Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity

Mihai MARIŞ
Université de Franche-Comté
Département de Mathématiques UMR 6623
16, Route de Gray
25030 Besançon, France
e-mail: mihai.maris@univ-fcomte.fr

Dedicated to Jean-Claude Saut, who gave me water to cross the desert.

Abstract

For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we prove the existence of finite energy traveling waves moving with speed c in any space dimension $N \geq 3$. Our results are valid as well for the Gross-Pitaevskii equation and for NLS with cubic-quintic nonlinearity.

AMS subject classifications. 35Q51, 35Q55, 35Q40, 35J20, 35J15, 35B65, 37K40.

1 Introduction

We consider the nonlinear Schrödinger equation

$$
\begin{equation*}
i \frac{\partial \Phi}{\partial t}+\Delta \Phi+F\left(|\Phi|^{2}\right) \Phi=0 \quad \text { in } \mathbf{R}^{N} \tag{1.1}
\end{equation*}
$$

where $\Phi: \mathbf{R}^{N} \longrightarrow \mathbf{C}$ satisfies the "boundary condition" $|\Phi| \longrightarrow r_{0}$ as $|x| \longrightarrow \infty, r_{0}>0$ and F is a real-valued function on \mathbf{R}_{+}satisfying $F\left(r_{0}^{2}\right)=0$.

Equations of the form (1.1), with the considered non-zero conditions at infinity, arise in a large variety of physical problems such as superconductivity, superfluidity in Helium II, phase transitions and Bose-Einstein condensate ([2], [3], [4], [12], [20], [22], [23], [24], [25]). In nonlinear optics, they appear in the context of dark solitons ([27], [28]). Two important particular cases of (1.1) have been extensively studied both by physicists and by mathematicians: the Gross-Pitaevskii equation (where $F(s)=1-s$) and the so-called "cubic-quintic" Schrödinger equation (where $F(s)=-\alpha_{1}+\alpha_{3} s-\alpha_{5} s^{2}, \quad \alpha_{1}, \alpha_{3}, \alpha_{5}$ are positive and F has two positive roots).

The boundary condition $|\Phi| \longrightarrow r_{0}>0$ at infinity makes the structure of solutions of (1.1) much more complicated than in the usual case of zero boundary conditions (when the associated dynamics is essentially governed by dispersion and scattering).

Using the Madelung transformation $\Phi(x, t)=\sqrt{\rho(x, t)} e^{i \theta(x, t)}$ (which is well-defined whenever $\Phi \neq 0$), equation (1.1) is equivalent to a system of Euler's equations for a compressible inviscid fluid of density ρ and velocity $2 \nabla \theta$. In this context it has been shown that, if F is C^{1} near r_{0}^{2} and $F^{\prime}\left(r_{0}^{2}\right)<0$, the sound velocity at infinity associated to (1.1) is $v_{s}=r_{0} \sqrt{-2 F^{\prime}\left(r_{0}^{2}\right)}$ (see the introduction of [33]).

Equation (1.1) is Hamiltonian: denoting $V(s)=\int_{s}^{r_{0}^{2}} F(\tau) d \tau$, it is easy to see that, at least formally, the "energy"

$$
\begin{equation*}
E(\Phi)=\int_{\mathbf{R}^{N}}|\nabla \Phi|^{2} d x+\int_{\mathbf{R}^{N}} V\left(|\Phi|^{2}\right) d x \tag{1.2}
\end{equation*}
$$

is a conserved quantity.
In a series of papers (see, e.g., [2], [3], [20], [24], [25]), particular attention has been paid to a special class of solutions of (1.1), namely the traveling waves. These are solutions of the form $\Phi(x, t)=\psi(x-c t y)$, where $y \in S^{N-1}$ is the direction of propagation and $c \in \mathbf{R}^{*}$ is the speed of the traveling wave. We say that ψ has finite energy if $\nabla \psi \in L^{2}\left(\mathbf{R}^{N}\right)$ and $\left.V\left(|\psi|^{2}\right) \in L^{1}\left(\mathbf{R}^{N}\right)\right)$. These solutions are supposed to play an important role in the dynamics of (1.1). In view of formal computations and numerical experiments, a list of conjectures, often referred to as the Roberts programme, has been formulated about the existence, the stability and the qualitative properties of traveling waves. The first of these conjectures asserts that finite energy traveling waves of speed c exist if and only if $|c|<v_{s}$.

Let ψ be a finite energy traveling-wave of (1.1) moving with speed c. Without loss of generality we may assume that $y=(1,0, \ldots, 0)$. If $N \geq 3$, it follows that $\psi-z_{0} \in L^{2^{*}}\left(\mathbf{R}^{N}\right)$ for some constant $z_{0} \in \mathbf{C}$, where $2^{*}=\frac{2 N}{N-2}$ (see, e.g., Lemma 7 and Remark 4.2 pp . 774-775 in [17]). Since $|\psi| \longrightarrow r_{0}$ as $|x| \longrightarrow \infty$, necessarily $\left|z_{0}\right|=r_{0}$. If Φ is a solution of (1.1) and $\alpha \in \mathbf{R}$, then $e^{i \alpha} \Phi$ is also a solution; hence we may assume that $z_{0}=r_{0}$, thus $\psi-r_{0} \in L^{2^{*}}\left(\mathbf{R}^{N}\right)$. Denoting $u=r_{0}-\psi$, we see that u satisfies the equation

$$
\begin{equation*}
i c \frac{\partial u}{\partial x_{1}}-\Delta u+F\left(\left|r_{0}-u\right|^{2}\right)\left(r_{0}-u\right)=0 \quad \text { in } \mathbf{R}^{N} . \tag{1.3}
\end{equation*}
$$

It is obvious that a function u satisfies (1.3) for some velocity c if and only if $u\left(-x_{1}, x^{\prime}\right)$ satisfies (1.3) with c replaced by $-c$. Hence it suffices to consider the case $c>0$. This assumption will be made throughout the paper.

In space dimension $N=1$, in many interesting applications equation (1.3) can be integrated explicitly and one obtains traveling waves for all subsonic speeds. The nonexistence of such solutions for supersonic speeds has also been proved under general conditions (cf. Theorem 5.1, p. 1099 in [33]).

Despite of many attempts, a rigorous proof of the existence of traveling waves in higher dimensions has been a long lasting problem. In the particular case of the Gross-Pitaevskii (GP) equation, this problem was considered in a series of papers. In space dimension $N=2$, the existence of traveling waves has been proved in [7] for all speeds in some interval $(0, \varepsilon)$, where ε is small. In space dimension $N \geq 3$, the existence has been proved in [6] for a sequence of speeds $c_{n} \longrightarrow 0$ by using constrained minimization; a similar result has been established in [11] for all sufficiently small speeds by using a mountain-pass argument. In a recent paper [5], the existence of traveling waves for (GP) has been proved in space dimension $N=2$ and $N=3$ for any speed in a set $A \subset\left(0, v_{s}\right)$. If $N=2, A$ contains points arbitrarily close to 0 and to v_{s} (although it is not clear that $A=\left(0, v_{s}\right)$), while in dimension $N=3$ we have $A \subset\left(0, v_{0}\right)$, where $v_{0}<v_{s}$ and $0, v_{0}$ are limit points of A. The traveling waves are obtained in [5] by minimizing the energy at fixed momentum (see the next section for the definition of the momentum) and the propagation speed is the Lagrange multiplier associated to minimizers. In the case of cubic-quintic type nonlinearities, it has been proved in [31] that traveling waves exist for any sufficiently small speed if $N \geq 4$. To our knowledge, even for specific nonlinearities there are no existence results in the literature that cover the whole range $\left(0, v_{s}\right)$ of possible speeds.

The nonexistence of traveling waves for supersonic speeds $\left(c>v_{s}\right)$ has been proved in [21] in the case of the Gross-Pitaevskii equation, respectively in [33] for a large class of nonlinearities.

The aim of this paper is to prove the existence of finite energy traveling waves of (1.1) in space dimension $N \geq 3$, under general conditions on the nonlinearity F and for any speed $c \in\left(-v_{s}, v_{s}\right)$.

We will consider the following set of assumptions:
A1. The function F is continuous on $[0, \infty), C^{1}$ in a neighborhood of $r_{0}^{2}, F\left(r_{0}^{2}\right)=0$ and $F^{\prime}\left(r_{0}^{2}\right)<0$.

A2. There exist $C>0$ and $p_{0}<\frac{2}{N-2}$ such that $|F(s)| \leq C\left(1+s^{p_{0}}\right)$ for any $s \geq 0$.
A3. There exist $C, \alpha_{0}>0$ and $r_{*}>r_{0}$ such that $F(s) \leq-C s^{\alpha_{0}}$ for any $s \geq r_{*}$.
If (A1) is satisfied, we denote $V(s)=\int_{s}^{r_{0}^{2}} F(\tau) d \tau$ and $a=\sqrt{-\frac{1}{2} F^{\prime}\left(r_{0}^{2}\right)}$. Then the sound velocity at infinity associated to (1.1) is $v_{s}=2 a r_{0}$ and using Taylor's formula for s in a neighborhood of r_{0}^{2} we have

$$
\begin{equation*}
V(s)=\frac{1}{2} V^{\prime \prime}\left(r_{0}^{2}\right)\left(s-r_{0}^{2}\right)^{2}+\left(s-r_{0}^{2}\right)^{2} \varepsilon\left(s-r_{0}^{2}\right)=a^{2}\left(s-r_{0}^{2}\right)^{2}+\left(s-r_{0}^{2}\right)^{2} \varepsilon\left(s-r_{0}^{2}\right) \tag{1.4}
\end{equation*}
$$

where $\varepsilon(t) \longrightarrow 0$ as $t \longrightarrow 0$. Hence for $|\psi|$ close to $r_{0}, V\left(|\psi|^{2}\right)$ can be approximated by $a^{2}\left(|\psi|^{2}-\right.$ $\left.r_{0}^{2}\right)^{2}$.

We fix an odd function $\varphi \in C^{\infty}(\mathbf{R})$ such that $\varphi(s)=s$ for $s \in\left[0,2 r_{0}\right], 0 \leq \varphi^{\prime} \leq 1$ on \mathbf{R} and $\varphi(s)=3 r_{0}$ for $s \geq 4 r_{0}$. We denote $W(s)=V(s)-V\left(\varphi^{2}(\sqrt{s})\right)$, so that $W(s)=0$ for $s \in\left[0,4 r_{0}^{2}\right]$. If assumptions (A1) and (A2) are satisfied, it is not hard to see that there exist $C_{1}, C_{2}, C_{3}>0$ such that

$$
\begin{gather*}
|V(s)| \leq C_{1}\left(s-r_{0}^{2}\right)^{2} \quad \text { for any } s \leq 9 r_{0}^{2} \tag{1.5}\\
\text { in particular, }\left|V\left(\varphi^{2}(\tau)\right)\right| \leq C_{1}\left(\varphi^{2}(\tau)-r_{0}^{2}\right)^{2} \text { for any } \tau \\
|V(b)-V(a)| \leq C_{2}|b-a| \max \left(a^{p_{0}}, b^{p_{0}}\right) \quad \text { for any } a, b \geq 2 r_{0}^{2} \tag{1.6}\\
\left|W\left(b^{2}\right)-W\left(a^{2}\right)\right| \leq C_{3}|b-a|\left(a^{2 p_{0}+1} \mathbb{1}_{\left\{a>2 r_{0}\right\}}+b^{2 p_{0}+1} \mathbb{1}_{\left\{b>2 r_{0}\right\}}\right) \quad \text { for any } a, b \geq 0 \tag{1.7}
\end{gather*}
$$

Given $u \in H_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ and Ω an open set in \mathbf{R}^{N}, the modified Ginzburg-Landau energy of u in Ω is defined by

$$
\begin{equation*}
E_{G L}^{\Omega}(u)=\int_{\Omega}|\nabla u|^{2} d x+a^{2} \int_{\Omega}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x \tag{1.8}
\end{equation*}
$$

We simply write $E_{G L}(u)$ instead of $E_{G L}^{\mathbf{R}^{N}}(u)$. The modified Ginzburg-Landau energy will play a central role in our analysis. We consider the function space

$$
\begin{align*}
\mathcal{X} & =\left\{u \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right) \mid \varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2} \in L^{2}\left(\mathbf{R}^{N}\right)\right\} \\
& =\left\{u \in \dot{H}^{1}\left(\mathbf{R}^{N}\right) \mid u \in L^{2^{*}}\left(\mathbf{R}^{N}\right), E_{G L}(u)<\infty\right\} \tag{1.9}
\end{align*}
$$

where $\mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$ is the completion of C_{c}^{∞} for the norm $\|v\|=\|\nabla v\|_{L^{2}}$. If $N \geq 3$ and (A1), (A2) are satisfied, it is not hard to see that a function u has finite energy if and only if $u \in \mathcal{X}$ (see Lemma 4.1 below). Note that for $N=3, \mathcal{X}$ is not a vector space. However, in any space dimension we have $H^{1}\left(\mathbf{R}^{N}\right) \subset \mathcal{X}$. If $u \in \mathcal{X}$, it is easy to see that for any $w \in H^{1}\left(\mathbf{R}^{N}\right)$ with compact support we have $u+w \in \mathcal{X}$. For $N=3,4$ it can be proved that $u \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$ belongs to \mathcal{X} if and only if $\left|r_{0}-u\right|^{2}-r_{0}^{2} \in L^{2}\left(\mathbf{R}^{N}\right)$, and consequently \mathcal{X} coincides with the space $F_{r_{0}}$ introduced by P. Gérard in [17], section 4 . It has been proved in [17] that the Cauchy problem for the Gross-Pitaevskii equation is globally well-posed in \mathcal{X} in dimension $N=3$, respectively it is globally well-posed for small initial data if $N=4$.

Our main results can be summarized as follows:

Theorem 1.1 Assume that $N \geq 3,0<c<v_{s}$, (A1) and one of the conditions (A2) or (A3) are satisfied. Then equation (1.3) admits a nontrivial solution $u \in \mathcal{X}$. Moreover, $u \in$ $W_{\text {loc }}^{2, p}\left(\mathbf{R}^{N}\right)$ for any $p \in[1, \infty)$ and, after a translation, u is axially symmetric with respect to $O x_{1}$.

At least formally, solutions of (1.3) are critical points of the functional

$$
E_{c}(u)=\int_{\mathbf{R}^{N}}|\nabla u|^{2} d x+c Q(u)+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x
$$

where Q is the momentum with respect to the x_{1}-direction (the functional Q will be defined in the next section). If the assumptins (A1) and (A2) above are satisfied, it can be proved (see Proposition 4.1 p. 1091-1092 in [33]) that any traveling wave $u \in \mathcal{X}$ of (1.1) must satisfy a Pohozaev-type identity $P_{c}(u)=0$, where

$$
P_{c}(u)=\int_{\mathbf{R}^{N}}\left|\frac{\partial u}{\partial x_{1}}\right|^{2}+\frac{N-3}{N-1} \sum_{k=2}^{N}\left|\frac{\partial u}{\partial x_{k}}\right|^{2} d x+c Q(u)+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x
$$

We will prove the existence of traveling waves by showing that the problem of minimizing E_{c} in the set $\left\{u \in \mathcal{X} \mid u \neq 0, P_{c}(u)=0\right\}$ admits solutions. Then we show that any minimizer satisfies (1.3) if $N \geq 4$, respectively any minimizer satisfies (1.3) after a scaling in the last two variables if $N=3$.

In space dimension $N=2$, the situation is different: if (A1) is true and (A2) holds for some $p_{0}<\infty$, any solution $u \in \mathcal{X}$ of (1.3) still satisfies the identity $P_{c}(u)=0$, but it can be proved that there are no minimizers of E_{c} subject to the constraint $P_{c}=0$ (in fact, we have $\left.\inf \left\{E_{c}(u) \mid u \in \mathcal{X}, u \neq 0, P_{c}(u)=0\right\}=0\right)$. However, using a different aproach it is still possible to show the existence of traveling waves in the case $N=2$, at least for a set of speeds that contains elements arbitrarily close to zero and to v_{s} (and this will be done in a forthcoming paper). Although some of the results in sections $2-4$ are still valid in space dimension $N=2$ (with straightforward modifications in proofs), for simplicity we assume throughout that $N \geq 3$.

It is easy to see that it suffices to prove Theorem 1.1 only in the case where (A1) and (A2) are satisfied. Indeed, suppose that Theorem 1.1 holds if (A1) and (A2) are true. Assume that (A1) and (A3) are satisfied. Let C, r_{*}, α_{0} be as in (A3). There exist $\beta \in\left(0, \frac{2}{N-1}\right), \tilde{r}>r_{*}$, and $C_{1}>0$ such that

$$
C s^{2 \alpha_{0}}-\frac{v_{s}^{2}}{4} \geq C_{1}(s-\tilde{r})^{2 \beta} \quad \text { for any } s \geq \tilde{r}
$$

Let \tilde{F} be a function with the following properties: $F=\tilde{F}$ on $\left[0,4 \tilde{r}^{2}\right], \tilde{F}(s)=-C_{2} s^{\beta}$ for s sufficiently large, and $\tilde{F}\left(s^{2}\right)+\frac{v_{s}^{2}}{4} \leq-C_{3}(s-\tilde{r})^{2 \beta}$ for any $s \geq \tilde{r}$, where C_{2}, C_{3} are some positive constants. Then \tilde{F} satisfies (A1), (A2), (A3) and from Theorem 1.1 it follows that equation (1.3) with \tilde{F} instead of F has nontrivial solutions $u \in \mathcal{X}$. From the proof of Proposition 2.2 (i) p. 1079-1080 in [33] it follows that any such solution satisfies $\left|r_{0}-u\right|^{2} \leq 2 \tilde{r}^{2}$, and consequently $F\left(\left|r_{0}-u\right|^{2}\right)=\tilde{F}\left(\left|r_{0}-u\right|^{2}\right)$. Thus u satisfies (1.3). Of course, if (A1) and (A3) are satisfied but (A2) does not hold, we do not claim that the solutions of (1.3) obtained as above are still minimizers of E_{c} subject to the constraint $P_{c}=0$ (in fact, only assumptions (A1) and (A3) do not imply that E_{c} and P_{c} are well-defined on \mathcal{X} and that the minimization problem makes sense).

In particular, for $F(s)=1-s$ the conditions (A1) and (A3) are satisfied and it follows that the Gross-Pitaevskii equation admits traveling waves of finite energy in any space dimension
$N \geq 3$ and for any speed $c \in\left(0, v_{s}\right)$ (although (A2) is not true for $N>3$: the (GP) equation is critical if $N=4$, and supercritical if $N \geq 5$). A similar result holds for the cubic-quintic NLS.

We have to mention that, according to the properties of F, for $c=0$ equation (1.3) may or not have finite energy solutions. For instance, it is an easy consequence of the Pohozaev identities that all finite energy stationary solutions of the Gross-Pitaevskii equation are constant. On the contrary, for nonlinearities of cubic-quintic type the existence of finite energy stationary solutions has been proved in [13] under fairly general assumptions on F. In the case $c=0$, our proofs imply that E_{0} has a minimizer in the set $\left\{u \in \mathcal{X} \mid u \neq 0, P_{0}(u)=0\right\}$ whenever this set is not empty. Then it is not hard to prove that minimizers satisfy (1.3) for $c=0$ (modulo a scale change if $N=3$). However, for simplicity we assume throughout (unless the contrary is explicitly mentioned) that $0<c<v_{s}$.

This paper is organized as follows. In the next section we give a convenient definition of the momentum and we study the properties of this functional.

In section 3 we introduce a regularization procedure for functions in \mathcal{X} which will be a key tool for all the variational machinery developed later.

In section 4 we describe the variational framework. In particular, we prove that the set $\mathcal{C}=\left\{u \in \mathcal{X} \mid u \neq 0, P_{c}(u)=0\right\}$ is not empty and we have $\inf \left\{E_{c}(u) \mid u \in \mathcal{C}\right\}>0$.

In section 5 we consider the case $N \geq 4$ and we prove that the functional E_{c} has minimizers in \mathcal{C} and these minimizers are solutions of (1.3). To show the existence of minimizers we use the concentration-compactness principle and the regularization procedure developed in section 3. Then we use the Pohozaev identities to control the Lagrange multiplier associated to the minimization problem.

Although the results in space dimension $N=3$ are similar to those in higher dimensions (with one exception: not all minimizers of E_{c} in \mathcal{C} are solutions of (1.3), as one can easily see by scaling), it turns out that the proofs are quite different. We treat the case $N=3$ in section 6 .

Finally, we prove that traveling waves found by minimization in sections 5 and 6 are axially symmetric (as one would expect from physical considerations, see [24]).

Throughout the paper, \mathcal{L}^{N} is the Lebesgue measure on \mathbf{R}^{N}. For $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbf{R}^{N}$, we denote $x^{\prime}=\left(x_{2}, \ldots, x_{N}\right) \in \mathbf{R}^{N-1}$. We write $\left\langle z_{1}, z_{2}\right\rangle$ for the scalar product of two complex numbers z_{1}, z_{2}. Given a function f defined on \mathbf{R}^{N} and $\lambda, \sigma>0$, we denote by

$$
\begin{equation*}
f_{\lambda, \sigma}=f\left(\frac{x_{1}}{\lambda}, \frac{x^{\prime}}{\sigma}\right) \tag{1.10}
\end{equation*}
$$

the dilations of f. The behavior of functions and of functionals with respect to dilations in \mathbf{R}^{N} will be very important. For $1 \leq p<N$, we denote by p^{*} the Sobolev exponent associated to p, that is $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{N}$.

2 The momentum

A good definition of the momentum is essential in any attempt to find solutions of (1.3) by using a variational approach. Roughly speaking, the momentum (with respect to the x_{1}-direction) should be a functional with derivative $2 i u_{x_{1}}$. Various definitions have been given in the literature (see [7], [5], [6], [31]), any of them having its advantages and its inconvenients. Unfortunately, none of them is valid for all functions in \mathcal{X}. We propose a new and more general definition in this section.

It is clear that for functions $u \in H^{1}\left(\mathbf{R}^{N}\right)$, the momentum should be given by

$$
\begin{equation*}
Q_{1}(u)=\int_{\mathbf{R}^{N}}\left\langle i u_{x_{1}}, u\right\rangle d x \tag{2.1}
\end{equation*}
$$

and this is indeed a nice functional on $H^{1}\left(\mathbf{R}^{N}\right)$. The problem is that there are functions $u \in \mathcal{X} \backslash H^{1}\left(\mathbf{R}^{N}\right)$ such that $\left\langle i u_{x_{1}}, u\right\rangle \notin L^{1}\left(\mathbf{R}^{N}\right)$.

If $u \in \mathcal{X}$ is such that $r_{0}-u$ admits a lifting $r_{0}-u=\rho e^{i \theta}$, a formal computation gives

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left\langle i u_{x_{1}}, u\right\rangle d x=-\int_{\mathbf{R}^{N}} \rho^{2} \theta_{x_{1}} d x=-\int_{\mathbf{R}^{N}}\left(\rho^{2}-r_{0}^{2}\right) \theta_{x_{1}} d x . \tag{2.2}
\end{equation*}
$$

It is not hard to see that if $u \in \mathcal{X}$ is as above, then $\left(\rho^{2}-r_{0}^{2}\right) \theta_{x_{1}} \in L^{1}\left(\mathbf{R}^{N}\right)$. However, there are many "interesting" functions $u \in \mathcal{X}$ such that $r_{0}-u$ does not admit a lifting.

Our aim is to define the momentum on \mathcal{X} in such a way that it agrees with (2.1) for functions in $H^{1}\left(\mathbf{R}^{N}\right)$ and with (2.2) when a lifting as above exists.

Lemma 2.1 Let $u \in \mathcal{X}$ be such that $m \leq\left|r_{0}-u(x)\right| \leq 2 r_{0}$ a.e. on \mathbf{R}^{N}, where $m>0$. There exist two real-valued functions ρ, θ such that $\rho-r_{0} \in H^{1}\left(\mathbf{R}^{N}\right), \theta \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right), r_{0}-u=\rho e^{i \theta}$ a.e. on \mathbf{R}^{N} and

$$
\begin{equation*}
\left\langle i u_{x_{1}}, u\right\rangle=-r_{0} \frac{\partial}{\partial x_{1}}\left(\operatorname{Im}(u)+r_{0} \theta\right)-\left(\rho^{2}-r_{0}^{2}\right) \frac{\partial \theta}{\partial x_{1}} \quad \text { a.e. on } \mathbf{R}^{N} . \tag{2.3}
\end{equation*}
$$

Moreover, we have $\int_{\mathbf{R}^{N}}\left|\left(\rho^{2}-r_{0}^{2}\right) \theta_{x_{1}}\right| d x \leq \frac{1}{2 a m} E_{G L}(u)$.
Proof. Since $r_{0}-u \in H_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, the fact that there exist $\rho, \theta \in H_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ such that $r_{0}-u=\rho e^{i \theta}$ a.e. is standard and follows from Theorem 3 p. 38 in [9]. We have

$$
\begin{equation*}
\left|\frac{\partial u}{\partial x_{j}}\right|^{2}=\left|\frac{\partial \rho}{\partial x_{j}}\right|^{2}+\rho^{2}\left|\frac{\partial \theta}{\partial x_{j}}\right|^{2} \quad \text { a.e. on } \mathbf{R}^{N} \text { for } j=1, \ldots, N \text {. } \tag{2.4}
\end{equation*}
$$

Since $\rho=\left|r_{0}-u\right| \geq m$ a.e., it follows that $\nabla \rho, \nabla \theta \in L^{2}\left(\mathbf{R}^{N}\right)$. If $N \geq 3$, we infer that there exist $\rho_{0}, \theta_{0} \in \mathbf{R}$ such that $\rho-\rho_{0}$ and $\theta-\theta_{0}$ belong to $L^{2^{*}}\left(\mathbf{R}^{N}\right)$. Then it is not hard to see that $\rho_{0}=r_{0}$ and $\theta_{0}=2 k_{0} \pi$, where $k_{0} \in \mathbf{Z}$. Replacing θ by $\theta-2 k_{0} \pi$, we have $\rho-r_{0}, \theta \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$. Since $\rho \leq 2 r_{0}$ a.e., we have $\rho^{2}-r_{0}^{2}=\varphi\left(\left|r_{0}-u\right|^{2}\right)-r_{0}^{2} \in L^{2}\left(\mathbf{R}^{N}\right)$ because $u \in \mathcal{X}$. Clearly $\left|\rho-r_{0}\right|=\frac{\left|\rho^{2}-r_{0}^{2}\right|}{\rho+r_{0}} \leq \frac{1}{r_{0}}\left|\rho^{2}-r_{0}^{2}\right|$, hence $\rho-r_{0} \in L^{2}\left(\mathbf{R}^{N}\right)$.

A straightforward computation gives

$$
\left\langle i u_{x_{1}}, u\right\rangle=\left\langle i u_{x_{1}}, r_{0}\right\rangle-\rho^{2} \theta_{x_{1}}=-r_{0} \frac{\partial}{\partial x_{1}}\left(\operatorname{Im}(u)+r_{0} \theta\right)-\left(\rho^{2}-r_{0}^{2}\right) \frac{\partial \theta}{\partial x_{1}} .
$$

By (2.4) we have $\left|\frac{\partial \theta}{\partial x_{j}}\right| \leq \frac{1}{\rho}\left|\frac{\partial u}{\partial x_{j}}\right| \leq \frac{1}{m}\left|\frac{\partial u}{\partial x_{j}}\right|$ and the Cauchy-Schwarz inequality gives

$$
\int_{\mathbf{R}^{N}}\left|\left(\rho^{2}-r_{0}^{2}\right) \theta_{x_{1}}\right| d x \leq\left\|\rho^{2}-r_{0}^{2}\right\|_{L^{2}}\left\|\theta_{x_{1}}\right\|_{L^{2}} \leq \frac{1}{m}\left\|\rho^{2}-r_{0}^{2}\right\|_{L^{2}}\left\|u_{x_{1}}\right\|_{L^{2}} \leq \frac{1}{2 a m} E_{G L}(u) .
$$

Lemma 2.2 Let $\chi \in C_{c}^{\infty}(\mathbf{C}, \mathbf{R})$ be a function such that $\chi=1$ on $B\left(0, \frac{r_{0}}{4}\right), 0 \leq \chi \leq 1$ and $\operatorname{supp}(\chi) \subset B\left(0, \frac{r_{0}}{2}\right)$. For an arbitrary $u \in \mathcal{X}$, denote $u_{1}=\chi(u) u$ and $u_{2}=(1-\chi(u)) u$. Then $u_{1} \in \mathcal{X}, u_{2} \in H^{1}\left(\mathbf{R}^{N}\right)$ and the following estimates hold:

$$
\begin{align*}
& \left|\nabla u_{i}\right| \leq C|\nabla u| \quad \text { a.e. on } \mathbf{R}^{N}, i=1,2, \text { wehere } C \text { depends only on } \chi, \tag{2.5}\\
& \left\|u_{2}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq C_{1}\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{\frac{2^{*}}{2}} \text { and }\left\|\left(1-\chi^{2}(u)\right) u\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq C_{1}\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{\frac{2^{*}}{2}},
\end{align*}
$$

$$
\begin{gather*}
\int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u_{1}\right|\right)-r_{0}^{2}\right)^{2} d x \leq \int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x+C_{2}\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2^{*}} \tag{2.7}\\
\int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u_{2}\right|\right)-r_{0}^{2}\right)^{2} d x \leq C_{2}\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2^{*}} \tag{2.8}
\end{gather*}
$$

Let $r_{0}-u_{1}=\rho e^{i \theta}$ be the lifting of $r_{0}-u_{1}$, as given by Lemma 2.1. Then we have

$$
\begin{equation*}
\left\langle i u_{x_{1}}, u\right\rangle=\left(1-\chi^{2}(u)\right)\left\langle i u_{x_{1}}, u\right\rangle-\left(\rho^{2}-r_{0}^{2}\right) \frac{\partial \theta}{\partial x_{1}}-r_{0} \frac{\partial}{\partial x_{1}}\left(\operatorname{Im}\left(u_{1}\right)+r_{0} \theta\right) \tag{2.9}
\end{equation*}
$$

a.e. on \mathbf{R}^{N}.

Proof. Since $\left|u_{i}\right| \leq|u|$, we have $u_{i} \in L^{2^{*}}\left(\mathbf{R}^{N}\right), i=1,2$. It is standard to prove that $u_{i} \in H_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ (see, e.g., Lemma C1 p. 66 in [9]) and we have

$$
\begin{equation*}
\frac{\partial u_{1}}{\partial x_{j}}=\left(\partial_{1} \chi(u) \frac{\partial(\operatorname{Re}(u))}{\partial x_{j}}+\partial_{2} \chi(u) \frac{\partial(\operatorname{Im}(u))}{\partial x_{j}}\right) u+\chi(u) \frac{\partial u}{\partial x_{j}} \tag{2.10}
\end{equation*}
$$

A similar formula holds for u_{2}. Since the functions $z \longmapsto \partial_{i} \chi(z) z, i=1,2$, are bounded on \mathbf{C}, (2.5) follows immediately from (2.10).

Using the Sobolev embedding we have

$$
\left\|u_{2}\right\|_{L^{2}}^{2} \leq \int_{\mathbf{R}^{N}}|u|^{2} \mathbb{1}_{\left\{|u|>\frac{r_{0}}{4}\right\}}(x) d x \leq\left(\frac{4}{r_{0}}\right)^{2^{*}-2} \int_{\mathbf{R}^{N}}|u|^{2^{*}} \mathbb{1}_{\left\{|u|>\frac{r_{0}}{4}\right\}}(x) d x \leq C_{1}\|\nabla u\|_{L^{2}}^{2^{*}}
$$

This gives the first estimate in (2.6); the second one is similar.
For $|u| \leq \frac{r_{0}}{4}$ we have $u_{1}(x)=u(x)$, hence

$$
\int_{\left\{|u| \leq \frac{r_{0}}{4}\right\}}\left(\varphi^{2}\left(\left|r_{0}-u_{1}\right|\right)-r_{0}^{2}\right)^{2} d x=\int_{\left\{|u| \leq \frac{r_{0}}{4}\right\}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x
$$

There exists $C^{\prime}>0$ such that $\left(\varphi^{2}\left(\left|r_{0}-z\right|\right)-r_{0}^{2}\right)^{2} \leq C^{\prime}|z|^{2}$ if $|z| \geq \frac{r_{0}}{4}$. Proceeding as in the proof of (2.6) we have for $i=1,2$

$$
\int_{\left\{|u|>\frac{r_{0}}{4}\right\}}\left(\varphi^{2}\left(\left|r_{0}-u_{i}\right|\right)-r_{0}^{2}\right)^{2} d x \leq C^{\prime} \int_{\left\{|u|>\frac{r_{0}}{4}\right\}}\left|u_{i}\right|^{2} d x \leq C_{2}\|\nabla u\|_{L^{2}}^{2^{*}}
$$

This clearly implies (2.7) and (2.8).
Since $\partial_{1} \chi(u) \frac{\partial(\operatorname{Re}(u))}{\partial x_{j}}+\partial_{2} \chi(u) \frac{\partial(\operatorname{Im}(u))}{\partial x_{j}} \in \mathbf{R}$, using (2.10) we see that $\left\langle i \frac{\partial u_{1}}{\partial x_{1}}, u_{1}\right\rangle=\chi^{2}(u)\left\langle i u_{x_{1}}, u\right\rangle$ a.e. on \mathbf{R}. Then (2.9) follows from Lemma 2.1.

