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Abstract

We consider a two-dimensional generalization of the Benjamin-Ono equa-
tion and prove that it admits solitary-wave solutions that are analytic func-
tions. We find the optimal decay rate at infinity of these solitary waves.

1 Introduction

We study the solitary waves of the following generalization of the Benjamin-Ono
(BO) equation

(1) At + αAAx − β(−∆)
1

2 Ax = 0

in R2, where α, β > 0 and (−∆)
1

2 is the operator defined by F((−∆)
1

2 u)(ξ) =
|ξ|û(ξ). F or ̂ represent the Fourier transform.

Equation (1) describes the dynamics of three-dimensional, slightly nonlinear
disturbances in boundary-layer shear flows (without the assumption of a difference
in their scales along and across the flow), see [2], [6].

The solitary waves of (1) are solutions of the form A(x, y, t) = v(x−ct, y) where
c is the speed of the solitary wave. It seems that solitary waves play an important
role in the evolution of (1). Such a solution must satisfy the equation

(2) −cvx +
α

2
(v2)x − β(−∆)

1

2 vx = 0 .

Numerical experiments ([6]) show the existence of solitary waves (solitons).
It has also been observed that the solitons decay at infinity like some power of
r =

√
x2 + y2.

Our aim is to give rigorous proofs of these facts.
We suppose throughout that the wave speed c is positive.
In the next section, we show that solitary waves exist and are smooth (analytic)

functions. Since the techniques we use are classical, we only sketch the proofs. In
the last section we prove that the solutions of some generalization of equation (2)
in Rn decay at infinity as 1

|x|n+1 and this algebraic rate is nearly optimal. We hope

that our results about the decay of solutions of a quite general equation should be
useful elsewhere (see also Remark 8 below).

Our method to study analyticity and decay of solutions was inspired by the
ideas developed by Bona and Li in [3], [4] for one-dimensional problems.
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2 Existence and regularity

In order to simplify equation (2), we integrate it once in x and make the scale
change v(x, y) = au(bx, by), where a = 2c

α
and b = c

β
. Then (2) reduces to

(3) u + (−∆)
1

2 u = u2

or, using the Fourier transform,

(4) (1 + |ξ|)û = û2 .

Let us introduce the functionals

V (u) =
1

2

∫

R2

|(−∆)
1

4 u|2 + |u|2dx =
1

2(2π)2

∫

R2

(1 + |ξ|)|û|2dξ

and

I(u) =
1

3

∫

R2

u3dx .

Clearly V and I are well defined and of class C2 on the Sobolev space H
1

2 (R2).
For µ 6= 0, we consider the minimization problem

(P) minimize V (u) under the constraint I(u) = µ.

A minimizer of (P) is called a ground state. If u is such a minimizer, there
exists a Lagrange multiplier λ such that

(1 + (−∆)
1

2 )u = λu2 .

It is easy to see that λµ is positive (because the above equation gives 2V (u) =
3λI(u)). Then λu is a non-trivial solution of (3). Clearly λu minimizes V (v)
subject to the constraint I(v) = I(λu).

Theorem 1. There exists minimizers of problem (P). Consequently, equation (3)
admits non-trivial solutions.

Proof. One may prove Theorem 1 by using the concentration-compactness
principle, as it was done in [1] to show the existence of solitary waves for the ILW
equation. The main difficulty is to eliminate dichotomy. To do this, one needs to
estimate the L2-norm of the commutator (Lχ − χL)u in terms of the derivatives

of order ≥ 1 of χ and the H
1

2 -norm of u, where Lu = F−1((1 + |ξ|)
1

2 û) and
χ ∈ C∞

0 (R2). But this can be done and we obtain the existence of ground states.
We may also observe that problem (P) is exactly of the type discussed by O.

