
Nonexistence of supersonic travelling-waves for nonlinear

Schrödinger equations with nonzero conditions at infinity

Mihai MARIŞ
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Abstract
We prove that the non-existence of supersonic finite-energy travelling-waves for non-

linear Schrödinger equations with nonzero conditions at infinity is a general phenomenon,
which holds for a large class of equations. The same is true for sonic travelling-waves in
dimension two. In higher dimensions we prove that sonic travelling-waves, if they exist,
must approach their limit at infinity in a very rigid way. In particular, we infer that there
are no sonic travelling-waves with finite energy and finite momentum.
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1 Introduction

The aim of this paper is to study travelling-wave solutions for nonlinear Schrödinger equations

(1.1) i
∂Φ
∂t

+ ∆Φ + F (x, |Φ|2)Φ = 0 in RN ,

where F is a real-valued function defined on RN × R+, Φ is a complex-valued function on
RN satisfying the ”boundary condition” |Φ| −→ r0 as |x| −→ ∞, and r0 is a positive constant
verifying lim

|x|→∞, s→r2
0

F (x, s) = 0.

The above equation with the considered non-zero conditions at infinity arise in a large
variety of physical problems, such as superconductivity, superfluidity in Helium II, phase tran-
sitions and Bose-Einstein condensate. Two important particular cases of (1.1) have been
extensively studied both by physicists and by mathematicians : the Gross-Pitaevskii equa-
tion (where F (x, s) = 1 − s) and the so-called ”cubic-quintic” Schrödinger equation (where
F (x, s) = −α1 + α3s− α5s

2, α1, α3, α5 are positive and 3
16 < α1α5

α2
3

< 1
4).

Equation (1.1) has a Hamiltonian structure: denoting V (x, s) =
∫ r2

0

s
F (x, τ) dτ , it is easy

to see that, at least formally, the ”energy”

(1.2) E(Φ) =
∫

RN
|∇Φ|2 dx +

∫

RN
V (x, |Φ|2) dx

is a conserved quantity. There is another important (vector) quantity associated to (1.1),
namely the momentum. It is given by

(1.3) P (Φ) = (P1(Φ), . . . , PN (Φ)), where Pk(Φ) =
∫

RN
(i

∂Φ
∂xk

,Φ) dx =
∫

RN
Re(i

∂Φ
∂xk

Φ) dx.

1



Note that, in general, the momentum is not well-defined for any solution Φ of finite energy.
In the case where F does not depend on the variable xk, the momentum with respect to the
xk−direction, Pk, is conserved by those solutions of (1.1) for which it can be well-defined.

It is worth to note that equation (1.1) can be put into a hydrodynamical form by us-
ing Madelung’s transformation Φ(x, t) =

√
ρ(x, t)eiθ(x,t) (which is singular when Φ = 0). A

straightforward computation shows that, in the region where Φ 6= 0, the functions ρ = |Φ|2
and θ satisfy the system

(1.4) ρt + 2div(ρ∇θ) = 0,

(1.5) θt + |∇θ|2 − ∆ρ

2ρ
+
|∇ρ|2
4ρ

− F (x, ρ) = 0.

Equation (1.4) and the derivatives with respect to x1, . . . , xN of (1.5) are, respectively, the
equation of conservation of mass and Euler’s equations for a compressible inviscid fluid of
density ρ and velocity 2∇θ.

Let us assume that F admits a partial derivative with respect to the last variable (in the
sequel, this derivative will be denoted by ∂N+1F or by ∂F

∂s ) and that lim
|x|→∞, ρ→r2

0

∂N+1F (x, ρ) =

−L, where L is a positive constant. Taking the derivative with respect to t of (1.5) and
substituting ρt from (1.4) we obtain

(1.6) θtt + 2∂N+1F (x, ρ)(ρ∆θ +∇ρ.∇θ) +
∂

∂t

(
|∇θ|2 − ∆ρ

2ρ
+
|∇ρ|2
4ρ

)
= 0.

For a small oscillatory motion (i.e. a sound wave), all nonlinear terms in (1.6), except 2ρ∆θ,
may be neglected. In view of the behavior of ρ and ∂N+1F (x, ρ) for large |x|, we find that
in a neighborhood of infinity, the velocity potential θ essentially obeys the wave equation
θtt − 2r2

0L∆θ = 0. It is well-known that the solutions of the wave equation propagate with a
finite speed; in the present situation, we infer that the velocity of sound waves at infinity is
r0

√
2L. In what follows we will always assume that ∂N+1F (x, ρ) −→ −L as |x| −→ ∞ and

ρ −→ r2
0 (the convergence being in a sense to be defined) and we will denote by vs = r0

√
2L

the sound velocity at infinity.
For a fixed y ∈ SN−1, a travelling-wave for (1.1) moving with velocity c in direction y is

a solution of the form Φ(x, t) = ψ(x − cty). Without loss of generality we will assume that
y = (1, 0, . . . , 0), i.e. travelling-waves move in the x1−direction. The travelling-wave profile
satisfies the equation

(1.7) −ic
∂ψ

∂x1
+ ∆ψ + F (x, |ψ|2)ψ = 0 in RN .

In a series of papers, J. Grant, C.A. Jones, S.J. Putterman, P.H. Roberts et al. studied
formally and numerically travelling-waves for the Gross-Pitaevskii equation and related systems
(see, e.g., [16], [19], [21], [22], [7] and references therein). In particular, they conjectured that
such solutions exist if and only if their speed c belongs to the interval (−vs, vs). For the
cubic-quintic nonlinear Schrödinger equation, the existence of subsonic travelling-waves in
one dimension has been proved in [2] and their stability has been studied in [1]. The non-
existence of such solutions for sonic and supersonic speeds has also been conjectured in any
space dimension. In the case of the Gross-Pitaevskii equation, it has been shown in [17] that
any travelling-wave of finite energy and speed c > vs must be constant. It has also been
proved in [18] that the same result is true if N = 2 and c2 = v2

s . The proofs in [17], [18]
strongly depend on the special algebraic structure of the nonlinearity in the Gross-Pitaevskii

2



equation. In the present paper we show that the nonexistence of finite energy travelling-waves
moving faster than the sound velocity is a general phenomenon, which holds for a large class
of equations and systems of the form (1.1). We also prove that there are no finite energy sonic
travelling-waves in space dimension two. In higher dimensions we show that any finite-energy
sonic travelling-wave ψ must satisfy |ψ|2− r2

0 ∈ Lp(RN ) for any p > 2N−1
2N−3 . On the other hand,

if a sonic travelling-wave satisfies |ψ|2 − r2
0 ∈ L

2N−1
2N−3 (RN ), then it must be constant.

This article is organized as follows: in the next section we prove that travelling-waves,
whenever they exist, are smooth functions. If their speed is supersonic (or sonic, provided
they converge sufficiently fast at infinity), then they must satisfy a special integral identity.
This will be proved in Section 3. In section 4 we show how this identity implies, under general
assumptions, the non-existence of travelling-waves with finite energy. We apply our results
to the Gross-Pitaevskii equation, to the cubic-quintic Schrödinger equation and to a Gross-
Pitaevskii-Schrödinger system which describes the motion of an uncharged impurity in a Bose
condensate. In the last section we describe all supersonic and sonic travelling-waves (with
finite or infinite energy) for one-dimensional equations with nonlinearities independent on the
space variable.

2 Basic properties of travelling-waves

We keep the previous notation and we consider the following set of assumptions:

• (H1) F : RN×[0,∞) −→ R is a measurable function which has the following properties:

a) for any s ∈ [0,∞), F (·, s) is measurable;

b) for any x ∈ RN , F (x, ·) is continuous;

c) F is bounded on bounded subsets of RN × [0,∞).

• (H2) There exist α > 0, C > 0 and r∗ > 0 such that for any x ∈ RN and for any s ≥ r∗
we have F (x, s) ≤ −Csα.

• (H3) lim
|x|→∞

F (x, r2
0) = 0 and F (·, r2

0) ∈ L1(RN ).

• (H4) F admits a partial derivative with respect to the last variable and ∂N+1F is
bounded on bounded subsets of RN × [0,∞). Moreover, lim

|x|→∞
∂N+1F (x, r2

0) = −L,

where L > 0 and ∂N+1F (·, r2
0) + L ∈ Lp0(RN ) for some p0 ∈ [1, 2].

• (H5) There are some positive constants R0, η, M such that ∂2
N+1F exists on (RN \

B(0, R0))× (r2
0 − η, r2

0 + η) and

|∂2
N+1F (x, s)| ≤ M for all (x, s) ∈ (RN \B(0, R0))× (r2

0 − η, r2
0 + η).

Definition 2.1 A travelling-wave (of speed c) for (1.1) is a function ψ ∈ L1
loc(R

N ) that satisfies
(1.7) in D′(RN ) together with the ”boundary condition” |ψ| −→ r0 as |x| −→ ∞.

In view of (1.2), we say that a travelling-wave ψ has finite energy if ∇ψ ∈ L2(RN ) and
V (·, |ψ|2) ∈ L1(RN ).

We have the following result concerning the regularity of tavelling-waves:

Proposition 2.2 Let ψ be a finite-energy travelling-wave for (1.1).
i) Assume that F : RN × R+ −→ R is measurable and satisfies (H1a), (H1b), (H2),

the function x 7−→
∫ r∗

r2
0

F (x, τ) dτ belongs to L1
loc(R

N ) (where r∗ is given by (H2)) and

F (·, |ψ|2)ψ ∈ L1
loc(R

N ). Then ψ ∈ L∞(RN ).
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If, in addition, F satisfies (H1c), then ψ ∈ W 2,p
loc (RN ) for any p ∈ [1,∞). In particular,

ψ ∈ C1,α(RN ) for any α ∈ [0, 1).
ii) Suppose that F ∈ Ck(RN × [0,∞)) for some k ∈ N∗, (H2) holds, and F (·, |ψ|2)ψ ∈

L1
loc(R

N ). Then ψ ∈ W k+2,p
loc (RN ) for any p ∈ [1,∞). In particular, if F is C∞, then

ψ ∈ C∞(RN ).

Proof. i) The proof relies upon the ideas and methods developed by A. Farina in [13, 14].
By (H2) we have

V (x, s) = −
∫ s

r2
0

F (x, τ) dτ ≥ −
∫ r∗

r2
0

F (x, τ) dτ+
∫ s

r∗
Cτα dτ = −

∫ r∗

r2
0

F (x, τ) dτ+
C

α + 1
(sα+1−rα+1

∗ ).

Consequently, for any s ≥ r∗ we get sα+1 ≤ rα+1∗ + α+1
C

(
V (x, s) +

∫ r∗

r2
0

F (x, τ) dτ
)
, so that

|ψ|2α+2(x) ≤ max
(
rα+1
∗ , rα+1

∗ +
α + 1

C

(
V (x, |ψ|2(x)) +

∫ r∗

r2
0

F (x, τ) dτ
))

.

Since V (·, |ψ|2) and
∫ r∗

r2
0

F (·, τ) dτ belong to L1
loc(R

N ), we infer that ψ ∈ L2α+2
loc (RN ).

We will use a well-known inequality of T. Kato (see Lemma A p. 138 in [23]):

If u ∈ L1
loc(R

N ) is a real-valued function and ∆u ∈ L1
loc(R

N ), then

(2.1) ∆(u+) ≥ sgn+(u)∆u in D′(RN ).

Let ϕ(x) = e−
icx1

2 ψ(x). Then ϕ ∈ L2α+2
loc (RN ) ⊂ L1

loc(R
N ) and an easy computation shows

that ϕ satisfies

(2.2) ∆ϕ +
(
F (x, |ϕ|2) +

c2

4

)
ϕ = 0 in D′(RN ).

It is clear that F (·, |ϕ|2)ϕ ∈ L1
loc(R

N ) (because F (x, |ψ|2)ψ ∈ L1
loc(R

N ) by hypothesis) and it
follows from (2.2) that ∆ϕ ∈ L1

loc(R
N ). Choose r̃ ≥ r∗ and C1 > 0 such that Cs2α − c2

4 ≥
C1(s− r̃)2α for any s ≥ r̃. Denoting ϕ1 = Re(ϕ), ϕ2 = Im(ϕ) and using Kato’s inequality for
ϕi − r̃, i = 1, 2, then using (2.2) and (H2) we get

(2.3)

∆(ϕi − r̃)+ ≥ sgn+(ϕi − r̃)∆(ϕi − r̃) = sgn+(ϕi − r̃)[−(F (x, |ϕ|2) + c2

4 )ϕi]

≥ sgn+(ϕi − r̃)[C|ϕ|2α − c2

4 ]ϕi ≥ sgn+(ϕi − r̃)[C|ϕi|2α − c2

4 ]ϕi

≥ C1sgn+(ϕi − r̃)(ϕi − r̃)2α+1 = C1[(ϕi − r̃)+]2α+1.

