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Abstract

We present a new approach to study the symmetry of minimizers for a large class of
nonlocal variational problems. This approach which generalizes the Reflection method is
based on the obtention of some integral identities. We study the identities that lead to
symmetry results, the functionals that can be considered and the function spaces that
can be used. Then we use our method to prove the symmetry of minimizers for a class
of variational problems involving the fractional powers of Laplacian, for the generalized
Choquard functional and for the standing waves of the Davey-Stewartson equation.
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1 Introduction

Many important partial differential equations arising in Physics are Euler-Lagrange equations
of variational problems. Among the solutions of these equations those who correspond to a
minimum of the associated functional (e.g. the “energy”) subject to some constraint are of
particular interest. For example in many situations the set of such solutions is orbitally stable
(see [9]).

In this paper we address the general question of whether, or not, the fact that the underlying
problem has some symmetries is reflected on the minimizers. Namely if a problem is invariant
under the action of a group of transformations, is it true that the corresponding minimizers are
also invariant under the action of this group (or, perhaps, a subgroup of it) ? As it is shown
in [14], this may not be the case.

A classical approach to radial symmetry of minimizers is Schwarz symmetrization (or
spherical decreasing rearrangement, see [16]). For a nonnegative function u ∈ H1(RN ) its
symmetrization u∗ is a radially-decreasing function from RN into R which has the property
that meas({x ∈ RN | u(x) > λ} = meas({x ∈ RN | u∗(x) > λ} for any λ > 0. It is well-known
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that u∗ satisfies (among others) the following properties:

(1.1)
∫
RN

|∇u∗(x)|2 dx ≤
∫
RN

|∇u(x)|2 dx and
∫
RN

F (u∗(x)) dx =
∫
RN

F (u(x)) dx,

where F is, say, a smooth function from R into itself such that F (u) ∈ L1(RN ) (see [16]). As
a simple application of symmetrization, consider the problem of minimizing

E(u) =
1
2

∫
RN

|∇u(x)|2 dx +
∫
RN

F (u(x)) dx

subject to the constraint ∫
RN

G(u(x)) dx = λ,

where F, G ∈ C1(R,R) have the property that F (u), G(u) ∈ L1(RN ) whenever u ∈ H1(RN ).
If u ∈ H1(RN ) is a nonnegative minimizer, then from (1.1) it follows that u∗ also satisfies the
constraint and E(u∗) ≤ E(u); therefore, u∗ is also a minimizer. To show that u ≡ u∗ except
for translation is a more delicate question and this follows from a result in [6] and the Unique
Continuation Principle.

The case of nonlocal functionals also arises in applications. For instance, the Choquard
problem consists in minimizing

E(u) =
1
2

∫
R3

|∇u(x)|2 dx −
∫
R3×R3

u2(x)u2(y)
|x − y|

dx dy

subject to ∫
R3

u2(x) dx = λ.

The radial symmetry of minimizers of Choquard problem has been proved in [15] by using
Riesz’ inequality for rearrangements :

(1.2)
∫
RN×RN

f(x)g(x − y)h(y) dx dy ≤
∫
RN×RN

f∗(x)g∗(x − y)h∗(y) dx dy,

where f, g and h are nonnegative functions. Moreover, if g is strictly symmetric-decreasing
then equality holds in (1.2) if and only if f(x) = f∗(x − y) and h(x) = h∗(x − y) for some
y ∈ RN .

In the vector case symmetrization can also be used because of the inequality

(1.3)
∫
RN

F (u∗(x), v∗(x)) dx ≤
∫
RN

F (u(x), v(x)) dx,

which holds provided that the function F is C2 and satisfies the cooperative condition ∂2F
∂u∂v (u, v) ≤

0 for u, v ≥ 0 (see [5]). Therefore, consider the problem of minimizing

E(u, v) =
1
2

∫
RN

(|∇u(x)|2 + |∇v(x)|2) dx +
∫
RN

F (u(x), v(x)) dx

subject to the constraint ∫
RN

(G1(u(x)) + G2(v(x)) dx = λ,

where ∂2F
∂u∂v (u, v) ≤ 0 for u, v ≥ 0. If (u, v) is a nonnegative minimizer, then from (1.1) and

(1.3) we see that (u∗, v∗) is also a minimizer. Notice that the function defining the constraint
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must have a special form because we want the value of the constraint to be preserved by
symmetrization.

Another tool to prove radial symmetry of minimizers is the result by Gidas, Ni and Niren-
berg [11] about the radial symmetry of positive solutions of the semilinear elliptic equation

−∆u + f(u) = 0.

In the case of systems, an extension of that result has been proved in [7] and [25] assum-
ing a cooperative condition for the nonlinearity. In [11] as well as in its generalizations the
nonlinearities are also allowed to depend on the space variable in a radial and monotonic way.

As we can see, in the vector case, besides the need to know in advance that the components
of the minimizer are positive, both methods described above require the nonlinearity to satisfy
a cooperative condition and the function defining the constraint to have a special form. To
avoid these two restrictions, the Reflection method has been developed in [18] and [19]. We
now briefly describe this method.

Consider the problem of minimizing

E(u, v) =
1
2

∫
RN

(|∇u(x)|2 + |∇v(x)|2) dx +
∫
RN

F (u(x), v(x)) dx

subject to ∫
RN

G(u(x), v(x)) dx = λ 6= 0.

To show that any minimizer (u, v) is symmetric with respect to x1 (except possibly for a
translation), we first make a translation in the x1 variable in such way that

(1.4)
∫
{x1<0}

G(u(x), v(x)) dx =
∫
{x1>0}

G(u(x), v(x)) dx =
λ

2
.

Next, setting x = (x1, x
′), where x′ ∈ RN−1, we define the functions u1 and u2 by

u1(x) = u1(x1, x
′) =

{
u(x1, x

′) if x1 < 0,
u(−x1, x

′) if x1 ≥ 0
and u2(x) =

{
u(−x1, x

′) if x1 < 0,
u(x1, x

′) if x1 ≥ 0.

In a similar way we define v1 and v2. According to (1.4), the pairs (u1, v1) and (u2, v2) also
satisfy the constraint (i.e. they are admissible). Moreover, a change of variables shows that

(1.5) E(u1, v1) + E(u2, v2) = 2E(u, v).

Thus (u1, v1) and (u2, v2) are also minimizers. This shows that there exist minimizers which are
symmetric with respect to x1. In fact, by using the Euler-Lagrange equations and the Unique
Continuation Principle we can show that necessarily (u1, v1) = (u, v) = (u2, v2). Clearly, this
implies that any minimizer (u, v) is symmetric with respect to the first variable. Replacing the
x1−direction by any other direction in RN and repeating the same argument, we can show
that (u, v) is radially symmetric except for translation (details will be given later). Notice that
to use this argument there is no need to know the sign of components of the minimizers.

The main point of this paper is to extend the Reflection method to a class of nonlocal
functionals. To be more specific, consider the problem of minimizing

(1.6) E(u, v) =
∫
RN

(
1
2
|(−∆)

s
2 u|2 +

1
2
|∇v|2) dx +

∫
RN

F (u, v) dx
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subject to the constraint

(1.7) Q(u, v) =
∫
RN

G(u, v) dx = λ 6= 0,

where 0 < s < 1. Defining

W (u) =
1
2

∫
RN

|(−∆)
s
2 u|2 dx

and (u1, u2) and (v1, v2) as above, instead of (1.5) we have

E(u1, v1) + E(u2, v2) − 2E(u, v) = W (u1) + W (u2) − 2W (u).

Therefore, to show that the pairs (u1, v1) and (u2, v2) are also minimizers we need to know
that the following inequality holds

(1.8) W (u1) + W (u2) − 2W (u) ≤ 0.

The key to the method developed here is to show that inequality (1.8) holds true (see
Theorem 2.8). Moreover, we have equality in (1.8) if and only if u is symmetric with respect
to x1. As we will see, this gives the desired radial symmetry of minimizers. More general
multipliers m(ξ) and more regular nonlocal functionals like the one appearing in the Choquard
problem above are also considered. In this article we will use this extended Reflection method
to show the symmetry of all minimizers of the following problems:

• the Hamiltonian of a coupled system between a multidimensional Korteweg-de Vries
equation and a Benjamin-Ono equation (this is precisely problem (1.6)-(1.7) with s =
1/2). Here the minimizers correspond to solitary waves;

• the generalized Choquard problem. In this case the minimizers give rise to standing
waves for the generalized Hartree equation;

• the Hamiltonian of the generalized Davey-Stewartson equation. Here again, minimizers
correspond to standing waves.

The existence of minimizers for these problems can be proved by using the concentration-
compactness method [17] or the alternative method presented in [20] and will not be discussed
here.

Notice that the symmetrization approach, in general, does not apply to the problems above.
Indeed, in the first two examples, symmetrization cannot be used to prove the existence of a
radially symmetric minimizer under the general assumptions on the nonlinearities made in
this paper. Furthermore, with the tools available at the present time, it is not clear how to
prove the radial symmetry of all minimizers, even in the cases where symmetrization can be
used to prove the existence of a radially symmetric minimizer. Finally, in the last example,
symmetrization cannot be used because one term of the Hamiltonian of the Davey-Stewartson
equation is a singular integral operator whose kernel changes sign.

This paper is organized as follows: in the next section we present some integral identities

for functionals of the form W (u) =
∫
RN

m(ξ)|û(ξ)|2 dξ. These identities are first proved for

functions u ∈ C∞
c and are crucial for our approach to symmetry. It will also appear clearly

what kind of symbols m(ξ) we may consider. In section 3 we search for appropriate function
spaces on which our method can be applied. It will be proved that we may work on Hs(RN )
or on Ḣs(RN ) if −1

2 < s < 3
2 . We will extend the integral identities obtained in section 2 to

these function spaces. In section 4 we apply our results to the concrete problems presented
above. We end this article with some open problems.
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2 Some identities

In what follows, x = (x1, x2, . . . , xN ) = (x1, x
′) denotes a point of RN , x′ = (x2, . . . , xN ) ∈

RN−1, ξ = (ξ1, ξ2, . . . , ξN ) = (ξ1, ξ
′) ∈ RN with ξ′ = (ξ2, . . . , ξN ) ∈ RN−1. We denote the

Fourier transform either by ̂ or by F .

The aim of this section is to prove an identity for some functionals of the type

(2.1) W (u) =
∫
RN

m(ξ)|û(ξ)|2 dξ

which will play a very important role in proving symmetries.

Consider a function u ∈ C∞
c (RN ). We define the reflected functions u1 and u2 as follows :

(2.2) u1(x) = u1(x1, x
′) =

{
u(x1, x

′) if x1 < 0,
u(−x1, x

′) if x1 ≥ 0
and u2(x) =

{
u(−x1, x

′) if x1 < 0,
u(x1, x

′) if x1 ≥ 0.

We also define

(2.3) g(x) =
1
2
(u(x1, x

′) + u(−x1, x
′)) and f(x) =

1
2
(u(x1, x

′) − u(−x1, x
′)).

Clearly, f, g ∈ C∞
c (RN ), g is even and f is odd with respect to x1 and u = f + g. Let

(2.4) f∗(x) =

{
f(−x1, x

′) = −f(x) if x1 < 0,
f(x1, x

′) if x1 ≥ 0.

Then f∗ is even with respect to x1, u1 = g − f∗ and u2 = g + f∗.

We want to study the quantity

(2.5) W (u1) + W (u2) − 2W (u)

where W is given by (2.1). Later in Theorem 2.8 we specify the class of multipliers under
consideration but, at this early stage, besides integrability conditions, we assume that

(2.6) m(ξ) is real and m(−ξ1, ξ
′) = m(ξ1, ξ

′).

We have :

(2.7)
ĝ(−ξ1, ξ

′) =
∫
RN

eix1ξ1−ix′.ξ′g(x1, x
′)dx =

∫
RN

e−iy1ξ1−ix′.ξ′g(−y1, x
′)dy1dx′

= ĝ(ξ1, ξ
′)

and

(2.8)
f̂(−ξ1, ξ

′) =
∫
RN

eix1ξ1−ix′.ξ′f(x1, x
′)dx =

∫
RN

e−iy1ξ1−ix′.ξ′f(−y1, x
′)dy1dx′

= −f̂(ξ1, ξ
′).

Therefore

(2.9)

W (u1) + W (u2) − 2W (u)

=
∫
RN

m(ξ1, ξ
′)(|ĝ(ξ) − f̂∗(ξ)|2 + |ĝ(ξ) + f̂∗(ξ)|2 − 2|ĝ(ξ) + f̂(ξ)|2) dξ

=
∫
RN

m(ξ1, ξ
′)(2|f̂∗(ξ)|2 − 2|f̂(ξ)|2 − 4Re(ĝ(ξ)f̂(ξ)) dξ

= 2
∫
RN

m(ξ1, ξ
′)(|f̂∗(ξ)|2 − |f̂(ξ)|2) dξ = 2W (f∗) − 2W (f)
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because
∫
RN

m(ξ1, ξ
′)Re(ĝ(ξ)f̂(ξ)dξ = 0 in view of (2.6), (2.7) and (2.8).

It is easy to see that

f̂(ξ1, ξ
′) =

∫
R

∫
RN−1

e−ix1ξ1−ix′.ξ′f(x1, x
′) dx′ dx1

=
∫ ∞

0

∫
RN−1

(e−ix1ξ1 − eix1ξ1)e−ix′.ξ′f(x1, x
′) dx′ dx1

= −2i

∫ ∞

0

∫
RN−1

sin(x1ξ1)e−ix′.ξ′f(x1, x
′) dx′ dx1

and
f̂∗(ξ1, ξ

′) =
∫
R

∫
RN−1

e−ix1ξ1−ix′.ξ′f∗(x1, x
′) dx′ dx1

=
∫ ∞

0

∫
RN−1

(e−ix1ξ1 + eix1ξ1)e−ix′.ξ′f(x1, x
′) dx′ dx1

= 2
∫ ∞

0

∫
RN−1

cos(x1ξ1)e−ix′.ξ′f(x1, x
′) dx′ dx1.

We denote by FN−1 the partial Fourier transform in the last N − 1 variables, that is

FN−1f(x1, ξ
′) =

∫
RN−1

e−ix′.ξ′f(x1, x
′) dx′.

Since f ∈ C∞
c (RN ) we may use Fubini’s theorem to get

|f̂(ξ1, ξ
′)|2 = f̂(ξ1, ξ

′)f̂(ξ1, ξ′)

= 4
∫ ∞

0

∫ ∞

0
sin(x1ξ1) sin(y1ξ1)(FN−1f)(x1, ξ

′)(FN−1f)(y1, ξ′) dx1 dy1

and similarly

|f̂∗(ξ1, ξ
′)|2 = f̂∗(ξ1, ξ

′)f̂∗(ξ1, ξ′)

= 4
∫ ∞

0

∫ ∞

0
cos(x1ξ1) cos(y1ξ1)(FN−1f)(x1, ξ

′)(FN−1f)(y1, ξ′) dx1 dy1.

Consequently,
(2.10)

W (f∗) − W (f) =
∫
RN

m(ξ1, ξ
′)(|f̂∗(ξ1, ξ

′)|2 − |f̂(ξ1, ξ
′)|2) dξ

= 4
∫
RN

m(ξ1, ξ
′)

∫ ∞

0

∫ ∞

0
[cos(x1ξ1) cos(y1ξ1) − sin(x1ξ1) sin(y1ξ1)]

(FN−1f)(x1, ξ
′)(FN−1f)(y1, ξ′) dx1 dy1 dξ

= 4
∫
RN

m(ξ1, ξ
′)

∫ ∞

0

∫ ∞

0
cos((x1 + y1)ξ1)(FN−1f)(x1, ξ

′)(FN−1f)(y1, ξ′) dx1 dy1 dξ.

For an arbitrary (but fixed) ξ′ ∈ RN−1, we define ϕξ′(t) = (FN−1f)(t, ξ′). Since f ∈
C∞

c (RN ), it is clear that ϕξ′ ∈ C∞
c (R). If supp(f) ⊂ BRN (0, R), then supp(ϕξ′) ⊂ [−R,R].

For z ∈ C, we define

(2.11) hξ′(z) =
∫ ∞

0

∫ ∞

0
ei(x1+y1)zϕξ′(x1)ϕξ′(y1) dx1 dy1.
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Since ϕξ′ is bounded and has compact support, hξ′ is well-defined and is an holomorphic
function on C. For any z ∈ R we have

hξ′(z) =
∫ ∞

0

∫ ∞

0
e−i(x1+y1)zϕξ′(x1)ϕξ′(y1) dx1 dy1 = hξ′(−z)

and

Re(hξ′(z)) =
1
2
(hξ′(z) + hξ′(z)) =

∫ ∞

0

∫ ∞

0
cos((x1 + y1)z)ϕξ′(x1)ϕξ′(y1) dx1 dy1.

From (2.6), (2.9) and (2.10) we get

(2.12) W (u1) + W (u2) − 2W (u) = 2W (f∗) − 2W (f) = 8
∫
RN−1

∫ ∞

−∞
m(ξ1, ξ

′)hξ′(ξ1) dξ1 dξ′.

Some properties of the function hξ′ are given in the next lemma. To simplify the notation, we
shall write h instead of hξ′ .

Lemma 2.1 For any fixed ξ′, the function h = hξ′ given by (2.11) has the following properties:
i) h is bounded in the upper half-plane {z ∈ C | Im(z) ≥ 0}.
ii) There exists a constant C > 0 (depending on f and ξ′) such that for any z 6= 0 with

Im(z) ≥ 0 we have:

(2.13) |h(z)| ≤ C

|z|4
and

(2.14) |h′(z)| ≤ C

|z|5
.

Proof. i) If b ≥ 0 and x ≥ 0 then |eiax−bx| ≤ 1 and we have

|h(a + ib)| =
∣∣∣∣ ∫ ∞

0

∫ ∞

0
ei(x1+y1)a−(x1+y1)bϕξ′(x1)ϕξ′(y1) dx1 dy1

∣∣∣∣
≤

(∫ ∞

0
|eiat−bt| · |ϕξ′(t)| dt

)2

≤
(∫ ∞

0
|ϕξ′(t)| dt

)2

.

ii) It is clear that

(2.15) h(z) =
∫ ∞

0
eix1zϕξ′(x1) dx1 ·

∫ ∞

0
eiy1zϕξ′(y1) dy1 = Ψ1(z)Ψ2(z),

where Ψ1(z) and Ψ2(z) are defined in an obvious way. Notice that ϕξ′(0) = (FN−1f)(0, ξ′) = 0
because f(0, x′) = 0 (recall that f is odd with respect to x1). Moreover, for any k ∈ N,

dk

dtk
ϕξ′(t) =

dk

dtk

∫
RN−1

e−ix′.ξ′f(t, x′) dx′

=
∫
RN−1

e−ix′ξ′ ∂
kf

∂xk
1

(t, x′) dx′ = (FN−1
∂kf

∂xk
1

)(t, ξ′)

is a C∞
c function of t, uniformly bounded for (t, ξ′) ∈ R×RN−1. Integrating by parts, we get:

Ψ1(z) =
∫ ∞

0
eitzϕξ′(t)dt =

1
iz

eitzϕξ′(t)
∣∣∣∣∞
t=0

− 1
iz

∫ ∞

0
eitzϕ′

ξ′(t) dt

= − eitz

(iz)2
ϕ′

ξ′(t)
∣∣∣∣∞
t=0

+
1

(iz)2

∫ ∞

0
eitzϕ′′

ξ′(t) dt

= − 1
z2

[
ϕ′

ξ′(0) +
∫ ∞

0
eitzϕ′′

ξ′(t) dt

]
.
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It is clear that a similar estimate is true for Ψ2(z); hence (2.13) holds.
In a similar way we have

Ψ′
1(z) =

∫ ∞

0
iteitzϕξ′(t) dt =

1
z
eitztϕξ′(t)

∣∣∣∣∞
t=0

− 1
z

∫ ∞

0
eitz d

dt
(tϕξ′(t)) dt

= − 1
iz2

eitz d

dt
(tϕξ′(t))

∣∣∣∣∞
t=0

+
1

iz2

∫ ∞

0
eitz d2

dt2
(tϕ′

ξ′(t)) dt

= − 1
z3

eitz d2

dt2
(tϕξ′(t))

∣∣∣∣∞
t=0

+
1
z3

∫ ∞

0
eitz d3

dt3
(tϕ′

ξ′(t)) dt

=
1
z3

[
2ϕ′

ξ′(0) +
∫ ∞

0
eitz d3

dt3
(tϕ′

ξ′(t)) dt

]
.

Since an analogous estimate is valid for Ψ′
2(z) and h′(z) = Ψ′

1(z)Ψ2(z)+Ψ1(z)Ψ′
2(z), inequality

(2.14) holds. 2

Remark 2.2 In general,
∂f

∂x1
(0, x′) does not vanish identically; hence FN−1f(0, ξ′) 6= 0 for

some ξ′, i.e. there exists ξ′ such that ϕ′
ξ′(0) 6= 0. For such ξ′, the functions Ψ1 and Ψ2 do not

decay faster than
1
|z|2

and then the estimate (2.13) is optimal.

Remark 2.3 Note that for any t ∈ R we have

h(it) =
∣∣∣∣ ∫ ∞

0
e−x1tϕξ′(x1) dx1

∣∣∣∣2 ∈ [0,∞).

Suppose that for any fixed ξ′ ∈ RN−1, m(ξ1, ξ
′) admits an holomorphic extension z 7−→

m(z, ξ′) to the upper half-plane {z ∈ C | Im(z) > 0}, with possibly some singularities on the
imaginary axis {it | t ∈ [0,∞)}. If |m(z, ξ′)| increases more slowly than |z|3 as |z| −→ ∞, then∫ ∞

−∞
m(ξ1, ξ

′)h(ξ1) dξ1 should depend only on the values of h on the singular set of m(·, ξ′). This

simple idea will enable us to prove the identities that will be crucial in symmetry problems.

In order to clarify what kind of symbols may be considered, we start with some auxiliary
technical results about holomorphic functions in a half-plane and their boundary values.

Given a function α ∈ Lp(R), 1 ≤ p < ∞, we recall that its Hilbert transform is defined by

(Hα)(x) = lim
ε→0

1
π

∫
{|y|>ε}

α(x − y)
y

dy or equivalently Ĥα(ξ) = −i sgn(ξ) α̂(ξ).

It is well-known that H is a bounded linear mapping from Lp(R) into Lp(R) (see, e.g., Chapter
II in [23], or inequality (2.11) p. 188 in [24]).

In the next two lemmas we collect some classical facts that will be very useful in the sequel.

Lemma 2.4 Consider α ∈ Lp(R), 1 < p < ∞, and let β = Hα. For x > 0 and y ∈ R define

a(x, y) =
1
π

∫ ∞

−∞

x

x2 + (y − t)2
α(t) dt =

∫ ∞

−∞
P (y − t, x)α(t) dt and

b(x, y) = − 1
π

∫ ∞

−∞

y − t

x2 + (y − t)2
α(t) dt = −

∫ ∞

−∞
Q(y − t, x)α(t) dt,
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where P (s, k) =
1
π

k

s2 + k2
and Q(s, k) =

1
π

s

s2 + k2
are the Poisson kernel, respectively the

conjugate Poisson kernel.
Then we have:
i) b(x, y) = −

∫ ∞

−∞
P (y − t, x)β(t) dt for any x > 0 and t ∈ R.

ii) ||a(x, ·)||Lp(R) ≤ ||α||Lp(R), ||b(x, ·)||Lp(R) ≤ ||β||Lp(R) and ||a(x, ·) − α||Lp(R) −→ 0,
||b(x, ·) + β||Lp(R) −→ 0 as x −→ 0. Moreover, a(x, y) −→ α(y) for any y in the Lebesgue set
of α (hence almost everywhere) and b(x, y) −→ −β(y) for any y in the Lebesgue set of β.

iii) The functions a and b are harmonic in {(x, y) ∈ R2 | x > 0} and r(z) = r(x + iy) :=
a(x, y) + ib(x, y) is holomorphic in {z ∈ C | Re(z) > 0}.

iv) For any δ > 0 we have

lim
|(x,y)|→∞, x≥δ

a(x, y) = 0 and lim
|(x,y)|→∞, x≥δ

b(x, y) = 0.

v) Suppose in addition that α is even and there exists ε > 0 such that α ≡ 0 on [−ε, ε].
Then a and b are well-defined, bounded and harmonic in the strip {(x, y) ∈ R2 | − ε

2 < y < ε
2},

r is well-defined and holomorphic in this strip and r(0) = 0.