Lopes in a recent paper ([5]). The functionals V and I satisfy the assumptions
HH1−HH6 of Lopes and using the Theorems 3.1 and 3.15 in [5], we infer that any
minimizing sequence (un) of (P) possesses a subsequence that converges strongly

in H
1

2 (R2) (modulo translation in R2) to an element u which is a ground state. 2

We give another variational characterization of the ground states. We consider
the functionals

E(u) =
1

2

∫

R2

|(−∆)
1

4 u|2dx −
1

3

∫

R2

u3dx

and

Q(u) =
1

2

∫

R2

|u|2dx.
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Proposition 2. Let u⋆ be a minimizer of V under the constraint I(u) = µ.
Suppose that u⋆ satisfies the equation (3). Then E(u⋆) = 0 and u⋆ is a solution of
the problem

(P ′) minimize E(v) under the constraint Q(v) = Q(u⋆).

Proof. Multiplying (3) by u and integrating we obtain the identity

(5)

∫

R2

|u|2dx +

∫

R2

|(−∆)
1

4 u|2dx =

∫

R2

u3dx.

For u ∈ H
1

2 (R2) we denote ua,b(x) = bu(ax). Then I(ua,b) = b3a−2I(u),∫

R2

|(−∆)
1

4 ua,b|
2dx = b2a−1

∫

R2

|(−∆)
1

4 u|2dx and Q(ua,b) = b2a−2Q(u).

We have I(u⋆
a,a

2
3
) = I(u⋆) and since u⋆ is a minimizer of the problem (P), the

function

f(a) = V (u⋆
a,a

2
3
) =

1

2
a

1

3

∫

R2

|(−∆)
1

4 u⋆|
2dx +

1

2
a−

2

3

∫

R2

|u⋆|
2dx

has a minimum at a = 1. Hence f ′(1) = 0, that is

(6)

∫

R2

|(−∆)
1

4 u⋆|
2dx = 2

∫

R2

|u⋆|
2dx.

Combining (5) and (6) we obtain E(u⋆) = 0.

Let v ∈ H
1

2 (R2) such that Q(v) = Q(u⋆). We want to show that E(v) ≥
E(u⋆) = 0. This clearly holds if I(v) ≤ 0. Suppose that I(v) > 0. For a > 0, let

b(a) = a
2

3

(∫ u3
⋆dx∫

v3dx

) 1

3 . Then I(va,b(a)) = I(u⋆), hence V (va,b(a)) ≥ V (u⋆) and this

gives

(7)

(∫ u3
⋆dx∫

v3dx

) 2

3 ·
[
a

1

3

∫

R2

|(−∆)
1

4 v|2dx + a−
2

3

∫

R2

|v|2dx
]

≥

∫

R2

|(−∆)
1

4 u⋆|
2dx +

∫

R2

|u⋆|
2dx.

The minimum of the left side of (7) for a ∈ (0,∞) is

3
(∫ u3

⋆dx∫
v3dx

) 2

3 ·
(1

2

∫

R2

|(−∆)
1

4 v|2dx
) 2

3
( ∫

R2

|v|2dx
) 1

3
.

Hence

3
( 1

2

∫
|(−∆)

1

4 v|2dx∫
v3dx

) 2

3
( ∫

R2

u3
⋆dx

) 2

3
( ∫

R2

|v|2dx
) 1

3

≥

∫

R2

|(−∆)
1

4 u⋆|
2dx +

∫

R2

|u⋆|
2dx.

Since
∫
R2 |(−∆)

1

4 u⋆|
2dx = 2

∫
R2 |u⋆|

2dx and
∫
R2 u3

⋆dx = 3
∫
R2 |u⋆|

2dx by (5) and
(6) and

∫
R2 |v|2dx =

∫
R2 |u⋆|

2dx by assumption, we obtain

1
2

∫
R2 |(−∆)

1

4 v|2dx∫
R2 v3dx

≥
1

3
,

that is E(v) ≥ 0. 2
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Remark 3. The converse of Proposition 2 is valid modulo a scale change. More
precisely, let u⋆ be as above and let v be a solution of problem (P ′). Then there
exists a > 0 such that va,a is a solution of problem (P).