We consider the space $\mathcal{Y}=\left\{\partial_{x_{1}} \phi \mid \phi \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)\right\}$. It is clear that $\phi_{1}, \phi_{2} \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$ and $\partial_{x_{1}} \phi_{1}=\partial_{x_{1}} \phi_{2}$ imply $\phi_{1}=\phi_{2}$. Defining

$$
\left\|\partial_{x_{1}} \phi\right\| \mathcal{Y}=\|\phi\|_{\mathcal{D}^{1,2}}=\|\nabla \phi\|_{L^{2}\left(\mathbf{R}^{N}\right)}
$$

it is easy to see that $\|\cdot\|_{\mathcal{Y}}$ is a norm on \mathcal{Y} and $\left(\mathcal{Y},\|\cdot\|_{\mathcal{Y}}\right)$ is a Banach space. The following holds.
Lemma 2.3 For any $v \in L^{1}\left(\mathbf{R}^{N}\right) \cap \mathcal{Y}$ we have $\int_{\mathbf{R}^{N}} v(x) d x=0$.

Proof. Let $\phi \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$ be such that $v=\partial_{x_{1}} \phi$. Then $\phi \in \mathcal{S}^{\prime}\left(\mathbf{R}^{N}\right)$ and $|\xi| \widehat{\phi} \in L^{2}\left(\mathbf{R}^{N}\right)$. Hence $\widehat{\phi} \in L_{l o c}^{1}\left(\mathbf{R}^{N} \backslash\{0\}\right)$. On the other hand we have $v=\partial_{x_{1}} \phi \in L^{1} \cap L^{2}\left(\mathbf{R}^{N}\right)$ by hypothesis, hence $\widehat{v}=i \xi_{1} \widehat{\phi} \in L^{2} \cap C_{b}^{0}\left(\mathbf{R}^{N}\right)$.

We prove that $\widehat{v}(0)=0$. We argue by contradiction and assume that $\widehat{v}(0) \neq 0$. By continuity, there exists $m>0$ and $\varepsilon>0$ such that $|\widehat{v}(\xi)| \geq m$ for $|\xi| \leq \varepsilon$. For $j=2, \ldots N$ we get

$$
\left|i \xi_{j} \widehat{\phi}(\xi)\right| \geq \frac{\left|\xi_{j}\right|}{\left|\xi_{1}\right|}|\widehat{v}(\xi)| \geq m \frac{\left|\xi_{j}\right|}{\left|\xi_{1}\right|} \quad \text { for a.e. } \xi \in B(0, \varepsilon)
$$

But this contradicts the fact that $i \xi_{j} \widehat{\phi} \in L^{2}\left(\mathbf{R}^{N}\right)$. Thus necessarily $\widehat{v}(0)=0$ and this is exactly the conclusion of Lemma 2.3.

It is obvious that $L_{1}(v)=\int_{\mathbf{R}^{N}} v(x) d x$ and $L_{2}(w)=0$ are continuous linear forms on $L^{1}\left(\mathbf{R}^{N}\right)$ and on \mathcal{Y}, respectively. Moreover, by Lemma 2.3 we have $L_{1}=L_{2}$ on $L^{1}\left(\mathbf{R}^{N}\right) \cap \mathcal{Y}$. Putting

$$
\begin{equation*}
L(v+w)=L_{1}(v)+L_{2}(w)=\int_{\mathbf{R}^{N}} v(x) d x \quad \text { for } v \in L^{1}\left(\mathbf{R}^{N}\right) \text { and } w \in \mathcal{Y} \tag{2.11}
\end{equation*}
$$

we see that L is well-defined and is a continuous linear form on $L^{1}\left(\mathbf{R}^{N}\right)+\mathcal{Y}$.
It follows from (2.9) and Lemmas 2.1 and 2.2 that for any $u \in \mathcal{X}$ we have $\left\langle i u_{x_{1}}, u\right\rangle \in$ $L^{1}\left(\mathbf{R}^{N}\right)+\mathcal{Y}$. This enables us to give the following

Definition 2.4 Given $u \in \mathcal{X}$, the momentum of u (with respect to the x_{1}-direction) is

$$
Q(u)=L\left(\left\langle i u_{x_{1}}, u\right\rangle\right)
$$

If $u \in \mathcal{X}$ and $\chi, u_{1}, u_{2}, \rho, \theta$ are as in Lemma 2.2, from (2.9) we get

$$
\begin{equation*}
Q(u)=\int_{\mathbf{R}^{N}}\left(1-\chi^{2}(u)\right)\left\langle i u_{x_{1}}, u\right\rangle-\left(\rho^{2}-r_{0}^{2}\right) \theta_{x_{1}} d x \tag{2.12}
\end{equation*}
$$

It is easy to check that the right-hand side of (2.12) does not depend on the choice of the cut-off function χ, provided that χ is as in Lemma 2.2.

It follows directly from (2.12) that the functional Q has a nice behavior with respect to dilations in \mathbf{R}^{N} : for any $u \in \mathcal{X}$ and $\lambda, \sigma>0$ we have

$$
\begin{equation*}
Q\left(u_{\lambda, \sigma}\right)=\sigma^{N-1} Q(u) \tag{2.13}
\end{equation*}
$$

The next lemma will enable us to perform "integrations by parts".
Lemma 2.5 For any $u \in \mathcal{X}$ and $w \in H^{1}\left(\mathbf{R}^{N}\right)$ we have $\left\langle i u_{x_{1}}, w\right\rangle \in L^{1}\left(\mathbf{R}^{N}\right),\left\langle i u, w_{x_{1}}\right\rangle \in$ $L^{1}\left(\mathbf{R}^{N}\right)+\mathcal{Y}$ and

$$
\begin{equation*}
L\left(\left\langle i u_{x_{1}}, w\right\rangle+\left\langle i u, w_{x_{1}}\right\rangle\right)=0 \tag{2.14}
\end{equation*}
$$

Proof.
Since $w, u_{x_{1}} \in L^{2}\left(\mathbf{R}^{N}\right)$, the Cauchy-Schwarz inequality implies $\left\langle i u_{x_{1}}, w\right\rangle \in L^{1}\left(\mathbf{R}^{N}\right)$.
Let χ, u_{1}, u_{2} be as in Lemma 2.2 and denote $w_{1}=\chi(w) w$, $w_{2}=(1-\chi(w)) w$. Then $u=u_{1}+u_{2}, w=w_{1}+w_{2}$ and it follows from Lemma 2.2 that $u_{1} \in \mathcal{X} \cap L^{\infty}\left(\mathbf{R}^{N}\right)$ and $u_{2}, w_{1}, w_{2} \in H^{1}\left(\mathbf{R}^{N}\right)$.

As above we have $\left\langle i \frac{\partial u_{2}}{\partial x_{1}}, w\right\rangle,\left\langle i u_{2}, \frac{\partial w}{\partial x_{1}}\right\rangle \in L^{1}\left(\mathbf{R}^{N}\right)$ by the Cauchy-Schwarz inequality. The standard integration by parts formula for functions in $H^{1}\left(\mathbf{R}^{N}\right)$ (see, e.g., [8], p. 197) gives

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left\langle i \frac{\partial u_{2}}{\partial x_{1}}, w\right\rangle+\left\langle i u_{2}, \frac{\partial w}{\partial x_{1}}\right\rangle d x=0 . \tag{2.15}
\end{equation*}
$$

Since $u_{1} \in \mathcal{D}^{1,2} \cap L^{\infty}\left(\mathbf{R}^{N}\right)$ and $w_{1} \in H^{1} \cap L^{\infty}\left(\mathbf{R}^{N}\right)$, it is standard to prove that $\left\langle i u_{1}, w_{1}\right\rangle \in$ $\mathcal{D}^{1,2} \cap L^{\infty}\left(\mathbf{R}^{N}\right)$ and

$$
\begin{equation*}
\left\langle i \frac{\partial u_{1}}{\partial x_{1}}, w_{1}\right\rangle+\left\langle i u_{1}, \frac{\partial w_{1}}{\partial x_{1}}\right\rangle=\frac{\partial}{\partial x_{1}}\left\langle i u_{1}, w_{1}\right\rangle \quad \text { a.e. on } \mathbf{R}^{N} \tag{2.16}
\end{equation*}
$$

Let $A_{w}=\left\{x \in \mathbf{R}^{N}| | w(x) \left\lvert\, \geq \frac{r_{0}}{4}\right.\right\}$. We have $\left(\frac{r_{0}}{4}\right)^{2} \mathcal{L}^{N}\left(A_{w}\right) \leq \int_{A_{w}}|w|^{2} d x \leq\|w\|_{L^{2}}^{2}$, and consequently A_{w} has finite measure. It is clear that $w_{2}=0$ and $\nabla w_{2}=0$ a.e. on $\mathbf{R}^{N} \backslash A_{w}$. Since $w_{2} \in L^{2^{*}}\left(\mathbf{R}^{N}\right)$ and $\nabla w_{2} \in L^{2}\left(\mathbf{R}^{N}\right)$, we infer that $w_{2} \in L^{1} \cap L^{2^{*}}\left(\mathbf{R}^{N}\right)$ and $\nabla w_{2} \in L^{1} \cap L^{2}\left(\mathbf{R}^{N}\right)$. Together with the fact that $u_{1} \in L^{2^{*}} \cap L^{\infty}\left(\mathbf{R}^{N}\right)$ and $\nabla u_{1} \in L^{2}\left(\mathbf{R}^{N}\right)$, this gives $\left\langle i u_{1}, w_{2}\right\rangle \in L^{1} \cap L^{2^{*}}\left(\mathbf{R}^{N}\right)$ and

$$
\left\langle i \frac{\partial u_{1}}{\partial x_{j}}, w_{2}\right\rangle \in L^{1} \cap L^{\frac{N}{N-1}}\left(\mathbf{R}^{N}\right), \quad\left\langle i u_{1}, \frac{\partial w_{2}}{\partial x_{j}}\right\rangle \in L^{1} \cap L^{2}\left(\mathbf{R}^{N}\right) \quad \text { for } j=1, \ldots, N
$$

It is easy to see that $\frac{\partial}{\partial x_{j}}\left\langle i u_{1}, w_{2}\right\rangle=\left\langle i \frac{\partial u_{1}}{\partial x_{j}}, w_{2}\right\rangle+\left\langle i u_{1}, \frac{\partial w_{2}}{\partial x_{j}}\right\rangle$ in $\mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right)$. From the above we infer that $\left\langle i u_{1}, w_{2}\right\rangle \in W^{1,1}\left(\mathbf{R}^{N}\right)$. It is obvious that $\int_{\mathbf{R}^{N}} \frac{\partial \psi}{\partial x_{j}} d x=0$ for any $\psi \in W^{1,1}\left(\mathbf{R}^{N}\right)$ (indeed, let $\left(\psi_{n}\right)_{n \geq 1} \subset C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$ be a sequence such that $\psi_{n} \longrightarrow \psi$ in $W^{1,1}\left(\mathbf{R}^{N}\right)$ as $n \longrightarrow \infty$; then $\int_{\mathbf{R}^{N}} \frac{\partial \psi_{n}}{\partial x_{j}} d x=0$ for each n and $\int_{\mathbf{R}^{N}} \frac{\partial \psi_{n}}{\partial x_{j}} d x \longrightarrow \int_{\mathbf{R}^{N}} \frac{\partial \psi}{\partial x_{j}} d x$ as $\left.n \longrightarrow \infty\right)$. Thus we have $\left\langle i \frac{\partial u_{1}}{\partial x_{1}}, w_{2}\right\rangle,\left\langle i u_{1}, \frac{\partial w_{2}}{\partial x_{1}}\right\rangle \in L^{1}\left(\mathbf{R}^{N}\right)$ and

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left\langle i \frac{\partial u_{1}}{\partial x_{1}}, w_{2}\right\rangle+\left\langle i u_{1}, \frac{\partial w_{2}}{\partial x_{1}}\right\rangle d x=\int_{\mathbf{R}^{N}} \frac{\partial}{\partial x_{1}}\left\langle i u_{1}, w_{2}\right\rangle d x=0 . \tag{2.17}
\end{equation*}
$$

Now (2.14) follows from (2.15), (2.16), (2.17) and Lemma 2.5 is proved.
Corollary 2.6 Let $u, v \in \mathcal{X}$ be such that $u-v \in L^{2}\left(\mathbf{R}^{N}\right)$. Then

$$
\begin{equation*}
|Q(u)-Q(v)| \leq\|u-v\|_{L^{2}\left(\mathbf{R}^{N}\right)}\left(\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}+\left\|\frac{\partial v}{\partial x_{1}}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}\right) \tag{2.18}
\end{equation*}
$$

Proof. It is clear that $w=u-v \in H^{1}\left(\mathbf{R}^{N}\right)$ and using (2.14) we get

$$
\begin{align*}
Q(u)-Q(v) & =L\left(\left\langle i(u-v)_{x_{1}}, u\right\rangle+\left\langle i v_{x_{1}}, u-v\right\rangle\right) \\
& =L\left(\left\langle i u_{x_{1}}, u-v\right\rangle+\left\langle i v_{x_{1}}, u-v\right\rangle\right) \tag{2.19}\\
& =\int_{\mathbf{R}^{N}}\left\langle i u_{x_{1}}+i v_{x_{1}}, u-v\right\rangle d x
\end{align*}
$$

Then (2.18) follows from (2.19) and the Cauchy-Schwarz inequality.
The next result will be useful to estimate the contribution to the momentum of a domain where the modified Ginzburg-Landau energy is small.

Lemma 2.7 Let $M>0$ and let Ω be an open subset of \mathbf{R}^{N}. Assume that $u \in \mathcal{X}$ satisfies $E_{G L}(u) \leq M$ and let χ, ρ, θ be as in Lemma 2.2. Then we have

$$
\begin{equation*}
\int_{\Omega}\left|\left(1-\chi^{2}(u)\right)\left\langle i u_{x_{1}}, u\right\rangle-\left(\rho^{2}-r_{0}^{2}\right) \theta_{x_{1}}\right| d x \leq C\left(M^{\frac{1}{2}}+M^{\frac{2^{*}}{4}}\right)\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}} \tag{2.20}
\end{equation*}
$$

Proof. Using (2.6) and the Cauchy-Schwarz inequality we get

$$
\begin{align*}
\int_{\Omega}\left|\left(1-\chi^{2}(u)\right)\left\langle i u_{x_{1}}, u\right\rangle\right| d x & \leq\left\|u_{x_{1}}\right\|_{L^{2}(\Omega)}\left\|\left(1-\chi^{2}(u)\right) u\right\|_{L^{2}(\Omega)} \tag{2.21}\\
& \leq C_{1}\left\|u_{x_{1}}\right\|_{L^{2}(\Omega)}\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{\frac{2}{}_{2}^{2}} .
\end{align*}
$$

We have $\left|u_{1}\right| \leq \frac{r_{0}}{2}$, hence $\left|r_{0}-u_{1}\right| \leq \frac{3 r_{0}}{2}$ and $\varphi\left(\left|r_{0}-u_{1}\right|\right)=\left|r_{0}-u_{1}\right|=\rho$. Then (2.7) gives

$$
\begin{equation*}
\left\|\rho^{2}-r_{0}^{2}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq C^{\prime}\left(E_{G L}(u)+E_{G L}(u)^{\frac{2^{*}}{2}}\right) \leq C^{\prime}\left(M+M^{\frac{2^{*}}{2}}\right) . \tag{2.22}
\end{equation*}
$$

From (2.4) and (2.5) we have $\left|\frac{\partial \theta}{\partial x_{j}}\right| \leq \frac{1}{\rho}\left|\frac{\partial u_{1}}{\partial x_{j}}\right| \leq C^{\prime \prime}\left|\frac{\partial u}{\partial x_{j}}\right|$ a.e. on \mathbf{R}^{N}. Therefore

$$
\begin{align*}
& \int_{\Omega}\left|\left(\rho^{2}-r_{0}^{2}\right) \theta_{x_{1}}\right| d x \leq\left\|\rho^{2}-r_{0}^{2}\right\|_{L^{2}(\Omega)}\left\|\theta_{x_{1}}\right\|_{L^{2}(\Omega)} \tag{2.23}\\
& \leq C^{\prime \prime}| | \rho^{2}-r_{0}^{2}\left\|_{L^{2}\left(\mathbf{R}^{N}\right)}\right\| u_{x_{1}} \|_{L^{2}(\Omega)} \leq C^{\prime \prime \prime}\left(M+M^{\frac{2^{*}}{2}}\right)^{\frac{1}{2}}\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}} .
\end{align*}
$$

Then (2.20) follows from (2.21) and (2.23).

3 A regularization procedure

Given a function $u \in \mathcal{X}$ and a region $\Omega \subset \mathbf{R}^{N}$ such that $E_{G L}^{\Omega}(u)$ is small, we would like to get a fine estimate of the contribution of Ω to the momentum of u. To do this, we will use a kind of "regularization" procedure for arbitrary functions in \mathcal{X}. A similar device has been introduced in [1] to get rid of small-scale topological defects of functions; variants of it have been used for various purposes in [7], [6], [5].

Throughout this section, Ω is an open set in \mathbf{R}^{N}. We do not assume Ω bounded, nor connected. If $\partial \Omega \neq \emptyset$, we assume that $\partial \Omega$ is C^{2}. Let φ be as in the introduction. Let $u \in \mathcal{X}$ and let $h>0$. We consider the functional

$$
G_{h, \Omega}^{u}(v)=E_{G L}^{\Omega}(v)+\frac{1}{h^{2}} \int_{\Omega} \varphi\left(\frac{|v-u|^{2}}{32 r_{0}}\right) d x
$$

Note that $G_{h, \Omega}^{u}(v)$ may equal ∞ for some $v \in \mathcal{X}$; however, $G_{h, \Omega}^{u}(v)$ is finite whenever $v \in \mathcal{X}$ and $v-u \in L^{2}(\Omega)$. We denote $H_{0}^{1}(\Omega)=\left\{u \in H^{1}\left(\mathbf{R}^{N}\right) \mid u=0\right.$ on $\left.\mathbf{R}^{N} \backslash \Omega\right\}$ and

$$
H_{u}^{1}(\Omega)=\left\{v \in \mathcal{X} \mid v-u \in H_{0}^{1}(\Omega)\right\}
$$

The next lemma gives the properties of functions that minimize $G_{h, \Omega}^{u}$ in the space $H_{u}^{1}(\Omega)$.
Lemma 3.1 i) The functional $G_{h, \Omega}^{u}$ has a minimizer in $H_{u}^{1}(\Omega)$.
ii) Let v_{h} be a minimizer of $G_{h, \Omega}^{u}$ in $H_{u}^{1}(\Omega)$. There exist constants $C_{1}, C_{2}, C_{3}>0$, depending only on N, a and r_{0} such that v_{h} satisfies:

$$
\begin{gather*}
E_{G L}^{\Omega}\left(v_{h}\right) \leq E_{G L}^{\Omega}(u) \tag{3.1}\\
\left\|v_{h}-u\right\|_{L^{2}(\Omega)}^{2} \leq 32 r_{0} h^{2} E_{G L}^{\Omega}(u)+C_{1}\left(E_{G L}^{\Omega}(u)\right)^{1+\frac{2}{N}} h^{\frac{4}{N}} ; \tag{3.2}\\
\int_{\Omega}\left|\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}-\left(\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-r_{0}^{2}\right)^{2}\right| d x \leq C_{2} h E_{G L}^{\Omega}(u) ; \tag{3.3}
\end{gather*}
$$

$$
\begin{equation*}
\left|Q(u)-Q\left(v_{h}\right)\right| \leq C_{3}\left(h^{2}+\left(E_{G L}^{\Omega}(u)\right)^{\frac{2}{N}} h^{\frac{4}{N}}\right)^{\frac{1}{2}} E_{G L}^{\Omega}(u) \tag{3.4}
\end{equation*}
$$

iii) For $z \in \mathbf{C}$, denote $H(z)=\left(\varphi^{2}\left(\left|z-r_{0}\right|\right)-r_{0}^{2}\right) \varphi\left(\left|z-r_{0}\right|\right) \varphi^{\prime}\left(\left|z-r_{0}\right|\right) \frac{z-r_{0}}{\left|z-r_{0}\right|}$ if $z \neq r_{0}$ and $H\left(r_{0}\right)=0$. Then any minimizer v_{h} of $G_{h, \Omega}^{u}$ in $H_{u}^{1}(\Omega)$ satisfies the equation

$$
\begin{equation*}
-\Delta v_{h}+2 a^{2} H\left(v_{h}\right)+\frac{1}{32 r_{0} h^{2}} \varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right)=0 \quad \text { in } \mathcal{D}^{\prime}(\Omega) \tag{3.5}
\end{equation*}
$$

Moreover, for any $\omega \subset \subset \Omega$ we have $v_{h} \in W^{2, p}(\omega)$ for $p \in[1, \infty)$; thus, in particular, $v_{h} \in$ $C^{1, \alpha}(\omega)$ for $\alpha \in[0,1)$.
iv) For any $h>0, \delta>0$ and $R>0$ there exists a constant $K=K\left(a, r_{0}, N, h, \delta, R\right)>0$ such that for any $u \in \mathcal{X}$ with $E_{G L}^{\Omega}(u) \leq K$ and for any minimizer v_{h} of $G_{h, \Omega}^{u}$ in $H_{u}^{1}(\Omega)$ we have

$$
\begin{equation*}
r_{0}-\delta<\left|r_{0}-v_{h}(x)\right|<r_{0}+\delta \quad \text { whenever } x \in \Omega \text { and } \operatorname{dist}(x, \partial \Omega) \geq 4 R . \tag{3.6}
\end{equation*}
$$

Proof. i) It is obviuos that $u \in H_{u}^{1}(\Omega)$. Let $\left(v_{n}\right)_{n \geq 1}$ be a minimizing sequence for $G_{h, \Omega}^{u}$ in $H_{u}^{1}(\Omega)$. We may assume that $G_{h, \Omega}^{u}\left(v_{n}\right) \leq G_{h, \Omega}^{u}(u)=E_{G L}^{\Omega}(u)$ and this implies $\int_{\Omega}\left|\nabla v_{n}\right|^{2} d x \leq$ $E_{G L}^{\Omega}(u)$. It is clear that

$$
\begin{equation*}
\int_{\Omega \cap\left\{\left|v_{n}-u\right| \leq 8 r_{0}\right\}}\left|v_{n}-u\right|^{2} d x \leq 32 r_{0} \int_{\Omega} \varphi\left(\frac{\left|v_{n}-u\right|^{2}}{32 r_{0}}\right) d x \leq 32 r_{0} h^{2} E_{G L}^{\Omega}(u) . \tag{3.7}
\end{equation*}
$$

Since $v_{n}-u \in H_{0}^{1}(\Omega) \subset H^{1}\left(\mathbf{R}^{N}\right)$, by the Sobolev embedding we have $\left\|v_{n}-u\right\|_{L^{2^{*}}\left(\mathbf{R}^{N}\right)} \leq$ $C_{S}\left\|\nabla v_{n}-\nabla u\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}$, where C_{S} depends only on N. Therefore

$$
\begin{align*}
& \int_{\left\{\left|v_{n}-u\right|>8 r_{0}\right\}}\left|v_{n}-u\right|^{2} d x \leq\left(8 r_{0}\right)^{2-2^{*}} \int_{\left\{\left|v_{n}-u\right|>8 r_{0}\right\}}\left|v_{n}-u\right|^{2^{*}} d x \tag{3.8}\\
& \leq\left(8 r_{0}\right)^{2-2^{*}}\left\|v_{n}-u\right\|_{L^{2^{*}}\left(\mathbf{R}^{N}\right)}^{2^{*}} \leq C^{\prime}| | \nabla v_{n}-\nabla u \|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2^{*}} \leq C\left(E_{G L}^{\Omega}(u)\right)^{\frac{2^{*}}{2}} .
\end{align*}
$$

It follows from (3.7) and (3.8) that $\left\|v_{n}-u\right\|_{L^{2}(\Omega)}$ is bounded, hence $v_{n}-u$ is bounded in $H_{0}^{1}(\Omega)$. We infer that there exists a sequence (still denoted $\left.\left(v_{n}\right)_{n \geq 1}\right)$ and there is $w \in H_{0}^{1}(\Omega)$ such that $v_{n}-u \rightharpoonup w$ weakly in $H_{0}^{1}(\Omega), v_{n}-u \longrightarrow w$ a.e. and $v_{n}-u \longrightarrow w$ in $L_{l o c}^{p}(\Omega)$ for $1 \leq p<2^{*}$. Let $v=u+w$. Then $\nabla v_{n} \rightharpoonup \nabla v$ weakly in $L^{2}\left(\mathbf{R}^{N}\right)$ and this implies

$$
\int_{\Omega}|\nabla v|^{2} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla v_{n}\right|^{2} d x .
$$

Using the a.e. convergence and Fatou's Lemma we infer that

$$
\begin{gathered}
\int_{\Omega}\left(\varphi^{2}\left(\left|r_{0}-v\right|\right)-r_{0}^{2}\right)^{2} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left(\varphi^{2}\left(\left|r_{0}-v_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \quad \text { and } \\
\int_{\Omega} \varphi\left(\frac{|v-u|^{2}}{32 r_{0}}\right) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} \varphi\left(\frac{\left|v_{n}-u\right|^{2}}{32 r_{0}}\right) d x
\end{gathered}
$$

Therefore $G_{h, \Omega}^{u}(v) \leq \liminf _{n \rightarrow \infty} G_{h, \Omega}^{u}\left(v_{n}\right)$ and consequently v is a minimizer of $G_{h, \Omega}^{u}$ in $H_{u}^{1}(\Omega)$.
ii) Since $u \in H_{u}^{1}(\Omega)$, we have $E_{G L}^{\Omega}\left(v_{h}\right) \leq G_{h, \Omega}^{u}\left(v_{h}\right) \leq E_{G L}^{\Omega}(u)$; hence (3.1) holds. It is clear that $\varphi\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right) \geq 2 r_{0}$ if $\left|v_{h}-u\right| \geq 8 r_{0}$, thus

$$
2 r_{0} \mathcal{L}^{N}\left(\left\{\left|v_{h}-u\right| \geq 8 r_{0}\right\}\right) \leq \int_{\mathbf{R}^{N}} \varphi\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right) d x \leq h^{2} G_{h, \Omega}^{u}\left(v_{h}\right) \leq h^{2} E_{G L}^{\Omega}(u)
$$

Using Hölder's inequality, the above estimate and the Sobolev inequality we get

$$
\begin{align*}
& \int_{\left\{\left|v_{h}-u\right| \geq 8 r_{0}\right\}}\left|v_{h}-u\right|^{2} d x \\
& \leq\left\|v_{h}-u\right\|_{L^{2^{*}}\left(\left\{\left|v_{h}-u\right| \geq 8 r_{0}\right\}\right)}^{2}\left(\mathcal{L}^{N}\left(\left\{\left|v_{h}-u\right| \geq 8 r_{0}\right\}\right)\right)^{1-\frac{2}{2^{*}}} \tag{3.9}\\
& \leq\left\|v_{h}-u\right\|_{L^{2^{*}}\left(\mathbf{R}^{N}\right)}^{2}\left(\mathcal{L}^{N}\left(\left\{\left|v_{h}-u\right| \geq 8 r_{0}\right\}\right)\right)^{1-\frac{2}{2^{*}}} \\
& \leq C_{S}\left\|\nabla v_{h}-\nabla u\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2}\left(\frac{h^{2}}{2 r_{0}} E_{G L}^{\Omega}(u)\right)^{1-\frac{2}{2^{*}}} \leq C_{1} h^{\frac{4}{N}}\left(E_{G L}^{\Omega}(u)\right)^{1+\frac{2}{N}} .
\end{align*}
$$

It is clear that (3.7) holds with v_{h} instead of v_{n} and then (3.2) follows from (3.7) and (3.9).
We claim that

$$
\begin{equation*}
\left|\varphi\left(\left|r_{0}-z\right|\right)-\varphi\left(\left|r_{0}-\zeta\right|\right)\right| \leq\left[32 r_{0} \varphi\left(\frac{|z-\zeta|^{2}}{32 r_{0}}\right)\right]^{\frac{1}{2}} \quad \text { for any } z, \zeta \in \mathbf{C} \tag{3.10}
\end{equation*}
$$

Indeed, if $\left|z-r_{0}\right| \leq 4 r_{0}$ and $\left|\zeta-r_{0}\right| \leq 4 r_{0}$, then $|z-\zeta| \leq 8 r_{0}, \varphi\left(\frac{|z-\zeta|^{2}}{32 r_{0}}\right)=\frac{|z-\zeta|^{2}}{32 r_{0}}$ and $\left|\varphi\left(\left|r_{0}-z\right|\right)-\varphi\left(\left|r_{0}-\zeta\right|\right)\right| \leq\left|\left|r_{0}-z\right|-\left|r_{0}-\zeta\right|\right| \leq|z-\zeta|$, hence (3.10) holds.

If $\left|z-r_{0}\right| \leq 4 r_{0}$ and $\left|\zeta-r_{0}\right|>4 r_{0}$, there exists $t \in[0,1)$ such that $w=(1-t) z+t \zeta$ satisfies $\left|r_{0}-w\right|=4 r_{0}$ and

$$
\begin{aligned}
& \left|\varphi\left(\left|r_{0}-z\right|\right)-\varphi\left(\left|r_{0}-\zeta\right|\right)\right|=\left|\varphi\left(\left|r_{0}-z\right|\right)-\varphi\left(\left|r_{0}-w\right|\right)\right| \\
& \leq\left[32 r_{0} \varphi\left(\frac{|z-w|^{2}}{32 r_{0}}\right)\right]^{\frac{1}{2}} \leq\left[32 r_{0} \varphi\left(\frac{|z-\zeta|^{2}}{32 r_{0}}\right)\right]^{\frac{1}{2}} .
\end{aligned}
$$

We argue similarly if $\left|z-r_{0}\right|>4 r_{0}$ and $\left|\zeta-r_{0}\right| \leq 4 r_{0}$. Finally, in the case $\left|z-r_{0}\right|>4 r_{0}$ and $\left|\zeta-r_{0}\right|>4 r_{0}$ we have $\varphi\left(\left|r_{0}-z\right|\right)=\varphi\left(\left|r_{0}-\zeta\right|\right)=3 r_{0}$ and (3.10) trivially holds.

It is obvious that

$$
\begin{align*}
& \left|\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}-\left(\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-r_{0}^{2}\right)^{2}\right| \tag{3.11}\\
& \leq 6 r_{0}\left|\varphi\left(\left|r_{0}-u\right|\right)-\varphi\left(\left|r_{0}-v_{h}\right|\right)\right| \cdot\left|\varphi^{2}\left(\left|r_{0}-u\right|\right)+\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-2 r_{0}^{2}\right| .
\end{align*}
$$

Using (3.11), the Cauchy-Schwarz inequality and (3.10) we get

$$
\begin{aligned}
& \int_{\Omega}\left|\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}-\left(\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-r_{0}^{2}\right)^{2}\right| d x \\
& \leq 6 r_{0}\left(\int_{\Omega}\left|\varphi\left(\left|r_{0}-u\right|\right)-\varphi\left(\left|r_{0}-v_{h}\right|\right)\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|\varphi^{2}\left(\left|r_{0}-u\right|\right)+\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-2 r_{0}^{2}\right|^{2} d x\right)^{\frac{1}{2}} \\
& \leq 6 r_{0}\left(\int_{\Omega} 32 r_{0} \varphi\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right) d x\right)^{\frac{1}{2}}\left(2 \int_{\Omega}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}+\left(\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-r_{0}^{2}\right)^{2} d x\right)^{\frac{1}{2}} \\
& \leq 48 r_{0}^{\frac{3}{2}}\left(h^{2} G_{h, \Omega}^{u}\left(v_{h}\right)\right)^{\frac{1}{2}}\left(\frac{1}{a^{2}} E_{G L}^{\Omega}(u)+\frac{1}{a^{2}} E_{G L}^{\Omega}\left(v_{h}\right)\right)^{\frac{1}{2}} \leq \frac{48 \sqrt{2}}{a} r_{0}^{\frac{3}{2}} h E_{G L}^{\Omega}(u)
\end{aligned}
$$

and (3.3) is proved. Finally, (3.4) follows directly from (3.1), (3.2) and Corollary 2.6.
iii) The proof of (3.5) is standard. For any $\psi \in C_{c}^{\infty}(\Omega)$ we have $v+\psi \in H_{u}^{1}(\Omega)$ and the function $t \longmapsto G_{h, \Omega}^{u}(v+t \psi)$ achieves its minumum at $t=0$. Hence $\left.\frac{d}{d t}\right|_{t=0}\left(G_{h, \Omega}^{u}(v+t \psi)\right)=0$ for any $\psi \in C_{c}^{\infty}(\Omega)$ and this is precisely (3.5).