Next we use the following result of H. Brézis (Lemma 2 p. 273 in [9]):

Lemma 2.3 ([9]) Let p ∈ (1,∞). Assume that u ∈ Lp
loc(R

N ) satisfies

−∆u + |u|p−1u ≤ 0 in D′(RN ).

Then u ≤ 0 a.e. on RN .

It follows from (2.3) that the function ui = (C1)
1
2α (ϕi − r̃)+ satisfies −∆ui + |ui|2αui ≤ 0

in D′(RN ). Since ui ∈ L2α+1
loc (RN ), we may use Lemma 2.3 and we get ui ≤ 0 a.e. in RN , that

is ϕi ≤ r̃ a.e. in RN .
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It is obvious that both ϕ and −ϕ satisfy (2.2). Repeating the above argument for −ϕ, we
infer that −ϕi ≤ r̃ a.e. on RN . Therefore we have |ϕi| ≤ r̃ a.e. on RN , i = 1, 2, which implies
that ϕ ∈ L∞(RN ). Since |ϕ| = |ψ|, we have proved that ψ ∈ L∞(RN ).

Using (H1c) and (2.2) we infer that ∆ϕ ∈ L∞(B(x, 2R)) ⊂ Lp(B(x, 2R)) for any x ∈ RN ,
R > 0 and p ≥ 1. By standard elliptic estimates we obtain ϕ ∈ W 2,p(B(x,R)) for any x ∈ RN ,
R > 0 and p ∈ (1,∞). Thus ψ = e

icx1
2 ϕ ∈ W 2,p

loc (RN ) for any p ∈ (1,∞), consequently ψ

belongs to C1,α
loc (RN ) for any α ∈ [0, 1) by the Sobolev embedding theorem.

ii) Assume F ∈ C1(RN × [0,∞)). Differentiating (1.7) with respect to xk we get

(2.4) −icψx1xk
+ ∆ψxk

+
∂F

∂xk
(x, |ψ|2)ψ + 2∂N+1F (x, |ψ|2)(ψ.

∂ψ

∂xk
)ψ + F (x, |ψ|2) ∂ψ

∂xk
= 0

in D′(RN ). Hence ∆ψxk
∈ Lp

loc(R
N ) for 1 ≤ p < ∞. By standard elliptic regularity theory we

get ψxk
∈ W 2,p

loc (RN ) for 1 < p < ∞, 1 ≤ k ≤ N , therefore ψ ∈ W 3,p
loc (RN ) for 1 ≤ p < ∞.

If F ∈ Ck(RN × [0,∞)) we may differentiate (2.4) further and repeat the above arguments.
After an easy induction, we get ψ ∈ W k+2,p

loc (RN ) for any p ∈ (1,∞). 2

Lemma 2.4 Assume that (H1), (H3), (H4), (H5) hold and u ∈ L4
loc(R

N ,C) satisfies
|u(x)| −→ r0 as |x| −→ ∞ and V (·, |u|2) ∈ L1(RN ).

Then |u|2 − r2
0 ∈ L2(RN ).

Proof. Let R0, η, M be as in (H5). From (H4) and the fact that |u(x)| −→ r0 as
|x| −→ ∞ it follows that there exists R1 > R0 such that

∂N+1F (x, r2
0) < −L

2
and |u(x)|2 ∈ (r2

0 − η, r2
0 + η) for any x satisfying |x| ≥ R1.

For (x, s) ∈ (RN \B(0, R1))× (r2
0 − η, r2

0 + η) we get, by Taylor’s formula with respect to
the (N + 1)th variable,

V (x, s) = −(s− r2
0)F (x, r2

0)−
1
2
(s− r2

0)
2∂N+1F (x, r2

0)−
1
2

∫ s

r2
0

(s− τ)2∂2
N+1F (x, τ) dτ.

In particular, for s = |u(x)|2 we obtain

(2.5)
−1

2(|u(x)|2 − r2
0)

2∂N+1F (x, r2
0)

= V (x, |u(x)|2) + (|u(x)|2 − r2
0)F (x, r2

0) + 1
2

∫ |u(x)|2

r2
0

(|u(x)|2 − τ)2∂2
N+1F (x, τ) dτ.

For x ∈ RN \B(0, R1) we get by (H5)

∣∣∣∣
∫ |u(x)|2

r2
0

(|u(x)|2 − τ)2∂2
N+1F (x, τ) dτ

∣∣∣∣ ≤ M

∣∣∣∣
∫ |u(x)|2

r2
0

(|u(x)|2 − τ)2 dτ

∣∣∣∣ =
M

3
|(|u(x)|2 − r2

0)|3.

It is clear that there exists R2 ≥ R1 such that M
3

∣∣∣|u(x)|2 − r2
0

∣∣∣ ≤ L
4 on RN \ B(0, R2). Using

(H4) and (2.5) we infer that

L
4 (|u(x)|2 − r2

0)
2 ≤ −1

2(|u(x)|2 − r2
0)

2∂N+1F (x, r2
0)

≤ V (x, |u(x)|2) + (|u(x)|2 − r2
0)F (x, r2

0) + 1
2 · M

3

∣∣∣ |u(x)|2 − r2
0

∣∣∣
3

≤ V (x, |u(x)|2) + (|u(x)|2 − r2
0)F (x, r2

0) + L
8

∣∣∣ |u(x)|2 − r2
0

∣∣∣
2

on RN \B(0, R2).
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Consequently

(2.6)
L

8
(|u(x)|2 − r2

0)
2 ≤ V (x, |u(x)|2) + (|u(x)|2 − r2

0)F (x, r2
0) on RN \B(0, R2).

Since F (·, r2
0) ∈ L1(RN ) by (H3), V (·, |u|2) ∈ L1(RN ) and | |u(x)|2 − r2

0| ≤ 3L
4M on RN \

B(0, R2), using (2.6) we get (|u|2 − r2
0)

2 ∈ L1(RN \B(0, R2)). It is obvious that (|u|2 − r2
0)

2 ∈
L1(B(0, R2)) because u ∈ L4

loc(R
N ). Hence (|u|2−r2

0)
2 ∈ L1(RN ) and Lemma 2.4 is proved. 2

Proposition 2.5 Assume that (H1)-(H5) hold and let ψ be a finite-energy travelling-wave
for (1.1) (in the sense of Definition 2.1) such that F (·, |ψ|2)ψ ∈ L1

loc(R
N ). Then:

i) ∇ψ ∈ W 1,p(RN ) for any p ∈ [2,∞).
ii) Let R∗ ≥ 0 be such that |ψ(x)| ≥ r0

2 for |x| ≥ R∗. There exists a real-valued function
θ such that θ ∈ W 2,p

loc (RN \ B(0, R∗)) for any p < ∞, ∇θ ∈ W 1,p(RN \ B(0, R∗)) for any
p ∈ [2,∞) and

ψ(x) = |ψ(x)|eiθ(x) on RN \B(0, R∗).

Proof. i) We already know by Proposition 2.2 i) and Lemma 2.4 that ψ is bounded,
ψ ∈ W 2,p

loc (RN ) for any p ∈ [1,∞) and |ψ|2 − r2
0 ∈ L2(RN ).

Let R0, η, M be as in (H5). Choose R1 > R0 such that |ψ|2(x) ∈ (r2
0 − η, r2

0 + η) for
x ∈ RN \B(0, R1).

By using Taylor’s formula with respect to the last variable for the function F we get

(2.7) F (x, s) = F (x, r2
0) + (s− r2

0)∂N+1F (x, r2
0) +

∫ s

r2
0

(s− τ)∂2
N+1F (x, τ) dτ

if (x, s) ∈ (RN \B(0, R0))× (r2
0 − η, r2

0 + η), hence

(2.8)

F (x, |ψ|2(x))ψ(x) = F (x, r2
0)ψ(x) + (|ψ|2(x)− r2

0)∂N+1F (x, r2
0)ψ(x)

+ψ(x)
∫ |ψ|2(x)

r2
0

(|ψ|2(x)− τ)∂2
N+1F (x, τ) dτ for any |x| ≥ R1.

We analyze the three terms in the right-hand side of (2.8). Assumptions (H1) and (H3)
imply F (·, r2

0) ∈ L1 ∩ L∞(RN ). Since ψ ∈ L∞(RN ), it follows that F (·, r2
0)ψ ∈ L1 ∩ L∞(RN ).

We may write (|ψ|2− r2
0)∂N+1F (·, r2

0)ψ = −L(|ψ|2− r2
0)ψ +(|ψ|2− r2

0)(L+∂N+1F (·, r2
0))ψ.

We know that ψ ∈ L∞(RN ), |ψ|2−r2
0 ∈ L2∩L∞(RN ) and by (H4) we have L+∂N+1F (·, r2

0) ∈
Lp0 ∩L∞(RN ) for some p0 ∈ [1, 2], so we infer that (|ψ|2 − r2

0)∂N+1F (·, r2
0)ψ ∈ L2 ∩L∞(RN ).

As in the proof of Lemma 2.4, for x ∈ RN \B(0, R1) we have

(2.9)
∣∣∣∣
∫ |ψ|2(x)

r2
0

(|ψ|2(x)−τ)∂2
N+1F (x, τ) dτ

∣∣∣∣ ≤ M

∣∣∣∣
∫ |ψ|2(x)

r2
0

∣∣∣ |ψ|2(x)−τ
∣∣∣ dτ

∣∣∣∣ =
M

2
(|ψ|2(x)−r2

0)
2.

Consequently the function x 7−→
∫ |ψ|2(x)

r2
0

(|ψ|2(x)−τ)∂2
N+1F (x, τ) dτ belongs to L1∩L∞(RN \

B(0, R1)).
Summing up, we have proved that F (·, |ψ|2)ψ ∈ L2 ∩L∞(RN \B(0, R1)). From (H1) and

the fact that ψ is bounded on RN it follows that F (·, |ψ|2)ψ is bounded on B(0, R1), hence
F (·, |ψ|2)ψ ∈ L2 ∩ L∞(RN ).

We have ∂ψ
∂xk

∈ L2(RN ) because ψ has finite energy. Coming back to (1.7), we get

∆ψ = ic
∂ψ

∂x1
− F (·, |ψ|2)ψ ∈ L2(RN ).
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It is well-known that ∆ψ ∈ Lp(RN ) with 1 < p < ∞ implies ∂2ψ
∂xj∂xk

∈ Lp(RN ) for any

j, k ∈ {1, . . . , N} (this follows, e.g., from the fact that ξjξk

|ξ|2 is a Fourier multiplier on Lp(RN ) if
1 < p < ∞; see Theorem 3 p. 96 in [27]). Therefore all second derivatives of ψ are in L2(RN ),
so that ∂ψ

∂xk
∈ H1(RN ) = W 1,2(RN ) for k = 1, . . . , N .

The rest of the proof is an easy bootstrap argument. Assume that∇ψ ∈ W 1,p(RN ) for some
p ≥ 2. In case p < N , it follows from the Sobolev embedding theorem that ∇ψ ∈ Lp∗(RN ),
where 1

p∗ = 1
p − 1

N . From (1.7) we have ∆ψ = ic ∂ψ
∂x1

− F (·, |ψ|2)ψ ∈ Lp∗(RN ) and we infer
as previously that ∇ψ ∈ W 1,p∗(RN ). Repeating this argument if necessary, after a finite
number of steps we get ∇ψ ∈ W 1,q(RN ) for some q ≥ N . Then by Sobolev embedding we get
∇ψ ∈ Lr(RN ) for any r ∈ [q,∞). From (1.7) we obtain ∆ψ ∈ Lp(RN ) for p ∈ [2,∞) and we
infer that ∇ψ ∈ W 1,p(RN ) for any p ∈ [2,∞).

ii) Take R∗ > 0 such that |ψ(x)| ≥ r0
2 on RN \B(0, R∗) and denote ψ̃(x) = ψ(x)

|ψ(x)| . It is then

standard to prove that ψ̃ ∈ W 2,p
loc (RN \B(0, R∗)) for p ∈ [1,∞) and ∇ψ̃ ∈ W 1,p(RN \B(0, R∗))

for any p ∈ [2,∞) (see, e.g., Lemma C1 p. 66 in [10]).
Let us consider first the case N ≥ 3. For R∗ ≤ R1 < R2, the domain ΩR1,R2 = B(0, R2) \

B(0, R1) is simply connected in RN . It follows from Theorem 3 p. 38 in [10] that there
exists a real-valued function θR1,R2 ∈ W 2,p(ΩR1,R2) (1 < p < ∞) such that ψ̃ = eiθR1,R2 on
ΩR1,R2 . If R∗ ≤ R1 < R2, R∗ ≤ R3 < R4 and (R1, R2) ∩ (R3, R4) 6= ∅, then ψ̃ = eiθR1,R2 =
eiθR3,R4 on ΩR1,R2 ∩ ΩR3,R4 , thus θR3,R4 − θR1,R2 ∈ 2πZ on ΩR1,R2 ∩ ΩR3,R4 . Since functions
in W s,p(ΩR1,R2 ∩ ΩR3,R4) with values in Z are constant when sp ≥ 1 (see Theorem B1 p. 65
in [10]), there exists k ∈ Z such that θR3,R4 − θR1,R2 = 2πk on ΩR1,R2 ∩ ΩR3,R4 . Let (Rn)n≥1

be an increasing sequence such that R∗ < R1 and Rn −→ ∞. Let kn ∈ Z be such that
θR∗,Rn = θR∗,R1 + 2πkn on ΩR∗,R1 . Define θ(x) = θR∗,Rn(x) − 2πkn for x ∈ ΩR∗,Rn . It is
clear that θ is well-defined on RN \ B(0, R∗), ψ̃ = eiθ and θ ∈ W 2,p

loc (RN \ B(0, R∗)) for any
p ∈ [1,∞).