Indeed, Q(va,a) = Q(v) and E(va,a) = aE(v). Since v is a minimizer of (P ′),
necessarily E(v) = 0. Moreover, there exists a Lagrange multiplier λ such that

(−∆)
1

2 v − v2 = −λv.

Then λ
∫
R2 |v|2dx = −

∫
R2 |(−∆)

1

4 v|2dx +
∫
R2 v3dx = 1

2

∫
R2 |(−∆)

1

4 v|2dx, hence
λ > 0. Denote v⋆ = v 1

λ
, 1

λ
. Then v⋆ satisfies (3). Multiplying this by v⋆ and

integrating, we find that v⋆ also satisfies (5). But E(v⋆) = 0 and so we deduce

that
1

2

∫

R2

|(−∆)
1

4 v⋆|
2dx =

1

3

∫

R2

v3
⋆dx =

∫

R2

|v⋆|
2dx =

∫

R2

|u⋆|
2dx. Now it is

clear that I(v⋆) = I(u⋆) and V (v⋆) = V (u⋆), i.e. V (v⋆) achieves the minimum of

V (w) for all w ∈ H
1

2 (R2) such that I(w) = I(u⋆).

Now we turn our attention to the regularity of solitary waves.

Theorem 4. Let u ∈ H
1

2 (R2) be a solution of (3). Then u ∈ W k,p(R2) for all
k ∈ N and all p ∈ [1,∞]. In particular, u is a C∞ function and tends to zero at
infinity.

Proof. By the Sobolev imbedding theorem, H
1

2 (R2) ⊂ L4(R2), so that
u2 ∈ L2(R2). From (4) we deduce that |ξ|û ∈ L2(R2), hence u ∈ H1(R2). Again
by Sobolev’s imbedding we have u ∈ Lp(R2) for 2 ≤ p < ∞.

It is easy to check that the functions m(ξ) = 1
1+|ξ| and mi(ξ) = ξi

1+|ξ| satisfy

|∂αm(ξ)| ≤ C|ξ|−|α| and |∂αmi(ξ)| ≤ C|ξ|−|α| for |α| = 0, 1, 2 and a classical
theorem of Mikhlin implies that m, mi ∈ Mq(R

2) for 1 < q < ∞, i.e m, mi are
Fourier multipliers for Lq(R2), 1 < q < ∞. Equation (4) gives

û(ξ) = m(ξ)û2(ξ) and ûxj
(ξ) = imj(ξ)û2(ξ)

and Mikhlin’s theorem implies that u, uxj
∈ Lp(R2) for all p ∈]1,∞[. Hence

u ∈ W 1,p(R2), ∀p ∈]1,∞[. In particular, u is continuous and tends to zero at
infinity.

It follows easily by induction that u ∈ W k,p(R2) for all k ∈ N and p ∈]0,∞[.
Indeed, suppose that u ∈ Wn,p(R2) for all p ∈]1,∞[. If α1, α2 ∈ N, α1 + α2 = n,
we have for example

F(∂α1+1
x1

∂α2

x2
u) =

iξ1

1 + |ξ|
F(∂α1

x1
∂α2

x2
(u2)).