For any $z \in \mathbf{C}$ we have

$$
\begin{equation*}
|H(z)| \leq 3 r_{0}\left|\varphi^{2}\left(\left|z-r_{0}\right|\right)-r_{0}^{2}\right| \leq 24 r_{0}^{3} \tag{3.12}
\end{equation*}
$$

Since $v_{h} \in \mathcal{X}$, we have $\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-r_{0}^{2} \in L^{2}\left(\mathbf{R}^{N}\right)$ and (3.12) gives $H\left(v_{h}\right) \in L^{2} \cap L^{\infty}\left(\mathbf{R}^{N}\right)$. We also have $\left|\varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right)\right| \leq\left|v_{h}-u\right|$ and $\left|\varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right)\right| \leq \sup _{s \geq 0} \varphi^{\prime}\left(\frac{s^{2}}{32 r_{0}}\right) s<\infty$. Since $v_{h}-u \in L^{2}\left(\mathbf{R}^{N}\right)$, we get $\varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right) \in L^{2} \cap L^{\infty}\left(\mathbf{R}^{N}\right)$. Using (3.5) we infer that $\Delta v_{h} \in L^{2} \cap L^{\infty}(\Omega)$. Then (iii) follows from standard elliptic estimates (see, e.g., Theorem 9.11 p. 235 in [19]) and a straightforward bootstrap argument.
iv) Using (3.12) we get

$$
\int_{\Omega}\left|H\left(v_{h}\right)\right|^{2} d x \leq 9 r_{0}^{2} \int_{\Omega}\left(\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-r_{0}^{2}\right)^{2} d x \leq \frac{9 r_{0}^{2}}{a^{2}} E_{G L}^{\Omega}\left(v_{h}\right) \leq \frac{9 r_{0}^{2}}{a^{2}} E_{G L}^{\Omega}(u)
$$

hence $\left\|H\left(v_{h}\right)\right\|_{L^{2}(\Omega)} \leq C^{\prime}\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}$. By interpolation we find for any $p \in[2, \infty]$,

$$
\begin{equation*}
\left\|H\left(v_{h}\right)\right\|_{L^{p}(\Omega)} \leq\left\|H\left(v_{h}\right)\right\|_{L^{\infty}(\Omega)}^{\frac{p-2}{p}}\left\|H\left(v_{h}\right)\right\|_{L^{2}(\Omega)}^{\frac{2}{p}} \leq C\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{p}} \tag{3.13}
\end{equation*}
$$

There exist $m_{1}, m_{2}>0$ such that $\left|\varphi^{\prime}\left(\frac{s^{2}}{32 r_{0}}\right) s\right|^{2} \leq m_{1} \varphi\left(\frac{s^{2}}{32 r_{0}}\right)$ and $\left|\varphi^{\prime}\left(\frac{s^{2}}{32 r_{0}}\right) s\right| \leq m_{2}$ for any $s \geq 0$. Then we have

$$
\int_{\Omega}\left|\varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right)\right|^{2} d x \leq m_{1} \int_{\Omega} \varphi\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right) d x \leq m_{1} h^{2} E_{G L}^{\Omega}(u)
$$

thus $\left\|\varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right)\right\|_{L^{2}(\Omega)} \leq h\left(m_{1} E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}$. By interpolation we get

$$
\begin{align*}
& \left\|\varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right)\right\|_{L^{p}(\Omega)} \\
& \leq\left\|\varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right)\right\|_{L^{\infty}(\Omega)}^{\frac{p-2}{p}}\left\|\varphi^{\prime}\left(\frac{\left|v_{h}-u\right|^{2}}{32 r_{0}}\right)\left(v_{h}-u\right)\right\|_{L^{2}(\Omega)}^{\frac{2}{p}} \tag{3.14}\\
& \leq C h^{\frac{2}{p}}\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{p}}
\end{align*}
$$

for any $p \in[2, \infty]$. From (3.5), (3.13) and (3.14) we obtain

$$
\begin{equation*}
\left\|\Delta v_{h}\right\|_{L^{p}(\Omega)} \leq C\left(1+h^{\frac{2}{p}-2}\right)\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{p}} \quad \text { for any } p \geq 2 \tag{3.15}
\end{equation*}
$$

For a measurable set $\omega \subset \mathbf{R}^{N}$ with $\mathcal{L}^{N}(\omega)<\infty$ and for any $f \in L^{1}(\omega)$, we denote by $m(f, \omega)=\frac{1}{\mathcal{L}^{N}(\omega)} \int_{\omega} f(x) d x$ the mean value of f on ω.

Let x_{0} be such that $B\left(x_{0}, 4 R\right) \subset \Omega$. Using the Poincaré inequality and (3.1) we have

$$
\begin{equation*}
\left\|v_{h}-m\left(v_{h}, B\left(x_{0}, 4 R\right)\right)\right\|_{L^{2}\left(B\left(x_{0}, 4 R\right)\right)} \leq C_{P} R\left\|\nabla v_{h}\right\|_{L^{2}\left(B\left(x_{0}, 4 R\right)\right)} \leq C_{P} R\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}} \tag{3.16}
\end{equation*}
$$

We claim that there exist $k \in \mathbf{N}$, depeding only on N, and $C_{*}=C_{*}\left(a, r_{0}, N, h, R\right)$ such that

$$
\begin{equation*}
\left\|v_{h}-m\left(v_{h}, B\left(x_{0}, 4 R\right)\right)\right\|_{W^{2, N}\left(B\left(x_{0}, \frac{R}{2^{k-2}}\right)\right)} \leq C_{*}\left(\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}+\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{N}}\right) \tag{3.17}
\end{equation*}
$$

It is well-known (see Theorem 9.11 p. 235 in [19]) that for $p \in(1, \infty)$ there exists $C=$ $C(N, r, p)>0$ such that for any $w \in W^{2, p}(B(a, 2 r))$ we have

$$
\begin{equation*}
\|w\|_{W^{2, p}(B(a, r))} \leq C\left(\|w\|_{L^{p}(B(a, 2 r))}+\|\Delta w\|_{L^{p}(B(a, 2 r))}\right) \tag{3.18}
\end{equation*}
$$

From (3.15), (3.16) and (3.18) we infer that

$$
\begin{equation*}
\left\|v_{h}-m\left(v_{h}, B\left(x_{0}, 4 R\right)\right)\right\|_{W^{2,2}\left(B\left(x_{0}, 2 R\right)\right)} \leq C\left(a, r_{0}, N, h, R\right)\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}} . \tag{3.19}
\end{equation*}
$$

If $\frac{1}{2}-\frac{2}{N} \leq \frac{1}{N}$, from (3.19) and the Sobolev embedding we find

$$
\begin{equation*}
\left\|v_{h}-m\left(v_{h}, B\left(x_{0}, 4 R\right)\right)\right\|_{L^{N}\left(B\left(x_{0}, 2 R\right)\right)} \leq C\left(a, r_{0}, N, h, R\right)\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}} \tag{3.20}
\end{equation*}
$$

Then using (3.15) (for $p=N$), (3.20) and (3.18) we infer that (3.17) holds for $k=2$.
If $\frac{1}{2}-\frac{2}{N}>\frac{1}{N},(3.19)$ and the Sobolev embedding imply

$$
\begin{equation*}
\left\|v_{h}-m\left(v_{h}, B\left(x_{0}, 4 R\right)\right)\right\|_{L^{p_{1}}\left(B\left(x_{0}, 2 R\right)\right)} \leq C\left(a, r_{0}, N, h, R\right)\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}, \tag{3.21}
\end{equation*}
$$

where $\frac{1}{p_{1}}=\frac{1}{2}-\frac{2}{N}$. Then (3.21), (3.15) and (3.18) give

$$
\begin{equation*}
\left\|v_{h}-m\left(v_{h}, B\left(x_{0}, 4 R\right)\right)\right\|_{W^{2, p_{1}}\left(B\left(x_{0}, R\right)\right)} \leq C\left(a, r_{0}, N, h, R\right)\left(\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}+\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{N}}\right) \tag{3.22}
\end{equation*}
$$

If $\frac{1}{p_{1}}-\frac{2}{N} \leq \frac{1}{N}$, using (3.22), the Sobolev embedding, (3.15) and (3.18) we get

$$
\left\|v_{h}-m\left(v_{h}, B\left(x_{0}, 4 R\right)\right)\right\|_{W^{2, N}\left(B\left(x_{0}, \frac{R}{2}\right)\right)} \leq C\left(a, r_{0}, N, h, R\right)\left(\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}+\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{N}}\right)
$$

otherwise we repeat the process. After a finite number of steps we find $k \in \mathbf{N}$ such that (3.17) holds.

We will use the following variant of the Gagliardo-Nirenberg inequality:

$$
\begin{equation*}
\|w-m(w, B(a, r))\|_{L^{p}(B(a, r))} \leq C(p, q, N, r)\|w\|_{L^{q}(B(a, 2 r))}^{\frac{q}{p}}\|\nabla w\|_{L^{N}(B(a, 2 r))}^{1-\frac{q}{p}} \tag{3.23}
\end{equation*}
$$

for any $w \in W^{1, N}(B(a, 2 r))$, where $1 \leq q \leq p<\infty$ (see, e.g., [26] p. 78).
Using (3.23) with $w=\nabla v_{h}$ and (3.17) we find

$$
\begin{align*}
& \left\|\nabla v_{h}-m\left(\nabla v_{h}, B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)\right\|_{L^{p}\left(B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)} \\
& \leq C\left\|\nabla v_{h}\right\|_{L^{2}\left(B\left(x_{0}, \frac{R}{2^{k-2}}\right)\right)}\left\|\nabla^{2} v_{h}\right\|_{L^{N}\left(B\left(x_{0}, \frac{R}{2^{k-2}}\right)\right)}^{1-\frac{1}{p}} \tag{3.24}\\
& \leq C\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{p}}\left(\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}+\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{N}}\right)^{1-\frac{2}{p}}
\end{align*}
$$

for any $p \in[2, \infty)$, where the constants depend only on a, r_{0}, N, p, h, R.
Using the Cauchy-Schwarz inequality and (3.1) we have

$$
\left|m\left(\nabla v_{h}, B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)\right| \leq \mathcal{L}^{N}\left(B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)^{-\frac{1}{2}}\left\|\nabla v_{h}\right\|_{L^{2}\left(B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)} \leq C\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}
$$

and we infer that for any $p \in[1, \infty]$ we have the estimate

$$
\begin{align*}
& \left\|m\left(\nabla v_{h}, B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)\right\|_{L^{p}\left(B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)} \\
& \leq\left|m\left(\nabla v_{h}, B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)\right|\left(\mathcal{L}^{N}\left(B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)\right)^{\frac{1}{p}} \leq C(N, p, R)\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}} . \tag{3.25}
\end{align*}
$$

From (3.24) and (3.25) we obtain for any $p \in[2, \infty)$,

$$
\begin{equation*}
\left\|\nabla v_{h}\right\|_{L^{p}\left(B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)} \leq C\left(a, r_{0}, N, p, h, R\right)\left(\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}+\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{p}+\frac{1}{N}\left(1-\frac{2}{p}\right)}\right) \tag{3.26}
\end{equation*}
$$

We will use the Morrey inequality which asserts that, for any $w \in C^{0} \cap W^{1, p}\left(B\left(x_{0}, r\right)\right)$ with $p>N$ we have

$$
\begin{equation*}
\left.|w(x)-w(y)| \leq C(p, N)|x-y|^{1-\frac{N}{p}}\|\nabla w\|_{L^{p}\left(B\left(x_{0}, r\right)\right)} \quad \text { for any } x, y \in B\left(x_{0}, r\right)\right) \tag{3.27}
\end{equation*}
$$

(see, e.g., the proof of Theorem IX. 12 p. 166 in [8]). Using (3.26) and the Morrey's inequality (3.27) for $p=2 N$ we get

$$
\begin{equation*}
\left|v_{h}(x)-v_{h}(y)\right| \leq C\left(a, r_{0}, N, h, R\right)|x-y|^{\frac{1}{2}}\left(\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}+\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{N}\left(1+\frac{1}{2^{*}}\right)}\right) \tag{3.28}
\end{equation*}
$$

for any $\left.x, y \in B\left(x_{0}, \frac{R}{2^{k-1}}\right)\right)$.
Let $\delta>0$ and assume that there exists $x_{0} \in \Omega$ such that $\left|\left|v_{h}\left(x_{0}\right)-r_{0}\right|-r_{0}\right| \geq \delta$ and $B\left(x_{0}, 4 R\right) \subset \Omega$. Since $\left|\left|\left|v_{h}(x)-r_{0}\right|-r_{0}\right|-\left|\left|v_{h}(y)-r_{0}\right|-r_{0}\right|\right| \leq\left|v_{h}(x)-v_{h}(y)\right|$, from (3.28) we infer that

$$
\left|\left|v_{h}(x)-r_{0}\right|-r_{0}\right| \geq \frac{\delta}{2} \quad \text { for any } x \in B\left(x_{0}, r_{\delta}\right)
$$

where

$$
\begin{equation*}
r_{\delta}=\min \left(\frac{R}{2^{k-1}},\left(\frac{\delta}{2 C\left(a, r_{0}, N, h, R\right)}\right)^{2}\left(\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{2}}+\left(E_{G L}^{\Omega}(u)\right)^{\frac{1}{N}\left(1+\frac{1}{2^{*}}\right)}\right)^{-2}\right) \tag{3.29}
\end{equation*}
$$

Let

$$
\begin{equation*}
\eta(s)=\inf \left\{\left(\varphi^{2}(\tau)-r_{0}^{2}\right)^{2} \mid \tau \in\left(-\infty, r_{0}-s\right] \cup\left[r_{0}+s, \infty\right)\right\} \tag{3.30}
\end{equation*}
$$

It is clear that η is nondecreasing and positive on $(0, \infty)$. We have:

$$
\begin{align*}
& E_{G L}^{\Omega}(u) \geq E_{G L}^{\Omega}\left(v_{h}\right) \geq a^{2} \int_{B\left(x_{0}, r_{\delta}\right)}\left(\varphi^{2}\left(\left|r_{0}-v_{h}\right|\right)-r_{0}^{2}\right)^{2} d x \\
& \geq a^{2} \int_{B\left(x_{0}, r_{\delta}\right)} \eta\left(\frac{\delta}{2}\right) d x=\mathcal{L}^{N}(B(0,1)) a^{2} \eta\left(\frac{\delta}{2}\right) r_{\delta}^{N}, \tag{3.31}
\end{align*}
$$

where r_{δ} is given by (3.29). It is obvious that there exists a constant $K>0$, depending only on $a, r_{0}, N, h, R, \delta$ such that (3.31) cannot hold for $E_{G L}^{\Omega}(u) \leq K$. We infer that $\| v_{h}\left(x_{0}\right)-$ $r_{0}\left|-r_{0}\right|<\delta$ if $B\left(x_{0}, 4 R\right) \subset \Omega$ and $E_{G L}^{\Omega}(u) \leq K$. This completes the proof of Lemma 3.1.

Lemma 3.2 Let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}$ be a sequence of functions satisfying:
a) $E_{G L}\left(u_{n}\right)$ is bounded and
b) $\lim _{n \rightarrow \infty}\left(\sup _{y \in \mathbf{R}^{N}} E_{G L}^{B(y, 1)}\left(u_{n}\right)\right)=0$.

There exists a sequence $h_{n} \longrightarrow 0$ such that for any minimizer v_{n} of $G_{h_{n}, \mathbf{R}^{N}}^{u_{n}}$ in $H_{u_{n}}^{1}\left(\mathbf{R}^{N}\right)$ we have $\left\|\left|v_{n}-r_{0}\right|-r_{0}\right\|_{L^{\infty}\left(\mathbf{R}^{N}\right)} \longrightarrow 0$ as $n \longrightarrow \infty$.

Proof. Let $M=\sup _{n \geq 1} E_{G L}\left(u_{n}\right)$. For $n \geq 1$ and $x \in \mathbf{R}^{N}$ we denote

$$
m_{n}(x)=m\left(u_{n}, B(x, 1)\right)=\frac{1}{\mathcal{L}^{N}(B(0,1))} \int_{B(x, 1)} u_{n}(y) d y
$$

By the Poincaré inequality, there exists $C_{0}>0$ such that

$$
\int_{B(x, 1)}\left|u_{n}(y)-m_{n}(x)\right|^{2} d y \leq C_{0} \int_{B(x, 1)}\left\|\nabla u_{n}(y)\right\|^{2} d y
$$

From (b) it follows that

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{N}}\left\|u_{n}-m_{n}(x)\right\|_{L^{2}(B(x, 1))} \longrightarrow 0 \quad \text { as } x \longrightarrow \infty \tag{3.32}
\end{equation*}
$$

Let H be as in Lemma 3.1 (iii). From (3.12) and (b) we get

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{N}}\left\|H\left(u_{n}\right)\right\|_{L^{2}(B(x, 1))}^{2} \leq \sup _{x \in \mathbf{R}^{N}} 9 r_{0}^{2} \int_{B(x, 1)}\left(\varphi^{2}\left(\left|r_{0}-u_{n}(y)\right|\right)-r_{0}^{2}\right)^{2} d y \longrightarrow 0 \tag{3.33}
\end{equation*}
$$

as $n \longrightarrow \infty$. It is obvious that H is Lipschitz on \mathbf{C}. Using (3.32) we find

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{N}}\left\|H\left(u_{n}\right)-H\left(m_{n}(x)\right)\right\|_{L^{2}(B(x, 1))} \leq C_{1} \sup _{x \in \mathbf{R}^{N}}\left\|u_{n}-m_{n}(x)\right\|_{L^{2}(B(x, 1))} \longrightarrow 0 \tag{3.34}
\end{equation*}
$$

as $n \longrightarrow \infty$. From (3.33) and (3.34) we infer that $\sup _{x \in \mathbf{R}^{N}}\left\|H\left(m_{n}(x)\right)\right\|_{L^{2}(B(x, 1))} \longrightarrow 0$ as $n \longrightarrow \infty$. Since $\left\|H\left(m_{n}(x)\right)\right\|_{L^{2}(B(x, 1))}=\mathcal{L}^{N}\left(B(0,1)\left|H\left(m_{n}(x)\right)\right|\right.$, we have proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x \in \mathbf{R}^{N}}\left|H\left(m_{n}(x)\right)\right|=0 . \tag{3.35}
\end{equation*}
$$

Let

$$
\begin{equation*}
h_{n}=\max \left(\left(\sup _{x \in \mathbf{R}^{N}}\left\|u_{n}-m_{n}(x)\right\|_{L^{2}(B(x, 1))}\right)^{\frac{1}{N+2}},\left(\sup _{x \in \mathbf{R}^{N}}\left|H\left(m_{n}(x)\right)\right|\right)^{\frac{1}{N}}\right) . \tag{3.36}
\end{equation*}
$$

From (3.32) and (3.35) it follows that $h_{n} \longrightarrow 0$ as $n \longrightarrow \infty$. Thus we may assume that $0<h_{n}<1$ for any n (if $h_{n}=0$, we see that u_{n} is constant a.e. and there is nothing to prove). Let v_{n} be a minimizer of $G_{h_{n}, \mathbf{R}^{N}}^{u_{n}}$ (such minimizers exist by Lemma 3.1 (i)). It follows from Lemma 3.1 (iii) that v_{n} satisfies (3.5). We will prove that there exist $R_{N}>0$ and $C>0$, independent on n, such that

$$
\begin{equation*}
\left\|\Delta v_{n}\right\|_{L^{N}\left(B\left(x, R_{N}\right)\right)} \leq C \quad \text { for any } x \in \mathbf{R}^{N} \text { and } n \in \mathbf{N}^{*} . \tag{3.37}
\end{equation*}
$$

Clearly, it suffices to prove (3.37) for $x=0$. We denote $m_{n}=m_{n}(0)$ and $\tilde{\varphi}(s)=\varphi\left(\frac{s}{32 r_{0}}\right)$. Then (3.5) can be written as

$$
\begin{equation*}
-\Delta v_{n}+\frac{1}{h_{n}^{2}} \tilde{\varphi}^{\prime}\left(\left|v_{n}-m_{n}\right|^{2}\right)\left(v_{n}-m_{n}\right)=f_{n}, \tag{3.38}
\end{equation*}
$$

where

$$
\begin{align*}
f_{n}= & -2 a^{2}\left(H\left(v_{n}\right)-H\left(m_{n}\right)\right)-2 a^{2} H\left(m_{n}\right) \\
& +\frac{1}{h_{n}^{2}}\left(\tilde{\varphi}^{\prime}\left(\left|v_{n}-m_{n}\right|^{2}\right)\left(v_{n}-m_{n}\right)-\tilde{\varphi}^{\prime}\left(\left|v_{n}-u_{n}\right|^{2}\right)\left(v_{n}-u_{n}\right)\right) . \tag{3.39}
\end{align*}
$$

In view of Lemma 3.1 (iii), equality (3.38) holds in $L_{\text {loc }}^{p}\left(\mathbf{R}^{N}\right)$ (and not only in $\mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right)$).
The function $z \longmapsto \tilde{\varphi}^{\prime}\left(|z|^{2}\right) z$ belongs to $C_{c}^{\infty}(\mathbf{C})$ and consequently it is Lipschitz. Using (3.36), we see that there exists $C_{2}>0$ such that

$$
\begin{align*}
& \left\|\tilde{\varphi}^{\prime}\left(\left|v_{n}-m_{n}\right|^{2}\right)\left(v_{n}-m_{n}\right)-\tilde{\varphi}^{\prime}\left(\left|v_{n}-u_{n}\right|^{2}\right)\left(v_{n}-u_{n}\right)\right\|_{L^{2}(B(0,1))} \\
& \leq C_{2}\left\|u_{n}-m_{n}\right\|_{L^{2}(B(0,1))} \leq C_{2} h_{n}^{N+2} . \tag{3.40}
\end{align*}
$$

By (3.36) we have also $\left\|H\left(m_{n}\right)\right\|_{L^{2}(B(0,1))}=\left(\mathcal{L}^{N}(B(0,1))^{\frac{1}{2}}\left|H\left(m_{n}\right)\right| \leq\left(\mathcal{L}^{N}(B(0,1))^{\frac{1}{2}} h_{n}^{N}\right.\right.$. From this estimate, (3.39), (3.40) and the fact that H is Lipschitz we get

$$
\begin{equation*}
\left\|f_{n}\right\|_{L^{2}(B(0, R))} \leq C_{3}\left\|v_{n}-m_{n}\right\|_{L^{2}(B(0, R))}+C_{4} h_{n}^{N} \quad \text { for any } R \in(0,1] . \tag{3.41}
\end{equation*}
$$

Let $\chi \in C_{c}^{\infty}\left(\mathbf{R}^{N}, \mathbf{R}\right)$. Taking the scalar product (in $\left.\mathbf{C}\right)$ of (3.38) by $\chi(x)\left(v_{n}(x)-m_{n}\right)$ and integrating by parts we find

$$
\begin{align*}
& \int_{\mathbf{R}^{N}} \chi\left|\nabla v_{n}\right|^{2} d x+\frac{1}{h_{n}^{2}} \int_{\mathbf{R}^{N}} \chi \tilde{\varphi}^{\prime}\left(\left|v_{n}-m_{n}\right|^{2}\right)\left|v_{n}-m_{n}\right|^{2} d x \tag{3.42}\\
& =\frac{1}{2} \int_{\mathbf{R}^{N}}(\Delta \chi)\left|v_{n}-m_{n}\right|^{2} d x+\int_{\mathbf{R}^{N}}\left\langle f_{n}(x), v_{n}(x)-m_{n}\right\rangle \chi(x) d x .
\end{align*}
$$

From (3.2) we have $\left\|v_{n}-u_{n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq C_{5} h_{n}^{\frac{2}{N}}$, thus

$$
\begin{equation*}
\left\|v_{n}-m_{n}\right\|_{L^{2}(B(0,1))} \leq\left\|v_{n}-u_{n}\right\|_{L^{2}(B(0,1))}+\left\|u_{n}-m_{n}\right\|_{L^{2}(B(0,1))} \leq K_{0} h_{n}^{\frac{2}{N}} . \tag{3.43}
\end{equation*}
$$

We prove that

$$
\begin{equation*}
\left\|v_{n}-m_{n}\right\|_{L^{2}\left(B\left(0, \frac{1}{2 j-\mathrm{I}}\right)\right)} \leq K_{j} h_{n}^{\frac{2 j}{N}} \quad \text { for } 1 \leq j \leq\left[\frac{N^{2}}{2}\right]+1, \tag{3.44}
\end{equation*}
$$

where K_{j} does not depend on n. We proceed by induction. From (3.43) it follows that (3.44) is true for $j=1$.

Assume that (3.44) holds for some $j \in \mathbf{N}^{*}, j \leq\left[\frac{N^{2}}{2}\right]$. Let $\chi_{j} \in C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$ be a real-valued function such that $0 \leq \chi_{j} \leq 1, \operatorname{supp}\left(\chi_{j}\right) \subset B\left(0, \frac{1}{2^{j-1}}\right)$ and $\chi_{j}=1$ on $B\left(0, \frac{1}{2^{j}}\right)$. Replacing χ by χ_{j} in (3.42), then using the Cauchy-Schwarz inequality and (3.41) we find

$$
\begin{align*}
& \int_{B\left(0, \frac{1}{2 j}\right)}\left|\nabla v_{n}\right|^{2} d x+\frac{1}{h_{n}^{2}} \int_{B\left(0, \frac{1}{2 j}\right)} \tilde{\varphi}^{\prime}\left(\left|v_{n}-m_{n}\right|^{2}\right)\left|v_{n}-m_{n}\right|^{2} d x \\
& \leq \frac{1}{2}\left\|\Delta \chi_{j}\right\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}\left\|v_{n}-m_{n}\right\|_{L^{2}\left(B\left(0, \frac{1}{2 j-1}\right)\right)}^{2}+\left\|f_{n}\right\|_{L^{2}\left(B\left(0, \frac{1}{2 j-1}\right)\right)}\left\|v_{n}-m_{n}\right\|_{L^{2}\left(B\left(0, \frac{1}{2 j-1}\right)\right)} \tag{3.45}\\
& \leq A_{j}\left\|v_{n}-m_{n}\right\|_{L^{2}\left(B\left(0, \frac{1}{2 j-1}\right)\right)}^{2}+C_{4} h_{n}^{N}\left\|v_{n}-m_{n}\right\|_{L^{2}\left(B\left(0, \frac{1}{2 j-1}\right)\right)} \leq A_{j}^{\prime} h_{n}^{\frac{4 j}{N}}
\end{align*}
$$

From (3.44) and (3.45) we infer that $\left\|v_{n}-m_{n}\right\|_{H^{1} B\left(0, \frac{1}{2^{j}}\right)} \leq B_{j} h_{n}^{\frac{2 j}{N}}$. Then the Sobolev embedding implies

$$
\begin{equation*}
\left\|v_{n}-m_{n}\right\|_{L^{2^{*}} B\left(0, \frac{1}{2^{j}}\right)} \leq D_{j} h_{n}^{\frac{2 j}{N}} \tag{3.46}
\end{equation*}
$$

The function $z \longmapsto \tilde{\varphi}\left(|z|^{2}\right)$ is clearly Lipschitz on \mathbf{C}, thus we have

$$
\begin{aligned}
& \int_{B(0,1)}\left|\tilde{\varphi}\left(\left|v_{n}-u_{n}\right|^{2}\right)-\tilde{\varphi}\left(\left|v_{n}-m_{n}\right|^{2}\right)\right| d x \leq C_{6}^{\prime} \int_{B(0,1)}\left|u_{n}-m_{n}\right| d x \\
& \leq C_{6}\left\|u_{n}-m_{n}\right\|_{L^{2}(B(0,1))} \leq C_{6} h_{n}^{N+2} .
\end{aligned}
$$

It is clear that $\int_{B(0,1)} \tilde{\varphi}\left(\left|v_{n}-u_{n}\right|^{2}\right) d x \leq h_{n}^{2} G_{h_{n}, \mathbf{R}^{N}}^{u_{n}}\left(v_{n}\right) \leq h_{n}^{2} E_{G L}\left(u_{n}\right) \leq h_{n}^{2} M$ and we obtain

$$
\begin{equation*}
\int_{B(0,1)} \tilde{\varphi}\left(\left|v_{n}-m_{n}\right|^{2}\right) d x \leq C_{7} h_{n}^{2} \tag{3.47}
\end{equation*}
$$

If $\left|v_{n}(x)-m_{n}\right| \geq 8 r_{0}$ we have $\tilde{\varphi}\left(\left|v_{n}(x)-m_{n}\right|^{2}\right)=\varphi\left(\frac{\left|v_{n}(x)-m_{n}\right|^{2}}{32 r_{0}}\right) \geq 2 r_{0}$, hence

$$
\begin{equation*}
2 r_{0} \mathcal{L}^{N}\left(\left\{x \in B(0,1)| | v_{n}(x)-m_{n} \mid \geq 8 r_{0}\right\}\right) \leq \int_{B(0,1)} \tilde{\varphi}\left(\left|v_{n}-m_{n}\right|^{2}\right) d x \leq C_{7} h_{n}^{2} \tag{3.48}
\end{equation*}
$$

By Hölder's inequality, (3.46) and (3.48) we have

$$
\begin{align*}
& \int_{\left\{\left|v_{n}-m_{n}\right| \geq 8 r_{0}\right\} \cap B\left(0, \frac{1}{2 j}\right)}\left|v_{n}-m_{n}\right|^{2} d x \\
& \leq\left\|v_{n}-m_{n}\right\|_{L^{2^{*}} B\left(0, \frac{1}{2 j}\right)}^{2}\left(\mathcal{L}^{N}\left(\left\{x \in B(0,1)| | v_{n}(x)-m_{n} \mid \geq 8 r_{0}\right\}\right)\right)^{1-\frac{2}{2^{*}}} \tag{3.49}\\
& \leq\left(D_{j} h_{n}^{\frac{2 j}{N}}\right)^{2}\left(\frac{C_{7}}{2 r_{0}} h_{n}^{2}\right)^{1-\frac{2}{2^{*}}} \leq E_{j} h_{n}^{\frac{4 j+4}{N}} .
\end{align*}
$$

From (3.45) it follows that

$$
\begin{align*}
& \int_{\left\{\left|v_{n}-m_{n}\right|<8 r_{0}\right\} \cap B\left(0, \frac{1}{2 j}\right)}\left|v_{n}-m_{n}\right|^{2} d x \leq \int_{B\left(0, \frac{1}{2 j}\right)} \tilde{\varphi}^{\prime}\left(\left|v_{n}-m_{n}\right|^{2}\right)\left|v_{n}-m_{n}\right|^{2} d x \tag{3.50}\\
& \leq A_{j}^{\prime} h_{n}^{2+\frac{4 j}{N}} \leq A_{j}^{\prime} h_{n}^{\frac{4 j+4}{N}}
\end{align*}
$$

Then (3.49) and (3.50) imply that (3.44) holds for $j+1$ and the induction is complete. Thus (3.44) is established. Denoting $j_{N}=\left[\frac{N^{2}}{2}\right]+1$ and $R_{N}=\frac{1}{2^{j_{N}-1}}$, we have proved that

$$
\begin{equation*}
\left\|v_{n}-m_{n}\right\|_{L^{2}\left(B\left(0, R_{N}\right)\right)} \leq K_{j_{N}} h_{n}^{\frac{2 j_{N}}{N}} \leq K_{j_{N}} h_{n}^{N} . \tag{3.51}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& \int_{B\left(0, R_{N}\right)}\left|\frac{1}{h_{n}^{2}} \tilde{\varphi}^{\prime}\left(\left|v_{n}-m_{n}\right|^{2}\right)\left(v_{n}-m_{n}\right)\right|^{N} d x \\
& \leq \frac{1}{h_{n}^{2 N}} \sup _{z \in \mathbf{C}}\left|\tilde{\varphi}^{\prime}\left(|z|^{2}\right) z\right|^{N-2} \int_{B\left(0, R_{N}\right)}\left|v_{n}-m_{n}\right|^{2} d x \leq C_{8} . \tag{3.52}
\end{align*}
$$

Arguing as in (3.40) and using (3.36) we get

$$
\begin{align*}
& \left\|\tilde{\varphi}^{\prime}\left(\left|v_{n}-m_{n}\right|^{2}\right)\left(v_{n}-m_{n}\right)-\tilde{\varphi}^{\prime}\left(\left|v_{n}-u_{n}\right|^{2}\right)\left(v_{n}-u_{n}\right)\right\|_{L^{N}(B(0,1))}^{N} \\
& \leq C_{9} \sup _{z \in \mathbf{C}}\left|\tilde{\varphi}^{\prime}\left(|z|^{2}\right) z\right|^{N-2}\left\|u_{n}-m_{n}\right\|_{L^{2}(B(0,1)}^{2} \leq C_{10} h_{n}^{2 N+4} . \tag{3.53}
\end{align*}
$$

From (3.39), (3.53) and the fact that H is bounded on \mathbf{C} it follows that $\left\|f_{n}\right\|_{L^{N}\left(B\left(0, R_{N}\right)\right)} \leq C_{11}$, where C_{11} does not depend on n. Using this estimate, (3.52) and (3.38), we infer that (3.37) holds.