Next we consider the case N = 2. Since ψ is C1 and |ψ| ≥ r0
2 on R2 \ B(0, R∗), the

topological degree deg(ψ, ∂B(0, R)) is well-defined for any R ≥ R∗ and does not depend on R.
It is well-known that ψ admits a C1 lifting θ (i.e. ψ = |ψ|eiθ) on R2 \ B(0, R∗) if and only if
deg(ψ, ∂B(0, R)) = 0 for R ≥ R∗. Denoting by τ = (− sin ζ, cos ζ) the unit tangent vector at
∂B(0, R) at a point Reiζ , we get

(2.10)

|deg(ψ, ∂B(0, R))| =
∣∣∣∣

1
2iπ

∫ 2π

0

∂
∂ζ (ψ(Reiζ))

ψ(Reiζ)
dζ

∣∣∣∣ =
∣∣∣∣

R

2iπ

∫ 2π

0

∂ψ
∂τ (Reiζ)
ψ(Reiζ)

dζ

∣∣∣∣

≤ R

2π

∫ 2π

0

2
r0
|∇ψ(Reiζ)| dζ ≤ R

πr0

√
2π

(∫ 2π

0
|∇ψ(Reiζ)|2 dζ

) 1
2

.

On the other hand,
∫

R2\B(0,R∗)
|∇ψ(x)|2 dx =

∫ ∞

R∗
R

∫ 2π

0
|∇ψ(Reiζ)|2 dζ dR.

We have
∫

R2\B(0,R∗)
|∇ψ(x)|2 dx < ∞ (because ψ has finite energy) and we infer that there

exists R1 > R∗ such that R1

∫ 2π

0
|∇ψ(R1e

iζ)|2 dζ <
πr2

0

8
1

R1
. From (2.10) we get

|deg(ψ, ∂B(0, R1))| < R1

πr0

√
2π

(
πr2

0

8
1

R2
1

) 1
2

=
1
2
.
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Since the topological degree is an integer, we have necessarily deg(ψ, ∂B(0, R1)) = 0. Con-
sequently deg(ψ, ∂B(0, R)) = 0 for any R ≥ R∗ and ψ admits a C1 lifting θ. In fact,
θ ∈ W 2,p

loc (R2 \B(0, R∗)) because ψ ∈ W 2,p
loc (R2 \B(0, R∗)) (see Theorem 3 p. 38 in [10]).

If N = 1, the existence of a lifting ψ = |ψ|eiθ follows immediately from Theorem 1 p. 27
in [10].

Finally, it is easy to see that | ∂ψ̃
∂xj
| = | ∂θ

∂xj
| and | ∂2ψ̃

∂xj∂xk
|2 = | ∂2θ

∂xj∂xk
|2 + | ∂θ

∂xj
|2| ∂θ

∂xk
|2 ≥

| ∂2θ
∂xj∂xk

|2, and i) implies ∇θ ∈ W 1,p(RN \B(0, R∗)) for any p ∈ [2,∞). 2

3 An integral identity

The main result of this section is given by the next theorem.

Theorem 3.1 Assume that (H1) - (H5) hold. Let ψ = ψ1 + iψ2 be a finite-energy travelling-
wave for (1.1) such that F (·, |ψ|2) ∈ L1

loc(R
N ). Let R∗ be sufficiently big, so that |ψ| ≥ r0

2
on RN \ B(0, R∗) and let θ be the lifting given by Proposition 2.5 ii). Let χ ∈ C∞(RN ) be a
cut-off function such that χ = 0 on B(0, 2R∗) and χ = 1 on RN \B(0, 3R∗). Then:

i) The functions F (·, |ψ|2)|ψ|2 + v2
s
2 (|ψ|2 − r2

0) and Gj = ψ1
∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
− r2

0
∂

∂xj
(χθ), j =

1, . . . , N , belong L1 ∩ L∞(RN ). (We always extend χθ by zero on B(0, R∗)).
ii) If N ≥ 2 and c2 > v2

s we have the following identity:

(3.1)

∫

RN
|∇ψ|2 − F (x, |ψ|2)|ψ|2 − v2

s

2
(|ψ|2 − r2

0) dx

= c(1− v2
s

c2
)
∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ) dx.

iii) Identity (3.1) holds if c2 = v2
s and

• either N = 2
• or N ≥ 3 and we assume in addition that ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ).

Proof. i) Let R0, η, M be as in (H5) and take R1 > R0 such that |ψ|2(x) ∈ (r2
0−η, r2

0 +η)
for x ∈ RN \B(0, R1). Using (2.7) and the fact that v2

s = 2Lr2
0 we get

(3.2)

F (x, |ψ|2(x))|ψ|2(x) + v2
s
2 (|ψ|2(x)− r2

0) = F (x, r2
0)|ψ|2(x)

+(|ψ|2(x)− r2
0)[∂N+1F (x, r2

0) + L]|ψ|2(x)− L
(|ψ|2(x)− r2

0

)2

+|ψ|2(x)
∫ |ψ|2(x)

r2
0

(|ψ|2(x)− τ)∂2
N+1F (x, τ) dτ for any |x| ≥ R1.

Since ψ ∈ L∞(RN ) by Proposition 2.2 i) and F (·, r2
0) ∈ L1 ∩L∞(RN ) by (H1) and (H3),

we infer that F (·, r2
0)|ψ|2 ∈ L1 ∩ L∞(RN ).

We have ψ ∈ L∞(RN ), ∂N+1F (·, r2
0) + L ∈ Lp0 ∩ L∞(RN ) by (H4) and |ψ|2 − r2

0 ∈
L2 ∩ L∞(RN ) by Lemma 2.4, hence (|ψ|2 − r2

0)[∂N+1F (·, r2
0) + L]|ψ|2 ∈ L1 ∩ L∞(RN ).

From Proposition 2.2 i), Lemma 2.4 and (2.9) it follows that the last two terms in the
right-hand side of (3.2) are in L1 ∩L∞(RN \B(0, R1)). Hence F (·, |ψ|2)|ψ|2 + v2

s
2 (|ψ|2 − r2

0) ∈
L1 ∩ L∞(RN \ B(0, R1)). Clearly, the function F (·, |ψ|2)|ψ|2 + v2

s
2 (|ψ|2 − r2

0) is bounded on
B(0, R1), therefore this function belongs to L1 ∩ L∞(RN ).

Since ψ1 = |ψ| cos θ and ψ2 = |ψ| sin θ, a straightforward computation gives

(3.3) ψ1
∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
= (ψ2

1 + ψ2
2)

∂θ

∂xj
on RN \B(0, R∗).
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Therefore

(3.4) ψ1
∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
− r2

0

∂

∂xj
(χθ) = (|ψ|2 − r2

0)
∂θ

∂xj
on RN \B(0, 3R∗).

From Lemma 2.4, Proposition 2.5 ii) and the Sobolev embedding theorem we have |ψ|2− r2
0 ∈

L2 ∩ L∞(RN ) and ∂θ
∂xj

∈ L2 ∩ L∞(RN \ B(0, R∗)), respectively. Identity (3.4) implies Gj ∈
L1∩L∞(RN \B(0, 3R∗)). Since Gj is continuous on RN , we conclude that Gj ∈ L1∩L∞(RN ).

ii) Equation (1.7) is equivalent to the system

(3.5) c
∂ψ2

∂x1
+ ∆ψ1 + F (x, |ψ|2)ψ1 = 0 in D′(RN ),

(3.6) −c
∂ψ1

∂x1
+ ∆ψ2 + F (x, |ψ|2)ψ2 = 0 in D′(RN ).

In view of Proposition 2.2 i), equalities (3.5) and (3.6) hold in Lp
loc(R

N ) for 1 ≤ p < ∞.
Multiplying (3.5) by ψ2 and (3.6) by ψ1, then substracting the resulting equalities we get

(3.7)
c

2
∂

∂x1
(|ψ|2 − r2

0) = div(ψ1∇ψ2 − ψ2∇ψ1).

We multiply (3.5) by ψ1 and (3.6) by ψ2, then we add the corresponding equalities to obtain

(3.8) |∇ψ1|2 + |∇ψ2|2 − F (x, |ψ|2)|ψ|2 − c(ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
) =

1
2
∆(|ψ|2 − r2

0).

From (3.7) and (3.8) we get

(3.9)
c

2
∂

∂x1
(|ψ|2 − r2

0) = div(ψ1∇ψ2 − ψ2∇ψ1 − r2
0∇(χθ)) + r2

0∆(χθ),

respectively

(3.10)

1
2
∆(|ψ|2 − r2

0)−
v2
s

2
(|ψ|2 − r2

0) = |∇ψ1|2 + |∇ψ2|2 − F (x, |ψ|2)|ψ|2 − v2
s

2
(|ψ|2 − r2

0)

−c(ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ))− cr2

0

∂

∂x1
(χθ).

Since ψ ∈ W 2,p
loc (RN ), equalities (3.7)-(3.10) hold in Lp

loc(R
N ) for 1 ≤ p < ∞. We denote

H = |∇ψ1|2 + |∇ψ2|2 − F (x, |ψ|2)|ψ|2 − v2
s

2
(|ψ|2 − r2

0)− c(ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ)).

We take the derivative of (3.9) with respect to x1 (in D′(RN )) and we multiply it by c,
then we take the Laplacian of (3.10) (in D′(RN )). Summing up the resulting equalities we
obtain

(3.11)
1
2

(
∆2 − v2

s∆ + c2 ∂2

∂x2
1

)
(|ψ|2 − r2

0) = ∆H + c
∂

∂x1
(div(G)) in D′(RN ).

From i) we have H,G1, . . . , GN ∈ L1∩L∞(RN ) and we know from Lemma 2.4 that |ψ|2−r2
0 ∈

L2∩L∞(RN ). Therefore H, G1, . . . , GN , |ψ|2−r2
0 ∈ S ′(RN ) and we infer that, in fact, equality

(3.11) holds in S ′(RN ). Taking the Fourier transform of (3.11) we get

(3.12)
1
2
(|ξ|4 + v2

s |ξ|2 − c2ξ2
1)F(|ψ|2 − r2

0) = −|ξ|2Ĥ − c
N∑

k=1

ξ1ξkĜk in S ′(RN ).
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We have Ĥ, Ĝk ∈ L∞∩C0(RN ) because H, Gk ∈ L1(RN ). Thus the right-hand side of (3.12)
is a continuous function on RN . Since |ψ|2 − r2

0 ∈ L2(RN ), we have F(|ψ|2 − r2
0) ∈ L2(RN )

and we infer that the left-hand side of (3.12) belongs to L2
loc(R

N ) and (3.12) holds a.e. on RN .
We denote

Γ = {ξ ∈ RN | |ξ|4 + v2
s |ξ|2 − c2ξ2

1 = 0}.
If c2 ≤ v2

s we have Γ = {0}. If c2 > v2
s , it is easy to see that Γ is a nontrivial submanifold of

RN . In the latter case, we claim that

(3.13) |ξ|2Ĥ(ξ) + c
N∑

k=1

ξ1ξkĜk(ξ) = 0 for any ξ ∈ Γ.

To prove this claim, we argue by contradiction and suppose that there exists ξ0 ∈ Γ such

that |ξ0|2Ĥ(ξ0) + c
N∑

k=1

ξ0
1ξ

0
kĜk(ξ0) 6= 0. By continuity, there exist m > 0 and a neighborhood

U of ξ0 such that
∣∣∣ |ξ|2Ĥ + c

N∑

k=1

ξ1ξkĜk

∣∣∣ ≥ m on U . From (3.12) we infer that

|F(|ψ|2 − r2
0)(ξ)| ≥

2m

| |ξ|4 + v2
s |ξ|2 − c2ξ2

1 |
a.e. on U \ Γ.