The induction hypothesis implies that ∂α1
x1

∂α2
x2

(u2) ∈ Lp(R2), ∀p ∈]1,∞[. Again
by Mikhlin’s theorem we obtain ∂α1+1

x1
∂α2

x2
u ∈ Lp(R2), 1 < p < ∞ and so u ∈

Wn+1,p(R2) for all p ∈]1,∞[.
The fact that u ∈ W k,1(R2) for all k ∈ N can be easily proved by writing (3) as

a convolution equation and using Lemma 7 below (see also the proof of Theorem
11 and Remark 12). 2

Theorem 5. Let u ∈ H
1

2 (R2) be a solution of (3). Then there exists σ > 0 and
an holomorphic function U of two complex variables z1, z2 defined in the domain

Ωσ = {(z1, z2) ∈ C2 | |Im(z1)| < σ, |Im(z2)| < σ}

such that U(x, y) = u(x, y) for all (x, y) ∈ R2.
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Proof. By Theorem 4 we have (1 + |ξ|2)
m
2 û(ξ) ∈ L2(R2) for all m ≥ 0. We

take m > 1 and apply Cauchy-Schwarz’ inequality to get

∫

R2

|û|(ξ)dξ ≤

(∫

R2

(1 + |ξ|2)m|û|2(ξ)dξ

) 1

2

·

(∫

R2

(1 + |ξ|2)−mdξ

) 1

2

< ∞ .

Hence û ∈ L1(R2). Equation (4) implies that

|û|(ξ) ≤ |û| ⋆ |û|(ξ) and |ξ||û|(ξ) ≤ |û| ⋆ |û|(ξ) .

We note C1|û| = |û| and for n ≥ 1, Cn+1|û| = (Cn|û|) ⋆ |û|.

Lemma 6.We have for all k ∈ N

|ξ|k|û|(ξ) ≤ (k + 1)k−1C2(k+1)|û|(ξ).

The lemma follows easily by induction, using the identity

k∑

j=0

C
j
k(1 + j)j−1(1 + k − j)k−j+1 = 2(2 + k)k−1

(which is a specialization of Abel’s identity).

Using Lemma 6, we have

|ξ|k|û|(ξ) ≤ (k + 1)k−1|| C2(k+1)|û| ||L∞ ≤ (k + 1)k−1|| C2k+1|û| ||L2 · ||û||L2

≤ (k + 1)k−1||û||2k
L1 · ||û||2L2 .

Let ak =
(k + 1)k−1||û||2k

L1 · ||û||2L2

k!
. Clearly

ak+1

ak
= ||û||2L1 ·

(
k + 2

k + 1

)k

−→

e||û||2L1 as k −→ ∞. Let σ =
1

e||û||2
L1

.

If 0 < τ < σ, the series
∞∑

k=0

(τ |ξ|)k

k!
|û|(ξ) converges uniformly in L∞-norm (be-

cause each term is dominated by τkak and the series
∞∑

k=0

τkak converges absolutely).

Hence eτ |ξ|û(ξ) ∈ L∞(R2) for τ < σ.
We define the function

U(z1, z2) =
1

(2π)2

∫

R2

ei(z1ξ1+z2ξ2)û(ξ1, ξ2)dξ1dξ2.

By the Paley-Wiener Theorem, U is well defined and analytic in Ωσ and by
Plancherel’s Theorem we have U(x, y) = u(x, y) for all (x, y) ∈ R2. 2

3 Decay properties

We consider a generalization of equation (3) in Rn, namely

(8) (1 + (−∆)
1

2 )u = g(u)

with the following assumptions on g:

i) g : C −→ C is continuous and
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ii) there exists γ > 1 and C > 0 such that |g(z)| ≤ C|z|γ , ∀z ∈ C.

The aim of this paragraph is to prove that the solutions of (8) that tend to
zero at infinity must decay (at least) as 1

|x|n+1 .

Equation (8) may be written in the equivalent forms

(9) û =
1

1 + |ξ|
ĝ(u)

or

(10) u = k ⋆ g(u) ,

where k = F−1
(

1
1+|ξ|

)
. We begin with some estimates on the kernel k.