Proof. i) is exactly Lemma 1.5 p. 219 in [24] and ii) follows from Theorem 2.1 p. 47 in
[24]. Since the Poisson kernel is a harmonic function, it is straightforward that a and b are
harmonic. It is easy to check that the Cauchy-Riemann conditions ∂a

∂x = ∂b
∂y and ∂a

∂y = − ∂b
∂x are

satisfied; then r is holomorphic in {z ∈ C | Re(z) > 0} and iii) holds.

iv) Using Lemma 2.6 p. 51 in [24] we infer that there exists a constant A > 0 such that

(2.16) |a(x, y)| ≤ A||α||Lp

x
1
p

and |b(x, y)| ≤ A||α||Lp

x
1
p

for any x > 0 and y ∈ R.
We fix ε > 0. It follows from (2.16) that there exists M > 0 such that |a(x, y)| < ε and

|b(x, y)| < ε for any (x, y) with x ≥ M . Let q ∈ (1,∞) be the conjugate exponent of p, i.e.
1
p + 1

q = 1. It is easy to see that ||P (·, x)||L1(R) = 1 and ||P (·, x)||L∞(R) = 1
πx ; consequently,

||P (·, x)||Lq(R) ≤ ||P (·, x)||
1
q

L1(R)||P (·, x)||
1
p

L∞(R) = π
− 1

p x
− 1

p . Also, for any B > 0 we have

||P (·, x)||L1([B,∞)) = 1
π

(
π
2 − arctan B

x

)
and ||P (·, x)||L∞([B,∞)) = 1

π
x

x2+B2 , hence

(2.17) ||P (·, x)||Lq([B,∞)) ≤
(

1
π

x

x2 + B2

) 1
p

(
1
2
− 1

π
arctan

B

x

) 1
q

.

A similar estimate holds on (−∞,−B]. For any x ∈ [δ,M ] and any y ≥ 2B we have
||P (·, x)||Lq((y−B,y+B)) ≤ ||P (·, x)||Lq([B,∞)) and

(2.18)

|a(x, y)| ≤
∣∣∣∣ ∫ B

−B
P (y − t, x)α(t) dt

∣∣∣∣ +
∣∣∣∣ ∫

{|t|≥B}
P (y − t, x)α(t) dt

∣∣∣∣
≤

∣∣∣∣ ∫ y+B

y−B
P (s, x)α(y − s) ds

∣∣∣∣ + ||P (·, x)||Lq(R) · ||α||Lp((−∞,B]∪[B,∞))

≤ ||P (·, x)||Lq([y−B,y+B]) · ||α||Lp(R) + ||P (·, x)||Lq(R) · ||α||Lp((−∞,B]∪[B,∞))

≤ ||α||Lp(R)

(
1
π

x

x2 + B2

) 1
p

(
1
2
− 1

π
arctan

B

x

) 1
q

+ ||α||Lp((−∞,B]∪[B,∞))π
− 1

p x
− 1

p

≤ ||α||Lp(R)

(
M

π(δ2 + B2)

) 1
p

(
1
2
− 1

π
arctan

B

M

) 1
q

+ ||α||Lp((−∞,B]∪[B,∞))π
− 1

p δ
− 1

p .
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We may choose B = B(ε) sufficiently large so that the right-hand side term in (2.18) is less
than ε. Then for any x ∈ [δ,M ] and y ≥ 2B(ε) we have |a(x, y)| < ε. Clearly the same
inequality is true if y ≤ −2B. Therefore |a(x, y)| < ε if x ≥ M or if |y| ≥ 2B and x ∈ [δ,M ].
Since ε was arbitrary, we infer that |a(x, y)| −→ 0 as |(x, y)| −→ ∞ and x ≥ δ. A similar proof
is valid for the function b and iv) is proved.

v) For any y ∈ [− ε
2 , ε

2 ] and t ∈ supp(a) we have |t − y| ≥ ε
2 ; hence x2 + (y − t)2 ≥ ε2

4 and
|P (y − t, x)| = 1

π |
x

x2+(y−t)2
| ≤ 1

π
4
ε2 |x|, therefore |P (y − t, x)| ≤ 1

π min
(

4
ε2 |x|, 1

2|y−t|

)
. Similarly

|Q(y − t, x)| = 1
π |

y−t
x2+(y−t)2

| ≤ 1
π min

(
4
ε2 |y − t|, 1

|y−t|

)
. Thus P (y − ·, x) and Q(y − ·, x) are

uniformly bounded in Lq(R) for (x, y) ∈ [−1, 1] × [− ε
2 , ε

2 ]. It follows that a and b are well-
defined for any (x, y) with |y| ≤ ε

2 and bounded near the origin. It is straightforward to check
that a and b are twice continuously differentiable, ∆a = ∆b = 0 and r(x+iy) = a(x, y)+ib(x, y)

is holomorphic. Clearly, a(0, y) = 0 for any y ∈ [− ε
2 , ε

2 ] and b(x, 0) =
∫ ∞

−∞

t

t2 + x2
α(t) dt = 0

for any x ∈ R because t 7−→ t
t2+x2 is odd and t 7−→ α(t) is even. Hence r(0) = 0. 2

Lemma 2.5 Let µ be a finite Borel measure on R. For x > 0 and y ∈ R define

a(x, y) =
1
π

∫ ∞

−∞

x

x2 + (y − t)2
dµ(t) =

∫ ∞

−∞
P (y − t, x) dµ(t) and

b(x, y) = − 1
π

∫ ∞

−∞

y − t

x2 + (y − t)2
dµ(t) = −

∫ ∞

−∞
Q(y − t, x) dµ(t),

where P (s, k) and Q(s, k) are the Poisson kernel, respectively the conjugate Poisson kernel.
Then:
i) The functions a and b are harmonic in {(x, y) ∈ R2 | x > 0} and r(z) = r(x + iy) :=

a(x, y) + ib(x, y) is holomorphic in the right half-plane {z ∈ C | Re(z) > 0}.
ii) For any x > 0 and any p, 1 ≤ p ≤ ∞, we have

(2.19) ||a(x, ·)||Lp(R) ≤
1

π
1
q x

1
q

||µ||,

where q is the conjugate exponent of p and ||µ|| is the total variation of µ. Furthermore,

(2.20) lim
x→0

∫
R

a(x, y)φ(y) dy =
∫
R

φ(y) dµ(y)

for any function φ which is continuous on R and tends to zero at ±∞.
iii) For any x > 0 we have |b(x, y)| ≤ 1

2πx ||µ||.
iv) For x > 0 we have b(x, ·) = −Ha(x, ·) and for any x1, x2 > 0,

(2.21) a(x1 + x2, y) =
∫ ∞

−∞
P (y − t, x1)a(x2, t) dµ(t),

(2.22) b(x1 + x2, y) =
∫ ∞

−∞
P (y − t, x1)b(x2, t) dµ(t) = −

∫ ∞

−∞
Q(y − t, x1)a(x2, t) dµ(t).

v) For any p ∈ (1,∞) there exists Ap > 0 such that

||b(x, ·)||Lp(R) ≤ Apx
− p−1

p ||µ||.

vi) For any δ > 0,

lim
|(x,y)|→∞, x≥δ

a(x, y) = 0 and lim
|(x,y)|→∞, x≥δ

b(x, y) = 0.
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vii) Suppose in addition that µ(S) = µ(−S) and µ(S∩ [−ε, ε]) = 0 for any Borel measurable
set S. Then a and b are well-defined, bounded and holomorphic in the strip {(x, y) ∈ R2 | − ε

2 <
y < ε

2}, the function r(x + iy) = a(x, y) + ib(x, y) is holomorphic in that strip and r(0) = 0.

Proof. i) If x > 0, the functions t 7−→ P (y−t, x) and t 7−→ Q(y−t, x) are continuous on R and
tend to zero at ±∞; hence a(x, y) and b(x, y) are well-defined. Using Lebesgue’s Dominated
Convergence Theorem it is easy to check that a and b are twice continuously differentiable
and ∆a = ∆b = 0. Moreover, a and b satisfy the Cauchy-Riemann conditions ∂a

∂x = ∂b
∂y and

∂a
∂y = − ∂b

∂x , and then r = a + ib is holomorphic in the right half-plane.

ii) It follows from Theorem 2.3 p. 49 in [24] that ||a(x, ·)||L1(R) ≤ ||µ|| and that (2.20) holds.
It is obvious that ||P (y − ·, x)||L∞(R) ≤ 1

πx ; hence |a(x, y)| ≤ ||P (y − ·, x)||L∞(R)||µ|| = 1
πx ||µ||.

Finally, for 1 < p < ∞ we have ||a(x, ·)||Lp ≤ ||a(x, ·)||
1
q

L∞ · ||a(x, ·)||
1
p

L1 ≤ π
− 1

q x
− 1

q ||µ||.

iii) It is obvious that |Q(y − t, x)| ≤ 1
2πx and this implies

|b(x, y)| ≤ ||Q(y − ·, x)||L∞(R)||µ|| ≤ 1
2πx ||µ||.

iv) We have just proved that a and b are harmonic in the right half-plane and bounded
in each proper sub-half-plane {(x, y) ∈ R2 | x > δ}, where δ > 0. Then (2.21) and the first
equality in (2.22) follow directly from Lemma 2.7 p. 51 in [24]. Fix x2 > 0. We introduce the
function

r1(z) = r1(x + iy) =
∫ ∞

−∞
P (y − t, x)a(x2, t) dt − i

∫ ∞

−∞
Q(y − t, x)a(x2, t) dt.

It is not hard to see that a(x2, ·) ∈ Lp(R) for any p ∈ [1,∞], a(x2, ·) is C∞ and Ha(x2, ·)
is continuous. It is clear that r1 is bounded and by Lemma 2.4 ii) and iii) we infer that
r1 is holomorphic in the right half-plane, lim

x→0
Re(r1(x, y)) = a(x2, y) and lim

x→0
Im(r1(x, y)) =

−(Ha(x2, ·))(y) for any y ∈ R. Let r2(z) = r(x2 + z) − r1(z). It is easy to see that r2 is
well-defined, bounded and holomorphic in the right half-plane and lim

x→0
Re(r2(x, y)) = 0. Using

Schwarz’ reflection principle (see, e.g., [8] p. 75), we may extend r2 to a holomorphic function r̃2

defined in the whole complex plane so that we have r̃2(z) = −r2(−z) for any z with Re(z) < 0.
Since r̃2 is also bounded, from Liouville’s theorem it follows that r̃2 is constant. From ii)
and iii) we infer that lim

x→∞
r(x) = 0 and from Lemma 2.4, part iv), we get lim

x→∞
r1(x) = 0;

hence lim
x→∞

r2(x) = 0. Consequently r̃2 is identically zero on C, that is r1(z) = r(x2 + z).
This proves the second equality in (2.22). Moreover, we have Im(r(x2 + iy)) = b(x2, y) and
lim
x→0

Im(r1(x + iy)) = −H(a(x2, ·))(y); we conclude that b(x2, ·) = −H(a(x2, ·)).

v) We know that there exists Cp > 0 such that ||Hφ||Lp ≤ Cp||φ||Lp for any φ ∈ Lp(R).
Using ii) and iv) we get

||b(x, ·)||Lp = ||Ha(x, ·)||Lp ≤ Cp||a(x, ·)||Lp ≤ Cpπ
− 1

q x
− 1

q ||µ||

for any x > 0, where 1
p + 1

q = 1.

vi) is a direct consequence of (2.21), (2.22) and Lemma 2.4, part iv). The proof of vii) is
very similar to the proof of part v) of Lemma 2.4 and we omit it. 2

Remark 2.6 Under the assumptions v) of Lemma 2.4 (respectively vii) of Lemma 2.5) an
easy computation gives

∂a

∂x
(0, 0) =

∂b

∂y
(0, 0) =

1
π

∫ ∞

−∞

α(t)
t2

dt, respectively
∂a

∂x
(0, 0) =

∂b

∂y
(0, 0) =

1
π

∫ ∞

−∞

1
t2

dµ(t).
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If α is nonnegative and α 6≡ 0 (respectively if µ is a positive measure) we have
∂r

∂z
(0) =

∂a

∂x
(0, 0) > 0; hence z = 0 is a simple zero of r.

After this preparation, we come back to the study of the integral
∫
R

m(ξ1, ξ
′)hξ′(ξ1) dξ1

which appears in the right hand side of (2.12).

Lemma 2.7 Suppose that for a given ξ′ ∈ RN−1 the symbol m(ξ1, ξ
′) can be written as

(2.23)

m(ξ1, ξ
′) = A0(ξ′) + A1(ξ′)|ξ1| + A2(ξ′)ξ2

1

+
1
π

[∫
R

1
ξ2
1 + t2

dµξ′,0(t) + ξ2
1

∫
R

1
ξ2
1 + t2

dµξ′,1(t) + ξ4
1

∫
R

1
ξ2
1 + t2

dµξ′,2(t)
]

+
1
π

4∑
k=0

|ξ1|k
∫
R

1
ξ2
1 + t2

αξ′,k(t) dt,

where :
a) A0(ξ′), A1(ξ′), A2(ξ′) ∈ R,
b) µξ′,i are finite Borel measures on R such that µξ′,i(S) = µξ′,i(−S) for any Borel mea-

surable set S ⊂ R, i = 0, 1, 2.
c) αξ′,k ∈ Lpk(R) for some pk ∈ (1,∞) and αξ′,k are even functions, k = 0, 1, 2, 3, 4.
d) There exists η > 0 such that αξ′,0 ≡ 0 on [−η, η] and µξ′,0(S) = 0 for any Borel

measurable set S ⊂ [−η, η].
Let βξ′,1 = Hαξ′,1 and βξ′,3 = Hαξ′,3, where H is the Hilbert transform. If h = hξ′ is given by
(2.11) then we have the identity:

(2.24)

1
2

∫ ∞

−∞
m(ξ1, ξ

′)h(ξ1) dξ1 = −A1(ξ′)
∫ ∞

0
t h(it) dt

+
∫ ∞

0

h(it)
t

dµξ′,0(t) −
∫ ∞

0
t h(it) dµξ′,1(t) +

∫ ∞

0
t3h(it) dµξ′,2(t)

+
∫ ∞

0

(
αξ′,0(t)

t
+ βξ′,1(t) − tαξ′,2(t) − t2βξ′,3(t) + t3αξ′,4(t)

)
h(it) dt.

Proof. For i = 0, 1, 2 and z = x + iy ∈ C with Re(z) > 0 we define

pi(z) =
1
π

∫
R

x

x2 + (y − t)2
dµξ′,i(t) −

i

π

∫
R

y − t

x2 + (y − t)2
dµξ′,i(t).

In view of Lemma 2.5, pi are well-defined and holomorphic in the right half-plane {z ∈
C | Re(z) > 0}. Moreover, by assumption d) and Lemma 2.5, part vii), p0 admits an
holomorphic extension to the domain {z ∈ C | Re(z) > 0 or |Im(z)| < η

2}, and p0(0) = 0.

Consequently,
p0(z)

z
is holomorphic in this domain and is bounded in a neighbourhood of zero.

For k = 0, 1, 2, 3, 4 we define

rk(z) =
1
π

∫
R

x

x2 + (y − t)2
αξ′,k(t) dt − i

π

∫
R

y − t

x2 + (y − t)2
αξ′,k(t) dt.

12



It follows from Lemma 2.4 that rk are well-defined and holomorphic in the right half-plane.
Furthermore, r0 admits an holomorphic extenion to {z ∈ C | Re(z) > 0 or |Im(z)| < η

2} and

r0(0) = 0; therefore,
r0(z)

z
is holomorphic in this domain and bounded near zero.

Finally, we define

(2.25) mξ′(z) = A0(ξ′) + A1(ξ′)z + A2(ξ′)z2 +
p0(z)

z
+ zp1(z) + z3p2(z) +

4∑
k=0

zk−1rk(z).

It is obvious that mξ′ is well-defined and holomorphic in the right half-plane. Since αξ′,k

and µξ′,i are “even” and t 7−→ t
ξ2
1+t2

is odd, for any ξ1 > 0 we have Im(mξ′(ξ1)) = 0 and

mξ′(ξ1) = Re(mξ′(ξ1)) = m(ξ1, ξ
′).

For ε, R > 0, consider the closed continuous path γε,R composed by the following pieces :

γ1,ε,R(t) = t, t ∈ [ε, ε + R]
γ2,ε,R(θ) = ε + Reiθ, θ ∈ [0, π

2 ]
γ3,ε,R(t) = ε + i(R − t), t ∈ [0, R].

The function z 7−→ mξ′(z)h(z) being holomorphic in the right half-plane we have∫
γε,R

mξ′(z)h(z) dz = 0, that is

(2.26)
∫ R

ε
m(ξ1, ξ

′)h(ξ1) dξ1 +
∫

γ2,ε,R

mξ′(z)h(z) dz +
∫

γ3,ε,R

mξ′(z)h(z) dz = 0.

It follows from (2.25), Lemma 2.4 part iv) and Lemma 2.5 part vi) that lim
|z|→∞, Re(z)≥ε

mξ′(z)
z3

=

0; hence, lim
R→∞

mξ′(ε + Reiθ)
(ε + Reiθ)3

= 0 uniformly with respect to θ ∈ [0, π
2 ]. On the other hand, from

Lemma 2.1 part ii), we have |h(ε+Reiθ)| ≤ C
|ε+Reiθ|4 and then |(ε+Reiθ)3h(ε+Reiθ) · iReiθ| ≤

CR
|ε+Reiθ| ≤

CR
R−ε ≤ 2C for any R ≥ 2ε. We infer that lim

R→∞

∫
γ2,ε,R

mξ′(z)h(z) dz = 0.

From (2.16) and (2.19) it follows that |m(ξ1, ξ
′)| ≤ C|ξ1|−1+δ1 for 0 < ξ1 < 1 and

|m(ξ1, ξ
′)| ≤ C|ξ1|3−δ2 for large ξ1 and some C, δ1, δ2 > 0. Since h is continuous and

|h(ξ1)| ≤ C
|ξ1|4 (see(2.13)), the integral

∫ ∞

0
m(ξ1, ξ

′)h(ξ1) dξ1 converges absolutely.

Clearly we have ∫
γ3,ε,R

mξ′(z)h(z) dz = −i

∫ R

0
mξ′(ε + iy)h(ε + iy) dy.

Passing to the limit as R −→ ∞ in (2.26) we infer that
∫ ∞

0
mξ′(ε+iy)h(ε+iy) dy converges and

(2.27)
∫ ∞

ε
m(ξ1, ξ

′)h(ξ1) dξ1 = i

∫ ∞

0
mξ′(ε + iy)h(ε + iy) dy.

Since m(ξ1, ξ
′) is real and symmetric with respect to ξ1 we have∫ −ε

−∞
m(ξ1, ξ

′)h(ξ1) dξ1 =
∫ ∞

ε
m(−ξ1, ξ

′)h(−ξ1) dξ1 =
∫ ∞

ε
m(ξ1, ξ

′)h(ξ1) dξ1,
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and then, taking (2.27) into account, we get

(2.28)
∫ −ε

−∞
m(ξ1, ξ

′)h(ξ1) dξ1 +
∫ ∞

ε
m(ξ1, ξ

′)h(ξ1) dξ1 = −2
∫ ∞

0
Im(mξ′(ε + iy)h(ε + iy)) dy;

hence

(2.29)
∫ ∞

−∞
m(ξ1, ξ

′)h(ξ1) dξ1 = −2 lim
ε→0

∫ ∞

0
Im(mξ′(ε + iy)h(ε + iy)) dy.

Since h(iy) ∈ R for y ∈ [0,∞), using Lemma 2.1 and the Dominated Convergence Theorem
we find

(2.30)
lim
ε→0

∫ ∞

0
Im

[
(A0(ξ′) + A1(ξ′)(ε + iy) + A2(ξ′)(ε + iy)2)h(ε + iy)

]
dy

= A1(ξ′)
∫ ∞

0
y h(iy) dy.

Let χ ∈ C∞
c (R,R+) be such that supp(χ) ⊂ [−η

4 , η
4 ] and χ ≡ 1 on [−η

8 , η
8 ]. Since the

function z 7−→ p0(z)
z h(z) is uniformly continuous on [−1, 1] × [−η

4 , η
4 ] we have

(2.31)

lim
ε→0

∫ ∞

0
Im

[
p0(ε + iy)

ε + iy
h(ε + iy)χ(y)

]
dy =

∫ ∞

0
Im

(
p0(iy)

iy
h(iy)χ(y)

)
dy

= −
∫ ∞

0

Re(p0(iy))
y

h(iy)χ(y) dy = 0.

By Lemma 2.1 we infer that there exists C1 > 0 such that |h(ε+iy)−h(iy)| ≤ εC1 min(1, 1
|y|5 )

for any y ∈ (0,∞) and ε ∈ [0, 1]. It is easy to see that |
(

h(ε+iy)
ε+iy − h(iy)

iy

)
(1 − χ(y))| ≤

C2ε min( 1
y6 , 1) for any y ∈ (0,∞) and some C2 > 0. Consequently there exists C3 > 0 such

that

(2.32)
∣∣∣∣∣∣∣∣ (

h(ε + iy)
ε + iy

− h(iy)
iy

)
(1 − χ(y))

∣∣∣∣∣∣∣∣
Lp(0,∞)

≤ C3ε for any p ∈ [1,∞].

Using the Cauchy-Schwarz inequality, Lemma 2.5 parts ii) and v) and (2.32), we get

(2.33)

∣∣∣∣ ∫ ∞

0
p0(ε + iy)

(
h(ε + iy)

ε + iy
− h(iy)

iy

)
(1 − χ(y)) dy

∣∣∣∣
≤

(
||Re(p0(ε + i·))||L2(R) + ||Im(p0(ε + i·))||L2(R)

)∣∣∣∣∣∣ (
h(ε+iy)

ε+iy − h(iy)
iy

)
(1 − χ(y))

∣∣∣∣∣∣
L2(0,∞)

≤ C4ε
1
2 −→ 0 as ε −→ 0.

We also have by (2.20) and assumption d),

(2.34)

lim
ε→0

∫ ∞

0
Im

[
p0(ε + iy)

h(iy)
iy

(1 − χ(y))
]

dy

= − lim
ε→0

∫ ∞

0
Re(p0(ε + iy))

h(iy)
y

(1 − χ(y)) dy

= −
∫ ∞

0

h(iy)
y

(1 − χ(y)) dµξ′,0(y) = −
∫ ∞

0

h(iy)
y

dµξ′,0(y).

14



From (2.31), (2.33) and (2.34) we get

(2.35) lim
ε→0

∫ ∞

0
Im

[
p0(ε + iy)

ε + iy
h(ε + iy)

]
dy = −

∫ ∞

0

h(iy)
y

dµξ′,0(y).

This proof can be slightly modified to show that

(2.36) lim
ε→0

∫ ∞

0
Im

[
r0(ε + iy)

ε + iy
h(ε + iy)

]
dy = −

∫ ∞

0

h(iy)
y

αξ′,0(y) dy.