Since 0 and (
√

c2 − v2
s , 0, . . . , 0) are not isolated points of Γ, we may assume that ξ0 6= 0 and

ξ0 6= (
√

c2 − v2
s , 0, . . . , 0). A straightforward computation (details can be found in [17], p. 98

in the case v2
s = 2; the general case is similar) shows that

∫

U\Γ
1

| |ξ|4 + v2
s |ξ|2 − c2ξ2

1 |2
dξ = ∞,

consequently
∫

U\Γ
|F(|ψ|2 − r2

0)(ξ)|2 dξ = ∞. But this is in contradiction with F(|ψ|2 − r2
0) ∈

L2(RN ) and the claim is proved.
It is not hard to see that Γ = {(ξ1, ξ

′) ∈ R × RN−1 | |ξ′|2 = 1
2(−v2

s − 2ξ2
1 +√

v4
s + 4c2ξ2

1)}. Let f(t) =
√

1
2

(
−v2

s − 2t2 +
√

v4
s + 4c2t2

)
. The function f is well-defined

for t ∈ [−√
c2 − v2

s ,
√

c2 − v2
s ], f(0) = 0 and lim

t→0

f2(t)
t2

= −1 + c2

v2
s
. Fix j ∈ {2, . . . , N}. For

t ∈ (0,
√

c2 − v2
s ], let ξ(t) = (t, 0, . . . , 0, f(t), 0, . . . , 0) and ξ̃(t) = (t, 0, . . . , 0,−f(t), 0, . . . , 0),

where f(t), respectively −f(t), stand at the jth place. It is obvious that ξ(t), ξ̃(t) ∈ Γ. From
(3.13) we obtain

(3.14) (t2 + f2(t))Ĥ(ξ(t)) + ct2Ĝ1(ξ(t)) + ctf(t)Ĝj(ξ(t)) = 0, respectively

(3.15) (t2 + f2(t))Ĥ(ξ̃(t)) + ct2Ĝ1(ξ̃(t))− ctf(t)Ĝj(ξ̃(t)) = 0.

We multiply (3.14) and (3.15) by 1
t2

, then pass to the limit as t ↓ 0 to obtain

(3.16)
c2

v2
s

Ĥ(0) + cĜ1(0) + c

√
−1 +

c2

v2
s

Ĝj(0) = 0, respectively

(3.17)
c2

v2
s

Ĥ(0) + cĜ1(0)− c

√
−1 +

c2

v2
s

Ĝj(0) = 0.
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From (3.16) and(3.17) we infer that c2

v2
s
Ĥ(0) + cĜ1(0) = 0 and Ĝj(0) = 0, that is

∫

RN
H(x) +

v2
s

c
G1(x) dx = 0 and

∫

RN
Gj(x) dx = 0. The first of these integral identities is exactly (3.1)

and the latter can be written as

(3.18)
∫

RN
ψ1

∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
− r2

0

∂

∂xj
(χθ) dx = 0 for j = 2, . . . , N.

iii) Assume that c2 = v2
s . Then (3.1) is equivalent to Ĥ(0) + cĜ1(0) = 0. Denoting

ξ = (ξ1, ξ
′), where ξ′ = (ξ2, . . . , ξN ), identity (3.12) implies

(3.19)

F(|ψ|2 − r2
0)(ξ) = −2

ξ2
1

|ξ|4 + c2|ξ′|2 (Ĥ(ξ) + cĜ1(ξ))

−2c
N∑

k=2

ξ1ξk

|ξ|4 + c2|ξ′|2 Ĝk(ξ)− 2
|ξ′|2

|ξ|4 + c2|ξ′|2 Ĥ(ξ) a.e. ξ ∈ RN .

For ε ∈ (0, 1], we denote Ωε = {(ξ1, ξ
′) ∈ R×RN−1 | ξ1 ∈ [0, ε], 0 ≤ |ξ′| ≤ ξ1}. We will use

the following

Lemma 3.2 Let N ≥ 2 and k ∈ {2, . . . , N}.
i) The function ξ 7−→ ξ2

1

ξ4
1+c2|ξ′|2 belongs to Lp(Ωε) if and only if p < N − 1

2 .

ii) The function ξ 7−→ ξ1ξk

ξ4
1+c2|ξ′|2 belongs to Lp(Ωε) for any p ∈ [1, 2N − 1).

Proof of Lemma 3.2. i) Using Fubini’s theorem for positive functions, then passing to
spherical coordinates in RN−1 and making the change of variables r = ξ2

1t we get

(3.20)

∫

Ωε

(
ξ2
1

ξ4
1 + c2|ξ′|2

)p

dξ =
∫ ε

0
ξ2p
1

∫

{|ξ′|≤ξ1}
1

(ξ4
1 + c2|ξ′|2)p

dξ′ dξ1

=
∫ ε

0
ξ2p
1 |SN−2|

∫ ξ1

0

rN−2

(ξ4
1 + c2r2)p

dr dξ1

= |SN−2|
∫ ε

0
ξ2p
1

∫ 1
ξ1

0

(ξ2
1t)

N−2

(ξ4
1 + c2ξ4

1t
2)p

ξ2
1 dt dξ1 (change of variables r = ξ2

1t)

= |SN−2|
∫ ε

0
ξ
2(N−1−p)
1

∫ 1
ξ1

0

tN−2

(1 + c2t2)p
dt dξ1.

Assume that p < N − 1
2 . Obviously tN−2

(1+c2t2)p ≤ 1 for t ∈ [0, 1] and t2

1+c2t2
≤ 1

c2
, thus we have

∫ 1
ξ1

0

tN−2

(1 + c2t2)p
dt ≤ 1 +

1
c2p

∫ 1
ξ1

1
tN−2p−2 dt =





C1 + C2

ξN−2p−1
1

if p 6= N−1
2 ,

C3 + C4 ln ξ1 if p = N−1
2 ,

where Cj are some positive constants. This estimate implies that the right-hand side of (3.20)
is finite if p < N − 1

2 .

If p ≥ N− 1
2 , denote cp =

∫ 1

0

tN−2

(1 + c2t2)p
dt > 0. Since 1

ξ1
> 1 for ξ1 ∈ (0, ε), the right-hand

side of (3.20) is greater than |SN−2|cp
∫ ε
0 ξ

2(N−1−p)
1 dξ1 = ∞.
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ii) Proceeding as above, we have

(3.21)

∫

Ωε

∣∣∣∣
ξ1ξk

ξ4
1 + c2|ξ′|2

∣∣∣∣
p

dξ ≤
∫

Ωε

ξp
1 |ξ′|p

(ξ4
1 + c2|ξ′|2)p

dξ =
∫ ε

0
ξp
1 |SN−2|

∫ ξ1

0

rp+N−2

(ξ4
1 + c2r2)p

dr dξ1

= |SN−2|
∫ ε

0
ξp
1

∫ 1
ξ1

0

(ξ2
1t)

p+N−2

(ξ4
1 + c2ξ4

1t
2)p

ξ2
1 dt dξ1 (change of variables r = ξ2

1t)

= |SN−2|
∫ ε

0
ξ2N−p−2
1

∫ 1
ξ1

0

tp+N−2

(1 + c2t2)p
dt dξ1.

As previously,
∫ 1

ξ1

0

tp+N−2

(1 + c2t2)p
dt <

1
c2p

∫ 1
ξ1

0
tN−p−2 dt =

1
c2p(N − p− 1)

1

ξN−p−1
1

if N − p− 1 > 0.

Therefore in the case p < N−1, the right-hand side of (3.21) is less than C
∫ ε
0 ξN−1

1 dξ1 < ∞. If

p > N−1, the integral
∫ ∞

0

tp+N−2

(1 + c2t2)p
dt converges. Let ap be its value. If N−1 < p < 2N−1,

by (3.21) we get
∫

Ωε

∣∣∣∣
ξ1ξk

ξ4
1 + c2|ξ′|2

∣∣∣∣
p

dξ ≤ |SN−2|ap

∫ ε

0
ξ2N−2−p
1 dξ1 < ∞. 2

Remark. It can be proved that the function ξ 7−→ ξ1ξk

ξ4
1+c2|ξ′|2 does not belong to Lp(Ωε) if

p ≥ 2N − 1, but we will not make use of this fact here.

Now we come back to the proof of Theorem 3.1. All we have to do is to show that
Ĥ(0) + cĜ1(0) = 0. We argue by contradiction and assume that Ĥ(0) + cĜ1(0) 6= 0. Since
the functions Ĥ and Ĝj are continuous, there exists ε ∈ (0, 1) such that |Ĥ(ξ) + cĜ1(ξ)| ≥
1
2 |Ĥ(0) + cĜ1(0)| for any ξ ∈ Ωε. Taking a smaller ε if necessary, we may also assume that
|ξ|4 + c2|ξ′|2 ≤ 2(ξ4

1 + c2|ξ′|2) for any ξ ∈ Ωε. By (3.19) we have

(3.22)

1
2

ξ2
1

ξ4
1 + c2|ξ′|2 |Ĥ(0) + cĜ1(0)| ≤ 2

ξ2
1

|ξ|4 + c2|ξ′|2 |Ĥ(ξ) + cĜ1(ξ)|

≤ |F(|ψ|2 − r2
0)(ξ)|+ 2|c|

N∑

k=2

|ξ1ξk|
ξ4
1 + c2|ξ′|2 |Ĝk(ξ)|+ 2

|ξ′|2
|ξ|4 + c2|ξ′|2 |Ĥ(ξ)| a.e. on Ωε.

Consider first the case N = 2. We know that F(|ψ|2−r2
0) ∈ L2(R2), consequently F(|ψ|2−

r2
0) ∈ Lp(Ωε) for any p ∈ [1, 2]. Since Ĝk are continuous and bounded, by Lemma 3.2 ii) we

infer that the functions ξ 7−→ ξ1ξk

ξ4
1+c2|ξ′|2 Ĝk(ξ) belong to Lp(Ωε) for any p ∈ [1, 3). It is obvious

that |ξ′|2
|ξ|4+c2|ξ′|2 |Ĥ(ξ)| ≤ 1

c2
|Ĥ(ξ)| and Ĥ is continuous and bounded on RN . We conclude that

the right-hand side of (3.22) belongs to Lp(Ωε) for any p ∈ [1, 2]. Then (3.22) implies that
ξ 7−→ ξ2

1

ξ4
1+c2|ξ′|2 belongs to L2(Ωε), which contradicts Lemma 3.2 i). This contradiction proves

that Ĥ(0) + cĜ1(0) = 0.

Next we assume that N ≥ 3 and ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ). Equation (3.8) can be

written as

(3.23)

−1
2
∆(|ψ|2 − r2

0) +
v2
s

2
(|ψ|2 − r2

0)

= −|∇ψ1|2 − |∇ψ2|2 + F (x, |ψ|2)|ψ|2 +
v2
s

2
(|ψ|2 − r2

0) + c(ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
).
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We have already proved that F (·, |ψ|2)|ψ|2 + v2
s
2 (|ψ|2 − r2

0) ∈ L1 ∩ L∞(RN ). From Propo-
sition 2.5 i) we have |∇ψ|2 ∈ Lp(RN ) for any p ∈ [1,∞]. Using the assumption ψ1

∂ψ2

∂x1
−

ψ2
∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ), we infer that the right-hand side of (3.23) belongs to L

2N−1
2N−3 (RN ).

By the Hausdorff-Young inequality, for any function f ∈ Lp(RN ) with 1 ≤ p ≤ 2 we have
F(f) ∈ Lp′(RN ), where 1

p + 1
p′ = 1 (see, e.g., Theorem 1.2.1 p. 6 in [4]). Passing to Fourier

transforms in (3.23) we get

(3.24)
F(|ψ|2 − r2

0)(ξ) = 2
|ξ|2+v2

s
F

[
−|∇ψ|2 + (F (·, |ψ|2)|ψ|2 + v2

s
2 (|ψ|2 − r2

0))

+c(ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
)
]
(ξ) a.e. ξ ∈ RN .

We obtain from (3.24) that F(|ψ|2 − r2
0) ∈ LN− 1

2 (RN ). Combined with the fact that Ĥ, Ĝj

and ξ 7−→ |ξ′|2
|ξ|4+c2|ξ′|2 are bounded and Lemma 3.2 ii), this implies that the last expression in

(3.22) is in LN− 1
2 (Ωε). We infer that the function ξ 7−→ ξ2

1

ξ4
1+c2|ξ′|2 |Ĥ(0) + cĜ1(0)| must be in

LN− 1
2 (Ωε) for any sufficiently small ε. If Ĥ(0) + cĜ1(0) 6= 0, this contradicts Lemma 3.2 i).