Lemma 7.

i) We have

k(x) = cn

∫ ∞

0
e−s ·

s

(|x|2 + s2)
n+1

2

ds , where cn =
Γ(n+1

2 )

π
n+1

2

.

ii) k ∈ C∞(Rn \ {0}) and there exist positive constants An
1 , An

2 such that

An
1 |x|

−n+1 ≤ k(x) < cn

n−1 |x|
−n+1 if 0 < |x| ≤ 1, n ≥ 2, respectively

−c1e
−1 ln |x| < k(x) < −c1 ln |x| + c1 if 0 < |x| ≤ 1, n = 1 and

An
2 |x|

−n−1 ≤ k(x) < cn|x|
−n−1 if |x| ≥ 1, n ≥ 1.

iii) |x|n+1k(x) ∈ L∞(Rn) and for 1 ≤ p < ∞ we have |x|αk(x) ∈ Lp(Rn) if
and only if

(11) n − 1 −
n

p
< α < n + 1 −

n

p
.

In particular, k ∈ Lp(Rn) if and only if 1 ≤ p < n
n−1 .

Remark 8. From now on, we use only equation (10), the assumptions i) and ii)
on g and the estimates on k given by Lemma 7, iii). Hence our result about the
decay of solutions (Theorem 11 below) holds for any equation that can be written
in the form (10) with a kernel k that satisfies the conclusion iii) of Lemma 7.

Proof of Lemma 7. i) For any φ ∈ S (the Schwartz’ space of rapidly decreasing
functions) we have

< k, φ >S′,S =
1

(2π)n

∫

Rn

1

1 + |ξ|

∫

Rn
eix.ξφ(x)dxdξ

=
1

(2π)n

∫

Rn

∫ ∞

0
e−(1+|ξ|)sds ·

∫

Rn
eix.ξφ(x)dxdξ

=

∫ ∞

0
e−s

∫

Rn

(
1

(2π)n

∫

Rn
eix.ξe−|ξ|sdξ

)
φ(x)dxds

=

∫ ∞

0
e−s

∫

Rn
Ps(x)φ(x)dx

where Ps(x) =
1

(2π)n

∫

Rn
eix.ξe−|ξ|sdξ =

cns

(|x|2 + s2)
n+1

2

is the Poisson kernel

=

∫

Rn
cn

∫ ∞

0
e−s ·

s

(|x|2 + s2)
n+1

2

ds φ(x)dx .
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This proves i).
ii) It is obvious that k ∈ C∞(Rn \ {0}). Using i), for n ≥ 2 and 0 < |x| ≤ 1 we

clearly have k(x) > cn

∫ |x|

0

se−1

(|x|2+s2)
n+1

2

ds = cn
e−1

n−1

(
1 − 1

2
n−1

2

)
1

|x|n−1 and

k(x) < cn

∫ ∞

0

s

(|x|2+s2)
n+1

2

ds = cn

n−1
1

|x|n−1 .

For n = 1 and 0 < |x| ≤ 1, integrating by parts and using the elemen-
tary inequality ln(x2 + s2) ≤ ln(x2 + 1) < s2 for s 6= 0 we obtain k(x) =

−1
2c1 lnx2+ 1

2c1

∫ ∞

0
e−s ln(x2+s2)ds < −c1 ln |x|+ 1

2c1

∫ ∞

0
e−ss2ds = −c1 ln |x|+c1

and obviously k(x) > c1

∫ 1

0

se−1

x2+s2 ds = 1
2c1e

−1(ln(x2 + 1) − lnx2) > −c1e
−1 ln |x|.

For |x| ≥ 1 we get k(x) > cn

∫ 1

0

se−s

(2|x|2)
n+1

2

ds = cn(1− 2
e
)2−

n+1

2
1

|x|n+1 and k(x) <

cn

∫ ∞

0

se−s

|x|n+1 ds = cn

|x|n+1 .

iii) is a direct consequence of ii). 2

Lemma 9. Let l and m be two constants satisfying 0 < l < m − n. Then there
exists B > 0 depending only on l, m and n such that for all ε > 0 we have

a)

∫

Rn

|y|l

(1 + ε|y|)m(1 + |x − y|)m
dy ≤

B|x|l

(1 + ε|x|)m
for all x ∈ Rn , |x| ≥ 1 and

b)

∫

Rn

1

(1 + ε|y|)m(1 + |x − y|)m
dy ≤

B

(1 + ε|x|)m
for all x ∈ Rn.