(All we have to do is to use Hölder’s inequality to obtain an analogous of (2.33) and to use
Lemma 2.4 part ii) instead of (2.20) to get an analogous of (2.34)). Moreover, it is easy to
see that |(ε + iy)`h(ε + iy) − (iy)`h(iy)| ≤ C5ε min(1, 1

y2 ) for y ∈ (0,∞), ` ∈ {0, 1, 2, 3} and
ε ∈ [0, 1]. Therefore, there exists C6 > 0 such that

(2.37) ||(ε + iy)k−1h(ε + iy) − (iy)k−1h(iy)||Lp(0,∞) ≤ C6ε

for any ε ∈ [0, 1], k ∈ {1, 2, 3, 4} and p ∈ [1,∞]. This implies that∣∣∣∣ ∫ ∞

0
Im

(
(ε + iy)k−1h(ε + iy)rk(ε + iy)

)
dy −

∫ ∞

0
Im

(
(iy)k−1h(iy)rk(ε + iy)

)
dy

∣∣∣∣
≤ (||Re(rk(ε + i·))||Lpk + ||Im(rk(ε + i·))||Lpk ) ||(ε + iy)k−1h(ε + iy) − (iy)k−1h(iy)||Lqk (0,∞)

≤
(
||αξ′,k||Lpk + ||Hαξ′,k||Lpk

)
C6ε −→ 0 as ε −→ 0.

Consequently we have

(2.38)

lim
ε→0

∫ ∞

0
Im

(
(ε + iy)k−1rk(ε + iy)h(ε + iy)

)
dy

= lim
ε→0

∫ ∞

0
Im

(
(iy)k−1rk(ε + iy)h(iy)

)
dy,

where the latter limit exists by Lemma 2.4 ii) and (2.13). Using (2.38) and Lemma 2.4 ii) we
obtain :

(2.39) lim
ε→0

∫ ∞

0
Im (r1(ε + iy)h(ε + iy)) dy = −

∫ ∞

0
(Hαξ′,1)(y)h(iy) dy,

(2.40) lim
ε→0

∫ ∞

0
Im ((ε + iy)r2(ε + iy)h(ε + iy)) dy =

∫ ∞

0
αξ′,2(y) · yh(iy) dy,

(2.41) lim
ε→0

∫ ∞

0
Im

(
(ε + iy)2r3(ε + iy)h(ε + iy)

)
dy =

∫ ∞

0
(Hαξ′,3)(y) · y2h(iy) dy,

(2.42) lim
ε→0

∫ ∞

0
Im

(
(ε + iy)3r4(ε + iy)h(ε + iy)

)
dy = −

∫ ∞

0
αξ′,4(y) · y3h(iy) dy.

Similarly we find

(2.43)

lim
ε→0

∫ ∞

0
Im ((ε + iy)p1(ε + iy)h(ε + iy)) dy = lim

ε→0

∫ ∞

0
Im (p1(ε + iy)(iy)h(iy)) dy

= lim
ε→0

∫ ∞

0
Re (p1(ε + iy)yh(iy)) dy =

∫ ∞

0
yh(iy) dµξ′,1(y)
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and

(2.44)

lim
ε→0

∫ ∞

0
Im

(
(ε + iy)3p2(ε + iy)h(ε + iy)

)
dy

= lim
ε→0

∫ ∞

0
Im

(
p2(ε + iy)(iy)3h(iy)

)
dy

= − lim
ε→0

∫ ∞

0
Re

(
p2(ε + iy)y3h(iy)

)
dy = −

∫ ∞

0
y3h(iy) dµξ′,2(y).

Since mξ′(z) is given by (2.25), replacing (2.30), (2.35), (2.36) and (2.39)-(2.44) into (2.29) we
obtain the conclusion of the lemma. 2

Now we are ready to state and prove the main result of this section.

Theorem 2.8 Suppose that for any ξ′ ∈ RN−1, m(ξ1, ξ
′) satisfies the assumptions of Lemma

2.7. For u ∈ C∞
c (RN ) define u1, u2, f and g as in (2.2)-(2.4) and for a given function

ϕ ∈ C0
c (RN ), let W (ϕ) =

∫
RN

m(ξ)|ϕ̂(ξ)|2 dξ. Then we have the identity:

(2.45)

π2

16
(W (u1) + W (u2) − 2W (u))

= −
∫

RN−1
A1(ξ′)

∫ ∞

0
t

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt dξ′

+
∫

RN−1

∫ ∞

0

1
t

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dµξ′,0(t) dξ′

−
∫

RN−1

∫ ∞

0
t

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dµξ′,1(t) dξ′

+
∫

RN−1

∫ ∞

0
t3

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dµξ′,2(t) dξ′

+
∫

RN−1

∫ ∞

0

[
αξ′,0(t)

t
+ βξ′,1(t) − tαξ′,2(t) − t2βξ′,3(t) + t3αξ′,4(t)

]
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt dξ′.

Proof. Since FN−1f ∈ S(RN ), the integral
∫ ∞

0
e−x1t(FN−1f)(x1, ξ

′) dx1 is well defined for

all t > 0 and ξ′ ∈ RN−1. Using Plancherel’s theorem we get

(2.46)

∫ ∞

0
e−x1t(FN−1f)(x1, ξ

′) dx1 = 〈FN−1f(·, ξ′) , e−(·)tχ[0,∞)(·)〉L2(R)

= (2π)−1〈F1(FN−1f(·, ξ′)),F1

(
e−(·)tχ[0,∞)(·)

)
〉L2(R).

Moreover, we have

F1

(
e−(·)tχ[0,∞)(·)

)
(ξ1) =

∫ ∞

0
e−ix1ξ1e−x1tdx1 = − 1

t + iξ1
e−(t+iξ1)x1

∣∣∣∣∞
x1=0

=
1

t + iξ1
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and then, using (2.46) and the oddness of f̂ with respect to ξ1 we get :

(2.47)

hξ′(it) =
∣∣∣∣ ∫ ∞

0
e−x1t(FN−1f)(x1, ξ

′) dx1

∣∣∣∣2 = (2π)−2

∣∣∣∣ ∫ ∞

−∞
f̂(ξ1, ξ

′) · 1
t − iξ1

dξ1

∣∣∣∣2

= (2π)−2

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
(

1
t − iξ1

− 1
t + iξ1

)
dξ1

∣∣∣∣2

=
1
π2

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2.
Identity (2.45) is a simple consequence of (2.12), (2.24) and (2.47) and Theorem 2.8 is proved.

2

Remark 2.9 It is worth to note that we can prove an identity analogous to (2.45) whenever
we work with a symbol m(ξ) = m(ξ1, ξ

′) symmetric with respect to ξ1 and such that for any
ξ′ ∈ RN−1, m(·, ξ′) admits an holomorphic extension mξ′(z) to the domain {z ∈ C | Re(z) >
0, Im(z) > 0} having the following properties :

P1 : lim
z→ξ1, Im(z)>0

mξ′(z) = m(ξ1, ξ
′).

P2 : For any ε > 0, lim
|z|→∞, Re(z)≥ε

mξ′(z)
z3

= 0.

P3 : lim
ε→0

∫ ∞

0
mξ′(ε+ it)hξ′(ε+ it) dt exists (and depends on ξ′ and the values taken by hξ′

on the imaginary axis).

Note that assumption P1 implies that m(·, ξ′) admits an holomorphic extension to the
whole right half-plane. Indeed, it follows from Schwarz’ reflection principle ([8], p. 75) that
the function

m̃ξ′ =


mξ′(z) if Im(z) ≥ 0,

mξ′(z) if Im(z) < 0

is holomorphic in {z ∈ C | Re(z) > 0}.
Assumption P2 is needed in the proof of Lemma 2.7 to show that

lim
R→∞

∫
γ2,ε,R

mξ′(z)hξ′(z) dz = 0 (where γ2,ε,R(θ) = ε + Reiθ, θ ∈ [0, π
2 ]). We recall that |hξ′(z)|

behaves like 1
|z|4 as |z| −→ ∞ (see Lemma 2.1 and Remark 2.2). This assumption could be

replaced by a weaker one that guarantees at least that lim
n→∞

∫
γ2,ε,Rn

mξ′(z)hξ′(z) dz = 0 for

some sequence Rn −→ ∞.

In Theorem 2.8 assumption P3 is satisfied because of the special form of m(·, ξ′) given by
(2.23).

In this context, the hypotheses of Theorem 2.8 are almost optimal. Indeed, suppose that
a function m(z) has the properties P1, P2, P3 above. Let m̃ be the holomorphic extension
of m to the right half-plane and define q(z) = m̃(z)

z3 . Clearly, q is an holomorphic function in
the right half-plane and lim

|z|→∞, Re(z)≥ε
q(z) = 0 for any ε > 0. Thus for any x > ε we have the

Poisson representation formulae

(2.48)

q(x + iy) =
1
π

∫ ∞

−∞

x − ε

(x − ε)2 + (t − y)2
Re(q(ε + it)) dt

+
i

π

∫ ∞

−∞

t − y

(x − ε)2 + (t − y)2
Re(q(ε + it)) dt

17



and

(2.49)

q(x + iy) =
−1
π

∫ ∞

−∞

t − y

(x − ε)2 + (t − y)2
Im(q(ε + it)) dt

+
i

π

∫ ∞

−∞

x − ε

(x − ε)2 + (t − y)2
Im(q(ε + it)) dt.

Multiplying (2.48) (respectively (2.49)) by (x + iy)3, we find the expression of m(x + iy) in
terms of Re(q(ε + it)) (respectively in terms of Im(q(ε + it))). If Re(q(ε + it)) −→ α(t) as
ε −→ 0 and if it is possible to pass to the limit as ε −→ 0 in (2.48) then we obtain, at least
formally,

mξ′(ξ1) = ξ3
1q(ξ1) =

ξ4
1

π

∫ ∞

−∞

α(t)
ξ2
1 + t2

dt.

However, as it will be seen later in applications, the function q may be singular at the origin. In
this case it is not possible to pass to the limit as ε −→ 0 in (2.48) or in (2.49) in order to express
the function q (hence the function m) in terms of its “boundary values” on the imaginary axis.
This is the reason why we have introduced “lower order terms” in the expression of mξ′(z) in
(2.23).

We give now some examples illustrating several situations that may be encountered in
applications. Throughout u ∈ C∞

c (RN ) and we keep the notation introduced in (2.2)-(2.3).

Example 2.10 If the symbol m is of the form m(ξ1, ξ
′) = A1(ξ′)|ξ1|, then Theorem 2.8 gives

(2.50) W (u1) + W (u2) − 2W (u) = −16
π2

∫
RN−1

A1(ξ′)
∫ ∞

0
t

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt dξ′.

This kind of symbol appears in problems involving operators of the type
H1

∂
∂x1

P ( ∂
∂x2

, . . . , ∂
∂xN

), where H1 is the Hilbert transform with respect to the x1 variable and
P is a pseudo-differential operator in the last N − 1 variables.

Example 2.11 i) Consider the symbol m(ξ) =
1
|ξ|2

appearing in Choquard’s problem. It can

be written as
m(ξ1, ξ

′) =
1

ξ2
1 + |ξ′|2

=
1
π

∫
R

1
ξ2
1 + t2

dµξ′,0(t),

where µξ′,0 = π
2 (δ−|ξ′| + δ|ξ′|) and δa is the Dirac measure with support {a}. From Theorem

2.8 we get the identity

(2.51) W (u1) + W (u2) − 2W (u) =
8
π

∫
RN−1

1
|ξ′|

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1

∣∣∣∣2 dξ′.

The same identity could be obtained by observing that the function mξ′(z) =
1

z2 + |ξ′|2
is

meromorphic in C and has exactly one pole in the upper half-plane, namely i|ξ′|. Using
Residue’s Theorem it is not hard to see that∫ ∞

−∞
mξ′(z)hξ′(z) dz = 2πi Res(mξ′hξ′ , i|ξ′|),

and integrating this identity over RN−1 we get (2.51).

ii) Consider the symbol m(ξ) =
1

|ξ|2 + a2
=

1
ξ2
1 + |ξ′|2 + a2

corresponding to the operator

(−∆ + a2)−1. It is obvious that

m(ξ1, ξ
′) =

1
π

∫
R

1
ξ2
1 + t2

dµξ′,0(t),
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where µξ′,0 = π
2 (δ−

√
|ξ′|2+a2 + δ√|ξ′|2+a2). From Theorem 2.8 we get the identity

(2.52) W (u1) + W (u2) − 2W (u) =
8
π

∫
RN−1

1√
|ξ′|2 + a2

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

a2 + |ξ′|2 + ξ2
1

dξ1

∣∣∣∣2 dξ′.

The same identity could be obtained by applying Residue’s Theorem to the meromorphic

function z 7−→ 1
z2 + |ξ′|2 + a2

hξ′(z).

iii) More generally, consider a symbol of the form m(ξ1, ξ
′) =

c(ξ′)
ξ2
1 + r2(ξ′)

. It can be written
as

m(ξ1, ξ
′) =

1
π

∫
R

1
ξ2
1 + t2

dµξ′,0(t),

where µξ′,0 = π
2 c(ξ′)(δ−r(ξ′) + δr(ξ′)). Using Theorem 2.8 we obtain the identity

(2.53) W (u1) + W (u2) − 2W (u) =
8
π

∫
RN−1

c(ξ′)
r(ξ′)

·
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

r2(ξ′) + ξ2
1

dξ1

∣∣∣∣2 dξ′.

In particular, for the symbol m(ξ1, ξ
′) =

ξ2k
j

ξ2
1 + |ξ′|2 + a2

, j = 2, . . . , N (corresponding to the

operator (−1)k ∂2k

∂x2k
j

(−∆ + a2)−1)), we get

(2.54) W (u1) + W (u2) − 2W (u) =
8
π

∫
RN−1

ξ2k
j√

|ξ′|2 + a2

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

a2 + |ξ′|2 + ξ2
1

dξ1

∣∣∣∣2 dξ′.

iv) The symbol m(ξ1, ξ
′) =

ξ2
1

ξ2
1 + |ξ′|2 + a2

can be expressed as

m(ξ1, ξ
′) =

ξ2
1

π

∫
R

1
ξ2
1 + t2

dµξ′,1(t),

where µξ′,1 = π
2 (δ−

√
|ξ′|2+a2 + δ√|ξ′|2+a2). From Theorem 2.8 we find the identity

(2.55) W (u1)+W (u2)−2W (u) = − 8
π

∫
RN−1

√
|ξ′|2 + a2

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

a2 + |ξ′|2 + ξ2
1

dξ1

∣∣∣∣2 dξ′.

Notice that the right-hand side in (2.55) is negative, while in (2.54) it is positive.

v) The symbol m(ξ1, ξ
′) =

ξ4
1

ξ2
1 + |ξ′|2 + a2

(corresponding to the operator

∂4

∂x4
1

(−∆ + a2)−1) can be written as

m(ξ1, ξ
′) =

ξ4
1

π

∫
R

1
ξ2
1 + t2

dµξ′,2(t),

where µξ′,2 = π
2 (δ−

√
|ξ′|2+a2 + δ√|ξ′|2+a2). By Theorem 2.8 we have the identity

(2.56) W (u1) + W (u2)− 2W (u) =
8
π

∫
RN−1

(|ξ′|2 + a2)
3
2

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

a2 + |ξ′|2 + ξ2
1

dξ1

∣∣∣∣2 dξ′.

19



Obviously all the identities in (2.53)-(2.56) could be obtained by using the Residue Theorem.

Example 2.12 Consider the symbol m(ξ) = |ξ|2s, corresponding to the operator (−∆)s.
It is well-known that the argument of a complex number, arg(z), can be defined analytically

on C \ (−∞, 0] in such a way that

∀t ∈ (0,∞), arg(t) = 0,
∀t ∈ (−∞, 0), lim

ε↓0
arg(t + iε) = π and lim

ε↑0
arg(t + iε) = −π.

The complex logarithm log(z) = ln |z|+i arg(z) is well defined and holomorphic on C\(−∞, 0].
For z ∈ Ωξ′ := C \ {it | t ∈ (−∞,−|ξ′|]∪ [|ξ′|,∞)}, we have z2 + |ξ′|2 6∈ (−∞, 0]; hence we may
define

mξ′(z) = es log(z2+|ξ′|2) = |z2 + |ξ′|2|seis arg(z2+|ξ′|2).

The function mξ′ is holomorphic in Ωξ′ and |mξ′(z)| = |z2 + |ξ′|2|s for any z ∈ Ωξ′ .

If s < 3
2 and ξ′ 6= 0, the function z 7−→ mξ′ (z)

z3 is holomorphic in Ωξ′ \ {0}, tends to zero as
|z| −→ ∞ and has a third order pole at the origin. It is easy to see that

(2.57) mξ′(z) = |ξ′|2s

(
1 + s

z2

|ξ′|2
+

∞∑
k=2

Ck
s

z2k

|ξ′|2k

)
,

where Ck
s = s(s−1)...(s−k+1)

k! and the series converges in the open ball BC(0, |ξ′|). Consider the
function rξ′(z) = 1

z3 (mξ′(z) − |ξ′|2s − s|ξ′|2s−2z2). According to (2.57), rξ′ is a holomorphic
function in Ωξ′ . If s < 3

2 , we have rξ′(z) −→ 0 as |z| −→ ∞. Consequently, the Poisson
representation formula (2.48) holds for rξ′ . Since rξ′(z) = rξ′(z), the function t 7−→ Re(rξ′(ε +
it)) is even and we have, in particular,

(2.58)
mξ′(ξ1) = |ξ′|2s + s|ξ′|2s−2ξ2

1 + ξ3
1rξ′(ξ1)

= |ξ′|2s + s|ξ′|2s−2ξ2
1 +

ξ3
1

π

∫ ∞

−∞

ξ1 − ε

(ξ1 − ε)2 + (t − y)2
Re(rξ′(ε + it)) dt.

It is clear from the definition of rξ′ that for any t ∈ (−|ξ′|, |ξ′|) we have lim
ε→0

Re(rξ′(ε + it)) =

Re(rξ′(it)) = 0. For any t > |ξ′| we have lim
ε↓0

mξ′(ε + it) = (t2 − |ξ′|2)seisπ and lim
ε↓0

Re(rξ′(ε +

it)) = − sin(sπ)
(t2 − |ξ′|2)s

t3
.

On the other hand, it is not hard to check that for −1 < s < 3
2 , there exists ps ∈ (1,∞)

and Cs,ξ′ > 0 such that

(2.59) ||rξ′(ε + i·)||Lps (R) ≤ Cs,ξ′ for any ε ∈ (0,
|ξ′|
2

).

Indeed, since |rξ′(ε + i·)| is even, it suffices to show that ||rξ′(ε + i·)||Lps ([0,∞)) has a bound
independent of ε. Since |rξ′(ε + it)| is uniformly bounded for ε ∈ [0, |ξ′|

2 ] and t ∈ [0, |ξ′|
2 ], it

suffices to show that ||rξ′(ε + i·)||
Lps ([

|ξ′|
2

,∞))
≤ C ′

s,ξ′ .

If s ≥ 0, we have |mξ′(z)| = |z2 + |ξ′|2|s ≤ C1,s(|z|2s + |ξ′|2s). Thus for any ε ∈ (0, |ξ′|
2 ) and

t ≥ |ξ′|
2 we have

|rξ′(ε + it)| ≤ |mξ′ (ε+it)|
|ε+it|3 + |ξ′|2s

|ε+it|3 + s|ξ′|2s−2

|ε+it|

≤ C1,s

|ε+it|3−2s + C1,s|ξ′|2s

|ε+it|3 + |ξ′|2s

|ε+it|3 + s|ξ′|2s−2

|ε+it|

≤ C1,s min
(

2
|ξ′| ,

1
t

)3−2s
+ (C1,s + 1)|ξ′|2s min

(
2
|ξ′| ,

1
t

)3
+ s|ξ′|2s−2 min

(
2
|ξ′| ,

1
t

)
.
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Thus it suffices to take ps > 1 such that ps(3 − 2s) > 1 to obtain the desired bound.
If s < 0 then for ε ∈ (0, |ξ′|

2 ) and t ≥ |ξ′|
2 , we have |(ε + it) + i|ξ′| |s ≤ |ε + it|s, and

|(ε + it) − i|ξ′| |s ≤ |t − |ξ′| |s. Since |mξ′(ε + it)| = |(ε + it) + i|ξ′| |s |(ε + it) − i|ξ′| |s, we find
in this case

|rξ′(ε + it)| ≤ |mξ′ (ε+it)|
|ε+it|3 + |ξ′|2s

|ε+it|3 + s|ξ′|2s−2

|ε+it| ≤ |(ε+it)−i|ξ′| |s
|ε+it|3−s + |ξ′|2s

|ε+it|3 + s|ξ′|2s−2

|ε+it|

≤ |t−|ξ′| |s
|ε+it|3−s + |ξ′|2s

|ε+it|3 + s|ξ′|2s−2

|ε+it|

≤ |t − |ξ′| |s min
(

2
|ξ′| ,

1
t

)3−s
+ |ξ′|2s min

(
2
|ξ′| ,

1
t

)3
+ s|ξ′|2s−2 min

(
2
|ξ′| ,

1
t

)
.

Consequently it suffices to take ps > 1 such that −sps < 1 (i.e. ps ∈ (1,−1
s )) to obtain (2.59).

It follows from (2.59) and Theorem 2.5 p. 50 in [24] that there exists kξ′ ∈ Lps(R) such

that Re(rξ′(x + iy)) =
1
π

∫ ∞

−∞

x

x2 + (y − t)2
kξ′(t) dt. Moreover, from Theorem 2.1 p. 47 in [24]

we have lim
ε↓0

Re(rξ′(ε + it)) = kξ′(t) for almost every t ∈ R and ||Re(rξ′(ε + i·))− kξ′ ||Lps −→ 0

as ε −→ 0. In view of the pointwise convergence, we infer that kξ′ is even and

kξ′(t) =

{
0 if t ∈ (−|ξ′|, |ξ′|)
− sin(sπ) (t2−|ξ′|2)s

|t|3 if |t| > |ξ′|

a.e. on R. Now it is clear that the symbol m(ξ1, ξ
′) can be written as

(2.60)
m(ξ1, ξ

′) = |ξ′|2s + s|ξ′|2s−2ξ2
1 + ξ3

1rξ′(ξ1)

= |ξ′|2s + s|ξ′|2s−2ξ2
1 +

ξ4
1

π

∫ ∞

−∞

1
ξ2
1 + t2

kξ′(t) dt.

Thus we may apply Theorem 2.8 to get, for any u ∈ C∞
c (RN ) and s ∈ (−1, 3

2),

(2.61)

W (u1) + W (u2) − 2W (u) =
16
π2

∫
RN−1

∫ ∞

0
t3kξ′(t)

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt dξ′

= −16 sin(sπ)
π2

∫
RN−1

∫ ∞

|ξ′|

(
t2 − |ξ′|2

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt dξ′.

Similarly, if we consider the symbol m(ξ) = (|ξ|2 + a2)s we get the identity

(2.62)

W (u1) + W (u2) − 2W (u)

= −16 sin(sπ)
π2

∫
RN−1

∫ ∞
√

|ξ′|2+a2

(
t2 − |ξ′|2 − a2

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt dξ′.

3 Symmetry and function spaces

For any u ∈ C∞
c (RN ) we define u1 and u2 as in (2.1) and we put T1u = u1, T2u = u2.

Clearly, T1 and T2 are linear continuous mappings from C∞
c (RN ) to C0

c (RN ). In this section
we consider the following intimately related problems :

1◦. Determine significant subspaces X ⊂ D′(RN ) such that T1 and T2 can be extended
to linear continuous mappings from X to X . (Or, equivalently, find the subspaces X such that
u ∈ X implies T1u, T2u ∈ X and u 7−→ T1u, u 7−→ T2u are continuous for the X topology).
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2◦. If X is a subspace as above, how the identities proved in the previous section can be
extended to X ?

The answer to these questions is of great importance in symmetry problems. For instance,
suppose that a function space X has the two properties described above and that the solutions
of the variational problem

(3.1)
minimize E(u) :=

∫
RN

m(ξ)|û(ξ)|2 dξ +
∫
RN

F (u) dx

under the constraint
∫
RN

G(u) dx = λ

belong to X . As before, the symbol m(ξ) = m(ξ1, ξ
′) is assumed to be symmetric with respect

to ξ1. Defining W (u) :=
∫
RN

m(ξ)|û(ξ)|2 dξ, we suppose also that that an identity of type

(2.45) holds for W (u) and it can be extended to X in such a way that

W (T1u) + W (T2u) − 2W (u) < 0 whenever T1u 6= u, T2u 6= u.