Thus necessarily Ĥ(0) + cĜ1(0) = 0 and the proof of Theorem 3.1 is complete. 2

It is an open problem whether any finite energy travelling-wave ψ of (1.1) moving with
speed c = ±vs satisfies ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ). Even for very particular cases of (1.1),

such as the Gross-Pitaevskii equation, the answer to this question is not known. However, we
have the following:

Proposition 3.3 Assume that (H1) - (H5) hold and let ψ = ψ1 + iψ2 be a finite-energy
travelling-wave for (1.1) such that F (·, |ψ|2) ∈ L1

loc(R
N ). Let R∗ be sufficiently big, so that

|ψ| ≥ r0
2 on RN \B(0, R∗), let θ be the lifting given by Proposition 2.5 ii) and let χ ∈ C∞(RN )

be a cut-off function as in Theorem 3.1. Then:

i) Let p ∈ (1,∞). The following assertions are equivalent:

a) ∇(χθ) ∈ Lp(RN );

b) ψ1
∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
∈ Lp(RN ) for any j ∈ {1, . . . , N};

c) ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ Lp(RN );

d) |ψ|2 − r2
0 ∈ W 2,p(RN );

e) |ψ|2 − r2
0 ∈ Lp(RN ).

ii) If N ≥ 3, there exists θ0 ∈ R such that χθ − θ0 ∈ W 2,q(RN ) for any q ∈ [ 2N
N−2 ,∞).

Moreover, if c2 = v2
s we have:

iii) |ψ|2−r2
0 ∈ Lp(RN ) and ψ1

∂ψ2

∂xj
−ψ2

∂ψ1

∂xj
∈ Lp(RN ) for any p > 2N−1

2N−3 and j ∈ {1, . . . , N}.
iv) ∇(|ψ|2 − r2

0) ∈ Lp(RN ) for any p > 2N−1
2N−2 .

v) ∂2
j,k(|ψ|2 − r2

0) ∈ Lp(RN ) for any p ∈ (1,∞).

Proof. i) Since ψ ∈ L∞(RN ) and (3.3) holds, the equivalence a) ⇔ b) is clear. It is also
obvious that b) ⇒ c).

From the classical Marcinkiewicz Theorem (see Theorem 3 p. 96 in [27]) it follows that the
functions 1

|ξ|2+v2
s
, ξj

|ξ|2+v2
s

and ξjξk

|ξ|2+v2
s

are Lp−multipliers for 1 < p < ∞. Assume that ψ1
∂ψ2

∂x1
−

ψ2
∂ψ1

∂x1
∈ Lp(RN ). Since |∇ψ|2 ∈ L1∩L∞(RN ) and F (·, |ψ|2)|ψ|2+ v2

s
2 (|ψ|2−r2

0) ∈ L1∩L∞(RN )
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by Theorem 3.1 i), we have−|∇ψ|2+(F (·, |ψ|2)|ψ|2+ v2
s
2 (|ψ|2−r2

0))+c(ψ1
∂ψ2

∂x1
−ψ2

∂ψ1

∂x1
) ∈ Lp(RN )

and we infer from (3.24) that |ψ|2 − r2
0 ∈ W 2,p(RN ). Hence c) ⇒ d). It is obvious that d) ⇒

e).
It follows from Proposition 2.5 ii) that ∂k(χθ) ∈ S ′(RN ). It is then clear that all terms

appearing in (3.9) belong to S ′(RN ). We take the derivative of (3.9) with respect to xk (in
S ′(RN )), then we take the Fourier transform of the resulting equality to obtain

F(
∂

∂xk
(χθ)) = −

N∑

j=1

ξjξk

|ξ|2 Ĝj +
c

2
ξ1ξk

|ξ|2 F(|ψ|2 − r2
0)

or equivalently

(3.25)
∂

∂xk
(χθ) =

N∑

j=1

RjRk(Gj)− c

2
R1Rk(|ψ|2 − r2

0),

where Rj is the Riesz transform, Rjφ = F−1(i ξj

|ξ| φ̂). It is well-known that the Riesz transform
maps continuously Lp(RN ) into Lp(RN ) for 1 < p < ∞ (see, e.g., Theorem 3 p. 96 and
Example (iii) p. 95 in [27]). From Theorem 3.1 i) we have Gj ∈ L1 ∩ L∞(RN ), therefore
RjRk(Gj) ∈ Lq(RN ) for any q ∈ (1,∞). Assume that |ψ|2−r2

0 ∈ Lp(RN ) for some p ∈ (1,∞).
Then R1Rk(|ψ|2 − r2

0) ∈ Lp(RN ) and from (3.25) we infer that ∂
∂xk

(χθ) ∈ Lp(RN ) for any
k ∈ {1, . . . , N}. Thus e) ⇒ a) and i) is proved.

ii) It is well-known that for any function φ satisfying ∇φ ∈ Lp(RN ) with p < N , there
exists a constant λ such that φ−λ ∈ Lp∗(RN ), where 1

p∗ = 1
p − 1

N (see Theorem 4.5.9 in [20] or
Lemma 7 and Remark 4.2 in [15] p. 774-775 for a different proof). From Proposition 2.5 ii) we
have ∇(χθ) ∈ W 1,p(RN ) for any p ∈ [2,∞). If N ≥ 3, we infer that there exists θ0 ∈ R such
that χθ− θ0 ∈ Lq(RN ) for q ∈ [ 2N

N−2 ,∞). Therefore χθ− θ0 ∈ W 2,q(RN ) for any q ∈ [ 2N
N−2 ,∞)

and, in particular, χθ − θ0 −→ 0 as |x| −→ ∞.

iii) We will use the following result due to Lizorkin (see Theorem 8 p. 288 in [24]):

Theorem 3.4 ([24]) Let β ∈ [0, 1) and let K ∈ L∞(RN ) ∩ CN (RN \ {0}). Assume that

( N∏

j=1

ξ
kj+β
j

)
∂k1

1 . . . ∂kN
N K ∈ L∞(RN ) for any k1, . . . , kN ∈ {0, 1}.

Then K is a Fourier multiplier from Lp(RN ) to L
p

1−βp (RN ) for any p ∈ (1, 1
β ).

Let K(ξ) = |ξ|2
|ξ|4+c2|ξ′|2 , where ξ′ = (ξ2, . . . , ξN ). A straightforward but tedious computation

shows that K satisfies the assumptions of Lizorkin’s theorem for β = 1
2N−1 . From (3.19) we

obtain
(3.26)

|ψ|2 − r2
0 = 2R2

1

(
F−1

(
K(Ĥ + cĜ1)

))
+ 2c

N∑

j=2

R1Rj

(
F−1(KĜj)

)
+ 2

N∑

j=2

R2
j

(
F−1(KĤ)

)
,

where Rj ’s denote Riesz transforms. Since H, G1, . . . , GN ∈ L1 ∩ L∞(RN ), by (3.26) and
Lizorkin’s theorem we infer that |ψ|2 − r2

0 ∈ Lp(RN ) for any p ∈ (2N−1
2N−3 ,∞). The rest of iii)

follows from part i), b) ⇔ e).
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iv) and v) From iii) and i), d) ⇔ e) it follows immediately that |ψ|2 − r2
0 ∈ W 2,p(RN ) for

any p ∈ (2N−1
2N−3 ,∞). Using (3.19) we obtain

(3.27)

∂2
k`

(|ψ|2 − r2
0

)
= 2RkR`R

2
1

(
F−1

(
|ξ|2K(Ĥ + cĜ1)

))

+2c
N∑

j=2

RkR`R1Rj

(
F−1(|ξ|2KĜj)

)

+2
N∑

j=2

RkR`R
2
j

(
F−1(|ξ|2KĤ)

)
in S ′(RN ).

It can be proved by direct computation that the function |ξ|2K satisfies the assumptions of
Lizorkin’s theorem for β = 0. Consequently |ξ|2K is an Lp−multiplier for 1 < p < ∞. Since
H,Gj ∈ L1 ∩ L∞(RN ), it follows from (3.27) that ∂2

k`

(|ψ|2 − r2
0

) ∈ Lp(RN ) for 1 < p < ∞.
By using the Gagliardo-Nirenberg inequality

||∇φ||2Lp ≤ C||φ||Lq ||∇2φ||Lr if
1
p

=
1
2

(
1
q

+
1
r

)
,

we infer that ∇(|ψ|2 − r2
0) ∈ Lp(RN ) for any p > 2N−1

2N−2 . 2

Corollary 3.5 Under the assumptions of Theorem 3.1, assume that N ≥ 3, c2 = v2
s and

the momentum of ψ with respect to the x1−direction is well-defined, that is ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈

L1(RN ). Then ψ satisfies (3.1).

Proof. From Proposition 3.4 iii) and i) we have ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ Lp(RN ) for p ∈

(2N−1
2N−3 ,∞). Then the assumption ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L1(RN ) implies ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ Lp(RN )

for any p ∈ [1,∞). Now the conclusion follows from Theorem 3.1 iii). 2

4 Nonexistence results

In this section we show how Theorem 3.1 may be used to prove nonexistence of supersonic and
sonic travelling-waves with finite energy for some equations of type (1.1).

1. We consider the equation

(4.1) i
∂Φ
∂t

+ ∆Φ + G(|Φ|2)Φ = 0 in RN .

We assume that the function G : [0,∞) −→ R satisfies the following asumptions:

• (A1) G ∈ C2([0,∞),R) and there exists r0 > 0 such that G(r2
0) = 0 and G′(r2

0) < 0.

• (A2) There exists α > 0 such that lim sup
s→∞

G(s)
sα < 0.

Obviously, equation (4.1) is of the form (1.1). As previously, we associate to (4.1) the ”bound-
ary condition” |Φ| −→ r2

0 as |x| −→ ∞. In this context, the sound velocity at infinity is vs =

r0

√
−2G′(r2

0). The energy corresponding to (4.1) is E(Φ) =
∫

RN
|∇Φ|2 dx +

∫

RN
V (|Φ|2) dx,

where V (s) =
∫ r2

0

s
G(τ) dτ. Let ψ be a finite-energy travelling-wave for (4.1) (in the sense of

Definition 2.1) moving with speed c. Then ψ satisfies the equation

(4.2) −ic
∂ψ

∂x1
+ ∆ψ + G(|ψ|2)ψ = 0 in D′(RN ), |ψ| −→ r0 as |x| −→ ∞.
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If G satisfies (A1)-(A2), it is easy to see that F (x, s) := G(s) satisfies the assumptions (H1)-
(H5) in section 2 (with L = −G′(r2

0)). It is then clear that the conclusions of Propositions
2.2, 2.5 and Theorem 3.1 i) are valid for ψ. Moreover, we have:

Proposition 4.1 (Pohozaev identities) Let ψ be as above. Choose R∗ > 0 such that |ψ| ≥ r0
2

on RN \B(0, R∗). Let θ be the lifting of ψ
|ψ| on RN \B(0, R∗) (as given by Proposition 2.5 ii))

and let χ be a cut-off function as in Theorem 3.1. The following identities hold:

(4.3) −
∫

RN

∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

dx +
∫

RN

N∑

j=2

∣∣∣∣
∂ψ

∂xj

∣∣∣∣
2

dx +
∫

RN
V (|ψ|2) dx = 0 and

(4.4)

−
∫

RN

∣∣∣∣
∂ψ

∂xk

∣∣∣∣
2

dx +
∫

RN

N∑

j=1, j 6=k

∣∣∣∣
∂ψ

∂xj

∣∣∣∣
2

dx +
∫

RN
V (|ψ|2) dx

−c

∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ) dx = 0 for k = 2, . . . , N.

It is worth to note that Proposition 4.1 is valid for any speed c ∈ R.

Proof. Since the arguments are rather classical, we only sketch the proof.
Formally, travelling-waves are critical points of the functional Ec = E + cP1, where E is

the energy and P1 is the momentum with respect to the x1−direction (see (1.3)). Identities
(4.3) and (4.4) are simple consequences of the behavior of Ec with respect to dilations in RN .
To be more precise, define ψk,t(x) = ψ(x1, . . . , xk−1, txk, xk+1, . . . , xN ) and gk(t) = Ec(ψk,t).
If ψ is a critical point of Ec, one would expect that g′k(1) = d

dt(Ec(ψk,t))|t=1 = 0 and this is
precisely (4.3) if k = 1, respectively (4.4) if k ≥ 2. However, this argument is not rigorous for
at least two reasons. First, it is not clear what function space one should consider to define Ec

(and this could not be a vector space because of the boundary conditions at infinity). Second,
even if an appropriate function space is found, we do not know whether d

dt(ψk,t)|t=1 = xk
∂ψ
∂xk

belong to the tangent space at ψ of the considered function space.
The most convenient way to prove Pohozaev identities is to use a truncation argument.

Fix a function η ∈ C∞
c (RN ) such that η = 1 on B(0, 1) and η = 0 on RN \B(0, 2). For n ≥ 1,

define ηn(x) = η(x
n). We take the scalar product of (4.2) by xkηn(x) ∂ψ

∂xk
and we integrate by

parts the resulting equality. It is standard (see, e.g., Proposition 1 p. 320 in [3] or Lemma 2.4
p. 104 in [11]) to prove that

(4.5) lim
n→∞

∫

RN
(∆ψ, xkηn(x)

∂ψ

∂xk
) dx = −

∫

RN

∣∣∣∣
∂ψ

∂xk

∣∣∣∣
2

dx +
1
2

∫

RN
|∇ψ|2 dx and

(4.6) lim
n→∞

∫

RN
(G(|ψ|2)ψ, xkηn(x)

∂ψ

∂xk
) dx =

1
2

∫

RN
V (|ψ|2) dx.

