigenvalues, or the (p + 2)th eigenvalue is greater than νn + ǫ. Since νn is an eigenvalue
of Bn, there are at most p eigenvalues of Bn less than νn, hence z(νn, rn, un) ≤ p for any
n ≥ n0. This finishes the proof of Lemma 3.9 and that of Theorem 3.8. 2

We were not able to eliminate one or another of the alternatives in Theorem 3.8.

Up to now, we have proved the existence of branches of nontrivial symmetric solutions
(λ, r, u) to the system (1.9)-(1.10). For any such solution, (ψ̃, ϕ̃) is a travelling wave of (1.1)
for ε2(c2δ2 + k2) = λ and satisfies the boundary condition (1.2), where ϕ̃(x) = 1

ε
u(x

ε
)eicδx

and ψ̃(x) = (1+ r(x
ε
))eiψ0(x) (with ψ0(x) = c

∫ x

0

[
1− 1

(1+r( s
ε
))2

]
ds = cε

∫ x
ε

0

2r(τ)+r2(τ)
(1+r(τ))2

dτ). Note

also that ψ̃(−x) = ψ̃(x), ϕ̃(−x) = ϕ̃(x), |ψ̃| >
√

2cε by Proposition 2.1 and the phase ψ0 of
ψ̃ remains bounded because r decays at infinity faster than |x|β for any β > 0 (see the end
of the proof of Lemma 3.5). Since 2c2ε2q2 < λ ≤ q2, we have bounds on the single-particle

impurity energy : c2(2q2 − δ2) < k2 ≤ q2

ε2
− c2δ2.

Remark 3.10 It follows from Corollary 2.2 iv)-v) that there is exactly one branch of
travelling-waves bifurcating from the trivial solutions if q ≤ 1√

2 ln 2
. The number of these

branches is the same as the number of eigenvalues of A, so it tends to infinity as q −→ ∞.
It is natural to ask how the branches Cm given by Theorem 3.8 behave in R× H ×H.

The topology of HW being stronger than that of H, any of the sets Cm is also connected in
R×H×H. Roughly speaking, either Cm approaches {q2}×(H∩V )×H, or Cm is unbounded
in R×H×H or it remains bounded in R×H×H but the norm in R×HW ×HW tends
to infinity along Cm, i.e. “there is some mass moving to infinity”.

Remark 3.11 The importance of Theorem 2.3 is that it gives a precise description of Cm
in a neighbourhood of (λm, r2cε, 0) in R×H×H. Let C+

m (respectively C−
m) be the maximal

subcontinuum in R × HW × HW of Cm \ {(λ(s), r2cε + sr(s), s(um + u(s))) | s ∈ (−η, 0)},
(respectively of Cm \ {(λ(s), r2cε + sr(s), s(um + u(s))) | s ∈ (0, η)}), where the curve
s 7−→ (λ(s), r(s), u(s)) is given by Theorem 2.3. It can be proved by using a variant of a
classical result of Rabinowitz (Theorem 1.40 p. 500 in [12]) that each of C+

m and C−
m satisfies

i) or ii) in Theorem 3.8.

Remark 3.12 It is not hard to prove that in dimension N = 1, 2 or 3 the Cauchy
problem for the system (1.1) is globally well-posed in (1 +H1(RN)) ×H1(RN). However,
the dynamics associated to (1.1) and the asymptotic behavior of solutions are not yet
understood.

Remark 3.13 The existence of solitary waves for (1.1) in dimension greater than 1 is an
open problem. Even the existence of “trivial” solitary waves (i.e., solutions of the form
(ψ(x1−ct, x2, . . . , xN), 0) is a difficult problem. Note that if ϕ ≡ 0, the system (1.1) reduces
to the Gross-Pitaevskii equation

2i
∂ψ

∂t
= −∆ψ + (|ψ|2 − 1)ψ, |ψ| −→ 1 as |x| −→ ∞

The existence of travelling-waves moving with small speed for this equation was proved,
for instance, in [2] (in dimension N = 2) and [1], [3] (in dimension N ≥ 3).
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