(We will see later that most of the symbols in Examples 2.10-2.12 have this property.) Then,
we claim that after a translation in the x1 direction, any solution of (3.1) is symmetric with
respect to x1. Indeed, let u be a minimizer. After a translation in the x1 direction, we may

assume that
∫
{x1<0}

G(u(x)) dx =
∫
{x1>0}

G(u(x)) dx =
λ

2
. This implies

∫
RN

G(u1(x)) dx =

2
∫
{x1<0}

G(u(x)) dx = λ and
∫
RN

G(u2(x)) dx = 2
∫
{x1>0}

G(u(x)) dx = λ ; consequently u1

and u2 (which belong to X ) also satisfy the constraint. It is obvious that
∫
RN

F (u1(x)) dx +∫
RN

F (u2(x)) dx = 2
∫
RN

F (u(x)) dx. Suppose by contradiction that u is not symmetric with

respect to x1. Then we get

E(u1) + E(u2) − 2E(u) = W (u1) + W (u2) − 2W (u) < 0,

and this implies that either E(u1) < E(u) or E(u2) < E(u). Therefore u cannot be a minimizer
and this proves the claim.

Given the motivation above, we will study the behavior of T1 and T2 from Hs(RN ) to
Hs(RN ), respectively from Ḣs(RN ) to Ḣs(RN ), where

Hs(RN ) = {u ∈ S ′(RN ) | û ∈ L1
loc(R

N ) and
∫
RN

(1 + |ξ|2)s|û(ξ)|2 dξ < ∞},

Ḣs(RN ) = {u ∈ S ′(RN ) | û ∈ L1
loc(R

N ) and
∫
RN

|ξ|2s|û(ξ)|2 dξ < ∞}.

Consider ϕ ∈ C∞
c (R), ϕ odd, such that ϕ′(0) = 1. It is obvious that T1ϕ(x) = −sgn(x)ϕ(x)

and (T1ϕ)′(x) =

{
ϕ′(x) if x < 0,
−ϕ′(x) if x > 0

and we have (in the distributional sense) (T1ϕ)′′ =

−sgn(x)ϕ′′(x) − 2δ0. Since (T1ϕ)′′ 6∈ L2(R), we conclude that T1 and T2 are not well-defined
from Hs(R) to Hs(R) if s ≥ 2. In fact, T1 and T2 are not well-defined from Hs(RN ) to
Hs(RN ) (respectively from Ḣs(RN ) to Ḣs(RN )) if s ≥ 3

2 , as it can be seen in the following
example.

Example 3.1 Define ϕ : R −→ R, ϕ(x) = xe−|x|. An easy computation shows that ϕ̂(ξ) =
−4iξ

(1+ξ2)2
, hence ϕ ∈ Hs(R) for any s < 5

2 and ϕ ∈ Ḣs(R) for any s ∈ (−3
2 , 5

2). It is clear
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that (T1ϕ)(x) = −|x|e−|x| and T̂1ϕ(ξ) = 2(ξ2−1)
(1+ξ2)2

. Consequently, T1ϕ ∈ Hs(R) for s < 3
2

(respectively T1ϕ ∈ Ḣs(R) for −1
2 < s < 3

2), but T1ϕ 6∈ Hs(R) and T1ϕ 6∈ Ḣs(R) for s ≥ 3
2 .

In dimension N ≥ 2 it suffices to take ψ(x) = ϕ(x1)ϕ1(x2, . . . , xN ), where ϕ1 ∈ C∞
c (RN−1),

to see that T1 and T2 are not well-defined from Hs(RN ) to Hs(RN ) (respectively from Ḣs(RN )
to Ḣs(RN )) if 3

2 ≤ s < 5
2 .

If s < 0, the elements of Hs(RN ) or Ḣs(RN ) are not necessarily measurable functions. In
this case we extend T1 and T2 to Hs(RN ) or Ḣs(RN ) by duality. For u, ϕ ∈ C∞

c (RN ) we
have

〈T1u, ϕ〉S′,S =
∫
RN

(T1u)(x)ϕ(x) dx =
∫
{x1<0}

u(x)ϕ(x) dx +
∫
{x1>0}

u(−x1, x
′)ϕ(x) dx

=
∫
{x1<0}

u(x)ϕ(x) dx +
∫
{x1<0}

u(x1, x
′)ϕ(−x1, x

′) dx = 〈u, T ∗
1 ϕ〉L2,L2 ,

where (T ∗
1 ϕ)(x) = χ{x1<0}(ϕ(x1, x

′) + ϕ(−x1, x
′)). Hence, for u ∈ Hs(RN ) with s < 0 we

should define T1u by
〈T1u, ϕ〉Hs,H−s = 〈u, T ∗

1 ϕ〉Hs,H−s

for any test function ϕ ∈ C∞
c (RN ). However, the operator T ∗

1 does not map Hk(RN ) into
Hk(RN ) if k ≥ 1

2 (as it can be easily seen by taking the function η(x) = e−|x| in one dimension,
respectively η(x1)η1(x2, . . . , xN ), where η1 ∈ C∞

c (RN−1) in dimension N ≥ 2). This shows
that we cannot define T1 and T2 on Hs(RN ) and on Ḣs(RN ) if s ≤ −1

2 .

Example 3.2 Consider the tempered distribution u defined by u = p.v.( 1
x), that is

〈u, ϕ〉S′,S = lim
ε→0

∫
{|x|>ε}

1
x

ϕ(x) dx for any ϕ ∈ S(R).

It is well-known (and easy to check) that û(ξ) = −iπ sgn(ξ); hence u ∈ Hs(R) for any s < −1
2 .

However, T1u = − 1
|x| and T2u = 1

|x| do not define distributions on R !

Our next goal is to prove that the operators T1 and T2 are well-defined and continuous
from Hs(RN ) to Hs(RN ) (respectively from Ḣs(RN ) to Ḣs(RN )) if −1

2 < s < 3
2 . It is

obvious that T1 and T2 are well-defined and continuous from L2(RN ) to L2(RN ). It is well-
known that H1(RN ) = W 1,2(RN ) = {ϕ ∈ L2(RN ) | ∂ϕ

∂xi
∈ L2(RN ), i = 1, . . . , N} and

that T1, T2 : W 1,2(RN ) −→ W 1,2(RN ) are well-defined and continuous. Using interpolation
theory we conclude that T1 and T2 are well-defined and continuous from Hs(RN ) to Hs(RN )
if 0 ≤ s ≤ 1. However, interpolation gives no information if either s < 0 or s > 1. Our next
result deals with some values of s in this range.

Theorem 3.3 The operators T1 and T2 are well-defined and continuous from Hs(RN ) to
Hs(RN ) and from Ḣs(RN ) to Ḣs(RN ) for any s ∈ (−1

2 , 3
2).

Proof. We will prove that there exists Cs > 0 such that for any u ∈ C∞
c (RN ) we have

(3.2) ||Tiu||Hs ≤ Cs||u||Hs , respectively ||Tiu||Ḣs ≤ Cs||u||Ḣs , s = 1, 2,

and then the theorem will follow by density.
Therefore, suppose u ∈ C∞

c (RN ). If N ≥ 2 we have by (2.61 ) and (2.62)

(3.3)

||T1u||2Ḣs + ||T2u||2Ḣs − 2||u||2
Ḣs

= −16 sin(sπ)
π2

∫
RN−1

∫ ∞

|ξ′|

(
t2 − |ξ′|2

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt dξ′,
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respectively

(3.4)

||T1u||2Hs + ||T2u||2Hs − 2||u||2Hs

= −16 sin(sπ)
π2

∫
RN−1

∫ ∞
√

|ξ′|2+1

(
t2 − |ξ′|2 − 1

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt dξ′.

If N = 1 we have

(3.5) ||T1u||2Ḣs + ||T2u||2Ḣs − 2||u||2
Ḣs = −16 sin(sπ)

π2

∫ ∞

0
t2s

∣∣∣∣ ∫ ∞

0
f̂(ξ)

ξ

t2 + ξ2
dξ

∣∣∣∣2 dt,

respectively

(3.6) ||T1u||2Hs + ||T2u||2Hs − 2||u||2Hs = −16 sin(sπ)
π2

∫ ∞

1

(
t2 − 1

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ)

ξ

t2 + ξ2
dξ

∣∣∣∣2 dt.

We begin by proving that T1 and T2 are bounded from Ḣs(R) to Ḣs(R), −1
2 < s < 3

2 .
The integral in the right-hand side of (3.5) can be formally written as

(3.7)
∫ ∞

0

∫ ∞

0

∫ ∞

0
t2s ξ

t2 + ξ2
· η

t2 + η2
f̂(ξ)f̂(η) dξ dη dt.

Our strategy is as follows: first we compute explicitly the integral

(3.8) Is(ξ, η) =
∫ ∞

0
t2s ξ

t2 + ξ2
· η

t2 + η2
dt = ξη

∫ ∞

0
t2s 1

t2 + ξ2
· 1
t2 + η2

dt.

Observe that Is(ξ, η) > 0 if ξ > 0, η > 0. Then we will prove that for any s ∈ (−1
2 , 3

2) and any
ϕ, ψ ∈ L2(0,∞) we have∣∣∣∣ ∫ ∞

0

∫ ∞

0
ξ−sη−sIs(ξ, η)ϕ(ξ)ψ(η) dξ dη

∣∣∣∣ ≤ C(s)||ϕ||L2(0,∞) · ||ψ||L2(0,∞).

This will be done in Lemma 3.4. Thereafter it will be clear that for any f ∈ Ḣs(R) we have

(3.9)

∫ ∞

0

∫ ∞

0
Is(ξ, η)|f̂(ξ)| · |f̂(η)| dξ dη

=
∫ ∞

0

∫ ∞

0
ξ−sη−sIs(ξ, η)|ξsf̂(ξ)| · |ηsf̂(η)| dξ dη

≤ C(s)|| | · |sf̂ ||2L2(0,∞) ≤ C(s)||f ||2
Ḣs(R)

.

This justifies the use of Fubini’s Theorem in evaluating (3.7) and proves that the right-hand
side of (3.5) is less than C1(s)||f ||Ḣs(R), where C1(s) is a constant depending only on s. Thus
we infer that there exists Cs > 0 such that ||T1u||Ḣs(R) ≤ Cs||u||Ḣs(R) and ||T2u||Ḣs(R) ≤
Cs||u||Ḣs(R) for any u ∈ C∞

c (R). Consequently, T1 and T2 can be extended as continuous

linear mappings form Ḣs(R) to Ḣs(R), −1
2 < s < 3

2 , as claimed.
To carry out the first step of this strategy, we come back to Is(ξ, η) given by (3.8). The

complex logarithm can be defined analytically on C \ {it | t ∈ (−∞, 0]}. Hence, we may define
the holomorphic function z 7−→ z2s := e2s log(z) = |z|2se2is arg(z) on C\{it | t ∈ (−∞, 0]}. With

this definition the function k(z) =
z2s

(z2 + ξ2)(z2 + η2)
is meromorphic on C\{it | t ∈ (−∞, 0]}.

If ξ 6= η, k has four simple poles, namely ±iξ and ±iη ; if ξ = η it has two double poles at
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±iξ. For 0 < ε < min(ξ, η), and R > max(ξ, η), consider the closed path βε,R composed by
the following pieces :

β1,ε,R(t) = t, t ∈ [−R,−ε]
β2,ε(θ) = εei(π−θ), θ ∈ [0, π]
β3,ε,R(t) = t, t ∈ [ε,R]
β4,R(θ) = Reiθ, θ ∈ [0, π].

Using the Residue Theorem we get

(3.10)
∫

βε,R
k(z) dz = 2πi[Res(k, iξ) + Res(k, iη)] = πeisπ

[
ξ2s

ξ(η2 − ξ2)
+

η2s

η(ξ2 − η2)

]
.

Since s > −1
2 we have lim

ε→0

∫
β2,ε

k(z) dz = 0. We have also lim
R→∞

∫
β4,R

k(z) dz = 0 because

s < 3
2 . Passing to the limit as ε −→ 0 in (3.10) and then passing to the limit as R −→

∞ in the resulting equation, we get
∫ 0

−∞
k(z) dz +

∫ ∞

0
k(z) dz = πeisπ ξ2s−1−η2s−1

η2−ξ2 , that is(
e2isπ + 1

) ∫ ∞

0

t2s

(t2+ξ2)(t2+η2)
dt = πeisπ ξ2s−1−η2s−1

η2−ξ2 . For s 6= 1
2 we obtain

(3.11)
∫ ∞

0

t2s

(t2 + ξ2)(t2 + η2)
dt =

π

2 cos(sπ)
ξ2s−1 − η2s−1

η2 − ξ2
.

For s = 1
2 we compute directly

(3.12)

∫ ∞

0

t

(t2 + ξ2)(t2 + η2)
dt =

1
η2 − ξ2

∫ ∞

0

t

t2 + ξ2
− t

t2 + η2
dt

=
1
2

1
η2 − ξ2

(
ln(t2 + ξ2) − ln(t2 + η2)

) ∣∣∣∣∞
t=0

=
ln η − ln ξ

η2 − ξ2
.

Notice that lim
η→ξ

∫ ∞

0

t2s

(t2+ξ2)(t2+η2)
dt = π(1−2s)

4 cos(sπ)ξ
2s−3 if s 6= 1

2 and lim
η→ξ

∫ ∞

0

t
(t2+ξ2)(t2+η2)

dt = 1
2ξ2 .

Hence

(3.13) Is(ξ, η) =
π

2 cos(sπ)
ξη(ξ2s−1 − η2s−1)

η2 − ξ2
if s 6= 1

2
, and I 1

2
(ξ, η) =

ξη(ln η − ln ξ)
η2 − ξ2

.

This gives ξ−sη−sIs(ξ, η) = π
2 cos(sπ)

ξsη1−s−ξ1−sηs

η2−ξ2 if s 6= 1
2 and ξ−

1
2 η−

1
2 I 1

2
(ξ, η) = ξ

1
2 η

1
2

ln η−ln ξ
η2−ξ2 .

An interesting property of these functions is given by the next lemma.

Lemma 3.4 Let Ks(ξ, η) =
ξsη1−s − ξ1−sηs

η2 − ξ2
if s 6= 1

2 , respectively K 1
2
(ξ, η) = ξ

1
2 η

1
2
ln η − ln ξ

η2 − ξ2
.

For any s ∈ (−1
2 , 3

2) there exists a constant C(s) (depending only on s) such that for any
ϕ, ψ ∈ L2(0,∞) we have∣∣∣∣ ∫ ∞

0

∫ ∞

0
ϕ(ξ)Ks(ξ, η)ψ(η) dξ dη

∣∣∣∣ ≤ C(s)||ϕ||L2(0,∞)||ψ||L2(0,∞).

Proof. Using polar coordinates we write ξ = r cos(θ), η = r sin(θ), where r =
√

ξ2 + η2 and

θ = arctan η
ξ . It is easy to see that Ks(ξ, η) =

1
r
Ls(θ), where
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Ls(θ) =
(sin θ)s(cos θ)1−s − (cos θ)s(sin θ)1−s

cos2 θ − sin2 θ
if s 6= 1

2 and

L 1
2
(θ) =

− ln tan θ

(1 − tan2 θ) cos2 θ
(sin θ)

1
2 (cos θ)

1
2 . By a change of variables we get

∫ ∞

0

∫ ∞

0

∣∣∣∣ϕ(ξ)Ks(ξ, η)ψ(η)
∣∣∣∣ dξ dη =

∫ π
2

0

∫ ∞

0

∣∣∣∣ϕ(r cos θ)ψ(r sin θ)
∣∣∣∣ dr |Ls(θ)| dθ.

Using the Cauchy-Schwarz inequality we have∫ ∞

0

∣∣∣∣ϕ(r cos θ)ψ(r sin θ)
∣∣∣∣ dr ≤ ||ϕ(· cos θ)||L2(0,∞)||ψ(· sin θ)||L2(0.∞) =

||ϕ||L2(0,∞)||ψ||L2(0,∞)√
cos θ · sin θ

.

Consequently,

(3.14)
∫ ∞

0

∫ ∞

0

∣∣∣∣ϕ(ξ)Ks(ξ, η)ψ(η)
∣∣∣∣ dξ dη ≤ ||ϕ||L2(0,∞)||ψ||L2(0,∞)

∫ π
2

0

|Ls(θ)|√
cos θ · sin θ

dθ.

The lemma will be proved if we show that the last integral in (3.14) is finite. If s 6= 1
2 we have

(3.15)

∫ π
2

0

|Ls(θ)|√
cos θ · sin θ

dθ =
∫ π

2

0

∣∣∣∣(sin θ)s− 1
2 (cos θ)

1
2
−s − (cos θ)s− 1

2 (sin θ)
1
2
−s

cos2 θ − sin2 θ

∣∣∣∣ dθ

=
∫ π

2

0

∣∣∣∣(tan θ)s− 1
2 − (tan θ)

1
2
−s

1 − tan2 θ

∣∣∣∣ · 1
cos2 θ

dθ =
∫ ∞

0

∣∣∣∣ ts− 1
2 − t

1
2
−s

1 − t2

∣∣∣∣ dt.

Using l’Hôspital’s rule it is easy to see that lim
t→1

ts−
1
2 −t

1
2−s

1−t2
= 1

2 − s; hence the function t 7−→

ts−
1
2 −t

1
2−s

1−t2
is bounded near 1. Since s − 1

2 ∈ (−1, 1), the last integral in (3.15) converges.
If s = 1

2 we have

(3.16)
∫ π

2

0

|L 1
2
(θ)|

√
cos θ · sin θ

dθ =
∫ π

2

0

∣∣∣∣ − ln tan θ

1 − tan2 θ

∣∣∣∣ · 1
cos2 θ

dθ =
∫ ∞

0

∣∣∣∣ ln y

y2 − 1

∣∣∣∣ dy.

Note that lim
y→1

ln y
y2−1

= 1
2 and this implies easily that that the last integral in (3.16) converges.

This completes the proof of Lemma 3.4. 2

In view of (3.5), (3.7), (3.9), (3.13) and Lemma 3.4, it follows that T1 and T2 are well-defined
and continuous from Ḣs(R) to Ḣs(R), −1

2 < s < 3
2 .

Next we estimate the integral in the right-hand side of (3.6). If s ∈ [0, 3
2) we have by (3.7),

(3.8) and (3.9)

(3.17)

∫ ∞

1

(
t2 − 1

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ)

ξ

t2 + ξ2
dξ

∣∣∣∣2 dt ≤
∫ ∞

0
t2s

∣∣∣∣ ∫ ∞

0
f̂(ξ)

ξ

t2 + ξ2
dξ

∣∣∣∣2 dt

≤ C(s)||f ||2
Ḣs ≤ C(s)||f ||2Hs .

If s ∈ (−1
2 , 0), using the change of variable τ =

√
t2 − 1 and (3.11) we get

(3.18)

∫ ∞

1

(t2 − 1)s

(t2 + ξ2)(t2 + η2)
dt =

∫ ∞

0

τ2s

(τ2 + 1 + ξ2)(t2 + 1 + η2)
· τ√

τ2 + 1
dτ

≤
∫ ∞

0

τ2s

(τ2 + 1 + ξ2)(t2 + 1 + η2)
dτ =

π

2 cos(sπ)
· (1 + ξ2)

2s−1
2 − (1 + η2)

2s−1
2

η2 − ξ2
.
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Consequently,

(3.19)

∫ ∞

1

(
t2 − 1

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ)

ξ

t2 + ξ2
dξ

∣∣∣∣2 dt

≤
∫ ∞

0

∫ ∞

0
|f̂(ξ)| · |f̂(η)|

∫ ∞

1
(t2 − 1)s ξη

(t2 + ξ2)(t2 + η2)
dt dξ dη

≤ π

2 cos(sπ)

∫ ∞

0

∫ ∞

0
|f̂(ξ)| · |f̂(η)| · ξη (1 + ξ2)

2s−1
2 − (1 + η2)

2s−1
2

η2 − ξ2
dξ dη

=
π

2 cos(sπ)

∫ ∞

0

∫ ∞

0
(1 + ξ2)

s
2 |f̂(ξ)| · (1 + η2)

s
2 |f̂(η)|

· ξη

η2 − ξ2
· (1 + ξ2)

2s−1
2 − (1 + η2)

2s−1
2

(1 + ξ2)
s
2 (1 + η2)

s
2

dξ dη.

We claim that for any ξ, η > 0, ξ 6= η we have

(3.20)
ξη

η2 − ξ2
· (1 + ξ2)

2s−1
2 − (1 + η2)

2s−1
2

(1 + ξ2)
s
2 (1 + η2)

s
2

≤ ξsη1−s − ξ1−sηs

η2 − ξ2
= Ks(ξ, η).

We may suppose without loss of generality that η > ξ. Then (3.20) is equivalent to

(3.21) (1 + ξ2)
s
2
− 1

2 (1 + η2)−
s
2 − (1 + η2)

s
2
− 1

2 (1 + ξ2)−
s
2 ≤ ξs−1η−s − ηs−1ξ−s.

Let α = η
ξ > 1, η1 =

√
1 + η2, ξ1 =

√
1 + ξ2, α1 = η1

ξ1
> 1. It is clear that α > α1 (because

α2 − 1 = η2−ξ2

ξ2 > η2−ξ2

ξ2+1
= α2

1 − 1). Inequality (3.21) can be written as

ξs−1
1 η−s

1 − ηs−1
1 ξ−s

1 ≤ ξs−1η−s − ηs−1ξ−s,

or equivalently

(3.22)
1
η1

(α1−s
1 − αs

1) ≤
1
η
(α1−s − αs).

Since s < 0, the function x 7−→ x1−s − xs is increasing on (0,∞) and then α1−s − αs >
α1−s

1 − αs
1 > 0. It is obvious that 1

η > 1
η1

> 0 and this implies (3.22). This proves our claim.
Coming back to (3.19) and using Lemma 3.4 we obtain

(3.23)
∫ ∞

1

(
t2 − 1

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ)

ξ

t2 + ξ2
dξ

∣∣∣∣2 dt ≤ πC(s)
2 cos(sπ)

||(1+|·|2)
s
2 f̂ ||2L2(0,∞) ≤ C ′(s)||f ||2Hs .

From (3.6) and (3.17) if s ∈ [0, 3
2), respectively from (3.6) and (3.23) if s ∈ (−1

2 , 0), we
infer that T1 and T2 can be extended as linear continuous operators from Hs(R) to Hs(R).

Now we prove Theorem 3.3 in the case N ≥ 2.

If s ∈ [0, 3
2), arguing as in (3.7)-(3.9) and using Lemma 3.4 we have

(3.24)

∫ ∞

|ξ′|

(
t2 − |ξ′|2

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt ≤
∫ ∞

0
t2s

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt

≤
∫ ∞

0

∫ ∞

0
|f̂(ξ1, ξ

′)|ξs
1 · |f̂(η1, ξ′)|ηs

1 ·
(
ξ−s
1 η−s

1 Is(ξ1, η1)
)

dξ1 dη1

≤ C(s)|| | · |sf̂(·, ξ′)||2L2(0,∞) ≤ C(s)
∫ ∞

−∞

(
ξ2
1 + |ξ′|2

)s
|f̂(ξ1, ξ

′)|2 dξ1.

27



If s ∈ (−1
2 , 0), using the change of variable τ =

√
t2 − |ξ′|2, arguing as in the proof of (3.18),

then taking (3.11) into account we obtain∫ ∞

|ξ′|

(t2 − |ξ′|2)s

(t2 + ξ2)(t2 + η2)
dt =

∫ ∞

0

τ2s

(τ2 + |ξ′|2 + ξ2
1)(τ2 + |ξ′|2 + η2

1)
· τ√

τ2 + |ξ′|2
dτ

≤
∫ ∞

0

τ2s

(τ2 + |ξ′|2 + ξ2
1)(τ2 + |ξ′|2 + η2

1)
dτ =

π

2 cos(sπ)
· (|ξ′|2 + ξ2

1)
2s−1

2 − (|ξ′|2 + η2
1)

2s−1
2

η2
1 − ξ2

1

.