It is obvious that (ic ∂ψ
∂x1

, ηn(x)x1
∂ψ
∂x1

) = cηn(x)x1(i ∂ψ
∂x1

, ∂ψ
∂x1

) = 0. Thus taking the scalar
product of (4.2) by x1ηn(x) ∂ψ

∂x1
, integrating and using (4.5) and (4.6) we get (4.3).

By (3.3) we have (−i ∂ψ
∂xj

, ψ) = ψ1
∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
= |ψ|2 ∂θ

∂xj
on RN \ B(0, R∗). Using the

convention ∂α(χθ) = 0, (∂αχ)θ = 0 on B(0, 2R∗), we have

(4.7)
(−i ∂ψ

∂xj
, ψ) = (1− χ)(−i ∂ψ

∂xj
, ψ) + χ|ψ|2 ∂θ

∂xj

= (1− χ)(−i ∂ψ
∂xj

, ψ) + |ψ|2 ∂(χθ)
∂xj

− |ψ|2θ ∂χ
∂xj

on RN .
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Therefore we get for k = 2, . . . , N :

(4.8)

∫

RN
(−ic

∂ψ

∂x1
, xkηn(x)

∂ψ

∂xk
) dx

=
c

2

∫

RN
xkηn(x)

[ ∂

∂x1
(−iψ,

∂ψ

∂xk
) +

∂

∂xk
(−i

∂ψ

∂x1
, ψ)

]
dx

= − c

2

∫

RN
xk

∂ηn

∂x1
(x)(−iψ,

∂ψ

∂xk
) +

(
ηn(x) + xk

∂ηn

∂xk
(x)

)
(−i

∂ψ

∂x1
, ψ) dx

=
c

2

∫

RN
xk

∂ηn

∂x1
(x)

[
(1− χ)(−i

∂ψ

∂xk
, ψ) + |ψ|2 ∂(χθ)

∂xk
− |ψ|2θ ∂χ

∂xk

]
dx

− c

2

∫

RN
ηn(x)(−i

∂ψ

∂x1
, ψ) dx

− c

2

∫

RN
xk

∂ηn

∂xk
(x)

[
(1− χ)(−i

∂ψ

∂x1
, ψ) + |ψ|2 ∂(χθ)

∂x1
− |ψ|2θ ∂χ

∂x1

]
dx

=
c

2

∫

RN
xk|ψ|2

(∂ηn

∂x1

∂(χθ)
∂xk

− ∂ηn

∂xk

∂(χθ)
∂x1

)
− ηn(x)

(
− i

∂ψ

∂x1
, ψ

)
dx if n > 3R∗

because supp(1−χ) ⊂ B(0, 3R∗) and supp∇ηn ⊂ B(0, 2n)\B(0, n), consequently (1−χ)∂ηn

∂xj
= 0

and ∂χ
∂x`

∂ηn

∂xj
= 0 on RN for n > 3R∗.

It is obvious that

(4.9)

∫

RN
xk

(∂ηn

∂x1

∂(χθ)
∂xk

− ∂ηn

∂xk

∂(χθ)
∂x1

)
dx

=
∫

RN
xk

[ ∂

∂x1

(
ηn

∂(χθ)
∂xk

)
− ∂

∂xk

(
ηn

∂(χθ)
∂x1

)]
dx =

∫

RN
ηn

∂(χθ)
∂x1

dx.

Since |ψ|2 − r2
0 and ∇(χθ) belong to L2(RN ), using the Dominated Convergence Theorem we

obtain

(4.10)

∣∣∣∣
∫

RN
xk(|ψ|2 − r2

0)
(∂ηn

∂x1

∂(χθ)
∂xk

− ∂ηn

∂xk

∂(χθ)
∂x1

)
dx

∣∣∣∣

≤ 2||∇η||L∞(RN )

∫

B(0,2n)\B(0,n)
| |ψ|2 − r2

0|
(∣∣∣∣

∂(χθ)
∂x1

∣∣∣∣ +
∣∣∣∣
∂(χθ)
∂xk

∣∣∣∣
)

dx −→ 0 as n −→∞.

Recall that ψ1
∂ψ2

∂x1
−ψ2

∂ψ1

∂x1
−r2

0
∂(χθ)
∂x1

∈ L1(RN ) by Theorem 3.1 i) and by dominated convergence
we get

(4.11)

∫

RN
ηn

[(
− i

∂ψ

∂x1
, ψ

)
− r2

0

∂(χθ)
∂x1

]
dx =

∫

RN
ηn

[
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂(χθ)
∂x1

]
dx

−→
∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂(χθ)
∂x1

dx as n −→∞.

Combining (4.8)-(4.11) we find

(4.12) lim
n→∞

∫

RN
(−ic

∂ψ

∂x1
, xkηn(x)

∂ψ

∂xk
) dx = − c

2

∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂(χθ)
∂x1

dx.
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Taking the scalar product of (4.2) by ηn(x)xk
∂ψ
∂xk

, integrating over RN and using (4.5), (4.6)
and (4.12) we obtain (4.4). 2

Theorem 4.2 Assume that N ≥ 2, (A1), (A2) hold and let ψ be a finite-energy travelling-
wave for (3.1) such that G(|ψ|2)ψ ∈ L1

loc(R
N ). Suppose that

• either c2 > v2
s , where vs = r0

√
−2G′(r2

0) is the sound velocity at infinity,

• or N = 2 and c2 = v2
s ,

• or N ≥ 3 and c2 = v2
s and ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ).

Moreover, assume that G satisfies

• (A3) there exists α ∈ [−1 + N−3
N−1(1− v2

s
c2

), v2
s

c2
] such that

sG(s) +
v2
s

2
(s− r2

0) + (1− α− v2
s

c2
)V (s) ≤ 0 for any s ≥ 0.

Then ψ is constant.

Proof. It follows from Propositions 2.2 and 2.5 that ψ is smooth and Proposition 4.1 implies
that ψ satisfies (4.3) and (4.4). Summing up the identities (4.4) for k = 2, . . . , N we get

(4.13)

∫

RN

∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

+
N − 3
N − 1

N∑

k=2

∣∣∣∣
∂ψ

∂xk

∣∣∣∣
2

dx +
∫

RN
V (|ψ|2) dx

−c

∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂(χθ)
∂x1

dx = 0.

On the other hand, from Theorem 3.1 we have

(4.14)

∫

RN
|∇ψ|2 −G(|ψ|2)|ψ|2 − v2

s

2
(|ψ|2 − r2

0) dx

−c(1− v2
s

c2
)
∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ) dx = 0.

We multiply (4.13) by −1 + v2
s

c2
and we add the resulting equality to (4.14) to get

(4.15)

∫

RN

v2
s

c2

∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

+
(
1− (1− v2

s

c2
)
N − 3
N − 1

) N∑

k=2

∣∣∣∣
∂ψ

∂xk

∣∣∣∣
2

dx

−
∫

RN
G(|ψ|2)|ψ|2 +

v2
s

2
(|ψ|2 − r2

0) + (1− v2
s

c2
)V (|ψ|2) dx = 0.

Let α satisfy (A3). Multiplying (4.3) by α and adding it to (4.15) we obtain

(4.16)

∫

RN

(v2
s

c2
− α

)∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

+
(
α + 1− (1− v2

s

c2
)
N − 3
N − 1

) N∑

k=2

∣∣∣∣
∂ψ

∂xk

∣∣∣∣
2

dx

=
∫

RN
G(|ψ|2)|ψ|2 +

v2
s

2
(|ψ|2 − r2

0) + (1− α− v2
s

c2
)V (|ψ|2) dx.
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By (A3), the right-hand side of (4.16) is less than or equal to zero. If α ∈ (−1+(1− v2
s

c2
)N−3

N−1 , v2
s

c2
),

it follows from (4.16) that
∫

RN

∣∣∣∣
∂ψ

∂xk

∣∣∣∣
2

dx = 0 for k = 1, . . . , N , which implies ∇ψ = 0 on RN ,

i.e. ψ is constant. If α = −1 + (1 − v2
s

c2
)N−3

N−1 , we infer from (4.16) that
∫

RN

∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

dx = 0,

consequently ∂ψ
∂x1

= 0 on RN which implies that ψ does not depend on x1. Since
∫

RN
|∇ψ|2 dx

is finite, we have necessarily ∇ψ = 0 on RN , which means that is ψ is constant. A similar
argument shows that ψ is constant in the case α = v2

s
c2

. 2

Remark. Let α, C1 and r̃ be positive constants satisfying G(s2) + c2

4 ≤ −C1(s − r̃)2α

for any s ≥ r̃ (such constants exist by assumption (A2)). Let ψ be as in Theorem 4.2. It
follows from the proof of Proposition 2.2 i) that |ψ(x)| ≤ r̃

√
2 for any x. Therefore the proof

of Theorem 4.2 is still valid if the inequality in (A3) only holds for all s ∈ [0, 2r̃2].

If c2 = v2
s , N ≥ 3 and ψ is as above, we already know from Proposition 3.3 iii) that

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ Lp(RN ) for any p ∈ (2N−1

2N−3 ,∞). Therefore we have:

Corollary 4.3 Assume that (A1), (A2), (A3) hold, N ≥ 3 and c2 = v2
s . Let ψ be a

travelling-wave for (4.1) having finite energy, finite momentum with respect to the x1−direction
(i.e. ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L1(RN )) and such that G(|ψ|2)ψ ∈ L1

loc(R
N ). Then ψ is constant.

Example 4.4 The Gross-Pitaevskii equation is of type (4.1) with G(s) = 1 − s. In this
case we have r0 = 1, V (s) = 1

2(s − 1)2 and vs =
√

2. For any finite-energy function ψ
we have

∫
RN (|ψ|2 − 1)2 dx < ∞, hence ψ ∈ L4

loc(R
N ) and consequently G(|ψ|2)ψ ∈ L1

loc(R
N ).

Assumptions (A1) and (A2) are clearly satisfied. We find sG(s)+ v2
s
2 (s−r2

0)+(1−α− v2
s

c2
)V (s) =

−(1
2 + α + v2

s
c2

)(1 − s)2. The last expression is nonpositive for any s if α ≥ −1
2 − v2

s
c2

, thus
assumption (A3) is also satisfied. Hence the conclusion of Theorem 4.2 holds for the Gross-
Pitaevskii equation. In particular, we recover the non-existence results in [17], [18].

Example 4.5 The cubic-quintic Schrödinger equation is of the form (4.1) with G(s) =
−α1 + α3s − α5s

2, where α1, α3, α5 are positive and 3
16 < α1α5

α2
3

< 1
4 . The nonlinearity G

can be written as G(s) = −α5(s − r2
1)(s − r2

0), where 0 < r1 < r0. In this case we have
v2
s = −2r2

0G
′(r0) = 2α5r

2
0(r

2
0 − r2

1) and V (s) = α5
3 (s− r2

0)
2(s + 1

2r2
0 − 3

2r2
1). For any function ψ

with finite energy we have V (|ψ|2) ∈ L1(RN ), which implies ψ ∈ L6
loc(R

N ) and consequently
G(|ψ|2)ψ ∈ L1

loc(R
N ). It is obvious that G satisfies (A1) and (A2). If c2 ≥ v2

s we have
−v2

s
c2
∈ [−1+ N−3

N−1(1− v2
s

c2
), v2

s
c2

] and an easy computation shows that sG(s)+ v2
s
2 (s−r2

0)+V (s) =

−α5
6 (4s + 5r2

0 − 3r2
1) ≤ 0 for any s ≥ 0. Hence assumption (A3) holds for α = −v2

s
c2

, therefore
the conclusion of Theorem 4.2 is valid for the cubic-quintic Schrödinger equation.

Remark. The proof of nonexistence of supersonic and sonic travelling-waves for equations
of type (1.1) relies on identity (3.1), combined with Pohozaev identities. We have proved (3.1)
in an ”indirect” way, starting from (3.11), using the Fourier transform and analyzing the be-
havior near the origin of the symbols of the differential operators involved. A natural question
is whether (3.1) could be proved ”directly”, by multiplying the equations by appropriate func-
tions and integrating by parts (and it is very tempting to try to do so because of the form of
equations (3.7) and (3.8)!). We suspect that it is not possible to find such a proof, a heuristical
reason being the following: if a ”direct” proof of (3.1) could be found, it should be valid for
any value of c. Since Pohozaev identities are also valid for any c, one could infer that, for
any c, equation (4.1) and the system (4.17)-(4.18) below do not admit nontrivial finite-energy
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travelling-waves. However, in the case of the Gross-Pitaevskii equation the existence of non-
trivial, finite-energy travelling-waves moving with sufficiently small speed c has been proved
in [7] in dimension N = 2, respectively in [6] and [12] in dimension N = 3. In a recent work
[5], existence of travelling-waves has been proved in space dimensions N = 2 and N = 3 for a
wider range of speeds, including speeds c close to (and less than) vs if N = 2. For Schrödinger
equations of cubic-quintic type, the existence of small velocity travelling-waves has been proved
in [25] in any space dimension N ≥ 4. Even for these particular cases, the question whether
such solutions exist for any speed c ∈ (−vs, vs) is, to our knowledge, still open.