Since any ball of radius 1 can be covered by a finite number of balls of radius R_{N}, it follows that there exists $C>0$ such that

$$
\begin{equation*}
\left\|\Delta v_{n}\right\|_{L^{N}(B(x, 1))} \leq C \quad \text { for any } x \in \mathbf{R}^{N} \text { and } n \in \mathbf{N}^{*} \tag{3.54}
\end{equation*}
$$

We will use (3.18) and (3.54) to prove that there exist $\tilde{R}_{N} \in(0,1]$ and $C>0$ such that

$$
\begin{equation*}
\left\|v_{n}-m_{n}(x)\right\|_{W^{2, N}\left(B\left(x, \tilde{R}_{N}\right)\right)} \leq C \quad \text { for any } x \in \mathbf{R}^{N} \text { and } n \in \mathbf{N}^{*} \tag{3.55}
\end{equation*}
$$

As previously, it suffices to prove (3.55) for $x_{0}=0$. From (3.54) and Hölder's inequality it follows that for $1 \leq p \leq N$ we have

$$
\begin{equation*}
\left\|\Delta v_{n}\right\|_{L^{p}(B(x, 1))} \leq\left(\mathcal{L}^{N}(B(0,1))\right)^{1-\frac{p}{N}}\left\|\Delta v_{n}\right\|_{L^{N}(B(x, 1))}^{\frac{p}{N}} \leq C(p) \tag{3.56}
\end{equation*}
$$

Using (3.43), (3.54) and (3.18) we obtain

$$
\begin{equation*}
\left\|v_{n}-m_{n}(0)\right\|_{W^{2,2}\left(B\left(x, \frac{1}{2}\right)\right)} \leq C \tag{3.57}
\end{equation*}
$$

If $\frac{1}{2}-\frac{2}{N} \leq \frac{1}{N},(3.57)$ and the Sobolev embedding give

$$
\left\|v_{n}-m_{n}(0)\right\|_{L^{N}\left(B\left(x, \frac{1}{2}\right)\right)} \leq C
$$

and this estimate together with (3.54) and (3.18) imply that (3.55) holds for $\tilde{R}_{N}=\frac{1}{4}$.
If $\frac{1}{2}-\frac{2}{N}>\frac{1}{N}$, from (3.57) and the Sobolev embedding we find $\left\|v_{n}-m_{n}(0)\right\|_{L^{p_{1}}\left(B\left(x, \frac{1}{2}\right)\right)} \leq C$, where $\frac{1}{p_{1}}=\frac{1}{2}-\frac{2}{N}$. This estimate, (3.56) and (3.18) imply $\left\|v_{n}-m_{n}(0)\right\|_{W^{2, p_{1}}\left(B\left(x, \frac{1}{4}\right)\right)} \leq C$. If $\frac{1}{p_{1}}-\frac{2}{N} \leq \frac{1}{N}$, from the Sobolev embedding we obtain $\left\|v_{n}-m_{n}(0)\right\|_{L^{N}\left(B\left(x, \frac{1}{4}\right)\right)} \leq C$, and then using (3.54) and (3.18) we infer that (3.55) holds for $\tilde{R}_{N}=\frac{1}{8}$. Otherwise we repeat the above argument. After a finite number of steps we see that (3.55) holds.

Next we proceed as in the proof of Lemma 3.1 (iv). By (3.23) and (3.55) we have for $p \in[2, \infty)$ and any $x_{0} \in \mathbf{R}^{N}$,

$$
\begin{align*}
& \left\|\nabla v_{n}-m\left(\nabla v_{n}, B\left(x_{0}, \frac{1}{2} \tilde{R}_{N}\right)\right)\right\|_{L^{p}\left(B\left(x_{0}, \frac{1}{2} \tilde{R}_{N}\right)\right)} \\
& \leq C\left\|\nabla v_{n}\right\|_{L^{2}\left(B\left(x_{0}, \tilde{R}_{N}\right)\right)}^{\frac{2}{p}}\left\|\nabla^{2} v_{n}\right\|_{L^{N}\left(B\left(x_{0}, \tilde{R}_{N}\right)\right)}^{1-\frac{2}{p}} \leq C_{1}(p) . \tag{3.58}
\end{align*}
$$

Arguing as in (3.25) we see that $\left\|m\left(\nabla v_{n}, B\left(x_{0}, \frac{1}{2} \tilde{R}_{N}\right)\right)\right\|_{L^{p}\left(B\left(x_{0}, \frac{1}{2} \tilde{R}_{N}\right)\right)}$ is bounded independently on n and hence

$$
\left\|\nabla v_{n}\right\|_{L^{p}\left(B\left(x_{0}, \frac{1}{2} \tilde{R}_{N}\right)\right)} \leq C_{2}(p) \quad \text { for any } n \in \mathbf{N}^{*} \text { and } x_{0} \in \mathbf{R}^{N}
$$

Using this estimate for $p=2 N$ together with the Morrey inequality (3.27), we see that there exists $C_{*}>0$ such that for any $x, y \in \mathbf{R}^{N}$ with $|x-y| \leq \frac{\tilde{R}_{N}}{2}$ and any $n \in \mathbf{N}^{*}$ we have

$$
\begin{equation*}
\left|v_{n}(x)-v_{n}(y)\right| \leq C_{*}|x-y|^{\frac{1}{2}} \tag{3.59}
\end{equation*}
$$

Let $\delta_{n}=\left|\left|\left|v_{n}-r_{0}\right|-r_{0} \|_{L^{\infty}\left(\mathbf{R}^{N}\right)}\right.\right.$ and choose $x_{n} \in \mathbf{R}^{N}$ such that $\left.|\right| v_{n}\left(x_{n}\right)-r_{0}\left|-r_{0}\right| \geq \frac{\delta_{n}}{2}$. From (3.59) it follows that $\left|\left|v_{n}(x)-r_{0}\right|-r_{0}\right| \geq \frac{\delta_{n}}{4}$ for any $x \in B\left(x_{n}, r_{n}\right)$, where

$$
r_{n}=\min \left(\frac{\tilde{R}_{N}}{2},\left(\frac{\delta_{n}}{4 C_{*}}\right)^{2}\right)
$$

Then we have

$$
\begin{align*}
& \int_{B\left(x_{n}, 1\right)}\left(\varphi^{2}\left(\left|r_{0}-v_{n}(y)\right|\right)-r_{0}^{2}\right)^{2} d y \geq \int_{B\left(x_{n}, r_{n}\right)}\left(\varphi^{2}\left(\left|r_{0}-v_{n}(y)\right|\right)-r_{0}^{2}\right)^{2} d y \tag{3.60}\\
& \geq \int_{B\left(x_{n}, r_{n}\right)} \eta\left(\frac{\delta_{n}}{4}\right) d y=\mathcal{L}^{N}\left(B(0,1) \eta\left(\frac{\delta_{n}}{4}\right) r_{n}^{N}\right.
\end{align*}
$$

where η is as in (3.30).
On the other hand, the function $z \longmapsto\left(\varphi^{2}\left(\left|r_{0}-z\right|\right)-r_{0}^{2}\right)^{2}$ is Lipschitz on \mathbf{C}. Using this fact, the Cauchy-Schwarz inequality, (3.2) and assumption (a) we get

$$
\begin{aligned}
& \int_{B(x, 1)}\left|\left(\varphi^{2}\left(\left|r_{0}-v_{n}(y)\right|\right)-r_{0}^{2}\right)^{2}-\left(\varphi^{2}\left(\left|r_{0}-u_{n}(y)\right|\right)-r_{0}^{2}\right)^{2}\right| d y \\
& \leq C \int_{B(x, 1)}\left|v_{n}(y)-u_{n}(y)\right| d y \leq C^{\prime}\left\|v_{n}-u_{n}\right\|_{L^{2}(B(x, 1))} \leq C^{\prime}\left\|v_{n}-u_{n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq C^{\prime \prime} h_{n}^{\frac{2}{N}}
\end{aligned}
$$

Then using assumption (b) we infer that

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{N}} \int_{B(x, 1)}\left(\varphi^{2}\left(\left|r_{0}-v_{n}(y)\right|\right)-r_{0}^{2}\right)^{2} d y \longrightarrow 0 \quad \text { as } n \longrightarrow \infty \tag{3.61}
\end{equation*}
$$

From (3.60) and (3.61) we get $\lim _{n \rightarrow \infty} \eta\left(\frac{\delta_{n}}{4}\right) r_{n}^{N}=0$ and this clearly implies $\lim _{n \rightarrow \infty} \delta_{n}=0$. Lemma 3.2 is thus proved.

The next result is based on Lemma 3.1 and will be very useful in the next sections to prove the "concentration" of minimizing sequences. For $0<R_{1}<R_{2}$ we denote $\Omega_{R_{1}, R_{2}}=$ $B\left(0, R_{2}\right) \backslash \bar{B}\left(0, R_{1}\right)$.

Lemma 3.3 Let $A>A_{3}>A_{2}>1$. There exist $\varepsilon_{0}=\varepsilon_{0}\left(a, r_{0}, N, A, A_{2}, A_{3}\right)>0$ and $C_{i}=C_{i}\left(a, r_{0}, N, A, A_{2}, A_{3}\right)>0$ such that for any $R \geq 1, \varepsilon \in\left(0, \varepsilon_{0}\right)$ and $u \in \mathcal{X}$ verifying $E_{G L}^{\Omega_{A R, R}}(u) \leq \varepsilon$, there exist two functions $u_{1}, u_{2} \in \mathcal{X}$ and a constant $\theta_{0} \in[0,2 \pi)$ satisfying the following properties:
i) $\operatorname{supp}\left(u_{1}\right) \subset B\left(0, A_{2} R\right)$ and $r_{0}-u_{1}=e^{-i \theta_{0}}\left(r_{0}-u\right)$ on $B(0, R)$,
ii) $u_{2}=u$ on $\mathbf{R}^{N} \backslash B(0, A R)$ and $r_{0}-u_{2}=r_{0} e^{i \theta_{0}}=$ constant on $B\left(0, A_{3} R\right)$,
iii) $\left.\left.\int_{\mathbf{R}^{N}}| | \frac{\partial u}{\partial x_{j}}\right|^{2}-\left|\frac{\partial u_{1}}{\partial x_{j}}\right|^{2}-\left|\frac{\partial u_{2}}{\partial x_{j}}\right|^{2} \right\rvert\, d x \leq C_{1} \varepsilon$ for $j=1, \ldots, N$,
iv) $\int_{\mathbf{R}^{N}}\left|\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}-\left(\varphi^{2}\left(\left|r_{0}-u_{1}\right|\right)-r_{0}^{2}\right)^{2}-\left(\varphi^{2}\left(\left|r_{0}-u_{2}\right|\right)-r_{0}^{2}\right)^{2}\right| d x \leq C_{2} \varepsilon$,
v) $\left|Q(u)-Q\left(u_{1}\right)-Q\left(u_{2}\right)\right| \leq C_{3} \varepsilon$,
vi) If assumptions (A1) and (A2) in the introduction hold, then

$$
\int_{\mathbf{R}^{N}}\left|V\left(\left|r_{0}-u\right|^{2}\right)-V\left(\left|r_{0}-u_{1}\right|^{2}\right)-V\left(\left|r_{0}-u_{2}\right|^{2}\right)\right| d x \leq C_{4} \varepsilon+C_{5} \sqrt{\varepsilon}\left(E_{G L}(u)\right)^{\frac{2^{*}-1}{2}}
$$

Proof. Fix $k>0, A_{1}$ and A_{4} such that $1+4 k<A_{1}<A_{2}<A_{3}<A_{4}<A-4 k$. Let $h=1$ and $\delta=\frac{r_{0}}{2}$. We will prove that Lemma 3.3 holds for $\varepsilon_{0}=K\left(a, r_{0}, N, h=1, \delta=\frac{r_{0}}{2}\right.$, $\left.k\right)$, where $K\left(a, r_{0}, N, h, \delta, R\right)$ is as in Lemma 3.1 (iv).

Consider $\eta_{1}, \eta_{2} \in C^{\infty}(\mathbf{R})$ satisfying the following properties:

$$
\begin{array}{lll}
\eta_{1}=1 \text { on }\left(-\infty, A_{1}\right], & \eta_{1}=0 \text { on }\left[A_{2}, \infty\right), & \eta_{1} \text { is nonincreasing }, \\
\eta_{2}=0 \text { on }\left(-\infty, A_{3}\right], & \eta_{2}=1 \text { on }\left[A_{4}, \infty\right), & \eta_{2} \text { is nondecreasing. }
\end{array}
$$

Let $\varepsilon<\varepsilon_{0}$ and let $u \in \mathcal{X}$ be such that $E_{G L}^{\Omega_{R, A R}}(u) \leq \varepsilon$. Let v_{1} be a minimizer of $G_{1, \Omega_{R, A R}}^{u}$ in the space $H_{u}^{1}\left(\Omega_{R, A R}\right)$. The existence of v_{1} is guaranteed by Lemma 3.1. We also know that $v_{1} \in W_{l o c}^{2, p}\left(\Omega_{R, A R}\right)$ for any $p \in[1, \infty)$. Moreover, since $E_{G L}^{\Omega_{R, A R}}(u) \leq K\left(a, r_{0}, N, 1, \frac{r_{0}}{2}, k\right)$, Lemma 3.1 (iv) implies that

$$
\begin{equation*}
\frac{r_{0}}{2}<\left|r_{0}-v_{1}(x)\right|<\frac{3 r_{0}}{2} \quad \text { if } R+4 k \leq|x| \leq A R-4 k \tag{3.62}
\end{equation*}
$$

Since $N \geq 3, \Omega_{A_{1} R, A_{4} R}$ is simply connected and it follows directly from Theorem 3 p. 38 in [9] that there exist two real-valued functions $\rho, \theta \in W^{2, p}\left(\Omega_{A_{1} R, A_{4} R}\right), 1 \leq p<\infty$, such that

$$
\begin{equation*}
r_{0}-v_{1}(x)=\rho(x) e^{i \theta(x)} \quad \text { on } \Omega_{A_{1} R, A_{4} R} \tag{3.63}
\end{equation*}
$$

For $j=1, \ldots, N$ we have

$$
\begin{equation*}
\frac{\partial v_{1}}{\partial x_{j}}=\left(-\frac{\partial \rho}{\partial x_{j}}-i \rho \frac{\partial \theta}{\partial x_{j}}\right) e^{i \theta} \quad \text { and } \quad\left|\frac{\partial v_{1}}{\partial x_{j}}\right|^{2}=\left|\frac{\partial \rho}{\partial x_{j}}\right|^{2}+\rho^{2}\left|\frac{\partial \theta}{\partial x_{j}}\right|^{2} \quad \text { a.e. on } \Omega_{A_{1} R, A_{4} R} \tag{3.64}
\end{equation*}
$$

Thus we get the following estimates:

$$
\begin{equation*}
\int_{\Omega_{A_{1} R, A_{4} R}}|\nabla \rho|^{2} d x \leq \int_{\Omega_{A_{1} R, A_{4} R}}\left|\nabla v_{1}\right|^{2} d x \leq \varepsilon \tag{3.65}
\end{equation*}
$$

$$
\begin{align*}
& a^{2} \int_{\Omega_{A_{1} R, A_{4} R}}\left(\rho^{2}-r_{0}^{2}\right)^{2} d x \leq E_{G L}^{\Omega_{A_{1} R, A_{4} R}}\left(v_{1}\right) \leq \varepsilon \tag{3.66}\\
& \int_{\Omega_{A_{1} R, A_{4} R}}|\nabla \theta|^{2} d x \leq \frac{4}{r_{0}^{2}} \int_{\Omega_{A_{1} R, A_{4} R}}\left|\nabla v_{1}\right|^{2} d x \leq \frac{4}{r_{0}^{2}} \varepsilon \tag{3.67}
\end{align*}
$$

The Poincaré inequality and a scaling argument imply that

$$
\begin{equation*}
\int_{\Omega_{A_{1} R, A_{4} R}}\left|f-m\left(f, \Omega_{A_{1} R, A_{4} R}\right)\right|^{2} d x \leq C\left(N, A_{1}, A_{4}\right) R^{2} \int_{\Omega_{A_{1} R, A_{4} R}}|\nabla f|^{2} d x \tag{3.68}
\end{equation*}
$$

for any $f \in H^{1}\left(\Omega_{A_{1} R, A_{4} R}\right)$, where $C\left(N, A_{1}, A_{4}\right)$ does not depend on R. Let $\theta_{0}=m\left(\theta, \Omega_{A_{1} R, A_{4} R}\right)$. We may assume that $\theta_{0} \in\left[0,2 \pi\right.$) (otherwise we replace θ by $\theta-2 \pi\left[\frac{\theta}{2 \pi}\right]$). Using (3.67) and (3.68) we get

$$
\begin{equation*}
\int_{\Omega_{A_{1} R, A_{4} R}}\left|\theta-\theta_{0}\right|^{2} d x \leq C\left(r_{0}, N, A_{1}, A_{4}\right) R^{2} \int_{\Omega_{A_{1} R, A_{4} R}}\left|\nabla v_{1}\right|^{2} d x \leq C\left(r_{0}, N, A_{1}, A_{4}\right) R^{2} \varepsilon \tag{3.69}
\end{equation*}
$$

We define \tilde{u}_{1} and u_{2} by

$$
\left.\begin{array}{l}
r_{0}-\tilde{u}_{1}(x)= \begin{cases}r_{0}-u(x) & \text { if } x \in \bar{B}(0, R), \\
r_{0}-v_{1}(x) & \text { if } x \in B\left(0, A_{1} R\right) \backslash \bar{B}(0, R), \\
\left(r_{0}+\eta_{1}\left(\frac{|x|}{R}\right)\left(\rho(x)-r_{0}\right)\right) e^{i\left(\theta_{0}+\eta_{1}\left(\frac{|x|}{R}\right)\left(\theta(x)-\theta_{0}\right)\right)} \\
\text { if } x \in B\left(0, A_{4} R\right) \backslash B\left(0, A_{1} R\right), \\
r_{0} e^{i \theta_{0}} \quad \text { if } x \in \mathbf{R}^{N} \backslash B\left(0, A_{4} R\right),\end{cases} \\
r_{0}-u_{2}(x)=\left\{\begin{array}{l}
r_{0} e^{i \theta_{0}} \quad \text { if } x \in \bar{B}\left(0, A_{1} R\right), \\
\left(\begin{array}{ll}
\left.r_{0}+\eta_{2}\left(\frac{|x|}{R}\right)\left(\rho(x)-r_{0}\right)\right)
\end{array}\right. \\
r_{0}-v_{1}(x) \\
r_{0}-u(x) \\
\left.r_{0}+\theta_{2}\left(\frac{|x|}{R}\right)\left(\theta(x)-\theta_{0}\right)\right) \\
\text { if } x \in B(0, A R) \backslash B\left(0, A_{4} R\right)
\end{array}\right. \tag{3.71}\\
\text { if } x \in B(0, A R) \backslash \bar{B}\left(0, A_{1} R\right),
\end{array}\right]
$$

then we define u_{1} in such a way that $r_{0}-u_{1}=e^{-i \theta_{0}}\left(r_{0}-\tilde{u}_{1}\right)$. Since $u \in \mathcal{X}$ and $u-v_{1} \in$ $H_{0}^{1}\left(\Omega_{R, A R}\right)$, it is clear that $u_{1} \in H^{1}\left(\mathbf{R}^{N}\right), u_{2} \in \mathcal{X}$ and (i), (ii) hold.

Since $\rho+r_{0} \geq \frac{3}{2} r_{0}$ on $\Omega_{A_{1} R, A_{4} R}$, from (3.66) we get

$$
\begin{equation*}
\left\|\rho-r_{0}\right\|_{L^{2}\left(\Omega_{A_{1} R, A_{4} R}\right)} \leq \frac{4}{9 r_{0}^{2} a^{2}} \varepsilon \tag{3.72}
\end{equation*}
$$

Obviously, $\nabla\left(r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho(x)-r_{0}\right)\right)=\frac{1}{R} \eta_{i}^{\prime}\left(\frac{|x|}{R}\right)\left(\rho(x)-r_{0}\right) \frac{x}{|x|}+\eta_{i}\left(\frac{|x|}{R}\right) \nabla \rho$ and using (3.65), (3.72) and the fact that $R \geq 1$ we get

$$
\begin{align*}
& \left\|\nabla\left(r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho(x)-r_{0}\right)\right)\right\|_{L^{2}\left(\Omega_{A_{1} R, A_{4} R}\right)} \tag{3.73}\\
& \leq \frac{1}{R} \sup \left|\eta_{i}^{\prime}\right| \cdot\left\|\rho-r_{0}\right\|_{L^{2}\left(\Omega_{A_{1} R, A_{4} R}\right)}+\left\|\eta_{i}\left(\frac{|\cdot|}{R}\right) \nabla \rho\right\|_{L^{2}\left(\Omega_{A_{1} R, A_{4} R}\right)} \leq C \sqrt{\varepsilon}
\end{align*}
$$

Similarly, using (3.67) and (3.69) we find

$$
\begin{align*}
& \left\|\nabla\left(\theta_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\theta(x)-\theta_{0}\right)\right)\right\|_{L^{2}\left(\Omega_{A_{1} R, A_{4} R}\right)} \tag{3.74}\\
& \leq \frac{1}{R} \sup \left|\eta_{i}^{\prime}\right| \cdot\left\|\theta-\theta_{0}\right\|_{L^{2}\left(\Omega_{A_{1} R, A_{4} R}\right)}+\left\|\eta_{i}\left(\frac{|\cdot|}{R}\right) \nabla \theta\right\|_{L^{2}\left(\Omega_{A_{1} R, A_{4} R}\right)} \leq C \sqrt{\varepsilon}
\end{align*}
$$

From (3.73), (3.74) and the definition of u_{1}, u_{2} it follows that $\left\|\nabla u_{i}\right\|_{L^{2}\left(\Omega_{A_{1} R, A_{4} R}\right)} \leq C \sqrt{\varepsilon}$, $i=1,2$. Therefore

$$
\begin{aligned}
& \left.\left.\int_{\mathbf{R}^{N}}| | \frac{\partial u}{\partial x_{j}}\right|^{2}-\left|\frac{\partial u_{1}}{\partial x_{j}}\right|^{2}-\left|\frac{\partial u_{2}}{\partial x_{j}}\right|^{2}\left|d x=\int_{\Omega_{R, A R}}\right|\left|\frac{\partial u}{\partial x_{j}}\right|^{2}-\left|\frac{\partial u_{1}}{\partial x_{j}}\right|^{2}-\left|\frac{\partial u_{2}}{\partial x_{j}}\right|^{2} \right\rvert\, d x \\
& \leq \int_{\Omega_{R, A_{1} R} \cup \Omega_{A_{4} R, A R}}\left|\frac{\partial u}{\partial x_{j}}\right|^{2}+\left|\frac{\partial v_{1}}{\partial x_{j}}\right|^{2} d x+\int_{\Omega_{A_{1} R, A_{4} R}}\left|\frac{\partial u}{\partial x_{j}}\right|^{2}+\left|\frac{\partial u_{1}}{\partial x_{j}}\right|^{2}+\left|\frac{\partial u_{2}}{\partial x_{j}}\right|^{2} d x \leq C_{1} \varepsilon
\end{aligned}
$$

and (iii) is proved. On $\Omega_{A_{1} R, A_{4} R}$ we have $\rho \in\left[\frac{r_{0}}{2}, \frac{3 r_{0}}{2}\right]$, hence $\varphi\left(r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho(x)-r_{0}\right)\right)=$ $r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho(x)-r_{0}\right)$ and

$$
\begin{align*}
& \left(\varphi^{2}\left(r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho(x)-r_{0}\right)\right)-r_{0}^{2}\right)^{2}=\left(\rho-r_{0}\right)^{2} \eta_{i}^{2}\left(\frac{|x|}{R}\right)\left(2 r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho-r_{0}\right)\right)^{2} \tag{3.75}\\
& \leq\left(\frac{5}{2} r_{0}\right)^{2}\left(\rho-r_{0}\right)^{2}
\end{align*}
$$

From (3.70)-(3.72) and (3.75) it follows that $\left\|\varphi^{2}\left(\left|r_{0}-u_{i}\right|\right)-r_{0}^{2}\right\|_{L^{2}\left(\Omega_{\left.A_{1} R, A_{4} R\right)}\right.} \leq C \sqrt{\varepsilon}$. As above, we get

$$
\begin{aligned}
& \int_{\mathbf{R}^{N}}\left|\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}-\left(\varphi^{2}\left(\left|r_{0}-u_{1}\right|\right)-r_{0}^{2}\right)^{2}-\left(\varphi^{2}\left(\left|r_{0}-u_{2}\right|\right)-r_{0}^{2}\right)^{2}\right| \\
& \leq \int_{\Omega_{R, A_{1} R} \cup \Omega_{A_{4} R, A R}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}+\left(\varphi^{2}\left(\left|r_{0}-v_{1}\right|\right)-r_{0}^{2}\right)^{2} d x \\
& +\int_{\Omega_{A_{1} R, A_{4} R}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}+\left(\varphi^{2}\left(\left|r_{0}-u_{1}\right|\right)-r_{0}^{2}\right)^{2}+\left(\varphi^{2}\left(\left|r_{0}-u_{2}\right|\right)-r_{0}^{2}\right)^{2} d x \leq C_{2} \varepsilon
\end{aligned}
$$

This proves (iv).
Next we prove (v). Since $\left\langle i \frac{\partial \tilde{u}_{1}}{\partial x_{1}}, \tilde{u}_{1}\right\rangle$ has compact support, a simple computation gives

$$
\begin{equation*}
Q\left(u_{1}\right)=L\left(\left\langle i \frac{\partial u_{1}}{\partial x_{1}}, u_{1}\right\rangle\right)=L\left(\left\langle i e^{-i \theta_{0}} \frac{\partial \tilde{u}_{1}}{\partial x_{1}}, r_{0}-e^{-i \theta_{0}} r_{0}+e^{-i \theta_{0}} \tilde{u}_{1}\right\rangle\right)=\int_{\mathbf{R}^{N}}\left\langle i \frac{\partial \tilde{u}_{1}}{\partial x_{1}}, \tilde{u}_{1}\right\rangle d x \tag{3.76}
\end{equation*}
$$

From the definition of \tilde{u}_{1} and u_{2} and the fact that $u=v_{1}$ on $\mathbf{R}^{N} \backslash \Omega_{R, A R}$ we get $\left\langle i \frac{\partial v_{1}}{\partial x_{1}}, v_{1}\right\rangle-$ $\left\langle i \frac{\partial \tilde{u}_{1}}{\partial x_{1}}, \tilde{u}_{1}\right\rangle-\left\langle i \frac{\partial u_{2}}{\partial x_{1}}, u_{2}\right\rangle=0$ a.e. on $\mathbf{R}^{N} \backslash \Omega_{A_{1} R, A_{4} R}$. Using this identity, Definition 2.4, (3.76), then (2.3) and (3.70), (3.71) we obtain

$$
\begin{align*}
& Q\left(v_{1}\right)-Q\left(u_{1}\right)-Q\left(u_{2}\right)=\int_{\Omega_{A_{1} R, A_{4} R}}\left\langle i \frac{\partial v_{1}}{\partial x_{1}}, v_{1}\right\rangle-\left\langle i \frac{\partial \tilde{u}_{1}}{\partial x_{1}}, \tilde{u}_{1}\right\rangle-\left\langle i \frac{\partial u_{2}}{\partial x_{1}}, u_{2}\right\rangle d x \\
& =\int_{\Omega_{A_{1} R, A_{4} R}}\left\langle i \frac{\partial v_{1}}{\partial x_{1}}-\frac{\partial \tilde{u}_{1}}{\partial x_{1}}-\frac{\partial u_{2}}{\partial x_{1}}, r_{0}\right\rangle d x-\int_{\Omega_{A_{1} R, A_{4} R}}\left(\rho^{2}-r_{0}^{2}\right) \frac{\partial \theta}{\partial x_{1}} d x \\
& +\int_{\Omega_{A_{1} R, A_{4} R}} \sum_{i=1}^{2}\left(\left(r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho-r_{0}\right)\right)^{2}-r_{0}^{2}\right) \frac{\partial}{\partial x_{1}}\left(\theta_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\theta-\theta_{0}\right)\right) d x \tag{3.77}\\
& -\int_{\Omega_{A_{1} R, A_{4} R}} r_{0}^{2}\left(\frac{\partial \theta}{\partial x_{1}}-\sum_{i=1}^{2} \frac{\partial}{\partial x_{1}}\left(\theta_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\theta(x)-\theta_{0}\right)\right)\right) d x
\end{align*}
$$

The functions $v_{1}-\tilde{u}_{1}-u_{2}$ and $\theta^{*}=\theta-\sum_{i=1}^{2}\left(\theta_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\theta(x)-\theta_{0}\right)\right)$ belong to $C^{1}\left(\Omega_{R, A R}\right)$ and $v_{1}-\tilde{u}_{1}-u_{2}=r_{0}\left(e^{i \theta_{0}}-1\right)=$ const., $\theta^{*}=-\theta_{0}=$ const. on $\Omega_{R, A R} \backslash \Omega_{A_{1} R, A_{4} R}$. Therefore

$$
\begin{equation*}
\int_{\Omega_{A_{1} R, A_{4} R}}\left\langle i \frac{\partial}{\partial x_{1}}\left(v_{1}-\tilde{u_{1}}-u_{2}\right), r_{0}\right\rangle d x=0 \quad \text { and } \quad \int_{\Omega_{A_{1} R, A_{4} R}} \frac{\partial \theta^{*}}{\partial x_{1}} d x=0 \tag{3.78}
\end{equation*}
$$

Using (3.66), (3.67) and the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\left|\int_{\Omega_{A_{1} R, A_{4} R}}\left(\rho^{2}-r_{0}^{2}\right) \frac{\partial \theta}{\partial x_{1}} d x\right| \leq C \varepsilon . \tag{3.79}
\end{equation*}
$$

Similarly, from (3.72), (3.74), (3.75) and the Cauchy-Schwarz inequality we get

$$
\begin{equation*}
\left|\int_{\Omega_{A_{1} R, A_{4} R}}\left(\left(r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho-r_{0}\right)\right)^{2}-r_{0}^{2}\right) \frac{\partial}{\partial x_{1}}\left(\theta_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\theta-\theta_{0}\right)\right) d x\right| \leq C \varepsilon \tag{3.80}
\end{equation*}
$$

From (3.77)-(3.80) we obtain $\left|Q\left(v_{1}\right)-Q\left(u_{1}\right)-Q\left(u_{2}\right)\right| \leq C \varepsilon$ and (3.4) gives $\left|Q(u)-Q\left(v_{1}\right)\right| \leq$ $C E_{G L}^{\Omega_{R, A R}}(u) \leq C \varepsilon$. These estimates clearly imply (v).

It remains to prove (vi). Assume that (A1) and (A2) are satisfied and let W be as in the introduction. Using (1.5) and (1.7), then Hölder's inequality we obtain

From the Sobolev embedding we have

$$
\begin{align*}
& \left\|u-v_{1}\right\|_{L^{2^{*}}\left(\mathbf{R}^{N}\right)} \leq C_{S}\left\|\nabla\left(u-v_{1}\right)\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \tag{3.82}\\
& \leq C_{S}\left(\|\nabla u\|_{L^{2}\left(\Omega_{R, A R}\right)}+\left\|\nabla v_{1}\right\|_{L^{2}\left(\Omega_{R, A R}\right)}\right) \leq 2 C_{S} \sqrt{\varepsilon} .
\end{align*}
$$

It is clear that $\left|r_{0}-u\right|>2 r_{0}$ implies $|u|>r_{0}$ and $\left|r_{0}-u\right|<2|u|$, hence

$$
\begin{align*}
& \left\|\left|r_{0}-u\right| \mathbb{1}_{\left\{\left|r_{0}-u\right|>2 r_{0}\right\}}\right\|_{L^{2^{*}}\left(\Omega_{R, A R}\right)} \\
& \leq 2\|u\|_{L^{2^{*}}\left(\mathbf{R}^{N}\right)} \leq 2 C_{S}\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq 2 C_{S}\left(E_{G L}(u)\right)^{\frac{1}{2}} . \tag{3.83}
\end{align*}
$$

Obviously, a similar estimate holds for v_{1}. Combining (3.81), (3.82) and (3.83) we find

$$
\begin{equation*}
\int_{\Omega_{R, A R}}\left|V\left(\left|r_{0}-u\right|^{2}\right)-V\left(\left|r_{0}-v_{1}\right|^{2}\right)\right| d x \leq C^{\prime} \varepsilon+C^{\prime \prime} \sqrt{\varepsilon}\left(E_{G L}(u)\right)^{\frac{2^{*}-1}{2}} \tag{3.84}
\end{equation*}
$$

From (3.70) and (3.71) it follows that $V\left(\left|r_{0}-v_{1}\right|^{2}\right)-V\left(\left|r_{0}-u_{1}\right|^{2}\right)-V\left(\left|r_{0}-u_{2}\right|^{2}\right)=0$ on $\mathbf{R}^{N} \backslash \Omega_{A_{1} R, A_{4} R}$ and $\left|r_{0}-v_{1}\right|,\left|r_{0}-u_{1}\right|,\left|r_{0}-u_{2}\right| \in\left[\frac{r_{0}}{2}, \frac{3 r_{0}}{2}\right]$ on $\Omega_{A_{1} R, A_{4} R}$. Then using (1.5), (3.66), (3.75) and (3.72) we get

$$
\begin{equation*}
\int_{\Omega_{A_{1} R, A_{4} R}}\left|V\left(\left|r_{0}-v_{1}\right|^{2}\right)\right| d x \leq C \int_{\Omega_{A_{1} R, A_{4} R}}\left(\rho^{2}-r_{0}^{2}\right)^{2} d x \leq C \varepsilon, \quad \text { respectively } \tag{3.85}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Omega_{A_{1} R, A_{4} R}}\left|V\left(\left|r_{0}-u_{i}\right|^{2}\right)\right| d x \leq C \int_{\Omega_{A_{1} R, A_{4} R}}\left(\left(r_{0}+\eta_{i}\left(\frac{|x|}{R}\right)\left(\rho-r_{0}\right)\right)^{2}-r_{0}^{2}\right)^{2} d x \leq C \varepsilon \tag{3.86}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \int_{\mathbf{R}^{N}}\left|V\left(\left|r_{0}-v_{1}\right|^{2}\right)-V\left(\left|r_{0}-u_{1}\right|^{2}\right)-V\left(\left|r_{0}-u_{2}\right|^{2}\right)\right| d x \\
& \leq \int_{\Omega_{A_{1} R, A_{4} R}}\left|V\left(\left|r_{0}-v_{1}\right|^{2}\right)\right|+\left|V\left(\left|r_{0}-u_{1}\right|^{2}\right)\right|+\left|V\left(\left|r_{0}-u_{2}\right|^{2}\right)\right| d x \leq C \varepsilon \tag{3.87}
\end{align*}
$$

Then (iv) follows from (3.84) and (3.87) and Lemma 3.3 is proved.