We also have
ξ1η1

η2
1 − ξ2

1

· (ξ2
1 + |ξ′|2)

2s−1
2 − (η2

1 + |ξ′|2)
2s−1

2

(ξ2
1 + |ξ′|2)

s
2 (η2

1 + |ξ′|2)
s
2

≤ Ks(ξ1, η1)

(the proof being the same as the proof of (3.20)). Arguing as in (3.19), using the two previous
inequalities and Lemma 3.4 we get

(3.25)

∫ ∞

|ξ′|

(
t2 − |ξ′|2

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∣∣∣∣2 dt

≤ πC(s)
2 cos(sπ)

||(|ξ′|2 + | · |2)
s
2 f̂(·, ξ′)||2L2(0,∞) ≤ C ′(s)

∫ ∞

−∞

(
ξ2
1 + |ξ′|2

)s
|f̂(ξ1, ξ

′)|2 dξ1.

Integrating (3.24), respectively (3.25), over RN−1 we infer that the integral in the right-hand
side of (3.3) is less than C ′′(s)||f ||2

Ḣs . This proves that T1 and T2 can be extended by continuity
from Ḣs(RN ) to Ḣs(RN ) for s ∈ (−1

2 , 3
2).

In a similar way we show that T1 and T2 can be extended by continuity from Hs(RN ) to
Hs(RN ) for s ∈ (−1

2 , 3
2). Theorem 3.3 is now proved. 2

For a measurable function u defined on RN , we define its antisymmetric part in the x1

direction by Au(x1, x
′) = 1

2(u(x1, x
′) − u(−x1, x

′)). If u is a tempered distribution, we define
Au by 〈Au, φ〉S′,S = 〈u,Aφ〉S′,S for any φ ∈ S. Obviously, Au is odd with respect to x1

(for distributions, this means that 〈Au, φ(−x1, x
′)〉S′,S = −〈Au, φ〉S′,S). It is clear from the

definition that A defines a linear continuous map from Hs(RN ) to Hs(RN ) (respectively from
Ḣs(RN ) to Ḣs(RN )) for any s. Moreover, for any tempered distribution u, the distribution
F(Au) is odd with respect to x1.

It follows from the proof of Theorem 3.3 that for any s ∈ (−1
2 , 3

2), the following complex
bilinear forms are continuous :

B1,s : Ḣs(R) × Ḣs(R) −→ C,

B1,s(u, v) =
∫ ∞

0
t2s

∫ ∞

0
Âu(ξ)

ξ

t2 + ξ2
dξ ·

∫ ∞

0
Âv(η)

η

t2 + η2
dη dt,

B̃1,s : Hs(R) × Hs(R) −→ C,

B̃1,s(u, v) =
∫ ∞

1
(t2 − 1)s

∫ ∞

0
Âu(ξ)

ξ

t2 + ξ2
dξ ·

∫ ∞

0
Âv(η)

η

t2 + η2
dη dt,

BN,s : Ḣs(RN ) × Ḣs(RN ) −→ C,

BN,s(u, v) =
∫
RN−1

∫ ∞

|ξ′|

(
t2 − |ξ′|2

)s
∫ ∞

0
Âu(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∫ ∞

0
Âv(η1, ξ′)

η1

t2 + η2
1

dη1 dt dξ′,

B̃N,s : Hs(RN ) × Hs(RN ) −→ C,

B̃N,s(u, v)

=
∫
RN−1

∫ ∞
√

|ξ′|2+1

(
t2 − |ξ′|2 − 1

)s
∫ ∞

0
Âu(ξ1, ξ

′)
ξ1

t2 + ξ2
1

dξ1

∫ ∞

0
Âv(η1, ξ′)

η1

t2 + η2
1

dη1 dt dξ′.
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Moreover, from (3.3) - (3.6) we have the identities

(3.26) ||T1u||2Ḣs(RN )
+ ||T1u||2Ḣs(RN )

− 2||u||2
Ḣs(RN )

= −16 sin(sπ)
π2

BN,s(Au,Au),

(3.27) ||T1u||2Hs(RN ) + ||T1u||2Hs(RN ) − 2||u||2Hs(RN ) = −16 sin(sπ)
π2

B̃N,s(Au,Au)

for any u ∈ C∞
c (RN ). From Theorem 3.3, the continuity of BN,s and of B̃N,s and the density

of C∞
c (RN ) in Ḣs(RN ) and in Hs(RN ) we infer that we have the following :

Corollary 3.5 Let s ∈ (−1
2 , 3

2). The identity (3.26) holds for any u ∈ Ḣs(RN ) and (3.27)
holds for any u ∈ Hs(RN ).

Our next aim is to show that the quadratic forms BN,s and B̃N,s define norms in some
spaces of odd functions. We start with the following proposition :

Lemma 3.6 Assume that g : R −→ R is measurable, odd and
• either g ∈ Lp(R) for some p ∈ (1,∞),
• or (α2 + ξ2)

s
2 g(ξ) ∈ L2(R) (respectively |ξ|sg(ξ) ∈ L2(R)) for some s ∈ (−1

2 , 3
2).

Suppose that the set A = {x > 0 |
∫ ∞

0

ξ

x2 + ξ2
g(ξ) dξ = 0} has a limit point x0 > 0.

Then g = 0 almost everywhere on R.

In particular, if
∫ ∞

0

ξ

x2 + ξ2
g(ξ) dξ = 0 for almost every x in some open interval, then g ≡ 0.

Proof. We may suppose without loss of generality that g is real (otherwise we carry out the
proof for its real and imaginary parts).

First we deal with the much simpler case g ∈ Lp(R) for some p, 1 < p < ∞. We define the
Poisson integrals for g,

(3.28) a(x, y) =
1
π

∫ ∞

−∞

x

x2 + (y − t)2
g(t) dt and b(x, y) = − 1

π

∫ ∞

−∞

y − t

x2 + (y − t)2
g(t) dt.

It follows from Lemma 2.4 iii) that the functions a and b are well-defined and harmonic in the
right half-plane and r(x+ iy) := a(x, y)+ ib(x, y) is holomorphic in {z ∈ C | Re(z) > 0}. Since
g is odd, we have a(x, 0) = 0 for any x > 0. If x ∈ A, we have also b(x, 0) = 0. Consequently,
r(x) = 0 for any x ∈ A. But r is holomorphic and A has a limit point x0 > 0, thus necessarily
r ≡ 0. By Lemma 2.4 ii) we know that a(x, y) −→ g(y) as x −→ 0 for almost every y, hence
g = 0 a.e. on R.

Suppose that (α2 + | · |2)
s
2 g ∈ L2(R) for some s ∈ (−1

2 , 3
2). We may assume that α =

1. If s ∈ [0, 3
2), then obviously g ∈ L2(R) and the conclusion of the lemma follows from

the above considerations. If s ∈ (−1
2 , 0), then for any x > 0 and y ∈ R the functions

ϕx,y(t) = (1 + t2)−
s
2

x
x2+(y−t)2

and ψx,y(t) = (1 + t2)−
s
2

y−t
x2+(y−t)2

belong to L2(R). We may

write
∫ ∞

−∞

x

x2 + (y − t)2
g(t) dt =

∫ ∞

−∞
ϕx,y(t)(1 + t2)

s
2 g(t) dt and

∫ ∞

−∞

y − t

x2 + (y − t)2
g(t) dt =∫ ∞

−∞
ψx,y(t)(1 + t2)

s
2 g(t) dt. Using the Cauchy-Schwarz inequality, we see that the functions a

and b in (3.28) are well-defined in the right half-plane (in particular,
∫ ∞

0

ξ

x2 + ξ2
g(ξ) dξ exists

for any x > 0). Clearly the function r(x+ iy) := a(x, y)+ ib(x, y) is holomorphic and, as above
we have r(x) = 0 for x ∈ A. Since A has a limit point x0 > 0, we infer that r ≡ 0. Next, we
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claim that lim
x↓0

a(x, y) = g(y) whenever y is a Lebesgue point of g. This obviously implies g = 0

a.e., as desired. Let y be a Lebesgue point of g and fix ε > 0. Then there exists δ = δ(ε) > 0

such that 1
r

∫ r

−r
|g(y − τ) − g(y)| dτ < ε for any r ∈ (0, δ]. We have :

(3.29)

|a(x, y) − g(y)| =
1
π

∣∣∣∣ ∫ ∞

−∞

x

x2 + t2
(g(y − t) − g(y)) dt

∣∣∣∣
≤ 1

π

∫ δ

−δ

x

x2 + t2
|g(y − t) − g(y)| dt +

1
π

∫
|t|>δ

x

x2 + t2
|g(y − t)| dt

+
1
π

∫
|t|>δ

x

x2 + t2
|g(y)| dt = I1 + I2 + I3.

Let G(r) =
∫ r

−r
|g(y − τ) − g(y)| dτ . It is obvious that G is nondecreasing on [0,∞) and we

have G′(r) = |g(y− r)−g(y)|+ |g(y +r)−g(y)| almost everywhere. Using integration by parts
and the fact that 0 ≤ G(t) ≤ εt for any t ∈ [0, δ], we get :

(3.30)

I1 =
1
π

∫ δ

0

x

x2 + t2
|g(y − r) − g(y)| + |g(y + r) − g(y)| dt =

1
π

∫ δ

0

x

x2 + t2
G′(t) dt

=
1
π

x

x2 + δ2
G(δ) +

2x

π

∫ δ

0

t

(x2 + t2)2
G(t) dt ≤ G(δ)

2πδ
+

2x

π

∫ δ

0

εt2

(x2 + t2)2
dt

≤ ε

2π
+

2xε

π

∫ δ

0

1
x2 + t2

dt ≤ ε

2π
+

2ε

π
arctan

δ

x
≤ ε

2π
+ ε.

Using the Cauchy-Schwarz inequality we have :

(3.31)

I2 =
1
π

∫
|t|>δ

x

x2 + t2
(1 + |y − t|2)−

s
2 (1 + |y − t|2)

s
2 |g(y − t)| dt

≤ x

π
||(1 + | · |2)

s
2 g||L2(R)

(∫
|t|>δ

(1 + |y − t|2)−s

t4
dt

) 1
2

.

Since s > −1
2 , the last integral in (3.31) converges. Let K(y, δ) be its value. We have proved

that

(3.32) I2 ≤ x

π
K(y, δ)||(1 + | · |2)

s
2 g||L2(R) for any x > 0.

Finally, the integral I3 is easy to compute :

(3.33) I3 =
|g(y)|

π
(π − 2 arctan

δ

x
).

For x sufficiently small, the right-hand side terms in (3.32) and (3.33) are less than ε. From
(3.29), (3.30), (3.32) and (3.33) we infer that |a(x, y) − g(y)| ≤ 4ε if x is sufficiently small.
Consequently a(x, y) −→ g(y) as y −→ 0 and the claim is proved.

In the case | · |sg ∈ L2(R) and s ∈ (−1
2 , 1

2), we may repeat almost word by word the proof
above (we have only to replace the functions ϕx,y and ψx,y by t 7−→ t−s x

x2+(y−t)2
, respectively

by t 7−→ t−s y−t
x2+(y−t)2

).
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If | · |sg ∈ L2(R) and s ∈ [12 , 3
2), the integrals defining a and b in (3.28) do not necessarily

converge. In this case we define

(3.34)

a1(x, y) =
1
π

∫ ∞

0

4xyt

[x2 + (y − t)2][x2 + (y + t)2]
g(t) dt and

b1(x, y) =
1
π

∫ ∞

0

2t(t2 + x2 − y2)
[x2 + (y − t)2][x2 + (y + t)2]

g(t) dt.

Notice that if g ∈ L1
loc(R) is odd and g(t)

t ∈ L1([1,∞)), then a = a1 and b = b1. It is obvious
that for fixed x > 0, y ∈ R and s ∈ (−1

2 , 3
2), the functions ϕ1(t) = t−s 4xyt

[x2+(y−t)2][x2+(y+t)2]

and ψ1(t) = t−s 2t(t2+x2−y2)
[x2+(y−t)2][x2+(y+t)2]

belong to L2((0,∞)) and this implies that a1 and b1 are
well-defined. It is straightforward that r1(x + iy) := a1(x, y) + b1(x, y) is holomorphic in the

right half-plane. Obviously a1(x, 0) = 0 for any x > 0 and b1(x, 0) =
2
π

∫ ∞

0

t

x2 + t2
g(t) dt = 0

for x ∈ A. Consequently r = 0 on A. Since A has a limit point x0 > 0, we infer that r ≡ 0 in
the right half-plane. The lemma will be proved if we show that a1(x, y) −→ g(y) as x −→ 0
for almost every y.

Let y > 0 be a Lebesgue point of g. Note that
∫ ∞

0

4xyt
[x2+(y−t)2][x2+(y+t)2]

dt = 2arctan y
x .

Proceeding as in (3.29)-(3.33), we may show that |a1(x, y)− 2
π (arctan y

x)g(y)| −→ 0 as x −→ 0,
hence lim

x↓0
a1(x, y) = g(y) and the lemma is proved. 2

We set

Hs
1,odd(R

N ) = {f ∈ Hs(RN ) | f is odd with respect to x1} = {f ∈ Hs(RN ) | f = Af},
Ḣs

1,odd(R
N ) = {f ∈ Ḣs(RN ) | f is odd with respect to x1} = {f ∈ Ḣs(RN ) | f = Af},

where, as before, Af is the antisymmetric part of f in the x1 direction. For f ∈ Ḣs
1,odd(R

N )

we define Ns(f) = (BN,s(f, f))
1
2 and for f ∈ Hs

1,odd(R
N ) we define Ñs(f) = (B̃N,s(f, f))

1
2 .

Theorem 3.7 Ñs is a norm on Hs
1,odd(R

N ), continuous with respect to the usual Hs norm,
and Ns is a norm on Ḣs

1,odd(R
N ), continuous with respect to the Ḣs norm.

Endowed with these norms, Hs
1,odd(R

N ) and Ḣs
1,odd(R

N ) are pre-Hilbert spaces.

Proof. It is clear that B̃N,s and BN,s are complex-symmetric bilinear forms on Hs(RN )
(respectively on Ḣs(RN )) and that B̃N,s(f, f) ≥ 0 and BN,s(f, f) ≥ 0 for any f (thus, in
particular, Ñs and Ns are well-defined). Suppose, for instance, that f ∈ Hs

1,odd(R
N ) and

B̃N,s(f, f) = 0. This implies that for almost every ξ′ ∈ RN−1 we have : f̂(·, ξ′) is odd,

(| · |2 + |ξ′|2)
s
2 f̂(·, ξ′) ∈ L2(R) and

∫ ∞
√

|ξ′|2+1

(
t2 − |ξ′|2 − 1

)s
∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + |ξ′|2
dξ1

∣∣∣∣ dt = 0.

For such ξ′ we must have
∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

t2 + |ξ′|2
dξ1 = 0 for almost every t ∈ (

√
|ξ′|2 + 1,∞) and

using Lemma 3.6 we infer that f̂(·, ξ′) = 0 a.e. on R, hence
∫
R

(
ξ2
1 + |ξ′|2

)s
|f̂(ξ1, ξ

′)|2 dξ1 = 0.

Consequently ||f ||2Hs =
∫
RN−1

∫
R

(
ξ2
1 + |ξ′|2

)s
|f̂(ξ1, ξ

′)|2 dξ1 dξ′ = 0, i.e. f = 0 a.e. The proof

is the same for f ∈ Ḣs(RN ). Finally, the continuity of Ñs and Ns with respect to the usual
norms follows from Theorem 3.3 and Corollary 3.5. 2
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4 Applications

In this section we illustrate how the results in Sections 2 and 3 can be used to prove the
symmetry of minimizers in some concrete examples.

4.1 We start with two scalar variational problems.

Theorem 4.1 Let s ∈ (0, 1) and assume that F, G : R → R are such that u → F (u) and
u → G(u) map Ḣs(RN ) (or Hs(RN )) into L1(RN ). Suppose that either

Case A. u ∈ Ḣs(RN ) and u is a solution of the minimization problem

minimize E(u) :=
∫
RN

|ξ|2s|û(ξ)|2 dξ +
∫
RN

F (u(x)) dx

under the constraint I(u) =
∫
RN

G(u(x)) dx = λ, or

Case B. u ∈ Hs(RN ) and u is a solution of the minimization problem

minimize E(u) :=
∫
RN

(
1 + |ξ|2

)s
|û(ξ)|2 dξ +

∫
RN

F (u(x)) dx

under the constraint I(u) =
∫
RN

G(u(x)) dx = λ.

Then, after a translation in RN , u is radially symmetric.

Proof. Let us prove first that u is symmetric with respect to x1. Making a translation in the

x1 direction if necessary, we may assume that
∫
{x1<0}

G(u(x)) dx =
∫
{x1>0}

G(u(x)) dx =
λ

2
.

Let u1 = T1u and u2 = T2u. It follows from Theorem 3.3 that u1, u2 ∈ Ḣs(RN ) in case

A, respectively u1, u2 ∈ Hs(RN ) in case B. It is obvious that we have
∫
RN

G(u1(x)) dx =

2
∫
{x1<0}

G(u(x)) dx = λ and
∫
RN

G(u2(x)) dx = 2
∫
{x1>0}

G(u(x)) dx = λ; hence u1 and u2

also satisfy the constraint. From (3.26) and (3.27) we have

E(u1) + E(u2) − 2E(u) = −16 sin(sπ)
π2 N2

s (Au) in case A, respectively

E(u1) + E(u2) − 2E(u) = −16 sin(sπ)
π2 Ñ2

s (Au) in case B,

where, as before, Au(x1, x
′) = 1

2(u(x1, x
′) − u(−x1, x

′)) is the antisymmetric part of u in the
x1 direction. If Au 6≡ 0, then Theorem 3.7 implies N2

s (Au) > 0 (respectively Ñ2
s (Au) > 0) and

we infer that E(u1) + E(u2) − 2E(u) < 0, contradicting the fact that u is a minimizer. Thus
necessarily Au ≡ 0 and this means that u is symmetric with respect to x1.

Arguing similarly with the remaining variables x2, . . . , xN , we find a new origin O′ such that
u is symmetric with respect to any of the variables x1, . . . , xN ; in particular, u(−x) = u(x)
a.e. on RN . Now let Π be any hyperplane containing the new origin O′ and let Π+ and Π−
be the halfspaces determined by Π. Since the transformation x 7−→ −x maps Π− into Π+, we

see that
∫
Π−

G(u(x)) dx =
∫
Π+

G(u(x)) dx =
λ

2
. Arguing as above we conclude that u must

be symmetric with respect to Π. This implies that u is radially symmetric with respect to the
new origin O′. 2

An application of Theorem 4.1 concerns the solitary waves to the generalized Benjamin-Ono
equation

At + αAAx − β(−∆)
1
2 Ax = 0, (x, y) ∈ R2, t ∈ R,
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where α, β > 0. Solitary waves are solutions of the form A(t, x, y) = u(x− ct, y). After a scale
change, a solitary wave u(x, y) satisfies the equation

u + (−∆)
1
2 u = u2 in R2.

The existence of solitary waves was proved in [21] by minimizing the functional

V (u) =
1
2

∫
R2

|(−∆)
1
4 u|2 dx +

∫
R2

u2 dx =
1

2(2π)2

∫
R2

|ξ||û(ξ)|2 dξ +
∫
R2

u2 dx

under the constraint I(u) =
1
3

∫
R2

u3 dx = constant. It has been shown in [21] that any

solution u∗ of the above problem also minimizes

E(v) :=
1
2

∫
R2

|(−∆)
1
4 v|2 dx − 1

3

∫
R2

v3 dx

under the constraint Q(v) = Q(u∗), where Q(v) =
1
2

∫
R2

|u|2 dx.

It follows directly from Theorem 4.1 that, except for translation, any minimizer of these
problems is radially symmetric.

4.2 Next we apply our method to a variational problem involving two unknown functions (the
vector case). Consider the functionals

E(u, v) =
1
2

∫
RN

(|(−∆)
s
2 u|2 + |∇v|2) dx +

∫
RN

F (u, v) dx

where 0 < s < 1, and

Q(u, v) =
∫
RN

G(u, v) dx.

We make the following assumptions:

A1 : F, G : R2 −→ R are C2 functions satisfying F (0, 0) = ∂1F (0, 0) = ∂2F (0, 0) = 0,
G(0, 0) = ∂1G(0, 0) = ∂2G(0, 0) = 0 and the growth conditions

|∂iF (u, v)| ≤ C(|u|p−1 + |v|q−1) and |∂iG(u, v)| ≤ C(|u|p−1 + |v|q−1) if |(u, v)| ≥ 1,

where i ∈ {1, 2}, C is a positive constant, 2 < p < 2N
N−2s and 2 < q < 2N

N−2 .

A2 : If (u, v) ∈ Hs(RN ) × H1(RN ) and (u, v) 6≡ (0, 0), then either ∂1G(u, v) 6≡ 0 or
∂2G(u, v) 6≡ 0 (a manifold condition).

Theorem 4.2 Under assumptions A1 and A2, any minimizer (u, v) ∈ Hs(RN ) × H1(RN )
of E(u, v) subject to the constraint Q(u, v) = λ is radially symmetric (except for translation).

Proof. First we prove that after a translation, (u, v) is symmetric with respect to x1. In fact,
after possibly a translation in the x1 direction we may assume that

(4.1)
∫
{x1<0}

G(u, v) dx =
∫
{x1>0}

G(u, v) dx =
λ

2
.

We put u1 = T1u, u2 = T2u, v1 = T1v and v2 = T2v. By Theorem 3.3, the pairs (u1, v1)
and (u2, v2) belong to Hs(RN )×H1(RN ) and in view of (4.1) they also satisfy the constraint
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Q(u1, v1) = Q(u2, v2) = λ. Moreover, defining W (ϕ) =
∫
RN

|ξ|2s|ϕ̂(ξ)|2 dξ and using (3.26) we

see that

E(u1, v1) + E(u2, v2) − 2E(u, v) =
1
2

1
(2π)N

(W (u1) + W (u2) − 2W (u))

= − 1
(2π)N

8 sin(sπ)
π2

BN,s(Au,Au) ≤ 0.

We conclude that (u1, v1) and (u2, v2) are also minimizers and we must have BN,s(Au,Au) = 0.
By Theorem 3.7 we infer that Au = 0, that is u is symmetric with respect to x1, i.e. u = u1 =
u2.

Since (u, v) and (u1, v1) = (u, v1) are minimizers, they satisfy the Euler-Lagrange equations

(4.2)

{
(−∆)su + ∂1F (u, v) + α∂1G(u, v) = 0,

−∆v + ∂2F (u, v) + α∂2G(u, v) = 0,

respectively

(4.3)

{
(−∆)su + ∂1F (u, v1) + β∂1G(u, v1) = 0,
−∆v1 + ∂2F (u, v1) + β∂2G(u, v1) = 0.

From (4.2), A1, the elliptic regularity for the Laplacian and its fractional powers and the
usual boot-strap argument we get u ∈ H2s(RN ) ∩ L∞(RN ) and v ∈ H2(RN ) ∩ L∞(RN ).
Of course that the same conclusion holds for (u, v1). Notice that the Lp elliptic regularity
for fractional powers of the Laplacian and for 1 < p < ∞ follows from the fact that the

multiplier m(ξ) =
(1 + |ξ|2)s

1 + |ξ|2s
satisfies the estimate |Dαm(ξ)| ≤ B(α)

|ξ|α
and from the theorem

of Mihlin-Hörmander.

We recall the following well-known result :

Unique Continuation Principle: Assume that Φ ∈ H2(RN ,Rm) solves the linear system

(4.4) −∆Φ + A(x)Φ(x) = 0 in RN ,

where A(x) is an m × m matrix whose elements belong to L∞(RN ). If Φ ≡ 0 in some open
set ω ⊂ RN , then Φ ≡ 0 in RN .