2. Our second application concerns the system

(4.17) i
∂Ψ
∂t

+ ∆Ψ− 1
ε2

(|Ψ|2 +
1
ε2
|Φ|2 − 1)Ψ = 0 in RN ,

(4.18) iδ
∂Φ
∂t

+ ∆Φ− 1
ε2

(q2|Ψ|2 − ε2k2)Φ = 0 in RN ,

which describes the motion of an uncharged impurity in a Bose condensate (see [16]). Here
Ψ and Φ are the wavefunctions for bosons, respectively for the impurity, and ε, δ, q, k are
dimensionless physical constants. Assuming that the condensate is at rest at infinity, the
functions Ψ and Φ must satisfy the ”boundary conditions” |Ψ| −→ 1 and |Φ| −→ 0 as |x| −→
∞.

The system (4.17)-(4.18) has a Hamiltonian structure, the associated energy is

(4.19) E(Ψ,Φ) =
∫

RN
|∇Ψ|2 +

1
ε2q2

|∇Φ|2 +
1

2ε2
(|Ψ|2 − 1)2 +

1
ε4
|Ψ|2|Φ|2 − k2

ε2q2
|Φ|2 dx.

We are interested in travelling-wave solutions for (4.17)-(4.18), i.e. solutions of the form
Ψ(x, t) = ψ(x1 − ct, x2, . . . , xN ), Φ(x, t) = ϕ(x1 − ct, x2, . . . , xN ). Such solutions must satisfy
the equations

(4.20) −ic
∂ψ

∂x1
+ ∆ψ − 1

ε2
(|ψ|2 +

1
ε2
|ϕ|2 − 1)ψ = 0,

(4.21) −icδ
∂ϕ

∂x1
+ ∆ϕ− 1

ε2
(q2|ψ|2 − ε2k2)ϕ = 0,

together with the boundary conditions |ψ| −→ 1 and |ϕ| −→ 0 as |x| −→ ∞.
Equation (4.17) is of type (1.1). In view of the analysis in the Introduction, the associated

sound velocity at infinity is
√

2
ε .

In space dimension one, the system (4.20)-(4.21) with the considered boundary conditions
has been studied in [26]. It was proved that it admits nontrivial solutions if c is less than
the sound velocity at infinity; in this case the structure of the set of travelling-waves has been
investigated and it was proved that it contains global subcontinua in appropriate (weighted)
Sobolev spaces.

Here we study the finite energy travelling-waves for (4.17)-(4.18) in dimension N ≥ 2.
In view of (4.19), by finite energy travelling-wave we mean a couple of functions (ψ, ϕ) ∈
L1

loc(R
N )×L1

loc(R
N ) which satisfy (4.20)-(4.21) in D′(RN ), the boundary conditions |ψ| −→ 1,

ϕ −→ 0 as |x| −→ ∞ and such that ∇ψ, ∇ϕ, ϕ ∈ L2(RN ), (|ψ|2 − 1)2 + 2
ε2 |ψ|2|ϕ|2 ∈ L1(RN ).

As before, we denote ψ1 = Re(ψ), ψ2 = Im(ψ), ϕ1 = Re(ϕ), ϕ2 = Im(ϕ). We have:

Proposition 4.6 Let c ∈ R and let (ψ, ϕ) be a finite energy travelling wave for (4.17)-(4.18).
Then:
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i) The function ψ is bounded and C∞ and ϕ,∇ψ ∈ W k,p(RN ) for any k ∈ N and p ≥ 2.
ii) There exist R∗ ≥ 0 and a real-valued function θ such that ψ = |ψ|eiθ on RN \B(0, R∗)

and ∇θ ∈ W k,p(RN \B(0, R∗)) for any k ∈ N and p ≥ 2.
iii) Let χ ∈ C∞(RN ) be a cut-off function such that χ = 0 on B(0, 2R∗) and χ = 1 on

RN \B(0, 3R∗). We have ψ1
∂ψ2

∂x1
−ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) ∈ L1(RN ) and the following Pohozaev-type

identities hold:

(4.22)

∫

RN
−

∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

− 1
ε2q2

∣∣∣∣
∂ϕ

∂x1

∣∣∣∣
2

+
N∑

j=2

(∣∣∣∣
∂ψ

∂xj

∣∣∣∣
2

+
1

ε2q2

∣∣∣∣
∂ϕ

∂xj

∣∣∣∣
2)

dx

+
∫

RN

1
2ε2

(|ψ|2 − 1)2 +
1
ε4
|ψ|2|ϕ|2 − k2

ε2q2
|ϕ|2 dx = 0,

and for any k ∈ {2, . . . , N},

(4.23)

∫

RN
−

∣∣∣∣
∂ψ

∂xk

∣∣∣∣
2

− 1
ε2q2

∣∣∣∣
∂ϕ

∂xk

∣∣∣∣
2

+
N∑

j=1, j 6=k

(∣∣∣∣
∂ψ

∂xj

∣∣∣∣
2

+
1

ε2q2

∣∣∣∣
∂ϕ

∂xj

∣∣∣∣
2)

dx

+
∫

RN

1
2ε2

(|ψ|2 − 1)2 +
1
ε4
|ψ|2|ϕ|2 − k2

ε2q2
|ϕ|2 dx

−c

∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) dx− 2cδ

ε2q2

∫

RN
ϕ1

∂ϕ2

∂x1
dx = 0.

Proof. Putting F (x, s) = − 1
ε2 (s + 1

ε2 |ϕ(x)|2 − 1), equation (4.20) is a particular case of
(1.7). Clearly, in this case we have r0 = 1.

It is obvious that F satisfies the assumptions (H1a) and (H1b) in Section 2. Clearly,
F (x, s) ≤ − 1

ε2 (s − 1) ≤ − 1
2ε2 s for any s ≥ 2 and x ∈ RN , hence F satisfies (H2) for r∗ = 2.

Moreover,
∫ r∗

r2
0

F (x, τ) dτ = − 1
ε2 (1

2 + 1
ε2 |ϕ(x)|2) is a locally integrable function of x. We have

|ψ|4 ≤ 2(|ψ|2 − 1)2 + 2 and (|ψ|2 − 1)2 ∈ L1(R) because (ψ, ϕ) has finite energy, hence
ψ ∈ L4

loc(R
N ). We also have | |ϕ|2ψ| ≤ 1

2(|ϕ|2 + |ϕ|2|ψ|2) and |ϕ|2, |ϕ|2|ψ|2 ∈ L1(R). It is then
clear that F (·, |ψ|2)ψ = − 1

ε2 |ψ|2ψ − 1
ε4 |ϕ|2ψ + 1

ε2 ψ belongs to L1
loc(R

N ). Hence we may use
Proposition 2.2 i) and we infer that ψ ∈ L∞(RN ).

By hypothesis we have ϕ ∈ L2(RN ) and ∇ϕ ∈ L2(RN ), that is ϕ ∈ W 1,2(RN ). Assume
that ϕ ∈ W 1,p(RN ) for some p ∈ (1,∞). Since ψ is bounded, by (4.21) we find ∆ϕ ∈ Lp(RN ),
and we infer that ϕ ∈ W 2,p(RN ). If p < N , by the Sobolev embedding we have ϕ ∈ Lp∗(RN )
and∇ϕ ∈ Lp∗(RN ) (where 1

p∗ = 1
p− 1

N ), hence ϕ ∈ W 1,p∗(RN ). Repeating the above argument
if necessary, after a finite number of steps we find ϕ ∈ W 2,q(RN ) for some q ≥ N and the
Sobolev embedding implies ϕ ∈ Lr(RN ) and ∇ϕ ∈ Lr(RN ) for any r ∈ [q,∞). Using (4.21)
again, we conclude that ∆ϕ ∈ Lr(RN ), hence ϕ ∈ W 2,r(RN ) for any r ∈ [2,∞).

It follows that ϕ ∈ C1(RN ), which implies F ∈ C1(RN ) (and consequently F satisfies
(H1c)). By Proposition 2.2 ii) we get ψ ∈ W 3,p

loc (RN ) for any p ∈ [1,∞). In particular,
ψ ∈ C2(RN ).

We have F (x, 1) = − 1
ε4 |ϕ(x)|2 and F clearly satisfies assumption (H3). It is obvious that

∂N+1F (x, s) = − 1
ε2 and ∂2

N+1F (x, s) = 0 on RN ×R+, therefore F satisfies (H4) and (H5).
Thus we may use Proposition 2.5 i) and we infer that ∇ψ ∈ W 1,p(RN ) for any p ∈ [2,∞).

The rest of the proof is a very easy induction. For k ∈ N∗, assume that ∇ψ ∈ W k,p(RN )
and ϕ ∈ W k+1,p(RN ) for any p ∈ [2,∞). Consider α ∈ NN such that |α| = k. Differentiating
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(4.20) and (4.21) we obtain

∆(∂αψ) = ic∂α ∂ψ
∂x1

+ 1
ε2 ∂α

(
(|ψ|2 + 1

ε2 |ϕ|2 − 1)ψ
)
, respectively

∆(∂αψ) = icδ∂α ∂ψ
∂x1

+ 1
ε2 ∂α

(
q2|ψ|2 − ε2k2)ϕ

)
.

We infer that ∆(∂αψ), ∆(∂αϕ) ∈ Lp(RN ) for any p ∈ [2,∞). By hypothesis we have
∂αψ, ∂αϕ ∈ Lp(RN ), therefore ∂αψ, ∂αϕ ∈ W 2,p(RN ) for any p ∈ [2,∞). Since this is
true for any α with |α| = k, we have ∇ψ ∈ W k+1,p(RN ) and ϕ ∈ W k+2,p(RN ). We conclude
that ∇ψ and ϕ belong to W k,p(RN ) for any k ∈ N and p ∈ [2,∞).

ii) is an immediate corollary of Proposition 2.5 ii).

iii) It follows directly from Theorem 3.1 i) that ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) ∈ L1(RN ). The

proof of (4.22) and (4.23) is similar to that of (4.3) and (4.4) (multiply (4.20) by xjηn
∂ψ
∂xj

and

(4.21) by 1
ε2q2 xjηn

∂ϕ
∂xj

, where ηn(x) = η(x
n) is a cut-off function, add the resulting equalities,

integrate by parts and pass to the limit as n −→∞). We omit the details. 2

We have the following result concerning the non-existence of supersonic travelling-waves
for (4.17)-(4.18):

Theorem 4.7 Let N ≥ 2 and let (ψ,ϕ) be a finite energy travelling-wave for the system
(4.17)-(4.18), moving with velocity c. Assume that:

• either c2 > 2
ε2 ,

• or N = 2 and c2 = 2
ε2 ,

• or N ≥ 3 and c2 = 2
ε2 and ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ).

Then ϕ = 0 and ψ is constant on RN .

Proof. Let θ, χ be as in Proposition 4.6 and let F (x, s) = − 1
ε2 (s+ 1

ε2 |ϕ(x)|2−1). We have
already seen that F satisfies assumptions (H1)-(H5) and it follows that identity (3.1) holds.
Taking into account the particular form of F , this identity can be written as

(4.24)

∫

RN
|∇ψ|2 +

1
ε2

(|ψ|2 − 1)2 +
1
ε4
|ϕ|2|ψ|2 dx

= c(1− 2
ε2c2

)
∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) dx.

We take the scalar product of (4.21) by ϕ, then we integrate the resulting equality to get

(4.25)
∫

RN
|∇ϕ|2 dx +

q2

ε2

∫

RN
|ϕ|2|ψ|2 dx− k2

∫

RN
|ϕ|2 dx− 2cδ

∫

RN
ϕ1

∂ϕ2

∂x1
dx = 0.

Summing up the identities (4.23) for k = 2, 3, . . . , N , we find

(4.26)

∫

RN

∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

+
1

ε2q2

∣∣∣∣
∂ϕ

∂x1

∣∣∣∣
2

+
N − 3
N − 1

N∑

j=2

(∣∣∣∣
∂ψ

∂xj

∣∣∣∣
2

+
1

ε2q2

∣∣∣∣
∂ϕ

∂xj

∣∣∣∣
2)

dx

+
∫

RN

1
2ε2

(|ψ|2 − 1)2 +
1
ε4
|ψ|2|ϕ|2 − k2

ε2q2
|ϕ|2 dx

−c

∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) dx− 2cδ

ε2q2

∫

RN
ϕ1

∂ϕ2

∂x1
dx = 0.
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Next we combine the equalities (4.24)-(4.26) in order to eliminate the terms
∫

RN
ϕ1

∂ϕ2

∂x1
dx and

∫

RN
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) dx. We find:

(4.27)

2
ε2c2

∫

RN

∣∣∣∣
∂ψ

∂x1

∣∣∣∣
2

dx +
(
1−

(
1− 2

ε2c2

)N − 3
N − 1

) ∫

RN

N∑

j=2

∣∣∣∣
∂ψ

∂xj

∣∣∣∣
2

dx

+
2

(N − 1)ε2q2

(
1− 2

ε2c2

) ∫

RN

N∑

j=2

∣∣∣∣
∂ϕ

∂xj

∣∣∣∣
2

dx

+
1

2ε2

(
1 +

2
ε2c2

) ∫

RN
(|ψ|2 − 1)2 dx +

1
ε4

∫

RN
|ϕ|2|ψ|2 dx = 0.