The proof of Lemma 9 is elementary and is essentially the same as the proof
of Lemma 3.1.1 in [4], p. 383.

After this preparation, we may prove an integral estimate of the solutions of
the convolution equation (10). This is given in the next lemma.

Lemma 10. Suppose that f ∈ L∞(Rn) satisfies (10), i.e. f = k ⋆ g(f) and
f(x) −→ 0 as |x| −→ ∞.

Then |x|βf(x) ∈ Lq(Rn) for all q ∈]n,∞[ and for all β ∈ [0, 1[.

Proof. We remark first that k ∈ L1(Rn) and g(f) ∈ L∞(Rn), so f is
continuous. Choose p ∈]1, n

n−1 [. Then choose α such that

(12) n −
n

p
< α < n + 1 −

n

p
.

By Lemma 7 we have k ∈ Lp(Rn) and | · |αk ∈ Lp(Rn). Let Kα,p = ||(1 +
|x|)αk(x)||Lp .

Now choose l ∈ [0, α − n(p−1)
p

[. For 0 < ε < 1 we denote

hε(x) =
|x|l

(1 + ε|x|)α
f(x) .

Let q be the conjugate of p, i.e. 1
p

+ 1
q

= 1. Then hε ∈ Lq(Rn) by the choice
of l. Since

f(x) = (k ⋆ g(f))(x) =

∫

Rn
k(x − y)(1 + |x − y|)α ·

g(f(y))

(1 + |x − y|)α
dy ,

using Hlder’s inequality we obtain

(13) |f(x)| ≤ Kα,p

(∫

Rn

|g(f(y))|q

(1 + |x − y|)αq
dy

) 1

q

.
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The assumption ii) on the function g and the fact that f(x) −→ 0 as
|x| −→ ∞ imply that for every δ > 0 there exists Rδ > 1 such that if |x| ≥ Rδ we
have

|g(f(x))| ≤ δ|f(x)| .

If 0 < r < q, by (13) and Hlder’s inequality we obtain

∫

Rn\B(0,Rδ)
|hε(x)|qdx =

∫

Rn\B(0,Rδ)
|hε(x)|q−r

(
|x|l

(1 + ε|x|)α

)r

|f(x)|rdx

≤

∫

Rn\B(0,Rδ)
|hε(x)|q−r

(
|x|l

(1 + ε|x|)α

)r

· Kr
α,p

(∫

Rn

|g(f(y))|q

(1 + |x − y|)αq
dy

) r
q

dx

≤ Kr
α,p

(∫

Rn\B(0,Rδ)
|hε(x)|qdx

) q−r
q

×

[∫

Rn\B(0,Rδ)

(
|x|l

(1 + ε|x|)α

)q

·

∫

Rn

|g(f(y))|q

(1 + |x − y|)αq
dy dx

] r
q

.

The last sequence of inequalities gives

(15)

∫

Rn\B(0,Rδ)
|hε(x)|qdx ≤ Kq

α,p

∫

Rn\B(0,Rδ)

(
|x|l

(1 + ε|x|)α

)q

·

∫

Rn

|g(f(y))|q

(1 + |x − y|)αq
dy dx.