4 Variational formulation

We assume throughout that assumptions (A1) and (A2) in the introduction are satisfied. We introduce the following functionals:

$$
\begin{aligned}
& E_{c}(u)=\int_{\mathbf{R}^{N}}|\nabla u|^{2} d x+c Q(u)+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x \\
& A(u)=\int_{\mathbf{R}^{N}} \sum_{j=2}^{N}\left|\frac{\partial u}{\partial x_{j}}\right|^{2} d x \\
& B_{c}(u)=\int_{\mathbf{R}^{N}}\left|\frac{\partial u}{\partial x_{1}}\right|^{2} d x+c Q(u)+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x \\
& P_{c}(u)=\frac{N-3}{N-1} A(u)+B_{c}(u)
\end{aligned}
$$

It is clear that $E_{c}(u)=A(u)+B_{c}(u)=\frac{2}{N-1} A(u)+P_{c}(u)$. Let

$$
\mathcal{C}=\left\{u \in \mathcal{X} \mid u \neq 0, P_{c}(u)=0\right\} .
$$

The aim of this section is to study the properties of the above functionals. In particular, we will prove that $\mathcal{C} \neq \emptyset$ and $\inf \left\{E_{c}(u) \mid u \in \mathcal{C}\right\}>0$. This will be done in a sequence of lemmas. In the next sections we show that E_{c} admits a minimizer in \mathcal{C} and this minimizer is a solution of (1.3).

We begin by proving that the above functionals are well-defined on \mathcal{X}. Since we have already seen in section 2 that Q is well-defined on \mathcal{X}, all we have to do is to prove that $V\left(\left|r_{0}-u\right|^{2}\right) \in L^{1}\left(\mathbf{R}^{N}\right)$ for any $u \in \mathcal{X}$. This will be done in the next lemma.

Lemma 4.1 For any $u \in \mathcal{X}$ we have $V\left(\left|r_{0}-u\right|^{2}\right) \in L^{1}\left(\mathbf{R}^{N}\right)$. Moreover, for any $\delta>0$ there exist $C_{1}(\delta), C_{2}(\delta)>0$ such that for any $u \in \mathcal{X}$ we have

$$
\begin{align*}
& (1-\delta) a^{2} \int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x-C_{1}(\delta)\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2^{*}} \\
& \leq \int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x \tag{4.1}\\
& \leq(1+\delta) a^{2} \int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x+C_{2}(\delta)\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2^{*}}
\end{align*}
$$

Proof. Fix $\delta>0$. Using (1.4) we see that there exists $\beta=\beta(\delta) \in\left(0, r_{0}\right]$ such that

$$
\begin{equation*}
(1-\delta) a^{2}\left(s-r_{0}^{2}\right)^{2} \leq V(s) \leq(1+\delta) a^{2}\left(s-r_{0}^{2}\right)^{2} \quad \text { for any } s \in\left(\left(r_{0}-\beta\right)^{2},\left(r_{0}+\beta\right)^{2}\right) \tag{4.2}
\end{equation*}
$$

Let $u \in \mathcal{X}$. If $|u(x)|<\beta$ we have $\left|r_{0}-u(x)\right|^{2} \in\left(\left(r_{0}-\beta\right)^{2},\left(r_{0}+\beta\right)^{2}\right)$ and it follows from (4.2) that $V\left(\left|r_{0}-u\right|^{2}\right) \mathbb{1}_{\{|u|<\beta\}} \in L^{1}\left(\mathbf{R}^{N}\right)$ and

$$
\begin{align*}
& (1-\delta) a^{2} \int_{\{|u|<\beta\}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x \leq \int_{\{|u|<\beta\}} V\left(\left|r_{0}-u\right|^{2}\right) d x \\
& \leq(1+\delta) a^{2} \int_{\{|u|<\beta\}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x \tag{4.3}
\end{align*}
$$

Assumption (A2) implies that there exists $C_{1}^{\prime}(\delta)>0$ such that

$$
\left|V\left(\left|r_{0}-z\right|^{2}\right)-(1-\delta) a^{2}\left(\varphi^{2}\left(\left|r_{0}-z\right|\right)-r_{0}^{2}\right)^{2}\right| \leq C_{1}^{\prime}(\delta)|z|^{2 p_{0}+2} \leq C_{1}^{\prime \prime}(\delta)|z|^{2^{*}}
$$

for any $z \in \mathbf{C}$ satisfying $|z| \geq \beta$. Using the Sobolev embedding we obtain

$$
\begin{aligned}
& \int_{\{|u| \geq \beta\}}\left|V\left(\left|r_{0}-u\right|^{2}\right)-(1-\delta) a^{2}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2}\right| d x \\
& \leq C_{1}^{\prime \prime}(\delta) \int_{\{|u| \geq \beta\}}|u|^{2^{*}} d x \leq C_{1}^{\prime \prime}(\delta) \int_{\mathbf{R}^{N}}|u|^{2^{*}} d x \leq C_{1}(\delta)| | \nabla u \|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2^{*}}
\end{aligned}
$$

Consequently $V\left(\left|r_{0}-u\right|^{2}\right) \mathbb{1}_{\{|u| \geq \beta\}} \in L^{1}\left(\mathbf{R}^{N}\right)$ and it follows from (4.3) and (4.4) that the first inequality in (4.1) holds; the proof of the second inequality is similar.
Lemma 4.2 Let $\delta \in\left(0, r_{0}\right)$ and let $u \in \mathcal{X}$ be such that $r_{0}-\delta \leq\left|r_{0}-u\right| \leq r_{0}+\delta$ a.e. on \mathbf{R}^{N}. Then

$$
|Q(u)| \leq \frac{1}{2 a\left(r_{0}-\delta\right)} E_{G L}(u)
$$

Proof. From Lemma 2.1 we know that there are two real-valued functions ρ, θ such that $\rho-r_{0} \in H^{1}\left(\mathbf{R}^{N}\right), \theta \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$ and $r_{0}-u=\rho e^{i \theta}$ a.e. on \mathbf{R}^{N}. Moreover, from (2.3) and Definition 2.4 we infer that

$$
Q(u)=-\int_{\mathbf{R}^{N}}\left(\rho^{2}-r_{0}^{2}\right) \theta_{x_{1}} d x
$$

Using the Cauchy-Schwarz inequality we obtain

$$
\begin{aligned}
& 2 a\left(r_{0}-\delta\right)|Q(u)| \leq 2 a\left(r_{0}-\delta\right)| | \theta_{x_{1}}\left\|_{L^{2}\left(\mathbf{R}^{N}\right)}| | \rho^{2}-r_{0}^{2}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \\
& \leq\left(r_{0}-\delta\right)^{2} \int_{\mathbf{R}^{N}}\left|\theta_{x_{1}}\right|^{2} d x+a^{2} \int_{\mathbf{R}^{N}}\left(\rho^{2}-r_{0}^{2}\right)^{2} d x \\
& \leq \int_{\mathbf{R}^{N}} \rho^{2}|\nabla \theta|^{2}+a^{2}\left(\rho^{2}-r_{0}^{2}\right)^{2} d x \leq E_{G L}(u)
\end{aligned}
$$

Lemma 4.3 Assume that $0 \leq c<v_{s}$ and let $\varepsilon \in\left(0,1-\frac{c}{v_{s}}\right)$. There exists a constant $K_{1}=$ $K_{1}(F, N, c, \varepsilon)>0$ such that for any $u \in \mathcal{X}$ satisfying $E_{G L}(u)<K_{1}$ we have

$$
\int_{\mathbf{R}^{N}}|\nabla u|^{2} d x+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x-c|Q(u)| \geq \varepsilon E_{G L}(u)
$$

Proof. Fix ε_{1} such that $\varepsilon<\varepsilon_{1}<1-\frac{c}{v_{s}}$. Then fix $\delta_{1} \in\left(0, \varepsilon_{1}-\varepsilon\right)$. By Lemma 4.1, there exists $C_{1}\left(\delta_{1}\right)>0$ such that for any $u \in \mathcal{X}$ we have

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x \geq\left(1-\delta_{1}\right) a^{2} \int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x-C_{1}\left(\delta_{1}\right)\left(E_{G L}(u)\right)^{\frac{2^{*}}{2}} \tag{4.5}
\end{equation*}
$$

Using (3.4) we see that there exists $A>0$ such that for any $w \in \mathcal{X}$ with $E_{G L}(w) \leq 1$, for any $h \in(0,1]$ and for any minimizer v_{h} of $G_{h, \mathbf{R}^{N}}^{w}$ in $H_{w}^{1}\left(\mathbf{R}^{N}\right)$ we have

$$
\begin{equation*}
\left|Q(w)-Q\left(v_{h}\right)\right| \leq A h^{\frac{2}{N}} E_{G L}(w) \tag{4.6}
\end{equation*}
$$

Choose $h \in(0,1]$ such that $\varepsilon_{1}-\delta_{1}-c A h^{\frac{2}{N}}>\varepsilon\left(\right.$ this choice is possible because $\left.\varepsilon_{1}-\delta_{1}-\varepsilon>0\right)$. Then fix $\delta>0$ such that $\frac{c}{2 a\left(r_{0}-\delta\right)}<1-\varepsilon_{1}$ (such δ exist because $\varepsilon_{1}<1-\frac{c}{v_{s}}=1-\frac{c}{2 a r_{0}}$).

Let $K=K\left(a, r_{0}, N, h, \delta, 1\right)$ be as in Lemma 3.1 (iv).
Consider $u \in \mathcal{X}$ such that $E_{G L}(u) \leq \min (K, 1)$. Let v_{h} be a minimizer of $G_{h, \mathbf{R}^{N}}^{u}$ in $H_{u}^{1}\left(\mathbf{R}^{N}\right)$. The existence of v_{h} follows from Lemma 3.1 (i). By Lemma 3.1 (iv) we have $r_{0}-\delta<\left|r_{0}-v_{h}\right|<r_{0}+\delta$ a.e. on \mathbf{R}^{N} and then Lemma 4.2 implies

$$
\begin{equation*}
c\left|Q\left(v_{h}\right)\right| \leq \frac{c}{2 a\left(r_{0}-\delta\right)} E_{G L}\left(v_{h}\right) \leq\left(1-\varepsilon_{1}\right) E_{G L}\left(v_{h}\right) \leq\left(1-\varepsilon_{1}\right) E_{G L}(u) \tag{4.7}
\end{equation*}
$$

We have:

$$
\begin{aligned}
& \int_{\mathbf{R}^{N}}|\nabla u|^{2} d x+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x-c|Q(u)| \\
& \geq\left(1-\delta_{1}\right) E_{G L}(u)-C_{1}\left(\delta_{1}\right)\left(E_{G L}(u)\right)^{\frac{2^{*}}{2}}-c|Q(u)| \quad \text { by }(4.5) \\
& \geq\left(1-\delta_{1}\right) E_{G L}(u)-C_{1}\left(\delta_{1}\right)\left(E_{G L}(u)\right)^{\frac{2^{*}}{2}}-c\left|Q(u)-Q\left(v_{h}\right)\right|-c\left|Q\left(v_{h}\right)\right| \\
& \geq\left(1-\delta_{1}\right) E_{G L}(u)-C_{1}\left(\delta_{1}\right)\left(E_{G L}(u)\right)^{\frac{2^{*}}{2}}-c A h^{\frac{2}{N}} E_{G L}(u)-\left(1-\varepsilon_{1}\right) E_{G L}(u) \\
& =\left(\varepsilon_{1}-\delta_{1}-c A h^{\frac{2}{N}}-C_{1}\left(\delta_{1}\right)\left(E_{G L}(u)\right)^{\frac{2^{*}}{2}}-1\right) E_{G L}(u) .
\end{aligned}
$$

Note that (4.8) holds for any ${ }_{2} u \in \mathcal{X}$ with $E_{G L}(u)_{2^{2}} \min (K, 1)$. Since $\varepsilon_{1}-\delta_{1}-c A h^{\frac{2}{N}}>\varepsilon$, it is obvious that $\varepsilon_{1}-\delta_{1}-c A h^{\frac{2}{N}}-C_{1}\left(\delta_{1}\right)\left(E_{G L}(u)\right)^{\frac{2^{2}}{2}-1}>\varepsilon$ if $E_{G L}(u)$ is sufficiently small and the conclusion of Lemma 4.3 follows.

An obvious consequence of Lemma 4.3 is that $E_{c}(u)>0$ if $u \in \mathcal{X} \backslash\{0\}$ and $E_{G L}(u)$ is sufficiently small. An easy corollary of the next lemma is that there are functions $v \in \mathcal{X}$ such that $E_{c}(v)<0$.

Lemma 4.4 Let $N \geq 2$. Let $D=\left\{(R, \varepsilon) \in \mathbf{R}^{2} \mid R>0,0<\varepsilon<\frac{R}{2}\right\}$. There exists a continuous map from D to $H^{1}\left(\mathbf{R}^{N}\right),(R, \varepsilon) \longmapsto v^{R, \varepsilon}$ such that $v^{R, \varepsilon} \in C_{c}\left(\mathbf{R}^{N}\right)$ for any $(R, \varepsilon) \in D$ and the following estimates hold:
i) $\int_{\mathbf{R}^{N}}\left|\nabla v^{R, \varepsilon}\right|^{2} d x \leq C_{1} R^{N-2}+C_{2} R^{N-2} \ln \frac{R}{\varepsilon}$,
ii) $\left|\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-v^{R, \varepsilon}\right|^{2}\right) d x\right| \leq C_{3} \varepsilon^{2} R^{N-2}$,
iii) $\left|\int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-v^{R, \varepsilon}\right|\right)-r_{0}^{2}\right)^{2} d x\right| \leq C_{4} \varepsilon^{2} R^{N-2}$,
$i v)-2 \pi r_{0}^{2} \omega_{N-1} R^{N-1} \leq Q\left(v^{R, \varepsilon}\right) \leq-2 \pi r_{0}^{2} \omega_{N-1}(R-2 \varepsilon)^{N-1}$,
where the constants $C_{1}-C_{4}$ depend only on N and $\omega_{N-1}=\mathcal{L}^{N-1}\left(B_{\mathbf{R}^{N-1}}(0,1)\right)$.
Proof. Let $A>0$ and

$$
T_{A, R}=\left\{x \in \mathbf{R}^{N}\left|0 \leq\left|x^{\prime}\right| \leq R, \quad-\frac{A\left(R-\left|x^{\prime}\right|\right)}{R}<x_{1}<\frac{A\left(R-\left|x^{\prime}\right|\right)}{R}\right\}\right.
$$

We define $\theta^{A, R}: \mathbf{R}^{N} \longrightarrow \mathbf{R}$ in the following way: if $\left|x^{\prime}\right| \geq R$ we put $\theta^{A, R}(x)=0$ and if $\left|x^{\prime}\right|<R$ we define

$$
\theta^{A, R}(x)=\left\{\begin{array}{l}
0 \quad \text { if } x_{1} \leq-\frac{A\left(R-\left|x^{\prime}\right|\right)}{R} \tag{4.9}\\
\frac{\pi R}{A\left(R-\left|x^{\prime}\right|\right)} x_{1}+\pi \quad \text { if } x \in T_{A, R} \\
2 \pi \quad \text { if } x_{1} \geq \frac{A\left(R-\left|x^{\prime}\right|\right)}{R}
\end{array}\right.
$$

It is easy to see that $x \longmapsto e^{i \theta^{A, R}(x)}$ is continuous on $\mathbf{R}^{N} \backslash\left\{x\left|x_{1}=0,\left|x^{\prime}\right|=R\right\}\right.$ and equals 1 on $\mathbf{R}^{N} \backslash T_{A, R}$.

Fix $\psi \in C^{\infty}(\mathbf{R})$ such that $\psi=0$ on $(-\infty, 1], \psi=1$ on $[2, \infty)$ and $0 \leq \psi^{\prime} \leq 2$. Let

$$
\begin{equation*}
\psi^{R, \varepsilon}(x)=\psi\left(\frac{1}{\varepsilon} \sqrt{x_{1}^{2}+\left(\left|x^{\prime}\right|-R\right)^{2}}\right) \quad \text { and } \quad w_{A, R, \varepsilon}(x)=r_{0}\left(1-\psi^{R, \varepsilon}(x) e^{i \theta^{A, R}(x)}\right) \tag{4.10}
\end{equation*}
$$

It is obvious that $w_{A, R, \varepsilon} \in C_{c}\left(\mathbf{R}^{N}\right)$ (in fact, $w_{A, R, \varepsilon}$ is C^{∞} on $\mathbf{R}^{N} \backslash B$, where $B=\partial T_{A, R} \cup$ $\left.\left\{\left(x_{1}, 0, \ldots, 0\right) \mid x_{1} \in[-A, A]\right\}\right)$. On $\mathbf{R}^{N} \backslash B$ we have

$$
\frac{\partial \theta^{A, R}}{\partial x_{1}}=\left\{\begin{array}{l}
\frac{\pi R}{A\left(R-\left|x^{\prime}\right|\right)} \quad \text { if } x \in T_{A, R}, \tag{4.11}\\
0 \quad \text { otherwise },
\end{array} \quad \frac{\partial \theta^{A, R}}{\partial x_{j}}=\left\{\begin{array}{l}
\frac{\pi R x_{1}}{A\left(R-\left|x^{\prime}\right|\right)^{2}} \frac{x_{j}}{\left|x^{\prime}\right|} \quad \text { if } x \in T_{A, R} \\
0 \text { otherwise }
\end{array}\right.\right.
$$

$$
\begin{gather*}
\frac{\partial \psi^{R, \varepsilon}}{\partial x_{1}}(x)=\frac{1}{\varepsilon} \psi^{\prime}\left(\frac{\sqrt{x_{1}^{2}+\left(\left|x^{\prime}\right|-R\right)^{2}}}{\varepsilon}\right) \frac{x_{1}}{\sqrt{x_{1}^{2}+\left(\left|x^{\prime}\right|-R\right)^{2}}} \tag{4.12}\\
\frac{\partial \psi^{R, \varepsilon}}{\partial x_{j}}(x)=\frac{1}{\varepsilon} \psi^{\prime}\left(\frac{\sqrt{x_{1}^{2}+\left(\left|x^{\prime}\right|-R\right)^{2}}}{\varepsilon}\right) \frac{\left|x^{\prime}\right|-R}{\sqrt{x_{1}^{2}+\left(\left|x^{\prime}\right|-R\right)^{2}}} \frac{x_{j}}{\left|x^{\prime}\right|} \quad \text { for } j \geq 2 \tag{4.13}
\end{gather*}
$$

Then a simple computation gives $\left\langle i \frac{\partial w_{A, R, \varepsilon}}{\partial x_{1}}, w_{A, R, \varepsilon}\right\rangle=-r_{0}^{2}\left(\psi^{R, \varepsilon}\right)^{2} \frac{\partial \theta^{A, R}}{\partial x_{1}}+r_{0}^{2} \frac{\partial}{\partial x_{1}}\left(\psi^{R, \varepsilon} \sin \left(\theta^{A, R}\right)\right)$ on $\mathbf{R}^{N} \backslash B$. Thus we have

$$
Q\left(w_{A, R, \varepsilon}\right)=-r_{0}^{2} \int_{\mathbf{R}^{N}}\left(\psi^{R, \varepsilon}\right)^{2} \frac{\partial \theta^{A, R}}{\partial x_{1}} d x
$$

It is obvious that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\partial \theta^{A, R}}{\partial x_{1}} d x_{1}=0 \quad \text { if }\left|x^{\prime}\right|>R \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{\partial \theta^{A, R}}{\partial x_{1}} d x_{1}=2 \pi \quad \text { if } 0<\left|x^{\prime}\right|<R \tag{4.14}
\end{equation*}
$$

Since $\frac{\partial \theta^{A, R}}{\partial x_{1}} \geq 0$ a.e. on \mathbf{R}^{N} and $0 \leq \psi^{R, \varepsilon} \leq 1$, we get

$$
\int_{\left\{\left|R-\left|x^{\prime}\right|\right| \geq 2 \varepsilon\right\}} \frac{\partial \theta^{A, R}}{\partial x_{1}} d x \leq \int_{\mathbf{R}^{N}}\left(\psi^{R, \varepsilon}\right)^{2} \frac{\partial \theta^{A, R}}{\partial x_{1}} d x_{1} \leq \int_{\mathbf{R}^{N}} \frac{\partial \theta^{A, R}}{\partial x_{1}} d x_{1}
$$

and using Fubini's theorem and (4.14) we obtain that $w_{A, R, \varepsilon}$ satisfies (iv).
Using cylindrical coordinates $\left(x_{1}, r, \zeta\right)$ in \mathbf{R}^{N}, where $r=\left|x^{\prime}\right|$ and $\zeta=\frac{x^{\prime}}{\left|x^{\prime}\right|} \in S^{N-2}$, we get

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-w_{A, R, \varepsilon}\right|^{2}\right) d x=\left|S^{N-2}\right| \int_{-\infty}^{\infty} \int_{0}^{\infty} V\left(r_{0}^{2} \psi^{2}\left(\frac{\sqrt{x_{1}^{2}+(r-R)^{2}}}{\varepsilon}\right)\right) r^{N-2} d r d x_{1} \tag{4.15}
\end{equation*}
$$

Next we use polar coordinates in the (x_{1}, r) plane, that is we write $x_{1}=\tau \cos \alpha, r=R+\tau \sin \alpha$ (thus $\tau=\sqrt{x_{1}^{2}+(R-r)^{2}}$). Since $V\left(r_{0}^{2} \psi^{2}(s)\right)=0$ for $s \geq 2$, we get

$$
\begin{align*}
& \int_{-\infty}^{\infty} \int_{0}^{\infty} V\left(r_{0}^{2} \psi^{2}\left(\frac{\sqrt{x_{1}^{2}+(r-R)^{2}}}{\varepsilon}\right)\right) r^{N-2} d r d x_{1}=\int_{0}^{2 \varepsilon} \int_{0}^{2 \pi} V\left(r_{0}^{2} \psi^{2}\left(\frac{\tau}{\varepsilon}\right)\right)(R+\tau \sin \alpha)^{N-2} d \alpha \tau d \tau \tag{4.16}\\
& =\varepsilon^{2} \int_{0}^{2} \int_{0}^{2 \pi} V\left(r_{0}^{2} \psi^{2}(s)\right)(R+\varepsilon s \sin \alpha)^{N-2} d \alpha s d s
\end{align*}
$$

It is obvious that $\left|\int_{0}^{2 \pi}(R+\varepsilon s \sin \alpha)^{N-2} d \alpha\right| \leq 2 \pi(R+2 \varepsilon)^{N-2}$ for any $s \in[0,2]$, and then using (4.15) and (4.16) we infer that $w_{A, R, \varepsilon}$ satisfies (ii). The proof of (iii) is similar.

It is clear that on $\mathbf{R}^{N} \backslash B$ we have

$$
\begin{equation*}
\left|\nabla w_{A, R, \varepsilon}\right|=r_{0}^{2}\left|\nabla \psi^{R, \varepsilon}\right|^{2}+r_{0}^{2}\left|\psi^{R, \varepsilon}\right|^{2}\left|\nabla \theta^{A, R}\right|^{2} \tag{4.17}
\end{equation*}
$$

From (4.12) and (4.13) we see that $\left|\nabla \psi^{R, \varepsilon}(x)\right|^{2}=\frac{1}{\varepsilon^{2}}\left|\psi^{\prime}\left(\frac{\sqrt{x_{1}^{2}+\left(\left|x^{\prime}\right|-R\right)^{2}}}{\varepsilon}\right)\right|^{2}$. Proceeding as above and using cylindrical coordinates $\left(x_{1}, r, \zeta\right)$ in \mathbf{R}^{N}, then passing to polar coordinates $x_{1}=\tau \cos \alpha, r=R+\tau \sin \alpha$, we obtain

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left|\psi^{\prime}\left(\frac{\sqrt{x_{1}^{2}+\left(\left|x^{\prime}\right|-R\right)^{2}}}{\varepsilon}\right)\right|^{2} d x \leq 2 \pi\left|S^{N-2}\right| \varepsilon^{2}(R+2 \varepsilon)^{N-2} \int_{0}^{2} s\left|\psi^{\prime}(s)\right|^{2} d s \tag{4.18}
\end{equation*}
$$

It is easily seen from (4.11) that $\left|\nabla \theta^{A, R}(x)\right|^{2}=\frac{\pi^{2} R^{2}}{A^{2}\left(R-\left|x^{\prime}\right|\right)^{2}}\left(1+\frac{x_{1}^{2}}{\left(R-\left|x^{\prime}\right|\right)^{2}}\right)$ if $x \in T_{A, R},\left|x^{\prime}\right| \neq$ 0 , and $\nabla \theta^{A, R}(x)=0$ a.e. on $\mathbf{R}^{N} \backslash \bar{T}_{A, R}$. Moreover, if $\left(x_{1}, x^{\prime}\right) \in T_{A, R}$ and $\left|x^{\prime}\right| \geq R-\frac{R \varepsilon}{\sqrt{A^{2}+R^{2}}}$, we have $\psi^{R, \varepsilon}\left(x_{1}, x^{\prime}\right)=0$. Therefore

$$
\begin{align*}
& \int_{\mathbf{R}^{N}}\left|\psi^{R, \varepsilon}\right|^{2}\left|\nabla \theta^{A, R}\right|^{2} d x \leq \int_{T_{A, R} \cap\left\{\left|x^{\prime}\right|<R-\frac{R \varepsilon}{\sqrt{A^{2}+R^{2}}}\right\}}\left|\nabla \theta^{A, R}\right|^{2} d x \\
& =\int_{\left\{\left|x^{\prime}\right|<R-\frac{R \varepsilon}{\sqrt{A^{2}+R^{2}}}\right\}} \int_{-\frac{A\left(R-\left|x^{\prime}\right|\right)}{R}}^{\frac{A\left(R-\left|x^{\prime}\right|\right)}{R}}\left|\nabla \theta^{A, R}\right|^{2} d x_{1} d x^{\prime} \\
& =\int_{\left\{\left|x^{\prime}\right|<R-\frac{R \varepsilon}{\sqrt{A^{2}+R^{2}}}\right\}} \frac{2 \pi^{2} R}{A\left(R-\left|x^{\prime}\right|\right)}+\frac{2 \pi^{2}}{3} \frac{A}{R} \frac{1}{R-\left|x^{\prime}\right|} d x^{\prime} \tag{4.19}\\
& =2 \pi^{2}\left(\frac{R}{A}+\frac{3 A}{R}\right)\left|S^{N-2}\right| \int_{0}^{R-\frac{R \varepsilon}{\sqrt{A^{2}+R^{2}}}} \frac{r^{N-2}}{R-r} d r \\
& =2 \pi^{2}\left(\frac{R}{A}+\frac{3 A}{R}\right)\left|S^{N-2}\right| R^{N-2}\left(\sum_{k=1}^{N-2} \frac{1}{k}\left(1-\frac{\varepsilon}{\sqrt{A^{2}+R^{2}}}\right)^{k}+\ln \left(\frac{\sqrt{A^{2}+R^{2}}}{\varepsilon}\right)\right)
\end{align*}
$$

Now it suffices to take $v^{R, \varepsilon}=w_{R, R, \varepsilon}$. From (4.17), (4.18) and (4.19) it follows that $v^{R, \varepsilon}$ satisfies (i). It is not hard to see that the mapping $(R, \varepsilon) \longmapsto v^{R, \varepsilon}$ is continuous from D to $H^{1}\left(\mathbf{R}^{N}\right)$ and Lemma 4.4 is proved.

Lemma 4.5 For any $k>0$, the functional Q is bounded on the set

$$
\left\{u \in \mathcal{X} \mid E_{G L}(u) \leq k\right\} .
$$

Proof. Let $c \in\left(0, v_{s}\right)$ and let $\varepsilon \in\left(0,1-\frac{c}{v_{s}}\right)$. From Lemmas 4.1 and 4.3 it follows that there exist two positive constants $C_{2}\left(\frac{\varepsilon}{2}\right)$ and K_{1} such that for any $u \in \mathcal{X}$ satisfying $E_{G L}(u)<K_{1}$ we have

$$
\begin{aligned}
& \left(1+\frac{\varepsilon}{2}\right) E_{G L}(u)+C_{2}\left(\frac{\varepsilon}{2}\right)\left(E_{G L}(u)\right)^{\frac{2^{*}}{2}}-c|Q(u)| \\
& \geq \int_{\mathbf{R}^{N}}|\nabla u|^{2} d x+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x-c|Q(u)| \geq \varepsilon E_{G L}(u) .
\end{aligned}
$$

This inequality implies that there exists $K_{2} \leq K_{1}$ such that for any $u \in \mathcal{X}$ satisfying $E_{G L}(u) \leq$ K_{2} we have

$$
\begin{equation*}
c|Q(u)| \leq E_{G L}(u) . \tag{4.20}
\end{equation*}
$$

Hence Lemma 4.5 is proved if $k \leq K_{2}$.
Now let $u \in \mathcal{X}$ be such that $E_{G L}(u)>K_{2}$. Using the notation (1.10), it is clear that for $\sigma>0$ we have $Q\left(u_{\sigma, \sigma}\right)=\sigma^{N-1} Q(u)$ (see (2.14) and

$$
E_{G L}\left(u_{\sigma, \sigma}\right)=\sigma^{N-2} \int_{\mathbf{R}^{N}}|\nabla u|^{2} d x+\sigma^{N} a^{2} \int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x .
$$

Let $\sigma_{0}=\left(\frac{K_{2}}{E_{G L}(u)}\right)^{\frac{1}{N-2}}$. Then $\sigma_{0} \in(0,1)$ and we have $E_{G L}\left(u_{\sigma_{0}, \sigma_{0}}\right) \leq \sigma_{0}^{N-2} E_{G L}(u)=$ K_{2}. Using (4.20) we infer that $c\left|Q\left(u_{\sigma_{0}, \sigma_{0}}\right)\right| \leq E_{G L}\left(u_{\sigma_{0}, \sigma_{0}}\right)$, and this implies $c \sigma_{0}^{N-1}|Q(u)| \leq$ $\sigma_{0}^{N-2} E_{G L}(u)$, or equivalently

$$
\begin{equation*}
|Q(u)| \leq \frac{1}{c \sigma_{0}} E_{G L}(u)=\frac{1}{c} K_{2}^{-\frac{1}{N-2}}\left(E_{G L}(u)\right)^{\frac{N-1}{N-2}} . \tag{4.21}
\end{equation*}
$$

Since (4.21) holds for any $u \in \mathcal{X}$ with $E_{G L}(u)>K_{2}$, Lemma 4.5 is proved.
From Lemma 4.1 and Lemma 4.5 it follows that for any $k>0$, the functional E_{c} is bounded on the set $\left\{u \in \mathcal{X} \mid E_{G L}(u)=k\right\}$. For $k>0$ we define

$$
E_{c, \min }(k)=\inf \left\{E_{c}(u) \mid u \in \mathcal{X}, E_{G L}(u)=k\right\} .
$$

Clearly, the function $E_{c, \text { min }}$ is bounded on any bounded interval in \mathbf{R}. The next result will be important for our variational argument.

Lemma 4.6 Assume that $N \geq 3$ and $0<c<v_{s}$. The function $E_{c, \min }$ has the following properties:
i) There exists $k_{0}>0$ such that $E_{c, \min }(k)>0$ for any $k \in\left(0, k_{0}\right)$.
ii) We have $\lim _{k \rightarrow \infty} E_{c, \min }(k)=-\infty$.
iii) For any $k>0$ we have $E_{c, \min }(k)<k$.

Proof. (i) is an easy consequence of Lemma 4.3.
(ii) It is obvious that $H^{1}\left(\mathbf{R}^{N}\right) \subset \mathcal{X}$ and the functionals $E_{G L}, E_{c}$ and Q are continuous on $H^{1}\left(\mathbf{R}^{N}\right)$. For $\varepsilon=1$ and $R>2$, consider the functions $v^{R, 1}$ constructed in Lemma 4.4. Clearly, $R \longmapsto v^{R, 1}$ is a continuous curve in $H^{1}\left(\mathbf{R}^{N}\right)$. Lemma 4.4 implies $E_{c}\left(v^{R, 1}\right) \longrightarrow-\infty$ as $R \longrightarrow \infty$. From Lemma 4.5 we infer that $E_{G L}\left(v^{R, 1}\right) \longrightarrow \infty$ as $R \longrightarrow \infty$ and then it is not hard to see that (ii) holds.
(iii) Fix $k>0$. Let $v^{R, 1}$ be as above and let $u=v^{R, 1}$ for some R sufficiently large, so that

$$
E_{G L}(u)>k, \quad Q(u)<0 \quad \text { and } E_{c}(u)<0
$$

In particular, we have

$$
E_{c}(u)-E_{G L}(u)=c Q(u)+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u\right|^{2}\right)-r_{0}^{2}\right)^{2} d x<0
$$

It is obvious that $E_{G L}\left(u_{\sigma, \sigma}\right) \longrightarrow 0$ as $\sigma \longrightarrow 0$, hence there exists $\sigma_{0} \in(0,1)$ such that $E_{G L}\left(u_{\sigma_{0}, \sigma_{0}}\right)=k$. We have

$$
\begin{aligned}
& E_{c}\left(u_{\sigma_{0}, \sigma_{0}}\right)-E_{G L}\left(u_{\sigma_{0}, \sigma_{0}}\right) \\
& =\sigma_{0}^{N-1} c Q(u)+\sigma_{0}^{N} \int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u\right|^{2}\right)-r_{0}^{2}\right)^{2} d x \\
& =\left(\sigma_{0}^{N-1}-\sigma_{0}^{N}\right) c Q(u)+\sigma_{0}^{N}\left(E_{c}(u)-E_{G L}(u)\right)<0
\end{aligned}
$$

Thus $E_{c}\left(u_{\sigma_{0}, \sigma_{0}}\right)<E_{G L}\left(u_{\sigma_{0}, \sigma_{0}}\right)$. Since $E_{G L}\left(u_{\sigma_{0}, \sigma_{0}}\right)=k$, we have necessarily $E_{c, \min }(k) \leq$ $E_{c}\left(u_{\sigma_{0}, \sigma_{0}}\right)<k$.