Obviously, all integrals in (4.27) are nonnegative. If c2 ≥ 2
ε2 , all coefficients are also nonneg-

ative, therefore each term in (4.27) must be zero. In particular,
∫

RN

∣∣∣∣
∂ψ

∂xk

∣∣∣∣
2

dx = 0 for any

k ∈ {1, . . . , N}, which implies ∇ψ = 0 on RN , i.e. ψ is constant. Since
∫

RN
(|ψ|2− 1)2 dx = 0,

necessarily |ψ| = 1. We have also 0 =
∫

RN
|ϕ|2|ψ|2 dx =

∫

RN
|ϕ|2 dx, hence ϕ = 0 on RN . 2

5 The one-dimensional case

Since most of the proofs in the preceding section are not valid in space dimension N = 1 (in
particular, we do not have identities analogous to (4.4) and (4.23)), we treat separately the
one-dimensional case. It turns out that some integrations can be performed explicitly and
some of the results are stronger than in higher dimensions.

Let G : [0,∞) −→ R be a function satisfying the following assumption:

• (A) G ∈ C([0,∞)) and there exists r0 > 0 such that G(r2
0) = 0.

Moreover, G ∈ C1([r2
0 − η, r2

0 + η]) for some η > 0 and G′(r2
0) = −L < 0.

We consider the Schrödinger equation

(5.1) i
∂Ψ
∂t

+ Ψxx + G(|Ψ|2)Ψ = 0 in R,

together with the ”boundary condition” |Ψ| −→ r0 as x −→ ±∞. We have seen in the
Introduction that the sound velocity at infinity associated to (5.1) and to the considered
boundary condition is vs = r0

√
2L. As usually, a travelling-wave moving with velocity c is a

solution of the form Ψ(x, t) = ψ(x− ct). It must satisfy

(5.2) −icψ′ + ψ′′ + G(|ψ|2)ψ = 0 in R, |ψ(x)| −→ r0 as x −→ ±∞.

We have the following result concerning supersonic and sonic travelling-waves:

Theorem 5.1 Let ψ ∈ L1
loc(R) be a solution of (5.2) in D′(R) such that G(|ψ|2)ψ ∈ L1

loc(R).
Assume that G satisfies (A) and

i) either c2 > v2
s , or

ii) c2 = v2
s and, denoting V (s) =

∫ r2
0

s
G(τ) dτ and W (s) = v2

ss
2− 4(s + r2

0)V (s + r2
0), there

exists ε > 0 such that one of he following conditions is verified:
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a) W (s) > 0 on (−ε, 0) ∪ (0, ε);
b) W (s) > 0 on (−ε, 0) and W (s) < 0 on (0,∞);
c) W (s) > 0 on (0, ε) and W (s) < 0 on [−r2

0, 0).
Then either ψ is constant, or ψ(x) = r0e

i(cx+θ0), where θ0 is a real constant.

Remark. Theorem 5.1 gives all supersonic and sonic travelling-waves for equation (5.1),
no matter whether their energy is finite or not (and we see that finite energy travelling-waves
must be constant).

It is easy to see that W is C2 near 0 and W (0) = W ′(0) = W ′′(0) = 0. Condition ii)
a) is satisfied, for instance, if G is C3 near r2

0 (this clearly implies that W is C4 near 0) and
W ′′′(0) = 0, W (iv)(0) > 0, or equivalently r2

0G
′′(r2

0) = 3L and 4G′′(r2
0) + r2

0G
′′′(r2

0) > 0. The
condition W (s) > 0 on (−ε, 0) in ii) b), respectively W (s) > 0 on (0, ε) in ii) c), is satisfied
if G is C3 near r2

0 and W ′′′(0) < 0 (respectively W ′′′(0) > 0); however, in these cases only an
information on the behavior of G in a neighborhood of r2

0 is not sufficient to get the conclusion
of Theorem 5.1.

Proof of Theorem 5.1. Let ϕ(x) = e−
icx
2 ψ(x). Then ϕ ∈ L1

loc(R) and it is easy to see that

(5.3) ϕ′′ +
(
G(|ϕ|2) +

c2

4

)
ϕ = 0 in D′(R).

From (5.3) we get ϕ′′ ∈ L1
loc(R). This implies that ϕ′ is a continuous function on R (see, e.g.,

Lemma VIII.2 p. 123 in [8]). Thus ϕ ∈ C1(R). Since |ϕ| −→ r0 as x −→ ±∞, we infer that ϕ
is bounded on R. Coming back to (5.3) we see that ϕ′′ is continuous and bounded on R. In
particular ϕ ∈ C2(R) and this implies ψ ∈ C2(R).

Denoting ψ1 = Re(ψ), ψ2 = Im(ψ), equation (5.2) is equivalent to the system

(5.4) cψ′2 + ψ′′1 + G(|ψ|2)ψ1 = 0,

(5.5) −cψ′1 + ψ′′2 + G(|ψ|2)ψ2 = 0 in R.

We multiply (5.4) by 2ψ′1 and (5.5) by 2ψ′2, then we add the resulting equalities to get
[(ψ′1)2 + (ψ′2)2]′ − (V (|ψ|2))′ = 0. Hence there exists k1 ∈ R such that

(5.6) |ψ′|2(x)− V (|ψ|2)(x) = k1 for any x ∈ R.

Multiplying (5.4) by ψ2 and (5.5) by −ψ1, then summing up the corresponding equations we
obtain c

2(|ψ|2 − r2
0)
′ − (ψ1ψ

′
2 − ψ2ψ

′
1)
′ = 0. Consequently there is some k2 ∈ R such that

(5.7)
c

2
(|ψ|2 − r2

0)− (ψ1ψ
′
2 − ψ2ψ

′
1) = k2 in R.

Next we multiply (5.4) by 2ψ1 and (5.5) by 2ψ2, then we add the resulting equalities to find

(5.8) 2c(ψ1ψ
′
2 − ψ2ψ

′
1) + (|ψ|2 − r2

0)
′′ − 2|ψ′|2 + 2G(|ψ|2)|ψ|2 = 0.

Taking into account (5.6) and (5.7), equation (5.8) can be written as

(5.9) (|ψ|2 − r2
0)
′′ + c2(|ψ|2 − r2

0)− 2V (|ψ|2) + 2G(|ψ|2)|ψ|2 = 2k1 + 2ck2.

Denote v(x) = |ψ|2(x)− r2
0. Then v is real-valued, C2 and tends to zero as x −→ ±∞, hence

there exists a sequence xn −→ ∞ such that v′′(xn) −→ 0. Writing (5.9) for xn, then passing
to the limit as n −→∞ we see that necessariy k1 + ck2 = 0 and v satisfies the equation

(5.10) v′′ + c2v − 2V (v + r2
0) + 2(v + r2

0)G(v + r2
0) = 0 in R.
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Next we multiply (5.10) by 2v′, then we integrate the resulting equation and we obtain (v′)2 +
c2v2 − 4(v + r2

0)V (v + r2
0) = k3 in R, where k3 is a constant. It is clear that there exists a

sequence yn −→∞ such that v′(yn) −→ 0, consequently k3 = 0 and we have

(5.11) (v′)2(x) + c2v2(x)− 4(v + r2
0)V (v + r2

0)(x) = 0 for any x ∈ R.

Our aim is to prove that, under the assumptions of Theorem 5.1, we have v = 0 on R.

Suppose first that c2 > v2
s = 2Lr2

0. Since G satisfies (A), it follows that V ∈ C2([r2
0 −

η, r2
0 + η]) and we have by Taylor’s formula

V (r2
0 + s) = V (r2

0) + sV ′(r2
0) +

1
2
s2V ′′(r2

0) + s2h(s) =
1
2
Ls2 + s2h(s) for s ∈ [−η, η],

where h(s) −→ 0 as s −→ 0. Take ε1 ∈ (0, η] such that c2 − v2
s − 2Ls− 4(s + r2

0)h(s) > 0 for
any s ∈ [−ε1, ε1]. Suppose that v(x0) ∈ [−ε1, 0)∪ (0, ε1] for some x0 ∈ R. By (5.11) we obtain

0 = (v′)2(x0) + v2(x0)[c2 − v2
s − 2Lv(x0)− 4(v(x0) + r2

0)h(v(x0))] > 0,

a contradiction. Consequently we cannot have v(x) ∈ [−ε1, 0) ∪ (0, ε1]. Since v is continuous
and v(x) −→ 0 as x −→ ±∞, we infer that necessarily v(x) = 0 for any x ∈ R.

Next assume that c2 = v2
s . Equation (5.11) can be written as

(5.12) (v′)2(x) + W (v(x)) = 0 on R.

If assumption ii) a) is verified, we cannot have v(x) ∈ (−ε, 0) ∪ (0, ε) and we infer, as above,
that v = 0 on R. In case ii) b), we cannot have v(x) ∈ (−ε, 0) and we infer that v(x) ≥ 0 for
any x ∈ R. Since v(x) −→ 0 as x −→∞, there is some x0 such that v achieves a nonnegative
maximum at x0. Then v′(x0) = 0 and from (5.12) we get W (v(x0)) = 0. But W (s) < 0 for
s > 0 by ii) b), hence v(x0) = 0 and consequently v = 0 on R. Similarly we have v = 0 in the
case ii) c) (note that v = |ψ|2 − r2

0 ≥ −r2
0 and it suffices to know that W < 0 on [−r2

0, 0)).

Thus we have always v = 0, that is |ψ|2 = r2
0 on R. Consequently there exists a lifting

θ ∈ C2(R,R) such that ψ(x) = r0e
iθ(x) for any x ∈ R. It is clear that ψ1ψ

′
2−ψ2ψ

′
1 = |ψ|2θ′ =

r2
0θ
′ (see (3.3)). On the other hand we have ψ1ψ

′
2 − ψ2ψ

′
1 = −k2 by (5.7), hence θ′ = −k2

r2
0

is

constant, therefore θ(x) = −k2

r2
0
x + θ0, where θ0 is a real constant. Since ψ = r0e

i(− k2
r2
0

x+θ0)

satisfies equation (5.2), we find −ck2

r2
0
−

(
k2

r2
0

)2
= 0, thus either k2

r2
0

= 0 or k2

r2
0

= −c. Finally we

have either ψ(x) = eiθ0 or ψ(x) = ei(cx+θ0) and the proof is complete. 2

Example 5.2 In the case of the Gross-Pitaevskii equation we have G(s) = 1 − s and we
obtain W (s) = −2s3 (see Example 4.4). In the case of the cubic-quintic nonlinearity we have
G(s) = −α5(s − r2

1)(s − r2
0), where α5 > 0, 0 < r1 < r0 (see Example 4.5) and a simple

computation gives W (s) = −2α5s
3(4

3r2
0 − r2

1 + 1
3s). Therefore both the Gross-Pitaevskii and

the cubic-quintic nonlinearities satisfy assumption ii) b) and Theorem 5.1 gives all sonic and
supersonic travelling-waves for these equations.

Remark. The proof of Theorem 5.1 provides a method to find subsonic travelling-waves
for (5.1). With the above notation, it follows from (5.11) that on any interval where v′ 6= 0
we have v′(x) = ±

√
4(v + r2

0)V (v + r2
0)(x)− c2v2(x). In many interesting applications this

equation can be integrated and we obtain explicitly v = |ψ|2 − r2
0. Then it is not hard to find

(up to a constant) the corresponding phase θ.
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Remark. Assume that N = 1 and let (ψ, ϕ) be a finite-energy travelling-wave for the
system (4.17)-(4.18). It follows from the proof of Proposition 4.6 that ψ and ϕ are C∞

functions and ψ′, ϕ ∈ W k,p(R) for any k ∈ N and p ≥ 2. If c2 ≥ 2
ε2 (recall that

√
2

ε is the
sound velocity at infinity associated to (3.21)-(3.22)) and if there is a lifting ψ(x) = v(x)eiα(x),
ϕ(x) = u(x)eiβ(x), where v, u, α, β are real-valued functions of class C2, Proposition 3.1 p.
1545 in [26] implies that v = 1, α is constant and ϕ = 0 on R.
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