A proof for the Unique Continuation Principle is given in [13], Chapter VIII in the scalar
case and in the appendix of [18] in the vector case. Notice that the Unique Continuation
Principle is essentially a local result. Although it is stated for functions Φ ∈ H2(RN ), it is
also valid for functions Φ ∈ W 2,p(RN ) with p > 2 because W 2,p

loc (RN ) ⊂ H2
loc(R

N ). This
observation will be useful later.

Now let us come back to the proof of Theorem 4.2.
If (u1, v1) = (0, 0), then obviously u = 0 in RN . By assumption A2 and the regularity of v

we have ∂2F (0, v) = a1(x)v and ∂2G(0, v) = b1(x)v, where a1, b1 ∈ L∞(RN ). Using the second
equation (4.2), the fact that v = v1 in the half-space {x1 < 0} and the Unique Continuation
Principle, we infer that v = 0 in RN , thus (u, v) is radially symmetric in a trivial way. It is
obvious that this situation cannot occur if λ 6= 0.

If (u1, v1) 6= (0, 0), it follows from A2 that there exists (x1, x
′) ∈ (−∞, 0)×RN−1 such that

∂1G(u1, v1)(x1, x
′) 6= 0 or ∂2G(u1, v1)(x1, x

′) 6= 0. Since v = v1 for x1 < 0, we infer from (4.2)
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and (4.3) that α = β. Moreover, using the regularity of u, v, v1 we get ∂2F (u, v)−∂2F (u, v1) =
b(x)(v(x)− v1(x)) and ∂2G(u, v)− ∂2G(u, v1) = c(x)(v(x)− v1(x)) where b, c ∈ L∞(RN ). Let
w(x) = v(x) − v1(x). Using the second components of (4.2) and (4.3) and the fact that
α = β, we see that w satisfies the linear equation −∆w(x) + a(x)w(x) = 0 in RN , where
a = b+αc ∈ L∞(RN ). Since w vanishes on a half-space, by the Unique Continuation Principle
we conclude that w vanishes everywhere, and this implies v = v1 in RN . Thus we have shown
that (u, v) is symmetric with respect to x1.

Repeating this argument with the variables x2, . . . , xN , we find a new origin O′ such that
(u, v) is symmetric with respect to x1, . . . , xN . Then as in the proof of Theorem 4.1 we show
that (u, v) is symmetric with respect to any hyperplane Π containing O′, consequently (u, v)
is radially symmetric with respect to the new origin O′. 2

Remark 4.3 Symmetrization inequalities for functions in the space H1/2(RN ) have been
proved in [3]. Therefore if s = 1

2 , the function F in Theorem 4.2 satisfies the cooperative
condition ∂2

1,2F (u, v) ≤ 0 (see [5]), G has a special form and it is known in advance that the
components u, v of the minimizer are nonnegative, then using symmetrization one can conclude
that there exists a radially symmetric minimizer.

Remark 4.4 In the case F (u, v) = u2 +v2, G(u, v) = u2v, by using symmetrization and Riesz’
inequality it has been proved in [3] that there exists a radially symmetric minimizer. The fact
that F and G are homogeneous plays a crucial role in their proof.

As an example of application for Theorem 4.2, we consider the Hamiltonian system :

(4.5)


∂u

∂t
=

∂

∂x1
((−∆)1/2u + ∂1F (u, v))

∂v

∂t
=

∂

∂x1
(−∆v + ∂2F (u, v)).

The generalized multidimensional Benjamin-Ono equation

(4.6)
∂u

∂t
=

∂

∂x1
((−∆)1/2u + g(u))

with g(u) = u2 and the generalized multidimensional Korteweg-deVries equation

(4.7)
∂v

∂t
=

∂

∂x1
(−∆v + f(v))

have been considered in [21] and in [4], respectively; in these papers, references giving the
physical motivation for the above equations can also be found. System (4.5) can be considered
a Hamiltonian coupling between (4.6) and (4.7).

Formally, system (4.5) has the following conserved quantities:

E(u, v) =
1
2

∫
RN

|(−∆)1/4u|2 + |∇v|2 dx +
∫

RN
F (u, v) dx and Q(u, v) =

1
2

∫
RN

(u2 + v2) dx.

If we minimize E(u, v) subject to the constraint Q(u, v) = λ, where λ > 0, then according to
[9] the set Sλ containing the elements of H

1
2 (RN ) × H1(RN ) where the minimum is achieved

is invariant and orbitally stable with respect to (4.5). Since any element (φ, ψ) ∈ Sλ satisfies
the Euler-Lagrange system {

(−∆)1/2φ + ∂1F (φ, ψ) + cφ = 0,
−∆ψ + ∂2F (φ, ψ) + cψ = 0,
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we see that (φ, ψ) gives rise to a travelling wave solution of (4.5) of the form (u(t, x), v(t, x)) =
(φ(x1−ct, x′), ψ(x1−ct, x′)), x′ ∈ RN−1. As a consequence of Theorem 4.2, the elements (φ, ψ)
obtained in this way are radially symmetric (after a translation).

4.3 Next we consider the problem of minimizing the generalized Choquard functional

(4.8) E(u) =
1
2

∫
RN

|∇u|2 dx −
∫
RN

∫
RN

F (u(x))
1

|x − y|N−2
F (u(y)) dx dy +

∫
RN

H(u(x)) dx

subject to the constraint Q(u) =
∫
RN

G(u(x)) dx = constant.

It is worth to note that the complex version of E,

Ẽ(u) =
1
2

∫
RN

|∇u|2 dx−
∫

RN

∫
RN

F1(|u(x)|2) 1
|x − y|N−2

F1(|u(y)|2) dx dy+
∫

RN
H1(|u(x)|2) dx

is the Hamiltonian for the generalized Hartree equation

(4.9) iut + ∆u + 4

(∫
RN

F1(|u(y)|2)
|x − y|N−2

dy

)
F ′

1(|u|2)(x)u(x) − 2H ′
1(|u(x)|2)u(x) = 0,

and Q̃(u) =
∫
RN

|u2(x)| dx is a conserved quantity for this evolution equation. The critical

points of Ẽ + ωQ̃ give rise to standing waves for (4.9). As far as minimization is concerned,
using an argument of T. Cazenave and P.-L. Lions (see the proof of Theorem II.1 p. 555 in
[9]), we can restrict ourselves to the real functionals E(u) and Q(u).

In the case N = 3, F (u) = G(u) = u2 and H(u) = 0, the problem of minimizing E(u)
subject to Q(u) = λ has been studied in [15], where the existence, the radial symmetry and
the uniqueness of the minimizer have been proved. The symmetry was proved by using a sharp
inequality for spherical rearrangements. This can still be used in our case if we konw that the
minimizer is nonnegative and if we assume assume that F is increasing on [0,∞) (because the
equality F (u∗) = (F (u))∗ is needed). Using the results in sections 2 and 3, we will show the
radial symmetry of minimizers in dimension N ≥ 3 under more general assumptions on F , G
and H.

We begin by studying some properties of the nonlocal term appearing in (4.8) :

Lemma 4.5 Let N ≥ 3 and let F : R −→ R be a function of class C2 satisfying F (0) =
F ′(0) = 0 and

|F ′(x)| ≤ C|x|σ for |x| ≥ 1,

where C > 0 is a constant and σ <
4

N − 2
. Then the singular integral operator

I(ϕ)(x) =
∫
RN

1
|x − y|N−2

ϕ(y) dy

and the functional

M(ϕ) =
∫
RN

∫
RN

F (ϕ(x))
1

|x − y|N−2
F (ϕ(y)) dx dy

have the following properties :
i) I is continuous from Lp(RN ) to Lq(RN ) if 1 < p < q < ∞ and 1

q = 1
p − 2

N .

ii) If 1 ≤ p1 <
N

2
< p2 ≤ ∞, then I is continuous from Lp1(RN )∩Lp2(RN ) to L∞(RN )∩

C0(RN ).
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iii) If 1 ≤ r1 <
2N

N + 2
< r2 ≤ 2 and ϕ ∈ Lr1(RN ) ∩ Lr2(RN ), then

Î(ϕ)(ξ) =
4π

N
2

Γ(N
2 − 1)

· 1
|ξ|2

ϕ̂(ξ) in S ′(RN ).

iv) M is well-defined and differentiable on H1(RN ) and

M ′(u).ϕ = 2
∫
RN

(∫
RN

F (u(y))
|x − y|N−2

dy

)
F ′(u(x))ϕ(x) dx.

v) For any u ∈ H1(RN ) we have

M(u) = cN

∫
RN

1
|ξ|2

|F̂ (u)(ξ)|2 dξ, where cN =
1

2N−2π
N
2 Γ(N

2 − 1)
.

Proof. i) follows directly from Theorem 1 pp. 119-120 in [23].

ii) We write 1
|x|N−2 as a1(x)+a2(x), where a1(x) = 1

|x|N−2 χ{|x|>1} and a2(x) = 1
|x|N−2 χ{|x|≤1}.

Then we have I(ϕ) = a1 ∗ ϕ + a2 ∗ ϕ. It is obvious that a1 ∈ Lq(RN ) for q ∈ ( N
N−2 ,∞] and

a2 ∈ Lq(RN ) for q ∈ [1, N
N−2). Let p′1 and p′2 be the conjugate exponents of p1 and p2. Then

p′1 > N
N−2 and p′2 < N

N−2 , so that a1 ∈ Lp′1(RN ) and a2 ∈ Lp′2(RN ). We infer that I(ϕ) is
continuous and by Young’s inequality we get

||I(ϕ)||L∞ || ≤ ||a1||
L

p′
1
· ||ϕ||Lp1 + ||a2||

L
p′
2
· ||ϕ||Lp2 .

iv) First we consider the bilinear form

P (ϕ,ψ) =
∫
RN

∫
RN

ϕ(x)
1

|x − y|N−2
ψ(y) dx dy.

Notice that P is well-defined and continuous on L
2N

N+2 (RN ) × L
2N

N+2 (RN ). Indeed, it follows
from i) that I is well-defined and continuous from L

2N
N+2 (RN ) to L

2N
N−2 (RN ) and we have

|P (ϕ,ψ)| =
∣∣∣∣ ∫

RN
I(ϕ)(x)ψ(x) dx

∣∣∣∣ ≤ ||I(ϕ)||
L

2N
N−2

· ||ψ||
L

2N
N+2

≤ AN ||ϕ||
L

2N
N+2

||ψ||
L

2N
N+2

.

Without loss of generality we may assume that σ > 2
N . From the assumptions on F we have

|F (u)| ≤ C|u|2 if |u| ≤ 1 and |F (u)| ≤ C|u|1+σ if |u| > 1. It is well-known that H1(RN )
is continuously embedded in Lp(RN ) for p ∈ [2, 2N

N−2 ] and then it is standard (see, e.g. [26],
Appendix A) that u 7−→ F (u) is continuously differentiable from H1(RN ) to Lq(RN ) for
q ∈ [max(1, 2

1+σ ), 2N
(N−2)(1+σ) ]. In particular, u 7−→ F (u) is continuously differentiable from

H1(RN ) to L
2N

N+2 (RN ) (because 2
1+σ < 2N

N+2 < 2N
(N−2)(1+σ)). Since M(u) = P (F (u), F (u)), iv)

follows.

iii) and v) Let K(x) = 1
|x|N−2 . Then K ∈ S ′(RN ) and it follows from Theorem 4.1 p. 160

in [24] or from Lemma 1 p. 117 in [23] that K̂(ξ) = 4π
N
2

Γ(N
2
−1)

· 1
|ξ|2 . From Lemma 1 p. 117 in

[23] we have

(4.10) P (ϕ,ψ) =
1

(2π)N

∫
RN

Î(ϕ)(ξ)ψ̂(ξ) dξ = cN

∫
RN

1
|ξ|2

ϕ̂(ξ)ψ̂(ξ) dξ
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whenever ϕ, ψ ∈ S(RN ). We claim that (4.10) holds for any ϕ, ψ ∈ Lr1(RN )∩Lr2(RN ) with
1 ≤ r1 < 2N

N+2 < r2 ≤ 2. This assertion implies both iii) and v).
Now let us prove the claim. Since (4.10) holds on S ×S, the bilinear form P is continuous

on L
2N

N+2 (RN )×L
2N

N+2 (RN ) and Lr1(RN )∩Lr2(RN ) is continuously embedded into L
2N

N+2 (RN ),
all we have to do is to show that the quadratic form

P1(ϕ,ψ) =
∫
RN

1
|ξ|2

ϕ̂(ξ)ψ̂(ξ) dξ

is continuous on
(
Lr1(RN ) ∩ Lr2(RN )

)
×

(
Lr1(RN ) ∩ Lr2(RN )

)
; then the claim follows by

density of S in Lr1(RN ) ∩ Lr2(RN ).
Let r′1, r′2 be the conjugate exponents of r1, r2 and let q1, q2 be such that 1

r′1
+ 1

q1
= 1

2 ,

respectively 1
r′2

+ 1
q2

= 1
2 . Let b1(ξ) = 1

|ξ|χ{|ξ|≤1} and b2(ξ) = 1
|ξ|χ{|ξ|>1}. We have 2 ≤ q1 < N

and q2 > N , so that b1 ∈ Lq1(RN ) and b2 ∈ Lq2(RN ). Since the Fourier transform maps
continuously Lr1(RN ) into Lr′1(RN ) and Lr2(RN ) into Lr′2(RN ), we have :

|P1(ϕ,ψ)| ≤
∣∣∣∣ ∫

{|ξ|≤1}

1
|ξ|2

ϕ̂(ξ)ψ̂(ξ) dξ

∣∣∣∣ +
∣∣∣∣ ∫

{|ξ|>1}

1
|ξ|2

ϕ̂(ξ)ψ̂(ξ) dξ

∣∣∣∣
≤ ||b1ϕ̂||L2 · ||b1ψ̂||L2 + ||b2ϕ̂||L2 · ||b2ψ̂||L2

≤ ||b1||2Lq1 ||ϕ̂||Lr′
1
||ψ̂||

L
r′
1

+ ||b2||2Lq2 ||ϕ̂||Lr′
2
||ψ̂||

L
r′
2

≤ C(N, r1, r2) (||ϕ||Lr1 ||ψ||Lr1 + ||ϕ||Lr2 ||ψ||Lr2 ) .

This proves the continuity of P1 and our claim. Thus the proof of Lemma 4.5 is complete. 2

Theorem 4.6 Let N ≥ 3 and let F, G, H : R −→ R be C2 functions satisfying the following
assumptions :

a) F (0) = F ′(0) = 0 and there exists σ < 4
N−2 and C > 0 such that

|F ′(u)| ≤ C|u|σ if |u| ≥ 1.

b) There exists σ1 ∈ [1, N+2
N−2) and C1 > 0 such that

|G′(u)| ≤ C1|u|σ1 and |H ′(u)| ≤ C1|u|σ1 for any u ∈ R.

Moreover, if σ1 < 2 then we assume that σ1 ≥ max( (N−2)(1+2σ)−4
N , 1).

c) For any ε > 0, G′ 6≡ 0 on (−ε, 0) and on (0, ε).
Then any minimizer u ∈ H1(RN ) of the functional E given by (4.8) subject to the constraint

Q(u) = λ is radially symmetric (after a translation in RN ).

Proof. First of all, notice that the functionals E and Q are well-defined and of class C1 on
H1(RN ). Let u ∈ H1(RN ) be a minimizer. We will show that, except for translation, u is
symmetric with respect to x1. The same proof is valid for any other direction in RN and the
radial symmetry of u follows as in the proof of Theorem 4.1.

After a translation in the x1 direction we may suppose that∫
{x1<0}

G(u(x)) dx =
∫
{x1>0}

G(u(x)) dx =
λ

2
.
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As before, we define u1 = T1u and u2 = T2u. We know that u1, u2 ∈ H1(RN ). In view of
assumption a), it is obvious that F (u) ∈ L1(RN ) and we have T1(F (u)) = F (u1), T2(F (u)) =

F (u2), Q(u1) = Q(u2) = λ. Defining W (ϕ) =
∫
RN

1
|ξ|2

|ϕ̂(ξ)|2 dξ, from Lemma 4.5 v) we get

(4.11)
E(u1) + E(u2) − 2E(u) = −[M(u1) + M(u2) − 2M(u)]

= −cN [W (T1(F (u))) + W (T2(F (u))) − 2W (F (u))].

Recall that by (2.51) we have for any ϕ ∈ C∞
c (RN ),

(4.12) W (T1ϕ) + W (T2ϕ) − 2W (ϕ) =
8
π

∫
RN−1

1
|ξ′|

∣∣∣∣ ∫ ∞

0
Âϕ(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1

∣∣∣∣2 dξ′.

To show that this identity also holds for F (u) we need the following lemma :

Lemma 4.7 Let N ≥ 3 and let r1, r2 be such that 1 < r1 < 2N
N+2 < r2 < 2. The bilinear form

R(ϕ,ψ) =
∫
RN−1

1
|ξ′|

∫ ∞

0
ϕ̂(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1 ·
∫ ∞

0
ψ̂(η1, ξ

′)
η1

|ξ′|2 + η2
1

dη1 dξ′

is continuous on
(
Lr1(RN ) ∩ Lr2(RN )

)
×

(
Lr1(RN ) ∩ Lr2(RN )

)
.

Proof. Consider ϕ, ψ ∈ Lr1(RN ) ∩ Lr2(RN ). Then ϕ̂, ψ̂ ∈ Lr′1(RN ) ∩ Lr′2(RN ), where r′1
and r′2 are the conjugate exponents of r1 and r2. Using Hölder’s inequality and the change of
variable ξ1 = t|ξ′|, we get for ξ′ 6= 0 and i = 1, 2,

(4.13)

∣∣∣∣ ∫ ∞

0
ϕ̂(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1

∣∣∣∣ ≤ (∫ ∞

0
|ϕ̂(ξ1, ξ

′)|r′i dξ1

) 1
r′
i

(∫ ∞

0

ξri
1

(|ξ′|2 + ξ2
1)ri

dξ1

) 1
ri

= |ξ′|
1−ri

ri

(∫ ∞

0

tri

(1 + t2)ri
dt

) 1
ri

(∫ ∞

0
|ϕ̂(ξ1, ξ

′)|r′i dξ1

) 1
r′
i

= Ci|ξ′|
1−ri

ri

(∫ ∞

0
|ϕ̂(ξ1, ξ

′)|r′i dξ1

) 1
r′
i .

A similar estimate holds for ψ. Let qi be the conjugate exponent of r′i
2 , i.e. qi = ri

2−ri
. Using

(4.13), Hölder’s inequality and the estimate ||ϕ̂||
L

r′
i
≤ Ai||ϕ||Lri we have

(4.14)

∣∣∣∣ ∫
B

RN−1 (0,1)

1
|ξ′|

∫ ∞

0
ϕ̂(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1 ·
∫ ∞

0
ψ̂(η1, ξ

′)
η1

|ξ′|2 + η2
1

dη1 dξ′
∣∣∣∣

≤ C2
1

∫
B

RN−1 (0,1)
|ξ′|

2−2r1
r1

−1
(∫ ∞

0
|ϕ̂(ξ1, ξ

′)|r′1 dξ1

) 1
r′
1

(∫ ∞

0
|ψ̂(η1, ξ

′)|r′1 dη1

) 1
r′
1 dξ′

≤ C2
1

(∫
B

RN−1 (0,1)
|ξ′|

q1(2−3r1)

r1 dξ′
) 1

q1

(∫
B

RN−1 (0,1)

∫ ∞

0
|ϕ̂(ξ1, ξ

′)|r′1 dξ1 dξ′
) 1

r′
1

(∫
B

RN−1 (0,1)

∫ ∞

0
|ψ̂(η1, ξ

′)|r′1 dη1 dξ′
) 1

r′
1

≤ C2
1A2

1

(∫
B

RN−1 (0,1)
|ξ′|

q1(2−3r1)

r1 dξ′
) 1

q1

||ϕ||Lr1 ||ψ||Lr1
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and

(4.15)

∣∣∣∣ ∫
{|ξ′|>1}

1
|ξ′|

∫ ∞

0
ϕ̂(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1 ·
∫ ∞

0
ψ̂(η1, ξ

′)
η1

|ξ′|2 + η2
1

dη1 dξ′
∣∣∣∣

≤ C2
2

∫
{|ξ′|>1}

|ξ′|
2−2r2

r2
−1

(∫ ∞

0
|ϕ̂(ξ1, ξ

′)|r′2 dξ1

) 1
r′
2

(∫ ∞

0
|ψ̂(η1, ξ

′)|r′2 dη1

) 1
r′
2 dξ′

≤ C2
2

(∫
{|ξ′|>1}

|ξ′|
q1(2−3r2)

r2 dξ′
) 1

q2

(∫
{|ξ′|>1}

∫ ∞

0
|ϕ̂(ξ1, ξ

′)|r′2 dξ1 dξ′
) 1

r′
2

(∫
{|ξ′|>1}

∫ ∞

0
|ψ̂(η1, ξ

′)|r′2 dη1 dξ′
) 1

r′
2

≤ C2
2A2

2

(∫
{|ξ′|>1}

|ξ′|
q2(2−3r2)

r2 dξ′
) 1

q2

||ϕ||Lr2 ||ψ||Lr2 .

Since 1 < r1 < 2N
N+2 < r2 < 2, a direct computation shows that

∫
B

RN−1 (0,1)
|ξ′|

q1(2−3r1)

r1 dξ′ and∫
{|ξ′|>1}

|ξ′|
q2(2−3r2)

r2 dξ′ are finite. From (4.14) and (4.15) we have

|R(ϕ,ψ)| ≤ K (||ϕ||Lr1 ||ψ||Lr1 + ||ϕ||Lr2 ||ψ||Lr2 )

and Lemma 4.7 is proved. 2

Let r1 and r2 be as in Lemma 4.7. Since the maps ϕ 7−→ T1ϕ and ϕ 7−→ T2ϕ are obviously
continuous from Lr1(RN ) ∩ Lr2(RN ) into itself and we have shown in the proof of Lemma

4.5 that the bilinear form P1(ϕ, ψ) =
∫
RN

1
|ξ|2

ϕ̂(ξ)ψ̂(ξ) dξ is continuous on this space, it

follows that the left-hand side of (4.12) is continuous on Lr1(RN ) ∩ Lr2(RN ). By Lemma
4.7, the right-hand side of (4.12) also defines a continuous functional on Lr1(RN ) ∩ Lr2(RN ).
Since (4.12) is valid for any ϕ ∈ C∞

c (RN ), by density we infer that (4.12) holds for any
ϕ ∈ Lr1(RN ) ∩ Lr2(RN ). Recall that u ∈ H1(RN ) and by the Sobolev embedding and
assumption a) we have F (u) ∈ Lq(RN ) for any q ∈ [max(1, 2

1+σ ), 2N
(N−2)(1+σ) ]; hence (4.12) is

valid for F (u).
Since u is a minimizer, we must have E(u1) + E(u2) − 2E(u) ≥ 0. From (4.11) and (4.12)

we infer that necessarily

(4.16)
∫
RN−1

1
|ξ′|

∣∣∣∣ ∫ ∞

0
F(A(F (u)))(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1

∣∣∣∣2 dξ′ = 0.

Contrary to our previous examples, (4.16) does not imply directly AF (u) ≡ 0. To see this,

consider a function ψ ∈ C∞
c (0,∞) such that supp(ψ) ⊂ [1,∞), ψ 6≡ 0 and

∫ ∞

0

t

1 + t2
ψ(t) dt =

0. (Such a function exists: for example, take two nonnegative functions ψ0, ψ1 ∈ C∞
c (1,∞)

with disjoint supports and put ψτ = (1 − τ)ψ0 − τψ1. There is some τ ∈ (0, 1) such that∫ ∞

0

t

1 + t2
ψτ (t) dt = 0.) Extend ψ to an odd function defined on R. Take α ∈ C∞

c (RN−1) such

that α 6≡ 0 and supp(α) ⊂ RN−1 \B(0, 1) and put f̂(ξ1, ξ
′) = α(ξ′)ψ( ξ1

|ξ′|). Then f̂ ∈ C∞
c (RN )

(hence f ∈ S), f 6≡ 0 and f is odd with respect to the first variable. However, we have
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∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1 = 0 for any ξ′ 6= 0 and consequently

∫
RN−1

1
|ξ′|

∣∣∣∣ ∫ ∞

0
f̂(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1

∣∣∣∣2 dξ′ = 0.