From Lemma 4.6 (i) and (ii) it follows that

$$
\begin{equation*}
0<S_{c}:=\sup \left\{E_{c, \min }(k) \mid k>0\right\}<\infty \tag{4.22}
\end{equation*}
$$

Lemma 4.7 The set $\mathcal{C}=\left\{u \in \mathcal{X} \mid u \neq 0, P_{c}(u)=0\right\}$ is not empty and we have

$$
T_{c}:=\inf \left\{E_{c}(u) \mid u \in \mathcal{C}\right\} \geq S_{c}>0
$$

Proof. Let $u \in \mathcal{X} \backslash\{0\}$ be such that $E_{c}(w)<0$ (we have seen in the proof of Lemma 4.6 that such functions exist). It is obvious that $A(w)>0$ and $\int_{\mathbf{R}^{N}}\left|\frac{\partial w}{\partial x_{1}}\right|^{2} d x>0$; therefore $B_{c}(w)=E_{c}(w)-A(w)<0$ and $P_{c}(w)=E_{c}(w)-\frac{2}{N-1} A(w)<0$. Clearly,

$$
\begin{equation*}
P_{c}\left(w_{\sigma, 1}\right)=\frac{1}{\sigma} \int_{\mathbf{R}^{N}}\left|\frac{\partial w}{\partial x_{1}}\right|^{2} d x+\frac{N-3}{N-1} \sigma A(w)+c Q(w)+\sigma \int_{\mathbf{R}^{3}} V\left(\left|r_{0}-w\right|^{2}\right) d x \tag{4.23}
\end{equation*}
$$

Since $P_{c}\left(w_{1,1}\right)=P_{c}(w)<0$ and $\lim _{\sigma \rightarrow 0} P_{c}\left(w_{\sigma, 1}\right)=\infty$, there exists $\sigma_{0} \in(0,1)$ such that $P_{c}\left(w_{\sigma_{0}, 1}\right)=0$, that is $w_{\sigma_{0}, 1} \in \mathcal{C}$. Thus $\mathcal{C} \neq \emptyset$.

To prove the second part of Lemma 4.7, consider first the case $N \geq 4$. Let $u \in \mathcal{C}$. It is clear that $A(u)>0, B_{c}(u)=-\frac{N-3}{N-1} A(u)<0$ and for any $\sigma>0$ we have $E_{c}\left(u_{1, \sigma}\right)=$ $A\left(u_{1, \sigma}\right)+B_{c}\left(u_{1, \sigma}\right)=\sigma^{N-3} A(u)+\sigma^{N-1} B_{c}(u)$, hence

$$
\frac{d}{d \sigma}\left(E_{c}\left(u_{1, \sigma}\right)\right)=(N-3) \sigma^{N-4} A(u)+(N-1) \sigma^{N-2} B_{c}(u)
$$

is positive on $(0,1)$ and negative on $(1, \infty)$. Consequently the function $\sigma \longmapsto E_{c}\left(u_{1, \sigma}\right)$ achieves its maximum at $\sigma=1$.

On the other hand, we have

$$
E_{G L}\left(u_{1, \sigma}\right)=\sigma^{N-3} A(u)+\sigma^{N-1}\left(\int_{\mathbf{R}^{N}}\left|\frac{\partial u}{\partial x_{1}}\right|^{2}+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x\right) .
$$

It is easy to see that the mapping $\sigma \longmapsto E_{G L}\left(u_{1, \sigma}\right)$ is strictly increasing and one-to-one from $(0, \infty)$ to $(0, \infty)$. Hence for any $k>0$, there is a unique $\sigma(k, u)>0$ such that $E_{G L}\left(u_{1, \sigma(k, u)}\right)=$ k. Then we have

$$
E_{c, \min }(k) \leq E_{c}\left(u_{1, \sigma(k, u)}\right) \leq E_{c}\left(u_{1,1}\right)=E_{c}(u)
$$

Since this is true for any $k>0$ and any $u \in \mathcal{C}$, the conclusion follows.
Next we consider the case $N=3$. Let $u \in \mathcal{C}$. We have $P_{c}(u)=B_{c}(u)=0$ and $E_{c}(u)=$ $A(u)>0$. For $\sigma>0$ we get

$$
\begin{gathered}
E_{c}\left(u_{1, \sigma}\right)=A(u)+\sigma^{2} B_{c}(u)=A(u) \quad \text { and } \\
E_{G L}\left(u_{1, \sigma}\right)=A(u)+\sigma^{2}\left(\int_{\mathbf{R}^{3}}\left|\frac{\partial u}{\partial x_{1}}\right|^{2}+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x\right) .
\end{gathered}
$$

Clearly, $\sigma \longmapsto E_{G L}\left(u_{1, \sigma}\right)$ is increasing on $(0, \infty)$ and is one-to-one from $(0, \infty)$ to $(A(u), \infty)$.
Let $\varepsilon>0$. Let $k_{\varepsilon}>0$ be such that $E_{c, \min }\left(k_{\varepsilon}\right)>S_{c}-\varepsilon$. If $A(u) \geq k_{\varepsilon}$, from Lemma 4.6 (iii) we have

$$
E_{c}(u)=A(u) \geq k_{\varepsilon}>E_{c, \min }\left(k_{\varepsilon}\right)>S_{c}-\varepsilon
$$

If $A(u)<k_{\varepsilon}$, there exists $\sigma\left(k_{\varepsilon}, u\right)>0$ such that $E_{G L}\left(u_{1, \sigma\left(k_{\varepsilon}, u\right)}\right)=k_{\varepsilon}$. Then we get

$$
E_{c}(u)=A(u)=E_{c}\left(u_{1, \sigma\left(k_{\varepsilon}, u\right)}\right) \geq E_{c, \min }\left(k_{\varepsilon}\right)>S_{c}-\varepsilon .
$$

So far we have proved that for any $u \in \mathcal{C}$ and any $\varepsilon>0$ we have $E_{c}(u)>S_{c}-\varepsilon$. The conclusion follows letting $\varepsilon \longrightarrow 0$, then taking the infimum for $u \in \mathcal{C}$.

In Lemma 4.7, we do not know whether $T_{c}=S_{c}$.
Lemma 4.8 Let T_{c} be as in Lemma 4.7. The following assertions hold.
i) For any $u \in \mathcal{X}$ with $P_{c}(u)<0$ we have $A(u)>\frac{N-1}{2} T_{c}$.
ii) Let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}$ be a sequence such that $\left(E_{G L}\left(u_{n}\right)\right)_{n \geq 1}$ is bounded and $\lim _{n \rightarrow \infty} P_{c}\left(u_{n}\right)=$ $\mu<0$. Then $\liminf _{n \rightarrow \infty} A\left(u_{n}\right)>\frac{N-1}{2} T_{c}$.

Proof. i) Since $P_{c}(u)<0$, it is clear that $u \neq 0$ and $\int_{\mathbf{R}^{N}}\left|\frac{\partial u}{\partial x_{1}}\right|^{2} d x>0$. As in the proof of Lemma 4.7, we have $P_{c}\left(u_{1,1}\right)=P_{c}(u)<0$ and (4.23) implies that $\lim _{\sigma \rightarrow 0} P_{c}\left(u_{\sigma, 1}\right)=\infty$, hence there exists $\sigma_{0} \in(0,1)$ such that $P_{c}\left(u_{\sigma_{0}, 1}\right)=0$. From Lemma 4.7 we get $E_{c}\left(u_{\sigma_{0}, 1}\right) \geq T_{c}$ and this implies $E_{c}\left(u_{\sigma_{0}, 1}\right)-P_{c}\left(u_{\sigma_{0}, 1}\right) \geq T_{c}$, that is $\frac{2}{N-1} A\left(u_{\sigma_{0}, 1}\right) \geq T_{c}$. From the last inequality we find

$$
\begin{equation*}
A(u) \geq \frac{N-1}{2} \frac{1}{\sigma_{0}} T_{c}>\frac{N-1}{2} T_{c} . \tag{4.24}
\end{equation*}
$$

ii) For n sufficiently large (so that $P_{c}\left(u_{n}\right)<0$) we have $u_{n} \neq 0$ and $\int_{\mathbf{R}^{N}}\left|\frac{\partial u_{n}}{\partial x_{1}}\right|^{2} d x>0$. As in the proof of part (i), using (4.23) we see that for each n sufficiently big there exists $\sigma_{n} \in(0,1)$ such that

$$
\begin{equation*}
P_{c}\left(\left(u_{n}\right)_{\sigma_{n}, 1}\right)=0 \tag{4.25}
\end{equation*}
$$

and we infer that $A\left(u_{n}\right) \geq \frac{N-1}{2} \frac{1}{\sigma_{n}} T_{c}$. We claim that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sigma_{n}<1 \tag{4.26}
\end{equation*}
$$

Notice that if (4.26) holds, we have $\liminf _{n \rightarrow \infty} A\left(u_{n}\right) \geq \frac{N-1}{2} \frac{1}{\lim \sup _{n \rightarrow \infty} \sigma_{n}} T_{c}>\frac{N-1}{2} T_{c}$ and Lemma 4.8 is proved.

To prove (4.26) we argue by contradition and assume that there is a subsequence $\left(\sigma_{n_{k}}\right)_{k \geq 1}$ such that $\sigma_{n_{k}} \longrightarrow 1$ as $k \longrightarrow \infty$. Since $\left(E_{G L}\left(u_{n}\right)\right)_{n \geq 1}$ is bounded, using Lemmas 4.1 and 4.5 we infer that $\left(\int_{\mathbf{R}^{N}}\left|\frac{\partial u_{n}}{\partial x_{1}}\right|^{2} d x\right)_{n \geq 1},\left(\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u_{n}\right|^{2}\right) d x\right)_{n \geq 1},\left(A\left(u_{n}\right)\right)_{n \geq 1}$, and $\left(Q\left(u_{n}\right)\right)_{n \geq 1}$ are bounded. Consequently there is a subsequence $\left(n_{k_{\ell}}\right)_{\ell \geq 1}$ and there are $\alpha_{1}, \alpha_{2}, \beta, \gamma \in \mathbf{R}$ such that

$$
\begin{array}{ll}
\int_{\mathbf{R}^{N}}\left|\frac{\partial u_{n_{k_{\ell}}}}{\partial x_{1}}\right|^{2} d x \longrightarrow \alpha_{1}, & \int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u_{n_{k_{\ell}}}\right|^{2}\right) d x \longrightarrow \gamma \\
A\left(u_{n_{k_{\ell}}}\right) \longrightarrow \alpha_{2}, & Q\left(u_{n_{k_{\ell}}}\right) \longrightarrow \beta \quad \text { as } \ell \longrightarrow \infty
\end{array}
$$

Writing (4.25) and (4.23) (with $\left(u_{n_{k_{\ell}}}\right)_{\sigma_{n_{k_{\ell}}}, 1}$ instead of $\left(u_{n}\right)_{\sigma_{n}, 1}$ and $w_{\sigma, 1}$, respectively) then passing to the limit as $\ell \longrightarrow \infty$ and using the fact that $\sigma_{n_{k}} \longrightarrow 1$ we find $\alpha_{1}+\frac{N-3}{N-1} \alpha_{2}+c \beta+\gamma=$ 0 . On the other hand we have $\lim _{\ell \rightarrow \infty} P_{c}\left(u_{n_{k_{\ell}}}\right)=\mu<0$ and this gives $\alpha_{1}+\frac{N-3}{N-1} \alpha_{2}+c \beta+\gamma=\mu<0$. This contradiction proves that (4.26) holds and the proof of Lemma 4.8 is complete.

$5 \quad$ The case $N \geq 4$

Throughout this section we assume that $N \geq 4,0<c<v_{s}$ and the assumptions (A1) and (A2) are satisfied. Most of the results below do not hold for $c>v_{s}$. Some of them may not hold for $c=0$ and some particular nonlinearities F.

Lemma 5.1 Let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}$ be a sequence such that $\left(E_{c}\left(u_{n}\right)\right)_{n \geq 1}$ is bounded and $P_{c}\left(u_{n}\right) \longrightarrow$ 0 as $n \longrightarrow \infty$.

Then $\left(E_{G L}\left(u_{n}\right)\right)_{n \geq 1}$ is bounded.
Proof. We have $\frac{2}{N-1} A\left(u_{n}\right)=E_{c}\left(u_{n}\right)-P_{c}\left(u_{n}\right)$, hence $\left(A\left(u_{n}\right)\right)_{n \geq 1}$ is bounded. It remains to prove that $\int_{\mathbf{R}^{N}}\left|\frac{\partial u_{n}}{\partial x_{1}}\right|+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x$ is bounded. We argue by contradiction and we assume that there is a subsequence, still denoted $\left(u_{n}\right)_{n \geq 1}$, such that

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left|\frac{\partial u_{n}}{\partial x_{1}}\right|+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \longrightarrow \infty \quad \text { as } n \longrightarrow \infty \tag{5.1}
\end{equation*}
$$

Fix $k_{0}>0$ such that $E_{c, \min }\left(k_{0}\right)>0$. Arguing as in the proof of Lemma 4.7, it is easy to see that there exists a sequence $\left(\sigma_{n}\right)_{n \geq 1}$ such that

$$
\begin{equation*}
E_{G L}\left(\left(u_{n}\right)_{1, \sigma_{n}}\right)=\sigma_{n}^{N-3} A\left(u_{n}\right)+\sigma_{n}^{N-1} \int_{\mathbf{R}^{N}}\left|\frac{\partial u_{n}}{\partial x_{1}}\right|+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x=k_{0} \tag{5.2}
\end{equation*}
$$

From (5.1) and (5.2) we have $\sigma_{n} \longrightarrow 0$ as $n \longrightarrow \infty$. Since $B_{c}\left(u_{n}\right)=-\frac{N-3}{N-1} A\left(u_{n}\right)+P_{c}\left(u_{n}\right)$, it is clear that $\left(B_{c}\left(u_{n}\right)\right)_{n \geq 1}$ is bounded and we obtain

$$
E_{c}\left(\left(u_{n}\right)_{1, \sigma_{n}}\right)=\sigma_{n}^{N-3} A\left(u_{n}\right)+\sigma_{n}^{N-1} B_{c}\left(u_{n}\right) \longrightarrow 0 \quad \text { as } n \longrightarrow \infty .
$$

But this contradicts the fact that $E_{c, \min }\left(k_{0}\right)>0$ and Lemma 5.1 is proved.

Lemma 5.2 Let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}$ be a sequence satisfying the following properties:
a) There exist $C_{1}, C_{2}>0$ such that $C_{1} \leq E_{G L}\left(u_{n}\right)$ and $A\left(u_{n}\right) \leq C_{2}$ for any $n \geq 1$.
b) $P_{c}\left(u_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$.

Then $\liminf _{n \rightarrow \infty} E_{c}\left(u_{n}\right) \geq T_{c}$, where T_{c} is as in Lemma 4.7.
Note that in Lemma 5.2 the assumption $E_{G L}\left(u_{n}\right) \geq C_{1}>0$ is necessary. To see this, consider a sequence $\left(u_{n}\right)_{n \geq 1} \subset H^{1}\left(\mathbf{R}^{N}\right)$ such that $u_{n} \neq 0$ and $u_{n} \longrightarrow 0$ as $n \longrightarrow \infty$. It is clear that $P_{c}\left(u_{n}\right) \longrightarrow 0$ and $E_{c}\left(u_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$.

Proof. First we prove that

$$
\begin{equation*}
C_{3}:=\liminf _{n \rightarrow \infty} A\left(u_{n}\right)>0 \tag{5.3}
\end{equation*}
$$

To see this, fix $k_{0}>0$ such that $E_{c, \min }\left(k_{0}\right)>0$. Exactly as in the proof of Lemma 4.7, it is easy to see that for each n there exists a unique $\sigma_{n}>0$ such that (5.2) holds. Since $k_{0}=E_{G L}\left(\left(u_{n}\right)_{1, \sigma_{n}}\right) \geq \min \left(\sigma_{n}^{N-3}, \sigma_{n}^{N-1}\right) E_{G L}\left(\left(u_{n}\right)\right) \geq \min \left(\sigma_{n}^{N-3}, \sigma_{n}^{N-1}\right) C_{1}$, it follows that $\left(\sigma_{n}\right)_{n \geq 1}$ is bounded. On the other hand, we have $E_{c}\left(\left(u_{n}\right)_{1, \sigma_{n}}\right)=\sigma_{n}^{N-3} A\left(u_{n}\right)+\sigma_{n}^{N-1} B_{c}\left(u_{n}\right) \geq$ $E_{c, \min }\left(k_{0}\right)>0$, that is

$$
\begin{equation*}
\sigma_{n}^{N-3} A\left(u_{n}\right)+\sigma_{n}^{N-1}\left(P_{c}\left(u_{n}\right)-\frac{N-3}{N-1} A\left(u_{n}\right)\right) \geq E_{c, \min }\left(k_{0}\right)>0 \tag{5.4}
\end{equation*}
$$

If there is a subsequence $\left(u_{n_{k}}\right)_{k \geq 1}$ such that $A\left(u_{n_{k}}\right) \longrightarrow 0$, putting $u_{n_{k}}$ in (5.4) and letting $k \longrightarrow \infty$ we would get $0 \geq E_{c, \min }\left(k_{0}\right)>0$, a contradiction. Thus (5.3) is proved.

We have $B_{c}\left(u_{n}\right)=P_{c}\left(u_{n}\right)-\frac{N-3}{N-1} A\left(u_{n}\right)$ and using (b) and (5.3) we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} B_{c}\left(u_{n}\right) \leq-\frac{N-3}{N-1} C_{3}<0 \tag{5.5}
\end{equation*}
$$

Clearly, for any $\sigma>0$ we have

$$
P_{c}\left(\left(u_{n}\right)_{1, \sigma}\right)=\sigma^{N-3} \frac{N-3}{N-1} A\left(u_{n}\right)+\sigma^{N-1} B_{c}\left(u_{n}\right)=\sigma^{N-3}\left(\frac{N-3}{N-1} A\left(u_{n}\right)+\sigma^{2} B_{c}\left(u_{n}\right)\right)
$$

For n sufficiently big (so that $B_{c}\left(u_{n}\right)<0$), let $\tilde{\sigma}_{n}=\left(\frac{\frac{N-3}{N-1} A\left(u_{n}\right)}{-B_{c}\left(u_{n}\right)}\right)^{\frac{1}{2}}$. Then $P_{c}\left(\left(u_{n}\right)_{1, \tilde{\sigma}_{n}}\right)=0$, or equivalently $\left(u_{n}\right)_{1, \tilde{\sigma}_{n}} \in \mathcal{C}$. From Lemma 4.7 we obtain $E_{c}\left(\left(u_{n}\right)_{1, \tilde{\sigma}_{n}}\right)=\tilde{\sigma}_{n}^{N-3} \frac{N-3}{N-1} A\left(u_{n}\right)+$ $\tilde{\sigma}_{n}^{N-1} B_{c}\left(u_{n}\right) \geq T_{c}$, that is

$$
\begin{equation*}
E_{c}\left(u_{n}\right)+\left(\tilde{\sigma}_{n}^{N-3}-1\right) A\left(u_{n}\right)+\left(\tilde{\sigma}_{n}^{N-1}-1\right)\left(P_{c}\left(u_{n}\right)-\frac{N-3}{N-1} A\left(u_{n}\right)\right) \geq T_{c} \tag{5.6}
\end{equation*}
$$

Clearly, $\tilde{\sigma}_{n}$ can be written as $\tilde{\sigma}_{n}=\left(\frac{P_{c}\left(u_{n}\right)}{-B_{c}\left(u_{n}\right)}+1\right)^{\frac{1}{2}}$ and using (b) and (5.5) it follows that $\lim _{n \rightarrow \infty} \tilde{\sigma}_{n}=1$. Then passing to the limit as $n \longrightarrow \infty$ in (5.6) and using the fact that $\left(A\left(u_{n}\right)\right)_{n \geq 1}$ and $\left(P_{c}\left(u_{n}\right)\right)_{n \geq 1}$ are bounded, we obtain $\liminf _{n \rightarrow \infty} E_{c}\left(u_{n}\right) \geq T_{c}$.

We can now state the main result of this section.
Theorem 5.3 Let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X} \backslash\{0\}$ be a sequence such that

$$
P_{c}\left(u_{n}\right) \longrightarrow 0 \quad \text { and } \quad E_{c}\left(u_{n}\right) \longrightarrow T_{c} \quad \text { as } n \longrightarrow \infty .
$$

There exist a subsequence $\left(u_{n_{k}}\right)_{k \geq 1}$, a sequence $\left(x_{k}\right)_{k \geq 1} \subset \mathbf{R}^{N}$ and $u \in \mathcal{C}$ such that

$$
\nabla u_{n_{k}}\left(\cdot+x_{k}\right) \longrightarrow \nabla u \quad \text { and } \quad \varphi^{2}\left(\left|r_{0}-u_{n_{k}}\left(\cdot+x_{k}\right)\right|\right)-r_{0}^{2} \longrightarrow \varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2} \quad \text { in } L^{2}\left(\mathbf{R}^{N}\right)
$$

Moreover, we have $E_{c}(u)=T_{c}$, that is u minimizes E_{c} in \mathcal{C}.

Proof. From Lemma 5.1 we know that $E_{G L}\left(u_{n}\right)$ is bounded. We have $\frac{2}{N-1} A\left(u_{n}\right)=$ $E_{c}\left(u_{n}\right)-P_{c}\left(u_{n}\right) \longrightarrow T_{c}$ as $n \longrightarrow \infty$. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A\left(u_{n}\right)=\frac{N-1}{2} T_{c} \text { and } \liminf _{n \rightarrow \infty} E_{G L}\left(u_{n}\right) \geq \lim _{n \rightarrow \infty} A\left(u_{n}\right)=\frac{N-1}{2} T_{c} \tag{5.7}
\end{equation*}
$$

Passing to a subsequence if necessary, we may assume that there exists $\alpha_{0} \geq \frac{N-1}{2} T_{c}$ such that

$$
\begin{equation*}
E_{G L}\left(u_{n}\right) \longrightarrow \alpha_{0} \quad \text { as } n \longrightarrow \infty \tag{5.8}
\end{equation*}
$$

We will use the concentration-compactness principle ([30]). We denote by $q_{n}(t)$ the concentration function of $E_{G L}\left(u_{n}\right)$, that is

$$
\begin{equation*}
q_{n}(t)=\sup _{y \in \mathbf{R}^{N}} \int_{B(y, t)}\left|\nabla u_{n}\right|^{2}+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \tag{5.9}
\end{equation*}
$$

As in [30], it follows that there exists a subsequence of $\left(\left(u_{n}, q_{n}\right)\right)_{n \geq 1}$, still denoted $\left(\left(u_{n}, q_{n}\right)\right)_{n \geq 1}$, there exists a nondecreasing function $q:[0, \infty) \longrightarrow \mathbf{R}$ and there is $\alpha \in\left[0, \alpha_{0}\right]$ such that

$$
\begin{equation*}
q_{n}(t) \longrightarrow q(t) \text { a.e on }[0, \infty) \text { as } n \longrightarrow \infty \quad \text { and } \quad q(t) \longrightarrow \alpha \text { as } t \longrightarrow \infty \tag{5.10}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\text { there is a nondecreasing sequnce } t_{n} \longrightarrow \infty \text { such that } \lim _{n \rightarrow \infty} q_{n}\left(t_{n}\right)=\alpha \tag{5.11}
\end{equation*}
$$

To prove the claim, fix an increasing sequence $x_{k} \longrightarrow \infty$ such that $q_{n}\left(x_{k}\right) \longrightarrow q\left(x_{k}\right)$ as $n \longrightarrow \infty$ for any k. Then there exists $n_{k} \in \mathbf{N}$ such that $\left|q_{n}\left(x_{k}\right)-q\left(x_{k}\right)\right|<\frac{1}{k}$ for any $n \geq n_{k}$; clearly, we may assume that $n_{k}<n_{k+1}$ for all k. If $n_{k} \leq n<n_{k+1}$, put $t_{n}=x_{k}$. Then for $n_{k} \leq n<n_{k+1}$ we have

$$
\left|q_{n}\left(t_{n}\right)-\alpha\right|=\left|q_{n}\left(x_{k}\right)-\alpha\right| \leq\left|q_{n}\left(x_{k}\right)-q\left(x_{k}\right)\right|+\left|q\left(x_{k}\right)-\alpha\right| \leq \frac{1}{k}+\left|q\left(x_{k}\right)-\alpha\right| \longrightarrow 0
$$

as $k \longrightarrow \infty$ and (5.11) is proved.
Next we claim that

$$
\begin{equation*}
q_{n}\left(t_{n}\right)-q_{n}\left(\frac{t_{n}}{2}\right) \longrightarrow 0 \quad \text { as } n \longrightarrow \infty \tag{5.12}
\end{equation*}
$$

To see this, fix $\varepsilon>0$. Take $y>0$ such that $q(y)>\alpha-\frac{\varepsilon}{4}$ and $q_{n}(y) \longrightarrow q(y)$ as $n \longrightarrow \infty$. There is some $\tilde{n} \geq 1$ such that $q_{n}(y)>\alpha-\frac{\varepsilon}{2}$ for $n \geq \tilde{n}$. Then we can find $n_{*} \geq \tilde{n}$ such that $t_{n}>2 y$ for $n \geq n_{*}$, and consequently we have $q_{n}\left(\frac{t_{n}}{2}\right) \geq q_{n}(y)>\alpha-\frac{\varepsilon}{2}$. Therefore $\limsup _{n \rightarrow \infty}\left(q_{n}\left(t_{n}\right)-q_{n}\left(\frac{t_{n}}{2}\right)\right)=\lim _{n \rightarrow \infty} q_{n}\left(t_{n}\right)-\liminf _{n \rightarrow \infty} q_{n}\left(\frac{t_{n}}{2}\right)<\varepsilon$. Since ε was arbitrary, (5.12) follows.

Our aim is to show that $\alpha=\alpha_{0}$ in (5.10). It follows from the next lemma that $\alpha>0$.
Lemma 5.4 Let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}$ be a sequence satisfying
a) $M_{1} \leq E_{G L}\left(u_{n}\right) \leq M_{2}$ for some positive constants M_{1}, M_{2}.
b) $\lim _{n \rightarrow \infty} P_{c}\left(u_{n}\right)=0$.

There exists $k>0$ such that $\sup _{y \in \mathbf{R}^{N}} \int_{B(y, 1)}\left|\nabla u_{n}\right|^{2}+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \geq k$ for all sufficiently large n.

Proof. We argue by contradiction and we suppose that the conclusion is false. Then there exists a subsequence (still denoted $\left.\left(u_{n}\right)_{n \geq 1}\right)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{y \in \mathbf{R}^{N}} \int_{B(y, 1)}\left|\nabla u_{n}\right|^{2}+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x=0 \tag{5.13}
\end{equation*}
$$

We will prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbf{R}^{N}}\left|V\left(\left|r_{0}-u_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2}\right| d x=0 \tag{5.14}
\end{equation*}
$$

Fix $\varepsilon>0$. Assumptions (A1) and (A2) imply that there exists $\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
\left|V\left(\left|r_{0}-z\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-z\right|\right)-r_{0}^{2}\right)^{2}\right| \leq \varepsilon a^{2}\left(\varphi^{2}\left(\left|r_{0}-z\right|\right)-r_{0}^{2}\right)^{2} \tag{5.15}
\end{equation*}
$$

for any $z \in \mathbf{C}$ satisfying $\left|\left|r_{0}-z\right|-r_{0}\right| \leq \delta(\varepsilon)$ (see (4.2)). Therefore

$$
\begin{align*}
& \int_{\left\{\left|\left|r_{0}-u_{n}\right|-r_{0}\right| \leq \delta(\varepsilon)\right\}}\left|V\left(\left|r_{0}-u_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2}\right| d x \tag{5.16}\\
& \leq \varepsilon a^{2} \int_{\left\{\left|\left|r_{0}-u_{n}\right|-r_{0}\right| \leq \delta(\varepsilon)\right\}}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \leq \varepsilon M_{2}
\end{align*}
$$

Assumption (A2) implies that there exists $C(\varepsilon)>0$ such that

$$
\begin{equation*}
\left|V\left(\left|r_{0}-z\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-z\right|\right)-r_{0}^{2}\right)^{2}\right| \leq C(\varepsilon)| | r_{0}-z\left|-r_{0}\right|^{2 p_{0}+2} \tag{5.17}
\end{equation*}
$$

for any $z \in \mathbf{C}$ verifying $\left|\left|r_{0}-z\right|-r_{0}\right| \geq \delta(\varepsilon)$.
Let $w_{n}=\left|\left|r_{0}-u_{n}\right|-r_{0}\right|$. It is clear that $\left|w_{n}\right| \leq\left|u_{n}\right|$. Using the inequality $|\nabla| v||\leq|\nabla v|$ a.e. for $v \in H_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, we infer that $w_{n} \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$ and

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left|\nabla w_{n}\right|^{2} d x \leq M_{2} \quad \text { for any } n \tag{5.18}
\end{equation*}
$$

Using (5.17), Hölder's inequality, the Sobolev embedding and (5.18) we find

$$
\begin{aligned}
& \int_{\left\{\left|r_{0}-u_{n}\right|-r_{0} \mid>\delta(\varepsilon)\right\}}\left|V\left(\left|r_{0}-u_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2}\right| d x \\
& \leq C(\varepsilon) \int_{\left\{w_{n}>\delta(\varepsilon)\right\}}\left|w_{n}\right|^{2 p_{0}+2} d x \\
& \leq C(\varepsilon)\left(\int_{\left\{w_{n}>\delta(\varepsilon)\right\}}\left|w_{n}\right|^{2^{*}} d x\right)^{\frac{2 p_{0}+2}{2^{*}}}\left(\mathcal{L}^{N}\left(\left\{w_{n}>\delta(\varepsilon)\right\}\right)\right)^{1-\frac{2 p_{0}+2}{2^{*}}} \\
& \leq C(\varepsilon) C_{S}^{2 p_{0}+2}\left\|\nabla w_{n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2 p_{0}+2}\left(\mathcal{L}^{N}\left(\left\{w_{n}>\delta(\varepsilon)\right\}\right)\right)^{1-\frac{2 p_{0}+2}{2^{*}}} \\
& \leq C(\varepsilon) C_{S}^{2 p_{0}+2} M_{2}^{p_{0}+1}\left(\mathcal{L}^{N}\left(\left\{w_{n}>\delta(\varepsilon)\right\}\right)\right)^{1-\frac{2 p_{0}+2}{2^{*}}} .
\end{aligned}
$$

We claim that for any $\varepsilon>0$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}^{N}\left(\left\{w_{n}>\delta(\varepsilon)\right\}\right)=0 \tag{5.20}
\end{equation*}
$$

To prove the claim, we argue by contradiction and assume that there exist $\varepsilon_{0}>0$, a subsequence $\left(w_{n_{k}}\right)_{k} \geq 1$ and $\gamma>0$ such that $\mathcal{L}^{N}\left(\left\{w_{n_{k}}>\delta\left(\varepsilon_{0}\right)\right\}\right) \geq \gamma>0$ for any $k \geq 1$. Since $\left\|\nabla w_{n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}$ is bounded, using Lieb's lemma (see Lemma 6 p. 447 in [29] or Lemma 2.2 p. 101 in [10]), we infer that there exists $\beta>0$ and $y_{k} \in \mathbf{R}^{N}$ such that $\mathcal{L}^{N}\left(\left\{w_{n_{k}}>\frac{\delta\left(\varepsilon_{0}\right)}{2}\right\} \cap B\left(y_{k}, 1\right)\right) \geq \beta$. Let η be as in (3.30). Then $w_{n_{k}}(x) \geq \frac{\delta\left(\varepsilon_{0}\right)}{2}$ implies $\left(\varphi^{2}\left(\left|r_{0}-u_{n_{k}}(x)\right|\right)-r_{0}^{2}\right)^{2} \geq \eta\left(\frac{\delta\left(\varepsilon_{0}\right)}{2}\right)>0$. Therefore

$$
\int_{B\left(y_{k}, 1\right)}\left(\varphi^{2}\left(\left|r_{0}-u_{n_{k}}(x)\right|\right)-r_{0}^{2}\right)^{2} d x \geq \eta\left(\frac{\delta\left(\varepsilon_{0}\right)}{2}\right) \beta>0
$$

for any $k \geq 1$, and this clearly contradicts (5.13). Thus we have proved that (5.20) holds.
From (5.16), (5.19) and (5.20) it follows that

$$
\int_{\mathbf{R}^{N}}\left|V\left(\left|r_{0}-u_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2}\right| d x \leq 2 \varepsilon M_{2}
$$

for all sufficiently large n. Thus (5.14) is proved.
From Lemma 5.2 we know that $\liminf E_{c}\left(u_{n}\right) \geq T_{c}$. Combined with (b), this implies $\liminf _{n \rightarrow \infty} \frac{2}{N-1} A\left(u_{n}\right) \geq T_{c}$. Let $\sigma_{0}=\sqrt{\frac{n(N-1)}{N-3}}$ and let $\tilde{u}_{n}=\left(u_{n}\right)_{1, \sigma_{0}}$. It is obvious that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} A\left(\tilde{u}_{n}\right)=\sigma_{0}^{N-3} \liminf _{n \rightarrow \infty} A\left(u_{n}\right) \geq \frac{N-1}{2} \sigma_{0}^{N-3} T_{c} . \tag{5.21}
\end{equation*}
$$

Using assumption (a), (5.13) and (5.14) it is easy to see that

$$
\begin{equation*}
\text { there exist } \tilde{M}_{1}, \tilde{M}_{2}>0 \text { such that } \tilde{M}_{1} \leq E_{G L}\left(\tilde{u}_{n}\right) \leq \tilde{M}_{2} \text { for any } n, \tag{5.22}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{y \in \mathbf{R}^{N}} \int_{B(y, 1)}\left|\nabla \tilde{u}_{n}\right|^{2}+a^{2}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n}\right|\right)-r_{0}^{2}\right)^{2} d x=0 \quad \text { and } \tag{5.23}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbf{R}^{N}}\left|V\left(\left|r_{0}-\tilde{u}_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n}\right|\right)-r_{0}^{2}\right)^{2}\right| d x=0 \tag{5.24}
\end{equation*}
$$

It is clear that $P_{c}\left(u_{n}\right)=\frac{N-3}{N-1} \sigma_{0}^{3-N} A\left(\tilde{u}_{n}\right)+\sigma_{0}^{1-N} B_{c}\left(\tilde{u}_{n}\right)$ and then assumption (b) implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{N-3}{N-1} \sigma_{0}^{2} A\left(\tilde{u}_{n}\right)+B_{c}\left(\tilde{u}_{n}\right)\right)=\lim _{n \rightarrow \infty}\left(A\left(\tilde{u}_{n}\right)+E_{c}\left(\tilde{u}_{n}\right)\right)=0 \tag{5.25}
\end{equation*}
$$

Using (5.22), (5.23) and Lemma 3.2 we infer that there exists a sequence $h_{n} \longrightarrow 0$ and for each n there exists a minimizer v_{n} of $G_{h_{n}, \mathbf{R}^{N}}^{\tilde{u}_{n}}$ in $H_{\tilde{u}_{n}}^{1}\left(\mathbf{R}^{N}\right)$ such that $\delta_{n}:=\|\left|v_{n}-r_{0}\right|-$ $r_{0} \|_{L^{\infty}\left(\mathbf{R}^{N}\right)} \longrightarrow 0$ as $n \longrightarrow \infty$. Then using Lemma 4.2 and the fact that $|c|<v_{s}=2 a r_{0}$ we obtain

$$
\begin{equation*}
E_{G L}\left(v_{n}\right)+c Q\left(v_{n}\right) \geq 0 \quad \text { for all sufficiently large } n \tag{5.26}
\end{equation*}
$$

From (5.22) and (3.4) we obtain

$$
\begin{equation*}
\left|Q\left(\tilde{u}_{n}\right)-Q\left(v_{n}\right)\right| \leq\left(h_{n}^{2}+h_{n}^{\frac{4}{N}} \tilde{M}_{2}^{\frac{2}{N}}\right)^{\frac{1}{2}} \tilde{M}_{2} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty \tag{5.27}
\end{equation*}
$$

Since $E_{G L}\left(v_{n}\right) \leq E_{G L}\left(\tilde{u}_{n}\right)$, it is clear that

$$
\begin{aligned}
E_{c}\left(\tilde{u}_{n}\right)= & E_{G L}\left(\tilde{u}_{n}\right)+c Q\left(\tilde{u}_{n}\right)+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-\tilde{u}_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \\
\geq & E_{G L}\left(v_{n}\right)+c Q\left(v_{n}\right)+c\left(Q\left(\tilde{u}_{n}\right)-Q\left(v_{n}\right)\right) \\
& \quad-\int_{\mathbf{R}^{N}}\left|V\left(\left|r_{0}-\tilde{u}_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n}\right|\right)-r_{0}^{2}\right)^{2}\right| d x
\end{aligned}
$$

Using the last inequality and (5.24), (5.26), (5.27) we infer that $\liminf _{n \rightarrow \infty} E_{c}\left(\tilde{u}_{n}\right) \geq 0$. Combined with (5.25), this gives $\limsup _{n \rightarrow \infty} A\left(\tilde{u}_{n}\right) \leq 0$, which clearly contradicts (5.21). This completes the proof of Lemma 5.4.