(since hε ∈ Lq(Rn), we may divide by

∫

Rn\B(0,Rδ)
|hε(x)|qdx). Observe that lq <

αq − n by the choice of l. Using Fubini’s Theorem and Lemma 9 we obtain

(16)

∫

Rn\B(0,Rδ)

[(
|x|l

(1 + ε|x|)α

)q

·

∫

Rn

|g(f(y))|q

(1 + |x − y|)αq
dy

]
dx

=

∫

Rn
|g(f(y))|q

[∫

Rn\B(0,Rδ)

|x|lq

(1 + ε|x|)αq
·

1

(1 + |x − y|)αq
dx

]
dy

≤

∫

Rn\B(0,Rδ)
|g(f(y))|q

B|y|lq

(1 + ε|y|)αq
dy

+

∫

B(0,Rδ)
|g(f(y))|q ·

∫

Rn\B(0,Rδ)

|x|lq

(1 + ε|x|)αq
·

1

(1 + |x − y|)αq
dx dy

where B depends on n, l, q and α, but not on ε. The last integral is majorized by
a constant C depending on f and Rδ (but not on ε).

Combining (15) and (16) and taking into account the fact that |g(f(y))| <

δ|f(y)| on Rn \ B(0, Rδ), we get

(17)

∫

Rn\B(0,Rδ)
|hε(x)|qdx ≤ Kq

α,p

[
Bδq

∫

Rn\B(0,Rδ)
|hε(x)|qdx + C

]
.
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Choosing δ such that Kα,pB
1

q δ < 1, from (17) we deduce that

(18)

∫

Rn\B(0,Rδ)
|hε(x)|qdx ≤ C ′

where C ′ is a constant that does not depend on ε. We let ε −→ 0 in (18) and
apply Fatou’s Lemma to obtain

∫

Rn\B(0,Rδ)
|x|lq|f(x)|qdx ≤ C ′ .

Hence |x|lf(x) ∈ Lq(Rn) for q = p
p−1 .

To summarize, we proved that for any p ∈ ]1, n
n−1 [, for any α ∈ ]n− n

p
, n+1− n

p
[

and for any l ∈ [ 0, α − n(p−1)
p

[ we have |x|lf(x) ∈ L
p

p−1 .
We choose sequences (pk), (αk) and (lk) such that

pk ∈ ]1, n
n−1 [ , pk −→ n

n−1 as k −→ ∞

αk ∈ ]n − n
pk

, n + 1 − n
pk

[ , αk −→ 2 as k −→ ∞ and

lk ∈ [0, αk − n(pk−1)
pk

[ , lk −→ 1 as k −→ ∞.

Then qk = pk

pk−1 −→ n as k −→ ∞ and |x|lkf(x) ∈ Lqk for all k. This proves
the lemma. 2

We may now state our main result.

Theorem 11. Soppose that f satisfies equation (10) and
-either f ∈ Lp(Rn) for a p ∈](γ − 1)n,∞[, p ≥ γ,
-or f ∈ L∞(Rn) and f(x) −→ 0 as |x| −→ ∞.

Then |x|n+1f(x) ∈ L∞(Rn).

Proof. First we show that we always have f ∈ L∞(Rn) and f(x) −→ 0 at
infinity.

Suppose that f ∈ Lp(Rn) and p > γn. Then g(f) ∈ L
p
γ (Rn). Since p

γ
> n

and k ∈ Lq(Rn) for all q ∈ [1, n
n−1 [, it clearly follows from equation (10) that

f ∈ L∞(Rn), f is continuous and tends to zero at infinity.
If f ∈ Lγn(Rn), then g(f) ∈ Ln(Rn). Equation (10) and Young’s theorem

imply that f ∈ Lq(Rn) for all q ∈ [γn,∞[. Then the preceeding argument shows
that f ∈ L∞(Rn) and f(x) −→ 0 as |x| −→ ∞.

Now suppose that p ∈](γ − 1)n, γn[ and p ≥ γ. Then g(f) ∈ L
p
γ (Rn) and by

(10) and Young’s theorem we obtain f ∈ Lq(Rn) for all q ∈ [ p
γ
, pn

γn−p
[. Iterating

this argument, after a finite number of steps we get f ∈ Lp(Rn) for a p ≥ γn. As
above we obtain f ∈ L∞(Rn) and f(x) −→ 0 at infinity.