To show that u is symmetric with respect to x1, we argue as follows: since u and u1

minimize E under the constraint Q = λ, these functions satisfy the Euler-Lagrange equations
E′(u) + αQ′(u) = 0, respectively E′(u1) + βQ′(u1) = 0 for some constants α and β, that is

(4.17) −∆u − 2I(F (u))F ′(u) + H ′(u) + αG′(u) = 0 in RN ,

(4.18) −∆u1 − 2I(F (u1))F ′(u1) + H ′(u1) + βG′(u1) = 0 in RN .

We will show in the next lemma that u and u1 are smooth functions. Then we prove that
I(F (u))(x) = I(F (u1))(x) in the half-space {x1 < 0}. Together with assumption c), this
implies that α = β in (4.17)-(4.18). Then we will be able to apply the Unique Continuation
Principle to prove that u = u1.

Lemma 4.8 Let u ∈ H1(RN ) be a solution of (4.17), where F, G, H ∈ C2(R) satisfy the
assumptions a) and b) in Theorem 4.6. Then u ∈ W 3,p(RN ) for any p ∈ [2,∞). In particular,
u ∈ C2(RN ) and Dαu are continuous and bounded on RN if α ∈ NN , |α| ≤ 2.

Proof. The proof is rather classical and relies on a boot-strap argument. For the convenience
of the reader, we give it here.

We show first that u ∈ L∞(RN ). By the Sobolev embedding we have u ∈ Lq(RN ) for
q ∈ [2, 2N

N−2 ]. We will improve this estimate by a bootstrap argument to get the desired
conclusion.

Let us consider first the case N = 3. We may assume without loss of generality that
3 ≤ σ < 4

N−2 = 4 (if σ < 3, we replace σ by 3 and this gives no supplementary constraint on
σ1 in assumption b). Suppose that u ∈ Lq(R3) for any q ∈ [2, β], where β ≥ 6. Together with
assumption a), this implies F (u) ∈ Lq(R3) for q ∈ [1, β

1+σ ]. We distinguish two cases :

Case A. If β
1+σ > 3

2 , then Lemma 4.5 i)-ii) implies I(F (u)) ∈ Lq(RN ) for q ∈ (3,∞].
By assumption a) we have F ′(u)χ{|u|≤1} ∈ L2(RN ) ∩ L∞(RN ), hence I(F (u))F ′(u)χ{|u|≤1} ∈
Lq(RN ) for q ∈ (6

5 ,∞] and F ′(u)χ{|u|>1} ∈ L1(RN ) ∩ L
β
σ (RN ), thus I(F (u))F ′(u)χ{|u|>1} ∈

Lq(RN ) for q ∈ [1, β
σ ]. Consequently, I(F (u))F ′(u) ∈ Lq(RN ) for q ∈ (6

5 , β
σ ]. Assumption b)

implies that G′(u), H ′(u) ∈ Lq(RN ) for q ∈ [max(1, 2
σ1

), β
σ1

]. Note that β
σ1

≥ 6
σ1

> 6
5 and

β
σ ≥ 6

σ ≥ 2
σ1

by the second part of assumption b). From equation (4.17) we find ∆u ∈ Lq(RN )
for any q ∈ (6

5 , min(β
σ , β

σ1
)] if 2

σ1
≤ 6

5 , respectively for any q ∈ [ 2
σ1

, min(β
σ , β

σ1
)] if 2

σ1
> 6

5 . Let
q∗ := min(β

σ , β
σ1

). If q∗ ≥ 2, we have ∆u ∈ Lq∗(R3) and obviously u ∈ Lq∗(RN ) (because
2 ≤ q∗ ≤ β

σ1
≤ β), hence u ∈ W 2,q∗(R3) and by the Sobolev embedding we infer that u ∈

L∞(R3). If 3
2 < q∗ < 2, again by the Sobolev embedding we have |∇u| ∈ Lp∗(RN ), where

1
p∗

= 1
q∗

− 1
3 (thus p∗ ∈ (3, 6)), hence u ∈ W 1,p∗(R3) ⊂ L∞(R3). If q∗ = 3

2 , we obtain

∆u ∈ L
3
2 (R3), which implies |∇u| ∈ L3(R3), hence u ∈ W 1,3(R3) so that u ∈ Lq(R3) for any

q ∈ [2,∞). Repeating the above argument for some β̃ > β, we get u ∈ L∞(R3). It remains to
study the case q∗ < 3

2 . It is clear that in this case we have q∗ = β
σ1

(because β
σ > 3

2). Since
∆u ∈ Lq∗(R3), by the Sobolev embedding we get u ∈ Lβ1(R3), where 1

β1
= 1

q∗
− 2

3 . Notice
that 1

β1
− 1

β = σ1−1
β − 2

3 ≤ σ1−5
6 < 0, hence β1 > β. We repeat the previous reasoning with

β1 instead of β. We obtain that either u ∈ L∞(R3), or u ∈ Lβ2(R3), where β2 > β1 and

41



1
β2

− 1
β1

≤ σ1−5
6 < 0. In the latter case we continue with β2 instead of β and we get that either

u ∈ L∞(R3), or u ∈ Lβ3(R3), where β3 > β2 and 1
β3

− 1
β2

≤ σ1−5
6 , and so on. After a finite

number of steps we get u ∈ L∞(R3) (since otherwise we would obtain a positive increasing
sequence (βn)n≥1 such that 1

βn
− 1

β ≤ n(σ1−5)
6 −→ −∞, which is impossible).

Case B. If β
1+σ ≤ 3

2 , we may suppose that β
1+σ < 3

2 (otherwise we take β a little bit smaller).

By Lemma 4.5 i) we have I(F (u)) ∈ Lq(R3) for q ∈ (3,
(

1+σ
β − 2

3

)−1
]. As in case A we obtain

I(F (u))F ′(u)χ{|u|≤1} ∈ Lq(RN ) for q ∈ (6
5 ,

(
1+σ

β − 2
3

)−1
] and I(F (u))F ′(u)χ{|u|>1} ∈ Lq(RN )

for q ∈
[
1,

(
1+2σ

β − 2
3

)−1
]
, so that I(F (u))F ′(u) ∈ Lq(R3) for q ∈

(
6
5 ,

(
1+2σ

β − 2
3

)−1
]
. Notice

that
(

1+2σ
β − 2

3

)−1
> 6

5 (because β ≥ 6 and σ < 4) and
(

1+2σ
β − 2

3

)−1
≥ 2

σ1
by assumption

b). Since obviously G′(u), H ′(u) ∈ Lq(RN ) for q ∈ [max(1, 2
σ1

), β
σ1

], using equation (4.17)

we infer that ∆u ∈ Lq(R3) for any q ∈
[
max(6

5 , 2
σ1

),min
((

1+2σ
β − 2

3

)−1
, β

σ1

)]
, q 6= 6

5 . Let

q2 = min
((

1+2σ
β − 2

3

)−1
, β

σ1

)
. If q2 ≥ 3

2 , arguing as in case A we get u ∈ L∞(R3). If

q2 < 3
2 , by the Sobolev embedding we have u ∈ Lβ1(R3), where 1

β1
= 1

q2
− 2

3 , hence 1
β1

− 1
β ≤

max
(

σ−4
3 , σ1−5

6

)
< 0, so that β1 > β. Repeating the preceeding arguments for β1 we obtain

either u ∈ L∞(R3), or β1

1+σ > 3
2 (so that we are in case A, consequently u ∈ L∞(R3)), or

u ∈ Lβ2(R3), where β2 > β1 and 1
β2

− 1
β1

≤ max
(

σ−4
3 , σ1−5

6

)
. In the latter case we repeat the

same reasoning, and so on. As in case A, after a finite number of steps we get u ∈ L∞(R3).

Now we consider the case N ≥ 4 and we assume that u ∈ Lq(RN ) for any q ∈ [2, β], where
β ≥ 2N

N−2 . It is clear that G′(u), H ′(u) ∈ Lq(RN ) for q ∈
[
max(1, 2

σ1
), β

σ1

]
and F (u) ∈ Lq(RN )

for q ∈ [1, β
1+σ ]. Once again, we distinguish two cases :

Case A. If β
1+σ > N

2 , then I(F (u)) ∈ Lq(RN ) for any q ∈ ( N
N−2 ,∞]. We have F ′(u)χ{|u|≤1} ∈

Lq(RN ) for q ∈ [2,∞], hence I(F (u))F ′(u))χ{|u|≤1} ∈ Lq(RN ) for q ∈ (1,∞] if N = 4,
respectively for q ∈ [1,∞] if N ≥ 5 and F ′(u)χ{|u|>1} ∈ Lq(RN ) for q ∈ [1, β

σ ], hence
I(F (u))F ′(u))χ{|u|>1} ∈ Lq(RN ) if q ∈ [1, β

σ ]. Consequently I(F (u))F ′(u)) ∈ Lq(RN ) for
q ∈ (1, β

σ ] if N = 4, respectively for q ∈ [1, β
σ ] if N ≥ 5. Notice that β ≥ 2N

N−2 and the second
part of assumption b) imply β

σ ≥ 2
σ1

. Using equation (4.17) we infer that ∆u ∈ Lq(RN ) for

q ∈
[
max(1, 2

σ1
), min( β

σ1
, β

σ )
]
, q 6= 1 if N = 4. Let q3 = min( β

σ1
, β

σ ). Notice that q3 ≤ β because

σ1 ≥ 1 and ∆u ∈ Lq3(RN ). If q3 > N
2 ≥ 2, then u ∈ Lq3(RN ), hence u ∈ W 2,q3(RN ) and

by the Sobolev embedding we get u ∈ L∞(RN ). If q3 = N
2 , then u ∈ W 2, N

2 (RN ), conse-
quently u ∈ Lq(RN ) for any q ∈ [2,∞) and repeating the above proof with β̃ > β we find
u ∈ L∞(RN ). If q3 < N

2 , then necessarily q3 = β
σ1

(recall that β
σ > β

1+σ > N
2 because we are

in case A). By the Sobolev embedding we get u ∈ Lβ1(RN ), where 1
β1

= 1
q3

− 2
N = σ1

β − 2
N ,

thus 1
β1

− 1
β = σ1−1

β − 2
N ≤ (σ1−1)(N−2)−4

2N < 0 by b). Repeating the previous arguments
with β replaced by β1, we find that either u ∈ L∞(RN ) or u ∈ Lβ2(RN ), where β2 > β1

and 1
β2

− 1
β1

≤ (σ1−1)(N−2)−4
2N , and so on. As previously, after a finite number of steps we get

u ∈ L∞(RN ).

Case B. If β
1+σ ≤ N

2 , we may suppose that β
1+σ < N

2 . By Lemma 4.5 i), I(F (u)) ∈

Lq(RN ) for q ∈
(

N
N−2 ,

(
1+σ

β − 2
N

)−1
]
. As in case A we get I(F (u))F ′(u) ∈ Lq(RN ) for
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q ∈
[
1,

(
1+2σ

β − 2
N

)−1
]
, q 6= 1 if N = 4. By a), b) and the fact that β ≥ 2N

N−2 we have(
1+2σ

β − 2
N

)−1
≥ 2

σ1
. Since G′(u), H ′(u) ∈ Lq(RN ) for q ∈ [max(1, 2

σ1
), β

σ1
], using (4.17) we get

∆u ∈ Lq(RN ) for q ∈ [max(1, 2
σ1

), q4], q 6= 1 if N = 4, where q4 = min
(

β
σ1

,
(

1+2σ
β − 2

N

)−1
)

. If

q4 ≥ N
2 then, as above, we obtain u ∈ L∞(RN ). Otherwise by the Sobolev embedding we find

u ∈ Lβ1(RN ), where 1
β1

= 1
q4

− 2
N , thus 1

β1
− 1

β ≤ max
(

(σ1−1)(N−2)−4
2N , σ(N−2)−4

N

)
< 0. Then

we restart the process with β1 instead of β. Continuing in this way, after a finite number of
steps we obtain u ∈ L∞(RN ).

Up to now we have proved that u ∈ Lq(RN ) for any q ∈ [2,∞]. Thus F (u) ∈ L1(RN ) ∩
L∞(RN ), I(F (u)) ∈ Lq(RN ) for q ∈ ( N

N−2 ,∞], F ′(u) ∈ L2(RN ) ∩ L∞(RN ), hence
I(F (u))F ′(u) ∈ L2(RN ) ∩ L∞(RN ). Clearly G′(u), H ′(u) ∈ Lq(RN ) for q ∈ [max(1, 2

σ1
),∞].

Using (4.17) we have ∆u ∈ L2(RN ) ∩ L∞(RN ), thus u ∈ W 2,p(RN ) for any p ∈ [2,∞). In
particular, u ∈ C1(RN ) and ∂u

∂xi
are continuous and bounded on RN . Differentiating (4.17)

with respect to xi we get

−∆(
∂u

∂xi
) − 2I(F ′(u)

∂u

∂xi
)F ′(u) − 2I(F (u))F ′′(u)

∂u

∂xi
+ G′′(u)

∂u

∂xi
+ αH ′′(u)

∂u

∂xi
= 0 in RN .

It follows that −∆( ∂u
∂xi

) ∈ L2(RN ) ∩ L∞(RN ). Since obviously ∂u
∂xi

∈ L2(RN ) ∩ L∞(RN ), we
get ∂u

∂xi
∈ W 2,p(RN ), which implies u ∈ W 3,p(RN ) for any p ∈ [2,∞). 2

It follows from Lemma 4.8 that F (u) ∈ C2(RN ) and F (u) ∈ W 2,p(RN ) for p ∈ [1,∞]. Using
Lemma 4.5 i) and ii), it is easy to check that I(F (u)) ∈ C2(RN ) and I(F (u)) ∈ W 2,p(RN ) for
p ∈ ( N

N−2 ,∞]. In particular, I(F (u)) ∈ S ′(RN ) and Lemma 4.5 iii) implies F(I(F (u)))(ξ) =

dN
1

|ξ|2 F̂ (u)(ξ), where dN = 4π
N
2

Γ(N
2
−1)

. Setting U = I(F (u)) we have −∆U = dNF (u).

Next we show that ∂U
∂x1

(0, x′) = ∂
∂x1

I(F (u))(0, x′) = 0 for any x′ ∈ RN−1. From (4.16)

we infer that
∫ ∞

0
F(A(F (u)))(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1 = 0 for almost every ξ′ ∈ RN−1, that is∫ ∞

−∞
F̂ (u)(ξ1, ξ

′)
ξ1

|ξ′|2 + ξ2
1

dξ1 = 0 a.e. ξ′ ∈ RN−1, or equivalently

(4.19)
∫ ∞

−∞
ξ1F(I(F (u)))(ξ1, ξ

′) dξ1 = 0 for almost every ξ′ ∈ RN−1.

If ∂
∂x1

I(F (u)) and F( ∂
∂x1

I(F (u))) are in L1(RN ), by the Fourier inversion theorem (4.19) is
equivalent to ∂

∂x1
I(F (u))(0, x′) = 0, as desired.

Since we do not know whether ∂
∂x1

I(F (u)) ∈ L1(RN ) and F( ∂
∂x1

I(F (u))) ∈ L1(RN ), we
argue as follows : we take an arbitrary test function ψ ∈ S(RN−1) and we put ϕn(x1) =

n√
2π

e−
n2x2

1
2 . Clearly, ϕn(x1) = nϕ1(nx1), ||ϕn||L1(R) = 1 and ϕ̂n(ξ1) = e−

ξ21
2n2 . On one hand we

have, by using Lebesgue’s Dominated Convergence Theorem,

(4.20)

lim
n→∞

∫
RN

ϕn(x1)ψ(x′)
[

∂

∂x1
I(F (u))

]
(x1, x

′) dx

= lim
n→∞

∫
RN

ϕ1(y1)ψ(x′)
[

∂

∂x1
I(F (u))

]
(
y1

n
, x′) dy1 dx′

=
∫
RN−1

ψ(x′)
∂

∂x1
(I(F (u)))(0, x′) dx′.
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On the other hand we have

(4.21)

∫
RN

ϕn(x1)ψ(x′)
[

∂

∂x1
I(F (u))

]
(x1, x

′) dx = 〈 ∂

∂x1
(I(F (u))), ϕn(x1)ψ(x′)〉S′,S

= 〈F
(

∂

∂x1
I(F (u))

)
,F−1 (

ϕn(x1)ψ(x′)
)
〉S′,S

=
1

(2π)N

∫
RN

idNξ1

|ξ|2
F̂ (u)(ξ)e−

ξ21
2n2 ψ̂(−ξ′) dξ1 dξ′.

Since F (u) ∈ L2(RN ), for almost every ξ′ ∈ RN−1 we have F̂ (u)(·, ξ′) ∈ L2(R). For any such
ξ′, arguing as in (4.13) we get∫

R

∣∣∣∣e− ξ21
2n2 · ξ1

|ξ|2
F̂ (u)(ξ1, ξ

′)
∣∣∣∣ dξ1 ≤

∫
R

∣∣∣∣ ξ1

ξ2
1 + |ξ′|2

F̂ (u)(ξ1, ξ
′)

∣∣∣∣ dξ1 ≤ C

|ξ′|
1
2

||F̂ (u)(·, ξ′)||L2(R),

where C does not depend on ξ′. Moreover, Cauchy-Schwarz inequality gives

∫
RN−1

C|ψ̂(−ξ′)|
|ξ′|

1
2

||F̂ (u)(·, ξ′)||L2(R) dξ′ ≤ C

(∫
RN−1

|ψ̂(−ξ′)|2

|ξ′|
dξ′

) 1
2

||F̂ (u)||L2(RN ) < ∞.

By the Dominated Convergence Theorem, we have for almost any ξ′ ∈ RN−1

∫
R

ξ1

ξ2
1 + |ξ′|2

F̂ (u)(ξ1, ξ
′)e−

ξ21
2n2 dξ1 −→

∫
R

ξ1

ξ2
1 + |ξ′|2

F̂ (u)(ξ1, ξ
′) dξ1 = 0 as n −→ ∞.

Thus we may use Fubini’s Theorem, then the Dominated Convergence Theorem on RN−1 to
obtain

(4.22)

∫
RN

ξ1

|ξ|2
F̂ (u)(ξ1, ξ

′)e−
ξ21
2n2 ψ(−ξ′) dξ1 dξ′

=
∫
RN−1

ψ(−ξ′)
∫
R

ξ1

ξ2
1 + |ξ′|2

F̂ (u)(ξ1, ξ
′)e−

ξ21
2n2 dξ1 dξ′

−→
∫
RN−1

ψ(−ξ′) · 0 dξ′ = 0. as n −→ ∞.

From (4.20), (4.21) and (4.22) we infer that
∫
RN−1

ψ(x′)
∂

∂x1
(I(F (u)))(0, x′) dx′ = 0. Since

ψ ∈ S(RN−1) was arbitrary, we have ∂
∂x1

(I(F (u)))(0, ·) = 0 in S ′(RN−1), hence
∂

∂x1
(I(F (u)))(0, x′) = 0 for any x′ ∈ RN−1 because ∂

∂x1
(I(F (u))) is a continuous function.

We know that F (u1) is symmetric with respect to x1 and a simple change of variables
shows that the function U1 := I(F (u1)) is also symmetric with respect to x1. Clearly U1 also
belongs to C2(RN ) and satisfies −∆U1 = −∆(I(F (u1))) = dNF (u1). By symmetry we have
∂U1
∂x1

(0, x′) = 0 for any x′ ∈ RN−1. Since u1(x1, x
′) = u(x1, x

′) if x1 < 0, we have proved that
the functions U and U1 are both solutions of the problem

(4.23)



−∆W = dNF (u) in {(x1, x
′) ∈ RN | x1 < 0}

W ∈ C2(RN ) ∩ W 2,p(RN ) for p > N
N−2 ,

∂W
∂x1

(0, x′) = 0 for any x′ ∈ RN−1.
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It is not hard to see that the solution of (4.23) is unique. Consequently, U(x1, x
′) = U1(x1, x

′)
if x1 < 0. It is obvious that (u,U) and (u1, U1) solve the system

(4.24)


−∆u − 2UF ′(u) + H ′(u) + αG′(u) = 0

−∆U − dNF (u) = 0
in RN ,

respectively

(4.25)


−∆u1 − 2U1F

′(u1) + H ′(u1) + βG′(u1) = 0

−∆U1 − dNF (u1) = 0
in RN .

Next we show that if u ≡ 0 in the half-space {x1 < 0}, then u ≡ 0 in RN . Indeed, if u = 0
in {x1 < 0}, then from (4.23) it follows that U = 0 on that half-space. Now from (4.24) and
the Unique Continuation Principle we infer that (u,U) = (0, 0) on RN . In this case u trivially
has a radial symmetry. Clearly, we cannot have u ≡ 0 if λ 6= 0.

If u 6≡ 0 in (−∞, 0)×RN−1, then u((−∞, 0)×RN−1) = u1((−∞, 0)×RN−1) contains an
interval of the form (−ε, 0) or (0, ε) for some ε > 0. Now assumption c), (4.24), (4.25) and
the fact that (u,U) = (u1, U1) on (−∞, 0) × RN−1 imply that α = β in (4.24)-(4.25). As a
consequence, we see that (u − u1, U − U1) solves a linear system whose coefficients belong to
L∞(RN ). Since (u,U) = (u1, U1) for x1 < 0 and (u, U), (u1, U1) ∈ W 2,p(RN ,R2) if p ≥ 2 and
p > N

N−2 , by using the Unique Continuation Principle we infer that u = u1 (and U = U1) in
RN , that is u is symmetric with respect to x1.

Similarly we show that u is symmetric with respect to any other hyperplane Π which has

the property that
∫
Π−

G(u(x)) dx =
∫
Π+

G(u(x)) dx, where Π− and Π+ are the two half-spaces

determined by Π. As in the proof of Theorem 4.1 it follows that after a translation, u is radially
symmetric. The proof of Theorem 4.6 is complete. 2

4.4 Our last application concerns the Davey-Stewartson system

(4.26)


iut + ∆u = f(|u|2)u − uvx1 ,

∆v =
(
|u|2

)
x1

in R3,

which can be written as

(4.27) iut = −∆u + f(|u|2)u + R2
1(|u|2)u,

where R1 is the Riesz transform defined by R̂1ϕ =
iξ1

|ξ|
ϕ̂(ξ). Let F1(t) =

∫ t

0
f(τ) dτ . It is easy

to check that

Ẽ(u) =
1
2

∫
R3

|∇u|2 dx +
1
2

∫
R3

F1(|u|2) dx − 1
4

∫
R3

|R1(|u|2)|2 dx

is a Hamiltonian for (4.27) and Q̃(u) =
∫
R3

|u(x)|2 dx is a conserved quantity for the same

equation. The standing waves for (4.27) are precisely the critical points of Ẽ + ωQ̃. As in
the previous example, when we minimize Ẽ(u) subject to Q̃(u) = constant, we may restrict
ourselves to real functions u and to the real version of Ẽ,

E(u) =
1
2

∫
R3

|∇u|2 dx +
∫
R3

F (u) dx − 1
4

∫
R3

|R1(u2)|2 dx.
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We will consider a more general functional than Q̃, namely Q(u) =
∫
R3

G(u) dx. If G(u) =

u2, in order to guarantee the boundedness from below of the functional E on the set of functions
satisfying Q(u) = λ, the function F (u) is required to behave as a|u|γ for u large, with a > 0
and γ > 4. In the case F (u) = a|u|γ , the Cauchy problem for the evolution equation (4.27)
has been analysed in [12]. The global existence of solutions was proved in the case a > 0 and
γ > 4, while in the case γ = 4 the global existence was proved if a is sufficiently large.

Still in the case of pure power F (u) = a|u|γ , with a > 0 and γ > 4, the existence of

minimizers of E subject to the constraint Q(u) =
∫
R3

|u|2 dx = λ can be proved by using the

Concentration-Compactness Principle (see [17]) if λ is large enough (this assumption is needed
to prevent vanishing).