Next we prove that we cannot have $\alpha \in\left(0, \alpha_{0}\right)$. To do this we argue again by contradiction and we assume that $0<\alpha<\alpha_{0}$. Let t_{n} be as in (5.11) and let $R_{n}=\frac{t_{n}}{2}$. For each $n \geq 1$, fix $y_{n} \in \mathbf{R}^{N}$ such that $E_{G L}^{B\left(y_{n}, R_{n}\right)}\left(u_{n}\right) \geq q_{n}\left(R_{n}\right)-\frac{1}{n}$. Using (5.12), we have

$$
\begin{align*}
& \varepsilon_{n}:=\int_{B\left(y_{n}, 2 R_{n}\right) \backslash B\left(y_{n}, R_{n}\right)}\left|\nabla u_{n}\right|^{2}+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \tag{5.28}\\
& \leq q_{n}\left(2 R_{n}\right)-\left(q_{n}\left(R_{n}\right)-\frac{1}{n}\right) \longrightarrow 0 \text { as } n \longrightarrow \infty
\end{align*}
$$

After a translation, we may assume that $y_{n}=0$. Using Lemma 3.3 with $A=2, R=R_{n}$, $\varepsilon=\varepsilon_{n}$, we infer that for all n sufficiently large there exist two functions $u_{n, 1}, u_{n, 2}$ having the properties (i)-(vi) in Lemma 3.3.

From Lemma 3.3 (iii) and (iv) we get $\left|E_{G L}\left(u_{n}\right)-E_{G L}\left(u_{n, 1}\right)-E_{G L}\left(u_{n, 2}\right)\right| \leq C \varepsilon_{n}$, while Lemma 3.3 (i) and (ii) implies $E_{G L}\left(u_{n, 1}\right) \geq E_{G L}^{B\left(0, R_{n}\right)}\left(u_{n}\right)>q_{n}\left(R_{n}\right)-\frac{1}{n}$, respectively $E_{G L}\left(u_{n, 2}\right) \geq$ $E_{G L}^{\mathbf{R}^{N} \backslash B\left(0,2 R_{n}\right)}\left(u_{n}\right) \geq E_{G L}\left(u_{n}\right)-q_{n}\left(2 R_{n}\right)$. Taking into account (5.11), (5.12) and (5.28), we infer that

$$
\begin{equation*}
E_{G L}\left(u_{n, 1}\right) \longrightarrow \alpha \quad \text { and } \quad E_{G L}\left(u_{n, 2}\right) \longrightarrow \alpha_{0}-\alpha \quad \text { as } n \longrightarrow \infty \tag{5.29}
\end{equation*}
$$

By (5.28) and Lemma 3.3 (iii)-(vi) we obtain

$$
\begin{gather*}
\left|A\left(u_{n}\right)-A\left(u_{n, 1}\right)-A\left(u_{n, 2}\right)\right| \longrightarrow 0, \tag{5.30}\\
\left|E_{c}\left(u_{n}\right)-E_{c}\left(u_{n, 1}\right)-E_{c}\left(u_{n, 2}\right)\right| \longrightarrow 0, \quad \text { and } \tag{5.31}\\
\left|P_{c}\left(u_{n}\right)-P_{c}\left(u_{n, 1}\right)-P_{c}\left(u_{n, 2}\right)\right| \longrightarrow 0 \quad \text { as } n \longrightarrow \infty . \tag{5.32}
\end{gather*}
$$

From (5.32) and the fact that $P_{c}\left(u_{n}\right) \longrightarrow 0$ we infer that $P_{c}\left(u_{n, 1}\right)+P_{c}\left(u_{n, 2}\right) \longrightarrow 0$ as $n \longrightarrow$ ∞. Moreover, Lemmas 4.1 and 4.5 imply that the sequences $\left(P_{c}\left(u_{n, i}\right)\right)_{n \geq 1}$ and $\left(E_{c}\left(u_{n, i}\right)\right)_{n \geq 1}$ are bounded, $i=1,2$. Passing again to a subsequence (still denoted $\left.\left(u_{n}\right)_{n \geq 1}\right)$, we may assume that $\lim _{n \rightarrow \infty} P_{c}\left(u_{n, 1}\right)=p_{1}$ and $\lim _{n \rightarrow \infty} P_{c}\left(u_{n, 2}\right)=p_{2}$ where $p_{1}, p_{2} \in \mathbf{R}$ and $p_{1}+p_{2}=0$. There are only two possibilities: either $p_{1}=p_{2}=0$, or one element of $\left\{p_{1}, p_{2}\right\}$ is negative.

If $p_{1}=p_{2}=0$, then (5.29) and Lemma 5.2 imply that $\liminf _{n \rightarrow \infty} E_{c}\left(u_{n, i}\right) \geq T_{c}, i=1,2$. Using (5.31), we obtain $\liminf _{n \rightarrow \infty} E_{c}\left(u_{n}\right) \geq 2 T_{c}$ and this clearly contradicts the assumption $E_{c}\left(u_{n}\right) \longrightarrow$ T_{c} in Theorem 5.3.

If $p_{i}<0$, it follows from (5.29) and Lemma 4.8 (ii) that $\liminf _{n \rightarrow \infty} A\left(u_{n, i}\right)>\frac{N-1}{2} T_{c}$. Using (5.30) and the fact that $A \geq 0$, we obtain $\liminf _{n \rightarrow \infty} A\left(u_{n}\right)>\frac{N-1}{2} T_{c}$, which is in contradiction with (5.7).

We conclude that we cannot have $\alpha \in\left(0, \alpha_{0}\right)$.
So far we have proved that $\lim _{t \rightarrow \infty} q(t)=\alpha_{0}$. Proceeding as in [30], it follows that for each $n \geq 1$ there exists $x_{n} \in \mathbf{R}^{N}$ such that for any $\varepsilon>0$ there is $R_{\varepsilon}>0$ and $n_{\varepsilon} \in \mathbf{N}$ satisfying

$$
\begin{equation*}
E_{G L}^{B\left(x_{n}, R_{\varepsilon}\right)}\left(u_{n}\right)>\alpha_{0}-\varepsilon \quad \text { for any } n \geq n_{\varepsilon} \tag{5.33}
\end{equation*}
$$

Let $\tilde{u}_{n}=u_{n}\left(\cdot+x_{n}\right)$, so that \tilde{u}_{n} satisfies (5.33) with $B\left(0, R_{\varepsilon}\right)$ instead of $B\left(x_{n}, R_{\varepsilon}\right)$. Let $\chi \in C_{c}^{\infty}(\mathbf{C}, \mathbf{R})$ be as in Lemma 2.2 and denote $\tilde{u}_{n, 1}=\chi\left(\tilde{u}_{n}\right) \tilde{u}_{n}, \tilde{u}_{n, 1}=\left(1-\chi\left(\tilde{u}_{n}\right)\right) \tilde{u}_{n}$. Since $E_{G L}\left(\tilde{u}_{n}\right)=E_{G L}\left(u_{n}\right)$ is bounded, we infer from Lemma 2.2 that $\left(\tilde{u}_{n, 1}\right)_{n \geq 1}$ is bounded in $\mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right),\left(\tilde{u}_{n, 2}\right)_{n \geq 1}$ is bounded in $H^{1}\left(\mathbf{R}^{N}\right)$ and $\left(E_{G L}\left(\tilde{u}_{n, i}\right)\right)_{n \geq 1}$ is bounded, $i=1,2$.

Using Lemma 2.1 we may write $r_{0}-\tilde{u}_{n, 1}=\rho_{n} e^{i \theta_{n}}$, where $\frac{1}{2} r_{0} \leq \rho_{n} \leq \frac{3}{2} r_{0}$ and $\theta_{n} \in$ $\mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$. From (2.4) and (2.7) we find that $\left(\rho_{n}-r_{0}\right)_{n \geq 1}$ is bounded in $H^{1}\left(\mathbf{R}^{N}\right)$ and $\left(\theta_{n}\right)_{n \geq 1}$ is bounded in $\mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$.

We infer that there exists a subsequence $\left(n_{k}\right)_{k \geq 1}$ and there are functions $u_{1} \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$, $u_{2} \in H^{1}\left(\mathbf{R}^{N}\right), \theta \in \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right), \rho \in r_{0}+H^{1}\left(\mathbf{R}^{N}\right)$ such that

$$
\begin{gathered}
\tilde{u}_{n_{k}, 1} \rightharpoonup u_{1} \quad \text { and } \quad \theta_{n_{k}} \rightharpoonup \theta \quad \text { weakly in } \mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right), \\
\tilde{u}_{n_{k}, 2} \rightharpoonup u_{2} \quad \text { and } \quad \rho_{n_{k}}-r_{0} \rightharpoonup \rho-r_{0} \quad \text { weakly in } H^{1}\left(\mathbf{R}^{N}\right), \\
\tilde{u}_{n_{k}, 1} \longrightarrow u_{1}, \quad \tilde{u}_{n_{k}, 2} \longrightarrow u_{2}, \quad \theta_{n_{k}} \longrightarrow \theta, \quad \rho_{n_{k}}-r_{0} \longrightarrow \rho-r_{0}
\end{gathered}
$$

strongly in $L^{p}(K), 1 \leq p<2^{*}$ for any compact set $K \subset \mathbf{R}^{N}$ and almost everywhere on \mathbf{R}^{N}. Since $\tilde{u}_{n_{k}, 1}=r_{0}-\rho_{n_{k}} e^{i \theta_{n_{k}}} \longrightarrow r_{0}-\rho e^{i \theta}$ a.e., we have $r_{0}-u_{1}=\rho e^{i \theta}$ a.e. on \mathbf{R}^{N}.

Denoting $u=u_{1}+u_{2}$, we see that $\tilde{u}_{n_{k}} \rightharpoonup u$ weakly in $\mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right), \tilde{u}_{n_{k}} \longrightarrow u$ a.e. on \mathbf{R}^{N} and strongly in $L^{p}(K), 1 \leq p<2^{*}$ for any compact set $K \subset \mathbf{R}^{N}$.

Since $E_{G L}\left(\tilde{u}_{n}\right)$ is bounded, it is clear that $\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2}\right)_{k \geq 1}$ is bounded in $L^{2}\left(\mathbf{R}^{N}\right)$ and converges a.e. on \mathbf{R}^{N} to $\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}$. From Lemma 4.8 p. 11 in [26] it follows that

$$
\begin{equation*}
\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2}\right) \rightharpoonup \varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2} \quad \text { weakly in } L^{2}\left(\mathbf{R}^{N}\right) \tag{5.34}
\end{equation*}
$$

The weak convergence $\tilde{u}_{n_{k}} \rightharpoonup u$ in $\mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$ implies

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left|\frac{\partial u}{\partial x_{j}}\right|^{2} d x \leq \liminf _{k \rightarrow \infty} \int_{\mathbf{R}^{N}}\left|\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{j}}\right|^{2} d x<\infty \quad \text { for } j=1, \ldots, N \tag{5.35}
\end{equation*}
$$

Using the a.e. convergence and Fatou's lemma we obtain

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x \leq \liminf _{k \rightarrow \infty} \int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2}\right)^{2} d x \tag{5.36}
\end{equation*}
$$

From (5.35) and(5.36) it follows that $u \in \mathcal{X}$ and $E_{G L}(u) \leq \liminf _{k \rightarrow \infty} E_{G L}\left(\tilde{u}_{n_{k}}\right)$.
We will prove that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{N}} V\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}\right) d x=\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x \tag{5.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} Q\left(\tilde{u}_{n_{k}}\right)=Q(u) \tag{5.38}
\end{equation*}
$$

Fix $\varepsilon>0$. Let R_{ε} be as in (5.33). Since $E_{G L}\left(\tilde{u}_{n_{k}}\right) \longrightarrow \alpha_{0}$ as $k \longrightarrow \infty$, it follows from (5.33) that there exists $k_{\varepsilon} \geq 1$ such that

$$
\begin{equation*}
E_{G L}^{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left(\tilde{u}_{n_{k}}\right)<2 \varepsilon \quad \text { for any } k \geq k_{\varepsilon} \tag{5.39}
\end{equation*}
$$

As in (5.35) $-(5.36)$, the weak convergence $\nabla \tilde{u}_{n_{k}} \rightharpoonup \nabla u$ in $L^{2}\left(\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)\right)$ implies

$$
\int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}|\nabla u|^{2} d x \leq \liminf _{k \rightarrow \infty} \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left|\nabla \tilde{u}_{n_{k}}\right|^{2} d x
$$

while the fact that $\tilde{u}_{n_{k}} \longrightarrow u$ a.e. on \mathbf{R}^{N} and Fatou's lemma imply

$$
\int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x \leq \liminf _{k \rightarrow \infty} \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2}\right)^{2} d x
$$

Therefore

$$
\begin{equation*}
E_{G L}^{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}(u) \leq \liminf _{k \rightarrow \infty} E_{G L}^{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left(\tilde{u}_{n_{k}}\right) \leq 2 \varepsilon . \tag{5.40}
\end{equation*}
$$

Let $v \in \mathcal{X}$ be a function satisfying $E_{G L}^{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}(v) \leq 2 \varepsilon$. As in the introduction, we write $V(s)=V\left(\varphi^{2}(\sqrt{s})\right)+W(s)$. Using (1.5) we find

$$
\begin{align*}
& \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left|V\left(\varphi^{2}\left(\left|r_{0}-v\right|\right)\right)\right| d x \leq C_{1} \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left(\varphi^{2}\left(\left|r_{0}-v\right|\right)-r_{0}^{2}\right)^{2} d x \tag{5.41}\\
& \leq \frac{C_{1}}{a^{2}} E_{G L}^{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}(v) \leq \frac{2 C_{1}}{a^{2}} \varepsilon
\end{align*}
$$

It is clear that $W\left(\left|r_{0}-v(x)\right|^{2}\right)=0$ if $\left|r_{0}-v(x)\right| \leq 2 r_{0}$. On the other hand, $\left|r_{0}-v(x)\right|>2 r_{0}$ implies $\left(\varphi^{2}\left(\left|r_{0}-v(x)\right|\right)-r_{0}^{2}\right)^{2}>9 r_{0}^{4}$, consequently

$$
9 r_{0}^{4} \mathcal{L}^{N}\left(\left\{x \in \mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)| | r_{0}-v(x) \mid>2 r_{0}\right\}\right) \leq \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left(\varphi^{2}\left(\left|r_{0}-v\right|\right)-r_{0}^{2}\right)^{2} d x \leq \frac{2 \varepsilon}{a^{2}}
$$

Using (1.7), Hölder's inequality, the above estimate and the Sobolev embedding we find

$$
\int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left|W\left(\left|r_{0}-v\right|^{2}\right)\right| d x \leq C \int_{\left(\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)\right) \cap\left\{\left|r_{0}-v\right|>2 r_{0}\right\}}|v|^{2 p_{0}+2} d x
$$

$$
\begin{align*}
& \leq C\left(\int_{\mathbf{R}^{N}}|v|^{2^{*}} d x\right)^{\frac{2 p_{0}+2}{2^{*}}}\left(\mathcal{L}^{N}\left(\left\{x \in \mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)| | r_{0}-v(x) \mid>2 r_{0}\right\}\right)\right)^{1-\frac{2 p_{0}+2}{2^{*}}} \tag{5.42}\\
& \leq C^{\prime}\|\nabla v\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2 p_{0}+2} \varepsilon^{1-\frac{2 p_{0}+2}{2^{*}}} \leq C^{\prime}\left(E_{G L}(v)\right)^{p_{0}+1} \varepsilon^{1-\frac{2 p_{0}+2}{2^{*}}}
\end{align*}
$$

It is obvious that u and $\tilde{u}_{n_{k}}$ (with $k \geq k_{\varepsilon}$) satisfy (5.41) and (5.42). If $M>0$ is such that $E_{G L}\left(u_{n}\right) \leq M$ for any n, from (5.41) and (5.42) we infer that

$$
\begin{align*}
& \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left|V\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}\right)-V\left(\left|r_{0}-u\right|^{2}\right)\right| d x \tag{5.43}\\
& \leq \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left|V\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}\right)\right|+\left|V\left(\left|r_{0}-u\right|^{2}\right)\right| d x \leq C \varepsilon+C M^{p_{0}+1} \varepsilon^{1-\frac{2 p_{0}+2}{2^{*}}}
\end{align*}
$$

Since $z \longmapsto V\left(\left|r_{0}-z\right|^{2}\right)$ is $C^{1},\left|V\left(\left|r_{0}-z\right|^{2}\right)\right| \leq C\left(1+|z|^{2 p_{0}+2}\right)$ and $\tilde{u}_{n_{k}} \longrightarrow u$ in $L^{2 p_{0}+2}\left(B\left(0, R_{\varepsilon}\right)\right)$ and almost everywhere, it follows that $V\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}\right) \longrightarrow V\left(\left|r_{0}-u\right|^{2}\right)$ in $L^{1}\left(B\left(0, R_{\varepsilon}\right)\right)$ (see, e.g., Theorem A2 p. 133 in [36]). Hence

$$
\begin{equation*}
\int_{B\left(0, R_{\varepsilon}\right)}\left|V\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}\right)-V\left(\left|r_{0}-u\right|^{2}\right)\right| d x \leq \varepsilon \quad \text { if } k \text { is sufficiently large. } \tag{5.44}
\end{equation*}
$$

Since $\varepsilon>0$ is arbitrary, (5.37) follows from (5.43) and (5.44).
From (2.6) we obtain $\left\|\left(1-\chi^{2}\left(u_{n}\right)\right) u_{n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq C\left\|\nabla u_{n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{\frac{2^{*}}{2}} \leq C\left(E_{G L}\left(u_{n}\right)\right)^{\frac{2^{*}}{4}}$. Using the Cauchy-Schwarz inequality and (5.39) we get

$$
\begin{align*}
& \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)} \left\lvert\,\left(\left.1-\chi^{2}\left(\tilde{u}_{n_{k}}\right)\left\langle i \frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}}, \tilde{u}_{n_{k}}\right\rangle \right\rvert\, d x\right.\right. \tag{5.45}\\
& \leq\left\|\left(1-\chi^{2}\left(u_{n}\right)\right) u_{n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}\left\|\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}}\right\|_{L^{2}\left(\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)\right)} \leq C M^{\frac{2^{*}}{4}} \sqrt{\varepsilon} \quad \text { for any } k \geq k_{\varepsilon}
\end{align*}
$$

From (2.7) we infer that

$$
\left\|\rho_{n}^{2}-r_{0}^{2}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq C\left(E_{G L}\left(u_{n}\right)+\left\|\nabla u_{n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2^{*}}\right)^{\frac{1}{2}} \leq C\left(M+M^{\frac{2^{*}}{2}}\right)^{\frac{1}{2}}
$$

Using (2.4) and (2.5) we obtain $\left|\frac{\partial \theta_{n}}{\partial x_{1}}\right| \leq \frac{2}{r_{0}}\left|\frac{\partial\left(\chi\left(\tilde{u}_{n}\right) \tilde{u}_{n}\right)}{\partial x_{1}}\right| \leq C\left|\frac{\partial \tilde{u}_{n}}{\partial x_{1}}\right|$ a.e. on \mathbf{R}^{N} and then (5.39) implies $\left\|\frac{\partial \theta_{n_{k}}}{\partial x_{1}}\right\|_{L^{2}\left(\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)\right)} \leq C \sqrt{\varepsilon}$ for any $k \geq k_{\varepsilon}$. Using again the Cauchy-Schwarz inequality we find

$$
\begin{align*}
& \int_{\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)}\left|\left(\rho_{n_{k}}^{2}-r_{0}^{2}\right) \frac{\partial \theta_{n_{k}}}{\partial x_{1}}\right| d x \leq\left\|\rho_{n_{k}}^{2}-r_{0}^{2}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}\left\|\frac{\partial \theta_{n_{k}}}{\partial x_{1}}\right\| \|_{L^{2}\left(\mathbf{R}^{N} \backslash B\left(0, R_{\varepsilon}\right)\right)} \tag{5.46}\\
& \leq C\left(M+M^{\frac{2^{*}}{2}}\right)^{\frac{1}{2}} \sqrt{\varepsilon} \quad \text { for any } k \geq k_{\varepsilon}
\end{align*}
$$

It is obvious that the estimates (5.45) and (5.46) also hold with u instead of $\tilde{u}_{n_{k}}$.
Using the fact that $\tilde{u}_{n_{k}} \longrightarrow u$ and $\rho_{n_{k}}-r_{0} \longrightarrow \rho-r_{0}$ in $L^{2}\left(B\left(0, R_{\varepsilon}\right)\right)$ and a.e. and the dominated convergence theorem we infer that

$$
\left(1-\chi^{2}\left(\tilde{u}_{n_{k}}\right)\right) \tilde{u}_{n_{k}} \longrightarrow\left(1-\chi^{2}(u)\right) u \quad \text { and } \rho_{n_{k}}^{2}-r_{0}^{2} \longrightarrow \rho^{2}-r_{0}^{2} \quad \text { in } L^{2}\left(B\left(0, R_{\varepsilon}\right)\right)
$$

This information and the fact that $\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}} \rightharpoonup \frac{\partial u}{\partial x_{1}}$ and $\frac{\partial \theta_{n_{k}}}{\partial x_{1}} \rightharpoonup \frac{\partial \theta}{\partial x_{1}}$ weakly in $L^{2}\left(B\left(0, R_{\varepsilon}\right)\right)$ imply

$$
\begin{align*}
\int_{B\left(0, R_{\varepsilon}\right)}\left\langle i \frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}},\left(1-\chi^{2}\left(\tilde{u}_{n_{k}}\right)\right) \tilde{u}_{n_{k}}\right\rangle d x & \longrightarrow \int_{B\left(0, R_{\varepsilon}\right)}\left\langle i \frac{\partial u}{\partial x_{1}},\left(1-\chi^{2}(u)\right) u\right\rangle d x \quad \text { and } \tag{5.47}\\
\int_{B\left(0, R_{\varepsilon}\right)}\left(\rho_{n_{k}}^{2}-r_{0}^{2}\right) \frac{\partial \theta_{n_{k}}}{\partial x_{1}} d x & \longrightarrow \int_{B\left(0, R_{\varepsilon}\right)}\left(\rho^{2}-r_{0}^{2}\right) \frac{\partial \theta}{\partial x_{1}} d x \tag{5.48}
\end{align*}
$$

Using (5.45) - (5.48) and the representation formula (2.12) we infer that there is some $k_{1}(\varepsilon) \geq k_{\varepsilon}$ such that for any $k \geq k_{1}(\varepsilon)$ we have

$$
\left|Q\left(\tilde{u}_{n_{k}}\right)-Q(u)\right| \leq C\left(M^{\frac{1}{2}}+M^{\frac{2^{*}}{4}}\right) \sqrt{\varepsilon}
$$

where C does not depend on $k \geq k_{1}(\varepsilon)$ and ε. Since $\varepsilon>0$ is arbitrary, (5.38) is proved.
It is obvious that

$$
\begin{aligned}
& -c Q\left(\tilde{u}_{n_{k}}\right)-\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}\right) d x \\
& =\frac{N-3}{N-1} A\left(\tilde{u}_{n_{k}}\right)+\int_{\mathbf{R}^{N}}\left|\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}}\right|^{2} d x-P_{c}\left(\tilde{u}_{n_{k}}\right) \geq \frac{N-3}{N-1} A\left(\tilde{u}_{n_{k}}\right)-P_{c}\left(\tilde{u}_{n_{k}}\right)
\end{aligned}
$$

Passing to the limit as $k \longrightarrow \infty$ in this inequality and using (5.37), (5.38) and the fact that $A\left(u_{n}\right) \longrightarrow \frac{N-1}{2} T_{c}, P_{c}\left(u_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$ we find

$$
\begin{equation*}
-c Q(u)-\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u\right|^{2}\right) d x \geq \frac{N-3}{2} T_{c}>0 . \tag{5.49}
\end{equation*}
$$

In particular, (5.49) implies that $u \neq 0$.
From (5.35) we get

$$
\begin{equation*}
A(u) \leq \liminf _{k \rightarrow \infty} A\left(\tilde{u}_{n_{k}}\right)=\frac{N-1}{2} T_{c} . \tag{5.50}
\end{equation*}
$$

Using (5.35), (5.37) and (5.38) we find

$$
\begin{equation*}
P_{c}(u) \leq \liminf _{k \rightarrow \infty} P_{c}\left(\tilde{u}_{n_{k}}\right)=0 . \tag{5.51}
\end{equation*}
$$

If $P_{c}(u)<0$, from Lemma 4.8 (i) we get $A(u)>\frac{N-1}{2} T_{c}$, contradicting (5.50). Thus necessarily $P_{c}(u)=0$, that is $u \in \mathcal{C}$. Since $A(v) \geq \frac{N-1}{2} T_{c}$ for any $v \in \mathcal{C}$, we infer from (5.50) that $A(u)=\frac{N-1}{2} T_{c}$, therefore $E_{c}(u)=T_{c}$ and u is a minimizer of E_{c} in \mathcal{C}.

It follows from the above that

$$
\begin{equation*}
A(u)=\frac{N-1}{2} T_{c}=\lim _{k \rightarrow \infty} A\left(\tilde{u}_{n_{k}}\right) . \tag{5.52}
\end{equation*}
$$

Since $P_{c}(u)=0, \lim _{k \rightarrow \infty} P_{c}\left(\tilde{u}_{n_{k}}\right)=0$ and (5.37), (5.38) and (5.52) hold, it is obvious that

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left|\frac{\partial u}{\partial x_{1}}\right|^{2} d x=\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{N}}\left|\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}}\right|^{2} d x . \tag{5.53}
\end{equation*}
$$

Now (5.52) and (5.53) imply $\lim _{k \rightarrow \infty}\left\|\nabla \tilde{u}_{n_{k}}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2}=\|\nabla u\|_{L^{2}\left(\mathbf{R}^{N}\right)}^{2}$. Since $\nabla \tilde{u}_{n_{k}} \rightharpoonup \nabla u$ weakly in $L^{2}\left(\mathbf{R}^{N}\right)$, we infer that $\nabla \tilde{u}_{n_{k}} \longrightarrow \nabla u$ strongly in $L^{2}\left(\mathbf{R}^{N}\right)$, that is $\tilde{u}_{n_{k}} \longrightarrow u$ in $\mathcal{D}^{1,2}\left(\mathbf{R}^{N}\right)$.

Proceeding as in the proof of (5.37) we show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2}\right)^{2} d x=\int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x . \tag{5.54}
\end{equation*}
$$

Together with the weak convergence $\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2} \rightharpoonup \varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}$ in $L^{2}\left(\mathbf{R}^{N}\right)$ (see (5.34)), this implies $\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2} \longrightarrow \varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}$ strongly in $L^{2}\left(\mathbf{R}^{N}\right)$. The proof of Theorem 5.3 is complete.

In order to prove that the minimizers provided by Theorem 5.3 solve equation (1.3), we need the following regularity result.

Lemma 5.5 Let $N \geq 3$. Assume that the conditions (A1) and (A2) in the Introduction hold and that $u \in \mathcal{X}$ satisfies (1.3) in $\mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right)$. Then $u \in W_{\text {loc }}^{2, p}\left(\mathbf{R}^{N}\right)$ for any $p \in[1, \infty)$, $\nabla u \in W^{1, p}\left(\mathbf{R}^{N}\right)$ for $p \in[2, \infty), u \in C^{1, \alpha}\left(\mathbf{R}^{N}\right)$ for $\alpha \in[0,1)$ and $u(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$.

Proof. First we prove that for any $R>0$ and $p \in[2, \infty)$ there exists $C(R, p)>0$ (depending on u, but not on $x \in \mathbf{R}^{N}$) such that

$$
\begin{equation*}
\|u\|_{W^{2, p}(B(x, R))} \leq C(R, p) \quad \text { for any } x \in \mathbf{R}^{N} . \tag{5.55}
\end{equation*}
$$

We write $u=u_{1}+u_{2}$, where u_{1} and u_{2} are as in Lemma 2.2. Then $\left|u_{1}\right| \leq \frac{r_{0}}{2}, \nabla u_{1} \in L^{2}\left(\mathbf{R}^{N}\right)$ and $u_{2} \in H^{1}\left(\mathbf{R}^{N}\right)$, hence for any $R>0$ there exists $C(R)>0$ such that

$$
\begin{equation*}
\|u\|_{H^{1}(B(x, R))} \leq C(R) \quad \text { for any } x \in \mathbf{R}^{N} . \tag{5.56}
\end{equation*}
$$

Let $\phi(x)=e^{-\frac{i c x_{1}}{2}}\left(r_{0}-u(x)\right)$. It is easy to see that ϕ satisfies

$$
\begin{equation*}
\Delta \phi+\left(F\left(|\phi|^{2}\right)+\frac{c^{2}}{4}\right) \phi=0 \quad \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right) \tag{5.57}
\end{equation*}
$$

Moreover, (5.56) holds for ϕ instead of u. From (5.56), (5.57), (3.18) and a standard bootstrap argument we infer that ϕ satisfies (5.55). (Note that assumption (A2) is needed for this bootstrap argument.) It is then clear that (5.55) also holds for u.

From (5.55), the Sobolev embeddings and Morrey's inequality (3.27) we find that u and ∇u are continuous and bounded on \mathbf{R}^{N} and $u \in C^{1, \alpha}\left(\mathbf{R}^{N}\right)$ for $\alpha \in[0,1)$. In particular, u is Lipschitz; since $u \in L^{2^{*}}\left(\mathbf{R}^{N}\right)$, we have necessarily $u(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$.