The rest of the proof is a standard bootstrap argument. We make use of the
inequality

(19) ||x|δf | ≤ C
(
(|x|δk) ⋆ |g(f)| + k ⋆ (|x|δ|g(f)|)

)
.

By Lemma 7, |x|k ∈ Lq(Rn) for q ∈]1, n
n−2 [ if n ≥ 3 (respectively for q ∈]1,∞[ if

n = 2 and q ∈]1,∞] if n = 1). Lemma 10 implies that g(f) ∈ Lr(Rn) for r ∈]n
γ
,∞],

so we get (|x|k) ⋆ |g(f)| ∈ L∞(Rn). Similarly, k ∈ Lq(Rn) for q ∈ [1, n
n−1 [ and

|x|g(f) ∈ Lr(Rn) for r ∈]n
γ
,∞[ by Lemma 10, hence k ⋆ (|x||g(f)|) ∈ L∞(Rn).

Using (19) we get |x|f(x) ∈ L∞(Rn).

9



Suppose that |x|αf(x) ∈ L∞(Rn) and αγ ≤ n + 1. Obviously |x|αγ |g(f)| ∈
L∞(Rn) and k ∈ L1(Rn), hence k ⋆ (|x|αγ |g(f)|) ∈ L∞(Rn). Observe that
|g(f)(x)| ≤ C

(1+|x|)αγ , so g(f) ∈ Lq(Rn) for all q verifying q > n
αγ

, q ≥ 1. Using

Lemma 7 and Young’s theorem, we find that (|x|αγk) ⋆ |g(f)| ∈ L∞(Rn) and from
(19) it follows that |x|αγf(x) ∈ L∞(Rn). Hence |x|αf ∈ L∞(Rn) and αγ ≤ n + 1
imply that |x|αγf ∈ L∞(Rn). This clearly leads to the conclusion of the theorem.
2

Remark 12. Suppose that g is Cm and |g(i)|(x) ≤ Ci|x|
γ−i , 0 ≤ i ≤ m and

f satisfies the hypothesis of Theorem 11. Then |f(x)| ≤ C
(1+|x|)n+1 , in particular

f ∈ L1(Rn). Arguing as in the proof of Theorem 4 we obtain that f ∈ Wm+1,q(Rn)
for all q ∈ [1,∞[. As in Theorem 11 it can be proved that the derivatives of f of
order ≤ m decay at infinity at least as 1

|x|n+1 .

Remark 13. Suppose in addition that g is differentiable and there exists β >

0 such that |g′(x)| ≤ C|x|β. If f ∈ Lp(Rn) , 1 < p ≤ ∞ satisfies (10) and∫

Rn
g(f(x)) dx 6= 0, then the decay rate of f given by Theorem 11 is optimal.

More precisely, |x|f cannot belong to L1(Rn).
In particular, the solutions of equation (3) in R2 decay at infinity as 1

|x|3
and

this algebraic rate is optimal.
Indeed, |x|f ∈ L1(Rn) would imply that xjf, g(f) and xjg(f) are L1-

functions, hence their Fourier transforms are continuous. But

(20)
−̂ixjf(ξ) = ∂ξj

f̂(ξ) = ∂ξj

(
1

1 + |ξ|
ĝ(f)

)
(ξ)

= −
ξj

(1 + |ξ|)2|ξ|
ĝ(f) +

1

1 + |ξ|
F(−ixjg(f))(ξ).

Take ξj = s and ξi = 0 if i 6= j in (20). For s ↓ 0 we get

−̂ixjf(0) = −ĝ(f)(0) + F(−ixjg(f))(0) ,

while for s ↑ 0 we obtain

−̂ixjf(0) = ĝ(f)(0) + F(−ixjg(f))(0) ,

Hence ĝ(f)(0) = 0, i. e.

∫

Rn
g(f(x)) dx = 0, contrary to our assumption.
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