In [10] the existence of ground states related to the problem (4.26) has been studied.
However, our method cannot be used to prove the symmetry of these ground states because
the nonlocal term appears in the constraint.

It is well-known that R1 is a linear continuous map from Lp(R3) to Lp(R3) for 1 < p < ∞
(see [23]). If u2 ∈ L2(R3), then R1(u2) ∈ L2(R3) and by Plancherel’s theorem we get

(4.28)
∫
R3

|R1(u2)|2 dx =
1

(2π)3

∫
R3

| ̂R1(u2)(ξ)|2 dξ =
1

(2π)3

∫
R3

ξ2
1

|ξ|2
|û2(ξ)|2 dξ.

We have the following symmetry result :

Theorem 4.9 Let u ∈ H1(R3) be a solution of the minimization problem

minimize E(u) =
1
2

∫
R3

|∇u|2 dx +
∫
R3

F (u) dx − 1
4

∫
R3

|R1(u2)|2 dx

subject to Q(u) =
∫
R3

G(u(x)) dx = λ

under the following assumptions :
a) F, G : R −→ R are C2 functions, F (0) = F ′(0) = 0, G(0) = G′(0) = 0 and there exist

C > 0, σ < 5 such that

|F ′(u)| ≤ C|u|σ and |G′(u)| ≤ C|u|σ for |u| ≥ 1.

b) For any ε > 0, G′ 6= 0 on (−ε, 0) and on (0, ε).
Then, after a translation, u is radially symmetric in the variables (x2, x3) (i.e. u is axially

symmetric).

Proof. Making a translation in the x2 direction if necessary, we may assume that∫
{x2<0}

G(u(x)) dx =
∫
{x2>0}

G(u(x)) dx =
λ

2
. As before, we define u1 and u2 by

u1(x1, x2, x3) =

{
u(x1, x2, x3) if x2 < 0,
u(x1,−x2, x3) if x2 ≥ 0

u2(x1, x2, x3) =

{
u(x1,−x2, x3) if x2 < 0,
u(x1, x2, x3) if x2 ≥ 0.

It is obvious that Q(u1) = Q(u2) = λ. Moreover, using (4.28) we get

(4.29)

E(u1) + E(u2) − 2E(u)

= −1
4

1
(2π)3

[∫
R3

ξ2
1

|ξ|2
|û2

1(ξ)|
2 dξ +

∫
R3

ξ2
1

|ξ|2
|û2

2(ξ)|
2 dξ − 2

∫
R3

ξ2
1

|ξ|2
|û2(ξ)|2 dξ

]
.
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Recall that by (2.53) and (2.54) we have the equality

(4.30)

∫
RN

ξ2
j

|ξ|2
|T̂1ϕ(ξ)|2 dξ +

∫
RN

ξ2
j

|ξ|2
|T̂2ϕ(ξ)|2 dξ − 2

∫
RN

ξ2
j

|ξ|2
|ϕ̂(ξ)|2 dξ

=
8
π

∫
RN−1

ξ2
j

|ξ′|

∣∣∣∣ ∫ ∞

0
Âϕ(ξ1, ξ

′)
ξ1

ξ2
1 + |ξ′|2

dξ1

∣∣∣∣2dξ′

for any ϕ ∈ C∞
c (RN ), where j ∈ {2, . . . , , N}. It is obvious that the left-hand side of (4.30)

defines a continuous functional on L2(RN ). By the next lemma, it follows that the right-hand
side of (4.30) also defines a continuous functional on L2(RN ). Then the density of C∞

c (RN )
in L2(RN ) implies that (4.30) holds for any ϕ ∈ L2(RN ).

Lemma 4.10 Let j ∈ {2, . . . , N}. The bilinear form

S1(ϕ,ψ) =
∫
RN−1

ξ2
j

|ξ′|

∫ ∞

0
ϕ̂(ξ1, ξ

′)
ξ1

ξ2
1 + |ξ′|2

dξ1 ·
∫ ∞

0
ψ̂(η1, ξ′)

η1

η2
1 + |ξ′|2

dη1 dξ′

is continuous on L2(RN ) × L2(RN ).

Proof. As in (4.13) we have∣∣∣∣ ∫ ∞

0
ϕ̂(ξ1, ξ

′)
ξ1

ξ2
1 + |ξ′|2

dξ1

∣∣∣∣ ≤ K
1

|ξ′|
1
2

(∫ ∞

0
|ϕ̂(ξ1, ξ

′)|2 dξ1

) 1
2

,

where K =
(∫ ∞

0

t2

(1+t2)2
dt

) 1
2

. Consequently

|S1(ϕ, ψ)| ≤ K2
∫
RN−1

ξ2
j

|ξ′|2
(∫ ∞

0
|ϕ̂(ξ1, ξ

′)|2 dξ1

) 1
2

(∫ ∞

0
|ψ̂(η1, ξ

′)|2 dη1

) 1
2

dξ′

≤ K2
∫
RN−1

(∫ ∞

0
|ϕ̂(ξ1, ξ

′)|2 dξ1

) 1
2

(∫ ∞

0
|ψ̂(η1, ξ

′)|2 dη1

) 1
2

dξ′

≤ K2

(∫
RN−1

∫ ∞

0
|ϕ̂(ξ1, ξ

′)|2 dξ1 dξ′
) 1

2

·
(∫

RN−1

∫ ∞

0
|ψ̂(η1, ξ

′)|2 dη1 dξ′
) 1

2

≤ K1||ϕ||L2(RN )||ψ||L2(RN ).

2

Since u2, u2
1, u2

2 ∈ L2(R3) (recall that H1(R3) ⊂ L2(R3) ∩ L6(R3)), by exchanging the
roles of x1 and x2 and using (4.29) and (4.30) we find

(4.31)

E(u1) + E(u2) − 2E(u)

= −1
4

1
(2π)3

8
π

∫
R2

ξ2
1√

ξ2
1 + ξ2

3

∣∣∣∣ ∫ ∞

0

̂A2(u2)(ξ1, ξ2, ξ3)
ξ2

ξ2
1 + ξ2

2 + ξ2
3

dξ2

∣∣∣∣2 dξ1 dξ3,

where A2ϕ = 1
2(ϕ(x1, x2, x3) − ϕ(x1,−x2, x3)).

Since u is a minimizer, we must have E(u1)+E(u2)−2E(u) ≥ 0, consequently the integral
in the right-hand side of (4.31) must be zero, which is equivalent to

(4.32)
∫ ∞

0

̂A2(u2)(ξ1, ξ2, ξ3)
ξ2

ξ2
1 + ξ2

2 + ξ2
3

dξ2 = 0 a.e. (ξ1, ξ3) ∈ R2.
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In particular, u1 and u2 are also minimizers. However, as in the previous example, (4.32) is
not sufficient to prove that A2(u2) = 0. In order to accomplish this task, we will use the
Euler-Lagrange equation of u : since u minimizes E under the constraint Q(u) = λ, there
exists a constant α such that E′(u) + αQ′(u) = 0, that is

(4.33) −∆u + F ′(u) + R2
1(u

2)u + αG′(u) = 0.

Lemma 4.11 If F and G satisfy assumption a) in Theorem 4.9 and u ∈ H1(R3) is a solution
of (4.33), then u ∈ W 3,p(R3) for any p ∈ [2,∞). In particular, u ∈ C2(R3).

Since R1 and R2
1 are linear continuous mappings from Lp(R3) to Lp(R3) for 1 < p < ∞,

the proof of Lemma 4.11 is standard, so we omit it.

Let I(ϕ)(x) =
∫
R3

ϕ(y)
|x − y|

dy. Using Lemma 4.5 it is easy to see that I(u2) ∈ W 2,p(R3) for

any p ∈ (3,∞] and I(u2) is a C2 function. Moreover, we have

F(R2
1(u

2))(ξ) = − ξ2
1

|ξ|2
û2(ξ) = − 1

d3
ξ2
1

̂I(u2)(ξ),

where d3 = 4π
3
2

Γ( 1
2
)
, thus R2

1(u
2) = 1

d3

∂2

∂x2
1
I(u2). Equation (4.33) can be written as

(4.34) −∆u + F ′(u) +
1
d3

∂2

∂x2
1

(
I(u2)

)
u + αG′(u) = 0.

Arguing exactly as in the proof of Theorem 4.6, (4.32) implies that ∂
∂x2

(
I(u2)

)
(x1, 0, x3) = 0

for any (x1, x3) ∈ R2.
Since u1 is also a minimizer, it satisfies the Euler-Lagrange equation

(4.35) −∆u1 + F ′(u1) +
1
d3

∂2

∂x2
1

(
I(u2

1)
)

u1 + βG′(u1) = 0.

The conclusion of Lemma 4.11 is obviously valid for u1. Since u1 is symmetric with respect to
x2, I(u2

1) is also symmetric with respect to x2 and, consequently, ∂
∂x2

(
I(u2

1)
)
(x1, 0, x3) = 0 for

any (x1, x3) ∈ R2. We set U = I(u2) and U1 = I(u2
1). Recall that u(x1, x2, x3) = u1(x1, x2, x3)

if x2 < 0 ; thus U and U1 are both solutions of

(4.36)



−∆W = u2 in R × (−∞, 0) × R,

W ∈ C2(R3) ∩ W 2,p(R3) for 3 < p ≤ ∞

∂W
∂x2

(x1, 0, x3) = 0 for any (x1, x3) ∈ R2.

It is not hard to see that the solution of (4.36) is unique. Hence we must have I(u2) = I(u2
1)

in R × (−∞, 0] × R. In the same way we obtain I(u2) = I(u2
2) in R × [0,∞) × R.

Now we focus our attention on u1. Making a translation in the x3 direction if necessary,

we may assume that
∫
{x3<0}

G(u1(x)) dx =
∫
{x3>0}

G(u1(x)) dx =
λ

2
. We define

w1(x1, x2, x3) =

{
u1(x1, x2, x3) if x3 < 0,
u1(x1, x2,−x3) if x3 ≥ 0,
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w2(x1, x2, x3) =

{
u1(x1, x2,−x3) if x3 < 0,
u1(x1, x2, x3) if x3 ≥ 0.

It is obvious that Q(w1) = Q(w2) = λ. Proceeding as above, we find the identity

(4.37)

E(w1) + E(w2) − 2E(u1)

= −1
4

1
(2π)3

8
π

∫
R2

ξ2
1√

ξ2
1 + ξ2

2

∣∣∣∣ ∫ ∞

0

̂A3(u2
1)(ξ1, ξ2, ξ3)

ξ3

ξ2
1 + ξ2

2 + ξ2
3

dξ3

∣∣∣∣2 dξ1 dξ2,

where A3ϕ = 1
2(ϕ(x1, x2, x3) − ϕ(x1, x2,−x3)). Since u1 is a minimizer, it follows from (4.37)

that w1 and w2 are also minimizers of E under the constraint Q = λ; hence w1 and w2

satisfy the conclusion of Lemma 4.11 and I(w1), I(w2) ∈ C2(R3) ∩ W 2,p(R3) for p ∈ (3,∞].
Moreover, the integral in the right-hand side of (4.37) must be zero. As previously, this gives

∂
∂x3

I(u2
1)(x1, x2, 0) = 0 for any (x1, x2) ∈ R2. Proceeding as above, we find I(u2

1) = I(w2
1) in

R2 × (−∞, 0] and I(u2
1) = I(w2

2) in R2 × [0,∞).

Now let us consider the function w1. It is clear that w1(x1,−x2,−x3) = w1(x1,−x2, x3) =
w1(x1, x2, x3), i.e. w1 is symmetric with respect to x2 and with respect to x3. Consider a plane
Π in R3 containing the line {(x1, 0, 0) | x1 ∈ R} and let Π+ and Π− be the two half-spaces
determined by Π. Since (x1, x2, x3) 7−→ (x1,−x2,−x3) maps Π+ onto Π−, using the symmetry

of w1 we get
∫
Π+

G(w1(x)) dx =
∫
Π−

G(w1(x)) dx =
λ

2
. Let sΠ denote the symmetry in R3

with respect to Π. We define

r1(x) =

{
w1(x) if x ∈ Π−,
w1(sΠ(x)) if x ∈ Π+

and r2(x) =

{
w1(sΠ(x)) if x ∈ Π−,
w1(x) if x ∈ Π+.

Repeating the above arguments we obtain an integral identity analogous to (4.31) and (4.37)
which implies that r1 and r2 also minimize E subject to the constraint Q = λ. Furthermore,
using the fact that the integral in the right-hand side of this identity must vanish we find

(4.38)
∂

∂n
I(w2

1)(x1, x2, x3) = 0 whenever (x1, x2, x3) ∈ Π,

where n is the unit normal to Π. Passing to cylindrical coordinates we write
I(w2

1)(x1, x2, x3) = I(w2
1)(x1, r cos θ, r sin θ) = Φ(x1, r, θ), where r =

√
x2

2 + x2
3. Since I(w2

1)
is a C2 function and (4.38) is valid for any plane Π containing {(x1, 0, 0) | x1 ∈ R}, (4.38) is

equivalent to
∂Φ
∂θ

= 0, that is Φ does not depend on θ, i.e. I(w2
1)(x1, x2, x3) = Φ1(x1,

√
x2

2 + x2
3)

for some function Φ1. In other words, we have proved that I(w2
1) is radially symmetric in the

variables (x2, x3). In the same way we show that I(w2
2)(x1, x2, x3) = Φ2(x1,

√
x2

2 + x2
3) for

some function Φ2. Since I(u2
1) is continuous on R3, I(u2

1) = I(w2
1) in the half-space {x3 < 0}

and I(u2
1) = I(w2

2) in the half-space {x3 > 0}, we have necessarily Φ1 = Φ2, and then I(u2
1) is

radially symmetric in the variables (x2, x3). Similarly, I(u2
2) is radially symmetric in (x2, x3).

Recall that I(u2) = I(u2
1) in the half-space {x2 < 0} and I(u2) = I(u2

2) in the half-space
{x2 > 0}. But I(u2) is a continuous function on R3, thus we must have I(u2) = I(u2

1) = I(u2
2)

on R3, consequently I(u2) is radially symmetric with respect to (x2, x3).

If u ≡ 0 in the half-space {x2 < 0}, it follows that u1 ≡ 0 in R3 and then I(u2
1) ≡ 0 which

implies I(u2) = 0 in R3. In this case (4.34) becomes −∆u + F ′(u) + αG′(u) = 0 and from the
Unique Continuation Principle we infer that u ≡ 0 in R3, thus u is radially symmetric in a
trivial way. Obviously, the case u ≡ 0 is excluded if λ 6= 0.

49



If u 6≡ 0 in the half-space {x2 < 0}, by assumption b) there exists (x1, x2, x3) ∈ R3, x2 < 0
such that G′(u(x1, x2, x3)) 6= 0. Since u = u1 on {x2 < 0} and I(u2) = I(u2

1) on R3, from
(4.34) and (4.35) we infer that α = β. Let a(x) = 1

d3

∂2

∂x2
1

(
I(u2)

)
(x) = 1

d3

∂2

∂x2
1

(
I(u2

1)
)
(x). We

know that a is a continuous and bounded function on R3. The functions u and u1 both satisfy
the equation −∆w + F ′(w) + a(x)w + αG′(w) = 0 in R3 and using the Unique Continuation
Principle again we conclude that u ≡ u1 in R3, i.e. u is symmetric with respect to x2.

In the same way we prove that u is symmetric with respect to x3 (after possibly a transla-
tion). Proceeding as in the proof of Theorem 4.1 we can show that u is symmetric with respect
to any plane containing the line {(x1, 0, 0) | x1 ∈ R}, consequently u is radially symmetric
with respect to (x2, x3) variables. 2

Remark 4.12 i) We have stated and proved Theorem 4.9 in dimension N = 3 only for sim-

plicity. Replacing the term
∫
R3

|R1(u2)|2(x) dx in E(u) by
∫
RN

|R1(H(u))|2(x) dx and making

suitable assumptions on the function H, this result admits a straightforward generalization to
RN , N ≥ 3.

ii) We do not know whether the minimizers in Theorem 4.9 are symmetric or not with
respect to x1. Recall that by (2.55) we have

(4.39)

∫
RN

ξ2
1

|ξ|2
|T̂1ϕ(ξ)|2 dξ +

∫
RN

ξ2
1

|ξ|2
|T̂2ϕ(ξ)|2 dξ − 2

∫
RN

ξ2
1

|ξ|2
|ϕ̂(ξ)|2 dξ

= − 8
π

∫
RN−1

|ξ′|
∣∣∣∣ ∫ ∞

0
Âϕ(ξ)

ξ1

ξ2
1 + |ξ′|2

dξ1

∣∣∣∣2 dξ′

for any ϕ ∈ C∞
c (RN ). Clearly, the left-hand side of (4.39) is continuous on L2(RN ). Proceeding

as in Lemma 4.10, it is easy to see that the right-hand side of (4.39) also defines a continuous
functional on L2(RN ). Consequently, (4.39) holds for any ϕ ∈ L2(RN ). Using (4.28) and
(4.39) we have

(4.40) E(T1u) + E(T2u) − 2E(u) =
2
π

1
(2π)N

∫
RN−1

|ξ′|
∣∣∣∣ ∫ ∞

0
F(A(H(u)))(ξ)

ξ1

|ξ|2
dξ1

∣∣∣∣2 dξ′.

The right-hand side in this integral identity is always nonnegative and (4.40) does not imply
the symmetry of minimizers with respect to x1.

iii) Let us change the sign of the nonlocal term appearing in Theorem 4.9, i.e. let us
consider the minimization problem

(4.41)
minimize E∗(u) =

1
2

∫
R3

|∇u|2 dx +
∫
R3

F (u) dx +
1
4

∫
R3

|R1(u2)|2 dx

under the constraint Q(u) :=
∫
R3

G(u(x)) dx = λ.

The minimizers of this problem (when they exist) give rise to standing waves for equation
(4.27) where the sign of the nonlocal term R2

1(|u|2)u has been reversed. Clearly, the integral
identities that we have do not imply the symmetry of solutions of (4.41) with respect to x2

and x3.

The symmetry of minimizers of (4.41) with respect to x1 is also an open problem. As
above, in this case we have the identity

(4.42) E∗(T1u) + E∗(T2u) − 2E∗(u) = − 2
π

1
(2π)3

∫
R2

|ξ′|
∣∣∣∣ ∫ ∞

0
F(A(u2))(ξ)

ξ1

|ξ|2
dξ1

∣∣∣∣2 dξ2 dξ3.
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If u is a minimizer, the right-hand side of (4.42) must vanish. As in the proof of Theorem 4.9,
this implies ∂

∂x1
I(u2)(0, x2, x3) = 0 for any (x2, x3) ∈ R2. Repeating the argument already

used in Theorem 4.9 we get I(u2) = I((T1u)2) on {x1 ≤ 0} and I(u2) = I((T2u)2) on {x1 ≥ 0}.
Moreover, if λ 6= 0 then u and u1 := T1u satisfy the same Euler-Lagrange equation, namely

(4.43) −∆w + F ′(w) − 1
d3

∂2

∂x2
1

(
I(w2)

)
w + αG′(w) = 0.

Equivalently, defining U = I(u2) and U1 = I(u2
1), we see that (u,U) and (u1, U1) are both

solutions to the system

(4.44)

{
−∆w + F ′(w) − 1

d3

∂2W
∂x2

1
w + αG′(w) = 0,

−∆W = w2.

Moreover, (u,U) = (u1, U1) on {x1 ≤ 0} and u, u1 satisfy the conclusion of Lemma 4.11. We
do not know whether this information together with the boundary condition ∂U

∂x1
(0, x2, x3) =

∂U1
∂x1

(0, x2, x3) = 0 imply that u ≡ u1.

Remark 4.13 If N = 3, the nonlocal term in Theorem 4.9 can be written as∫
R3

|R1(u2)|2 dx =
1

(2π)3

∫
R3

ξ2
1

|ξ|2
|û2(ξ)|2 dξ = − 1

d3(2π)3

∫
R3

F
(

∂2

∂x2
1

I(u2)

)
(ξ)û2(ξ) dξ

= − 1
d3

∫
R3

∂2

∂x2
1

I(u2)(x)u2(x) dx = − 1
d3

∫
R3

∫
R3

u2(x)K(x − y)u2(y) dx dy,

where K(x) = ∂2

∂x2
1

(
1
|x|

)
= 2x2

1−x2
2−x2

3

(x2
1+x2

2+x2
3)

5
2
. Since this kernel changes sign, spherical rearrange-

ments in the variables (x2, x3) combined with Riesz’ inequality cannot be used to prove the
symmetry of minimizers.

Remark 4.14 It is worth to note the following simple idea : let u∗ be a minimizer for a
variational problem like those studied in this paper. Suppose that one can prove that u∗ is

a C1 function and that
∂u∗
∂n

= 0 whenever x ∈ Π, where Π is any hyperplane in RN having

the property
∫
Π−

G(u∗(x)) dx =
∫
Π+

G(u∗(x)) dx (here Π− and Π+ are the two half-spaces

determined by Π, n is the unit normal to Π and G is the function appearing in the constraint).
Proceeding as we did for I(u2) in in the proof of Theorem 4.9, one can prove that after a
translation, u∗ is radially symmetric. This method should be useful in problems where the
integral identities that one can obtain are not sufficient to deduce the symmetry of minimizers
and an unique continuation theorem is unavailable. Unfortunately it cannot give symmetry
with respect to only one direction.

5 Some open problems

We close this paper speaking about several problems for which the methods described above
(including ours) seem to fail.

First, let us come back to the two minimization problems considered in Theorem 4.1. As

before, if u is a minimizer of any of these problems, we may assume that
∫
{x1<0}

G(u) dx =
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∫
{x1>0}

G(u) dx and we set u1 = T1u and u2 = T2u. Assume that s ∈ (1, 3
2). Then the identities

(3.26) and (3.27) are still valid (see Corollary 3.5) and we get

E(u1) + E(u2) − 2E(u) = −16 sin(sπ)
π2

N2
s (Au) ≥ 0 in case A, respectively

E(u1) + E(u2) − 2E(u) = −16 sin(sπ)
π2

Ñ2
s (Au) ≥ 0 in case B.

It is easy to see that these integral identities work in the wrong direction. Are the minimizers
still radially symmetric for s ∈ (1, 3

2) ?

Another problem is to study the symmetry of minimizers of

E(u) =
1
2

∫
R3

|∇u|2 +
∫
R3×R3

1
|x − y|

u(x)2u(y)2 dx dy +
∫
R3

F (u(x)) dx

subject to the constraint ∫
R3

u2(x) dx = λ > 0.

In the particular case F (u) = −C|u|8/3, this problem arises in connection with the Schrödinger-
Poisson-Slater system ([22]). Due to the repulsive effect of the nonlocal term, Riesz’ inequality
as well as the Reflection method work in the wrong direction.

A last problem concerns the symmetry of minimizers of

E(u) =
∫ +∞

−∞
(u2

x(x) + u3(x)) dx − γ

∫ +∞

−∞
|ξ||û(ξ)|2 dξ,

where γ > 0, subject to the constraint
∫ +∞

−∞
u2(x) dx = λ > 0. These two functionals are

conserved quantities for the Benjamin equation (see [1]). Symmetrization and reflection cannot
be used due to the sign of the nonlocal term. Oscillating travelling waves for this equation
have been found numerically; perhaps this is an indication that the minimizers of the problem
above may change sign.
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[13] Hörmander, L., Linear Partial Differential Operators, Springer-Verlag, New York,
1969.

[14] Kawohl, B., Symmetry or not ?, Mathematical Intelligencer 20 (1998), pp. 16-22.

[15] Lieb, E., Existence and uniqueness of the minimizing solution of Choquard’s non-
linear equation, Studies in Appl. Math. 57 (1977), No. 2, pp. 93-106.

[16] Lieb, E., and Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14,
AMS, 1996.

[17] Lions, P.-L., The Concentration-Compactness Principle in the Calculus of Varia-
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