The boundedness of u implies that there is some $C>0$ such that $\left|F\left(\left|r_{0}-u\right|^{2}\right)\left(r_{0}-u\right)\right| \leq$ $C\left|\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right|$ on \mathbf{R}^{N}. Therefore $F\left(\left|r_{0}-u\right|^{2}\right)\left(r_{0}-u\right) \in L^{2} \cap L^{\infty}\left(\mathbf{R}^{N}\right)$. Since $\nabla u \in L^{2}\left(\mathbf{R}^{N}\right)$, from (1.3) we find $\Delta u \in L^{2}\left(\mathbf{R}^{N}\right)$. It is well known that $\Delta u \in L^{p}\left(\mathbf{R}^{N}\right)$ with $1<p<\infty$ implies $\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \in L^{p}\left(\mathbf{R}^{N}\right)$ for any i, j (see, e.g., Theorem 3 p .96 in [34]). Thus we get $\nabla u \in W^{1,2}\left(\mathbf{R}^{N}\right)$. Then the Sobolev embedding implies $\nabla u \in L^{p}\left(\mathbf{R}^{N}\right)$ for $p \in\left[2,2^{*}\right]$. Repeating the previous argument, after an easy induction we find $\nabla u \in W^{1, p}\left(\mathbf{R}^{N}\right)$ for any $p \in[2, \infty)$.

Proposition 5.6 Assume that the conditions (A1) and (A2) in the introduction are satisfied. Let $u \in \mathcal{C}$ be a minimizer of E_{c} in \mathcal{C}. Then $u \in W_{\text {loc }}^{2, p}\left(\mathbf{R}^{N}\right)$ for any $p \in[1, \infty), \nabla u \in W^{1, p}\left(\mathbf{R}^{N}\right)$ for $p \in[2, \infty)$ and u is a solution of (1.3).

Proof. It is standard to prove that for any $R>0, J_{u}(v)=\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u-v\right|^{2}\right) d x$ is a C^{1} functional on $H_{0}^{1}(B(0, R))$ and $J_{u}^{\prime}(v) . w=2 \int_{\mathbf{R}^{N}} F\left(\left|r_{0}-u-v\right|^{2}\right)\left\langle r_{0}-u-v, w\right\rangle d x$ (see, e.g., Lemma 17.1 p .64 in [26] or the appendix A in [36]). It follows easily that for any $R>0$, the functionals $\tilde{P}_{c}(v)=P_{c}(u+v)$ and $\tilde{E}_{c}(v)=E_{c}(u+v)$ are C^{1} on $H_{0}^{1}(B(0, R))$. We divide the proof of Proposition 5.6 into several steps.

Step 1. There exists a function $w \in C_{c}^{1}\left(\mathbf{R}^{N}\right)$ such that $\tilde{P}_{c}^{\prime}(0) \cdot w \neq 0$.
To prove this, we argue by contradiction and we assume that the above statement is false. Then u satisfies

$$
\begin{equation*}
-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{N-3}{N-1}\left(\sum_{k=2}^{N} \frac{\partial^{2} u}{\partial x_{k}^{2}}\right)+i c u_{x_{1}}+F\left(\left|r_{0}-u\right|^{2}\right)\left(r_{0}-u\right)=0 \quad \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right) . \tag{5.58}
\end{equation*}
$$

Let $\sigma=\sqrt{\frac{N-1}{N-3}}$. It is not hard to see that $u_{1, \sigma}$ satisfies (1.3) in $\mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right)$. Hence the conclusion of Lemma 5.5 holds for $u_{1, \sigma}$ (and thus for u). This regularity is enough to prove that u satisfies the Pohozaev identity

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left|\frac{\partial u_{1, \sigma}}{\partial x_{1}}\right|^{2} d x+\frac{N-3}{N-1} \int_{\mathbf{R}^{N}} \sum_{k=2}^{N}\left|\frac{\partial u_{1, \sigma}}{\partial x_{k}}\right|^{2} d x+c Q\left(u_{1, \sigma}\right)+\int_{\mathbf{R}^{N}} V\left(\left|r_{0}-u_{1, \sigma}\right|^{2}\right) d x=0 . \tag{5.59}
\end{equation*}
$$

To prove (5.59), we multiply (1.3) by $\sum_{k=2}^{N} \tilde{\chi}\left(\frac{x}{n}\right) \frac{\partial u_{1, \sigma}}{\partial x_{k}}$, where $\tilde{\chi} \in C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$ is a cut-off function such that $\tilde{\chi}=1$ on $B(0,1)$ and $\operatorname{supp}(\tilde{\chi}) \subset B(0,2)$, we integrate by parts, then we let $n \longrightarrow \infty$; see the proof of Proposition 4.1 and equation (4.13) in [33] for details.

Since $\sigma=\sqrt{\frac{N-1}{N-3}},(5.59)$ is equivalent to $\left(\frac{N-3}{N-1}\right)^{2} A(u)+B_{c}(u)=0$. On the other hand we have $P_{c}(u)=\frac{N-3}{N-1} A(u)+B_{c}(u)=0$ and we infer that $A(u)=0$. But this contradicts the fact that $A(u)=T_{c}>0$ and the proof of step 1 is complete.

Step 2. Existence of a Lagrange multiplier.
Let w be as above and let $v \in H^{1}\left(\mathbf{R}^{N}\right)$ be a function with compact support such that $\tilde{P}_{c}^{\prime}(0) \cdot v=0$. For $s, t \in \mathbf{R}$, put $\Phi(t, s)=P_{c}(u+t v+s w)=\tilde{P}_{c}(t v+s w)$, so that $\Phi(0,0)=0$, $\frac{\partial \Phi}{\partial t}(0,0)=\tilde{P}_{c}^{\prime}(0) \cdot v=0$ and $\frac{\partial \Phi}{\partial s}(0,0)=\tilde{P}_{c}^{\prime}(0) \cdot w \neq 0$. The implicit function theorem implies that there exist $\delta>0$ and a C^{1} function $\eta:(-\delta, \delta) \longrightarrow \mathbf{R}$ such that $\eta(0)=0, \eta^{\prime}(0)=0$ and $P_{c}(u+t v+\eta(t) w)=P_{c}(u)=0$ for $t \in(-\delta, \delta)$. Since u is a minimizer of A in \mathcal{C}, the function $t \longmapsto A(u+t v+\eta(t) w)$ achieves a minimum at $t=0$. Differentiating at $t=0$ we get $A^{\prime}(u) . v=0$.

Hence $A^{\prime}(u) \cdot v=0$ for any $v \in H^{1}\left(\mathbf{R}^{N}\right)$ with compact support satisfying $\tilde{P}_{c}^{\prime}(0) \cdot v=0$. Taking $\alpha=\frac{A^{\prime}(u) \cdot w}{P_{c}^{\prime}(0) \cdot w}$ (where w is as in step 1), we see that

$$
\begin{equation*}
A^{\prime}(u) \cdot v=\alpha P_{c}^{\prime}(u) \cdot v \quad \text { for any } v \in H^{1}\left(\mathbf{R}^{N}\right) \text { with compact support. } \tag{5.60}
\end{equation*}
$$

Step 3. We have $\alpha<0$.
To see this, we argue by contradition. Suppose that $\alpha>0$. Let w be as in step 1 . We may assume that $P_{c}^{\prime}(u) \cdot w>0$. From (5.60) we obtain $A^{\prime}(u) \cdot w>0$. Since $A^{\prime}(u) \cdot w=$ $\lim _{t \rightarrow 0} \frac{A(u+t w)-A(u)}{t}$ and $P_{c}^{\prime}(u) \cdot w=\lim _{t \rightarrow 0} \frac{P_{c}(u+t w)-P_{c}(u)}{t}$, we see that for $t<0, t$ sufficiently close to 0 we have $u+t w \neq 0, P_{c}(u+t w)<P_{c}(u)=0$ and $A(u+t w)<A(u)=\frac{N-1}{2} T_{c}$. But this contradicts Lemma 4.8 (i). Therefore $\alpha \leq 0$.

Assume that $\alpha=0$. Then (5.60) implies

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} \sum_{k=2}^{N}\left\langle\frac{\partial u}{\partial x_{j}}, \frac{\partial v}{\partial x_{j}}\right\rangle d x=0 \quad \text { for any } v \in H^{1}\left(\mathbf{R}^{N}\right) \text { with compact support. } \tag{5.61}
\end{equation*}
$$

Let $\tilde{\chi} \in C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$ be such that $\chi=1$ on $B(0,1)$ and $\operatorname{supp}(\tilde{\chi}) \subset B(0,2)$. Put $v_{n}(x)=\chi\left(\frac{x}{n}\right) u(x)$, so that $\nabla v_{n}(x)=\frac{1}{n} \nabla \tilde{\chi}\left(\frac{x}{n}\right) u+\tilde{\chi}\left(\frac{x}{n}\right) \nabla u$. It is easy to see that $\tilde{\chi}(\dot{\bar{n}}) \nabla u \longrightarrow \nabla u$ in $L^{2}\left(\mathbf{R}^{N}\right)$ and $\frac{1}{n} \nabla \tilde{\chi}(\dot{\bar{n}}) u \rightharpoonup 0$ weakly in $L^{2}\left(\mathbf{R}^{N}\right)$. Replacing v by v_{n} in (5.61) and passing to the limit as $\stackrel{n}{n} \longrightarrow \infty$ we get $A(u)=0$, which contradicts the fact that $A(u)=\frac{N-1}{2} T_{c}$. Hence we cannot have $\alpha=0$. Thus necessarily $\alpha<0$.

Step 4. Conclusion.
Since $\alpha<0$, it follows from (5.60) that u satisfies

$$
\begin{equation*}
-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\left(\frac{N-3}{N-1}-\frac{1}{\alpha}\right) \sum_{k=2}^{N} \frac{\partial^{2} u}{\partial x_{k}^{2}}+i c u_{x_{1}}+F\left(\left|r_{0}-u\right|^{2}\right)\left(r_{0}-u\right)=0 \quad \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right) . \tag{5.62}
\end{equation*}
$$

Let $\sigma_{0}=\left(\frac{N-3}{N-1}-\frac{1}{\alpha}\right)^{-\frac{1}{2}}$. It is easy to see that $u_{1, \sigma_{0}}$ satisfies (1.3) in $\mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right)$. Therefore the conclusion of Lemma 5.5 holds for $u_{1, \sigma_{0}}$ (and consequently for u). Then Proposition 4.1 in [33] implies that $u_{1, \sigma_{0}}$ satisfies the Pohozaev identity $\frac{N-3}{N-1} A\left(u_{1, \sigma_{0}}\right)+B_{c}\left(u_{1, \sigma_{0}}\right)=0$, or equivalently $\frac{N-3}{N-1} \sigma_{0}^{N-3} A(u)+\sigma_{0}^{N-1} B_{c}(u)=0$, which implies

$$
\frac{N-3}{N-1}\left(\frac{N-3}{N-1}-\frac{1}{\alpha}\right) A(u)+B_{c}(u)=0 .
$$

On the other hand we have $P_{c}(u)=\frac{N-3}{N-1} A(u)+B_{c}(u)=0$. Since $A(u)>0$, we get $\frac{N-3}{N-1}-\frac{1}{\alpha}=1$. Then coming back to (5.62) we see that u satisfies (1.3).

6 The case $N=3$

This section is devoted to the proof of Theorem 1.1 in space dimension $N=3$. We only indicate the differences with respect to the case $N \geq 4$. Clearly, if $N=3$ we have $P_{c}=B_{c}$. For $v \in \mathcal{X}$ we denote

$$
D(v)=\int_{\mathbf{R}^{3}}\left|\frac{\partial v}{\partial x_{1}}\right|^{2} d x+a^{2} \int_{\mathbf{R}^{3}}\left(\varphi^{2}\left(\left|r_{0}-v\right|\right)-r_{0}^{2}\right)^{2} d x
$$

For any $v \in \mathcal{X}$ and $\sigma>0$ we have

$$
\begin{equation*}
A\left(v_{1, \sigma}\right)=A(v), \quad B_{c}\left(v_{1, \sigma}\right)=\sigma^{2} B_{c}(v) \quad \text { and } \quad D\left(v_{1, \sigma}\right)=\sigma^{2} D(v) \tag{6.1}
\end{equation*}
$$

If $N=3$ we cannot have a result similar to Lemma 5.1. To see this consider $u \in \mathcal{C}$, so that $B_{c}(u)=0$. Using (6.1) we see that $u_{1, \sigma} \in \mathcal{C}$ for any $\sigma>0$ and we have $E_{c}\left(u_{1, \sigma}\right)=$ $A(u)+\sigma^{2} B_{c}(u)=A(u)$, while $E_{G L}\left(u_{1, \sigma}\right)=A(u)+\sigma^{2} D(u) \longrightarrow \infty$ as $\sigma \longrightarrow \infty$.

However, for any $u \in \mathcal{C}$ there exists $\sigma>0$ such that $D\left(u_{1, \sigma}\right)=1$ (and obviously $u_{1, \sigma} \in \mathcal{C}$, $\left.E_{c}\left(u_{1, \sigma}\right)=E_{c}(u)\right)$. Since $\mathcal{C} \neq \emptyset$ and $T_{c}=\inf \left\{E_{c}(u) \mid u \in \mathcal{C}\right\}$, we see that there exists a sequence $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{C}$ such that

$$
\begin{equation*}
D\left(u_{n}\right)=1 \quad \text { and } \quad E_{c}\left(u_{n}\right)=A\left(u_{n}\right) \longrightarrow T_{c} \quad \text { as } n \longrightarrow \infty \tag{6.2}
\end{equation*}
$$

In particular, (6.2) implies $E_{G L}\left(u_{n}\right) \longrightarrow T_{c}+1$ as $n \longrightarrow \infty$.
The following result is the equivalent of Lemma 5.2 in the case $N=3$.
Lemma 6.1 Let $N=3$ and let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}$ be a sequence satisfying
a) There exists $C>0$ such that $D\left(u_{n}\right) \geq C$ for any n, and
b) $B_{c}\left(u_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$.

Then $\liminf _{n \rightarrow \infty} E_{c}\left(u_{n}\right)=\liminf _{n \rightarrow \infty} A\left(u_{n}\right) \geq S_{c}$, where S_{c} is given by (4.22).
Proof. It suffices to prove that for any $k>0$ we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} A\left(u_{n}\right) \geq E_{c, \min }(k) \tag{6.3}
\end{equation*}
$$

Fix $k>0$. Let $n \geq 1$. If $A\left(u_{n}\right) \geq k$, by Lemma 4.6 (iii) we have $A\left(u_{n}\right) \geq k>E_{c, \min }(k)$. If $A\left(u_{n}\right)<k$, since $E_{G L}\left(\left(u_{n}\right)_{1, \sigma}\right)=A\left(u_{n}\right)+\sigma^{2} D\left(u_{n}\right)$ we see that there exists $\sigma_{n}>0$ such that $E_{G L}\left(\left(u_{n}\right)_{1, \sigma_{n}}\right)=k$. Obviously, we have $\sigma_{n}^{2} D\left(u_{n}\right)<k$, hence $\sigma_{n}^{2} \leq \frac{k}{C}$ by (a). It is clear that $E_{c}\left(\left(u_{n}\right)_{1, \sigma_{n}}\right)=A\left(u_{n}\right)+\sigma_{n}^{2} B_{c}\left(u_{n}\right) \geq E_{c, \min }(k)$, therefore $A\left(u_{n}\right) \geq E_{c, \min }(k)-\sigma_{n}^{2}\left|B_{c}\left(u_{n}\right)\right| \geq$ $E_{c, \min }(k)-\frac{k}{C}\left|B_{c}\left(u_{n}\right)\right|$. Passing to the limit as $n \longrightarrow \infty$ we obtain (6.3). Since $k>0$ is arbitrary, Lemma 6.1 is proved.

Let

$$
\begin{aligned}
\Lambda_{c}= & \left\{\lambda \in \mathbf{R} \mid \text { there exists a sequence }\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}\right. \text { such that } \\
& \left.D\left(u_{n}\right) \geq 1, B_{c}\left(u_{n}\right) \longrightarrow 0 \text { and } A\left(u_{n}\right) \longrightarrow \lambda \text { as } n \longrightarrow \infty\right\}
\end{aligned}
$$

Using a scaling argument, we see that

$$
\begin{aligned}
\Lambda_{c}= & \left\{\lambda \in \mathbf{R} \mid \text { there exist a sequence }\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X} \text { and } C>0\right. \text { such that } \\
& \left.D\left(u_{n}\right) \geq C, B_{c}\left(u_{n}\right) \longrightarrow 0 \text { and } A\left(u_{n}\right) \longrightarrow \lambda \text { as } n \longrightarrow \infty\right\} .
\end{aligned}
$$

Let $\lambda_{c}=\inf \Lambda_{c}$. From (6.2) it follows that $T_{c} \in \Lambda_{c}$. It is standard to prove that Λ_{c} is closed in \mathbf{R}, hence $\lambda_{c} \in \Lambda_{c}$. From Lemma 6.1 we obtain

$$
\begin{equation*}
S_{c} \leq \lambda_{c} \leq T_{c} \tag{6.4}
\end{equation*}
$$

The main result of this section is as follows.

Theorem 6.2 Let $N=3$ and let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}$ be a sequence such that

$$
\begin{equation*}
D\left(u_{n}\right) \longrightarrow 1, \quad B_{c}\left(u_{n}\right) \longrightarrow 0 \quad \text { and } \quad A\left(u_{n}\right) \longrightarrow \lambda_{c} \quad \text { as } n \longrightarrow \infty . \tag{6.5}
\end{equation*}
$$

There exist a subsequence $\left(u_{n_{k}}\right)_{k \geq 1}$, a sequence $\left(x_{k}\right)_{k \geq 1} \subset \mathbf{R}^{3}$ and $u \in \mathcal{C}$ such that

$$
\nabla u_{n_{k}}\left(\cdot+x_{k}\right) \longrightarrow \nabla u \quad \text { and } \quad\left|r_{0}-u_{n_{k}}\left(\cdot+x_{k}\right)\right|^{2}-r_{0}^{2} \longrightarrow\left|r_{0}-u\right|^{2}-r_{0}^{2} \quad \text { in } L^{2}\left(\mathbf{R}^{3}\right) .
$$

Moreover, we have $E_{c}(u)=A(u)=T_{c}=\lambda_{c}$ and u minimizes E_{c} in \mathcal{C}.
Proof. By (6.5) we have $E_{G L}\left(u_{n}\right)=A\left(u_{n}\right)+D\left(u_{n}\right) \longrightarrow \lambda_{c}+1$ as $n \longrightarrow \infty$. Let $q_{n}(t)$ be the concentration function of $E_{G L}\left(u_{n}\right)$, as in (5.9). Proceeding as in the proof of Theorem 5.3, we infer that there exist a subsequence of $\left(u_{n}, q_{n}\right)_{n \geq 1}$, still denoted $\left(u_{n}, q_{n}\right)_{n \geq 1}$, a nondecreasing function $q:[0, \infty) \longrightarrow[0, \infty)$ and $\alpha \in\left[0, \lambda_{c}+1\right]$ such that (5.10) holds. We see also that there exists a sequence $t_{n} \longrightarrow \infty$ satisfying (5.11) and (5.12).

Clearly, our aim is to prove that $\alpha=\lambda_{c}+1$. The next result implies that $\alpha>0$.
Lemma 6.3 Assume that $N=3,0 \leq c<v_{s}$ and let $\left(u_{n}\right)_{n \geq 1} \subset \mathcal{X}$ be a sequence such that $D\left(u_{n}\right) \longrightarrow 1, B_{c}\left(u_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$ and $\sup _{n \geq 1} E_{G L}\left(u_{n}\right)=M<\infty$.

There exists $k>0$ such that $\sup _{y \in \mathbf{R}^{3}} \int_{B(y, 1)}\left|\nabla u_{n}\right|^{2}+a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \geq k$ for all sufficiently large n.

Proof. We argue by contradiction and assume that the conclusion of Lemma 6.3 is false. Then there exists a subsequence, still denoted $\left(u_{n}\right)_{n \geq 1}$, such that

$$
\begin{equation*}
\sup _{y \in \mathbf{R}^{3}} E_{G L}^{B(y, 1)}\left(u_{n}\right) \longrightarrow 0 \quad \text { as } n \longrightarrow \infty . \tag{6.6}
\end{equation*}
$$

Exactly as in Lemma 5.4 we prove that (5.14) holds, that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbf{R}^{3}}\left|V\left(\left|r_{0}-u_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2}\right| d x=0 . \tag{6.7}
\end{equation*}
$$

Using (6.7) and the assumptions of Lemma 6.3 we find

$$
\begin{equation*}
c Q\left(u_{n}\right)=B_{c}\left(u_{n}\right)-D\left(u_{n}\right)-\int_{\mathbf{R}^{3}} V\left(\left|r_{0}-u_{n}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u_{n}\right|\right)-r_{0}^{2}\right)^{2} d x \longrightarrow-1 \tag{6.8}
\end{equation*}
$$

as $n \longrightarrow \infty$. If $c=0$, (6.8) gives a contradiction and Lemma 6.3 is proved. From now on we assume that $0<c<v_{s}$.

Fix $c_{1} \in\left(c, v_{s}\right)$, then fix $\sigma>0$ such that

$$
\begin{equation*}
\sigma^{2}>\frac{M c}{c_{1}-c} . \tag{6.9}
\end{equation*}
$$

A simple change of variables shows that $\tilde{M}:=\sup _{n \geq 1} E_{G L}\left(\left(u_{n}\right)_{1, \sigma}\right)<\infty$ and (6.7) holds with $\left(u_{n}\right)_{1, \sigma}$ instead of u_{n}. It is easy to see that $\left(\left(u_{n}\right)_{1, \sigma}\right)_{n \geq 1}$ also satisfies (6.6). Using Lemma 3.2 we infer that there exists a sequence $h_{n} \longrightarrow 0$ and for each n there exists a minimizer v_{n} of $G_{h_{n}, \mathbf{R}^{3}}^{\left(u_{n}\right)_{1, \sigma}}$ in $H_{\left(u_{n}\right)_{1, \sigma}}^{1}\left(\mathbf{R}^{3}\right)$ such that

$$
\begin{equation*}
\left\|\left|v_{n}-r_{0}\right|-r_{0}\right\|_{L^{\infty}\left(\mathbf{R}^{3}\right)} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty . \tag{6.10}
\end{equation*}
$$

From (3.4) we obtain

$$
\begin{equation*}
\left|Q\left(\left(u_{n}\right)_{1, \sigma}\right)-Q\left(v_{n}\right)\right| \leq\left(h_{n}^{2}+h_{n}^{\frac{4}{3}} \tilde{M}^{\frac{2}{3}}\right)^{\frac{1}{2}} \tilde{M} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty . \tag{6.11}
\end{equation*}
$$

Using (6.10), the fact that $0<c_{1}<2 a r_{0}$ and Lemma 4.2 we infer that for all sufficiently large n we have

$$
\begin{equation*}
E_{G L}\left(v_{n}\right)+c_{1} Q\left(v_{n}\right) \geq 0 . \tag{6.12}
\end{equation*}
$$

Since $E_{G L}\left(v_{n}\right) \leq E_{G L}\left(\left(u_{n}\right)_{1, \sigma}\right)$, for large n we have

$$
\begin{aligned}
0 \leq & E_{G L}\left(v_{n}\right)+c_{1} Q\left(v_{n}\right) \\
\leq & E_{G L}\left(\left(u_{n}\right)_{1, \sigma}\right)+c_{1} Q\left(\left(u_{n}\right)_{1, \sigma}\right)+c_{1}\left|Q\left(\left(u_{n}\right)_{1, \sigma}\right)-Q\left(v_{n}\right)\right| \\
= & A\left(u_{n}\right)+B_{c}\left(\left(u_{n}\right)_{1, \sigma}\right)+\left(c_{1}-c\right) Q\left(\left(u_{n}\right)_{1, \sigma}\right)+c_{1}\left|Q\left(\left(u_{n}\right)_{1, \sigma}\right)-Q\left(v_{n}\right)\right| \\
& \quad+\int_{\mathbf{R}^{3}} a^{2}\left(\varphi^{2}\left(\left|r_{0}-\left(u_{n}\right)_{1, \sigma}\right|\right)-r_{0}^{2}\right)^{2}-V\left(\left|r_{0}-\left(u_{n}\right)_{1, \sigma}\right|^{2}\right) d x \\
= & A\left(u_{n}\right)+\sigma^{2} B_{c}\left(u_{n}\right)+\sigma^{2}\left(c_{1}-c\right) Q\left(u_{n}\right)+a_{n} \\
\leq & M+\sigma^{2} B_{c}\left(u_{n}\right)+\sigma^{2}\left(c_{1}-c\right) Q\left(u_{n}\right)+a_{n},
\end{aligned}
$$

where

$$
a_{n}=c_{1}\left|Q\left(\left(u_{n}\right)_{1, \sigma}\right)-Q\left(v_{n}\right)\right|+\int_{\mathbf{R}^{3}} a^{2}\left(\varphi^{2}\left(\left|r_{0}-\left(u_{n}\right)_{1, \sigma}\right|\right)-r_{0}^{2}\right)^{2}-V\left(\left|r_{0}-\left(u_{n}\right)_{1, \sigma}\right|^{2}\right) d x .
$$

From (6.7) and (6.11) we infer that $\lim _{n \rightarrow \infty} a_{n}=0$. Then passing to the limit as $n \longrightarrow \infty$ in (6.13), using (6.8) and the fact that $\lim _{n \rightarrow \infty} B_{c}\left(u_{n}\right)=0$ we find $0 \leq M-\sigma^{2} \frac{c_{1}-c}{c}$. The last inequality clearly contradicts the choice of σ in (6.9). This contradiction shows that (6.6) cannot hold and Lemma 6.3 is proved.

Next we show that we cannot have $\alpha \in\left(0, \lambda_{c}+1\right)$. We argue again by contradiction and we assume that $\alpha \in\left(0, \lambda_{c}+1\right)$. Proceeding exactly as in the proof of Theorem 5.3 and using Lemma 3.3, we infer that for each n sufficiently large there exist two functions $u_{n, 1}, u_{n, 2}$ having the following properties:

$$
\begin{gather*}
E_{G L}\left(u_{n, 1}\right) \longrightarrow \alpha, \quad E_{G L}\left(u_{n, 1}\right) \longrightarrow \lambda_{c}+1-\alpha, \tag{6.14}\\
\left|A\left(u_{n}\right)-A\left(u_{n, 1}\right)-A\left(u_{n, 2}\right)\right| \longrightarrow 0, \tag{6.15}\\
\left|B_{c}\left(u_{n}\right)-B_{c}\left(u_{n, 1}\right)-B_{c}\left(u_{n, 2}\right)\right| \longrightarrow 0, \tag{6.16}\\
\left|D\left(u_{n}\right)-D\left(u_{n, 1}\right)-D\left(u_{n, 2}\right)\right| \longrightarrow 0 \quad \text { as } n \longrightarrow \infty . \tag{6.17}
\end{gather*}
$$

Since $\left(E_{G L}\left(u_{n, i}\right)\right)_{n \geq 1}$ are bounded, from Lemmas 4.1 and 4.5 we see that $\left.B_{c}\left(u_{n, i}\right)\right)_{n \geq 1}$ are bounded. Moreover, by (6.16) we have $\lim _{n \rightarrow \infty}\left(B_{c}\left(u_{n, 1}\right)+B_{c}\left(u_{n, 2}\right)\right)=\lim _{n \rightarrow \infty} B_{c}\left(u_{n}\right)=0$. Similarly, $\left(D\left(u_{n, i}\right)\right)_{n \geq 1}$ are bounded and $\lim _{n \rightarrow \infty}\left(D\left(u_{n, 1}\right)+D\left(u_{n, 2}\right)\right)=\lim _{n \rightarrow \infty} D\left(u_{n}\right)=1$. Passing again to a subsequence (still denoted $\left(u_{n}\right)_{n} \geq 1$), we may assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{c}\left(u_{n, 1}\right)=b_{1}, \quad \lim _{n \rightarrow \infty} B_{c}\left(u_{n, 2}\right)=b_{2}, \quad \text { where } b_{i} \in \mathbf{R}, b_{1}+b_{2}=0 \tag{6.18}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D\left(u_{n, 1}\right)=d_{1}, \quad \lim _{n \rightarrow \infty} D\left(u_{n, 2}\right)=d_{2}, \quad \text { where } d_{i} \geq 0, d_{1}+d_{2}=1 \tag{6.19}
\end{equation*}
$$

From (6.18) it follows that either $b_{1}=b_{2}=0$, or one of b_{1} or b_{2} is negative.
Case 1. If $b_{1}=b_{2}=0$, we distinguish two subcases:
Subcase 1a. We have $d_{1}>0$ and $d_{2}>0$. Let $\sigma_{i}=\frac{2}{\sqrt{d_{i}}}, i=1,2$. Then $D\left(\left(u_{n, i}\right)_{1, \sigma_{i}}\right)=$ $\sigma_{i}^{2} D\left(u_{n, i}\right) \longrightarrow 4$ and $B_{c}\left(\left(u_{n, i}\right)_{1, \sigma_{i}}\right)=\sigma_{i}^{2} B_{c}\left(u_{n, i}\right) \longrightarrow 0$ as $n \longrightarrow \infty$. From (6.1) and the definition of λ_{c} it follows that $\liminf _{n \rightarrow \infty} A\left(u_{n, i}\right)=\liminf _{n \rightarrow \infty} A\left(\left(u_{n, i}\right)_{1, \sigma_{i}}\right) \geq \lambda_{c}, i=1,2$. Then (6.15) implies

$$
\liminf _{n \rightarrow \infty} A\left(u_{n}\right) \geq \liminf _{n \rightarrow \infty} A\left(u_{n, 1}\right)+\liminf _{n \rightarrow \infty} A\left(u_{n, 2}\right) \geq 2 \lambda_{c}
$$

an this is a contradiction because by (6.5) we have $\lim _{n \rightarrow \infty} A\left(u_{n}\right)=\lambda_{c}$.
Subcase 1b. One of d_{i} 's is zero, say $d_{1}=0$. Then necessarily $d_{2}=1$, that is $\lim _{n \rightarrow \infty} D\left(u_{n, 2}\right)=$ 1. Since $E_{G L}\left(u_{n, 2}\right)=A\left(u_{n, 2}\right)+D\left(u_{n, 2}\right) \longrightarrow 1+\lambda_{c}-\alpha$ as $n \longrightarrow \infty$, we infer that $\lim _{n \rightarrow \infty} A\left(u_{n, 2}\right)=$ $\lambda_{c}-\alpha$. Hence $D\left(u_{n, 2}\right) \longrightarrow 1, B_{c}\left(u_{n, 2}\right) \longrightarrow 0$ and $A\left(u_{n, 2}\right) \longrightarrow \lambda_{c}-\alpha$ as $n \longrightarrow \infty$, which implies $\lambda_{c}-\alpha \in \Lambda_{c}$. Since $\alpha>0$, this contradicts the definition of λ_{c}.

Case 2. One of b_{i} 's is negative, say $b_{1}<0$. From Lemma 4.8 (ii) we get $\liminf _{n \rightarrow \infty} A\left(u_{n, 1}\right)>$ $T_{c} \geq \lambda_{c}$ and then using (6.15) we find $\liminf _{n \rightarrow \infty} A\left(u_{n}\right)>\lambda_{c}$, in contradiction with (6.5).

Consequently in all cases we get a contradiction and this proves that we cannot have $\alpha \in\left(0, \lambda_{c}+1\right)$.

Up to now we have proved that $\lim _{t \rightarrow \infty} q(t)=\lambda_{c}+1$, that is "concentration" occurs.
Proceeding as in the case $N \geq 4$, we see that there exist a subsequence $\left(u_{n_{k}}\right)_{k \geq 1}$, a sequence of points $\left(x_{k}\right)_{k \geq 1} \subset \mathbf{R}^{3}$ and $u \in \mathcal{X}$ such that, denoting $\tilde{u}_{n_{k}}(x)=u_{n_{k}}\left(x+x_{k}\right)$, we have:

$$
\begin{equation*}
\nabla \tilde{u}_{n_{k}} \rightharpoonup \nabla u \text { and } \varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2} \rightharpoonup \varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2} \text { weakly in } L^{2}\left(\mathbf{R}^{3}\right), \tag{6.20}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{u}_{n_{k}} \longrightarrow u \quad \text { in } L_{l o c}^{p}\left(\mathbf{R}^{3}\right) \text { for } 1 \leq p<6 \text { and a.e. on } \mathbf{R}^{3}, \tag{6.21}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} V\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}\right) d x \longrightarrow \int_{\mathbf{R}^{3}} V\left(\left|r_{0}-u\right|^{2}\right) d x \tag{6.22}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2}\right)^{2} d x \longrightarrow \int_{\mathbf{R}^{3}}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x \tag{6.23}
\end{equation*}
$$

$$
\begin{equation*}
Q\left(\tilde{u}_{n_{k}}\right) \longrightarrow Q(u) \quad \text { as } k \longrightarrow \infty \tag{6.24}
\end{equation*}
$$

Passing to the limit as $k \longrightarrow \infty$ in the identity

$$
\int_{\mathbf{R}^{3}} V\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2}\right)^{2} d x+c Q\left(\tilde{u}_{n_{k}}\right)=B_{c}\left(\tilde{u}_{n_{k}}\right)-D\left(\tilde{u}_{n_{k}}\right),
$$

using (6.22)-(6.24) and the fact that $B_{c}\left(\tilde{u}_{n_{k}}\right) \longrightarrow 0, D\left(\tilde{u}_{n_{k}}\right) \longrightarrow 1$ we get

$$
\int_{\mathbf{R}^{3}} V\left(\left|r_{0}-u\right|^{2}\right)-a^{2}\left(\varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2}\right)^{2} d x+c Q(u)=-1 .
$$

Thus $u \neq 0$.

From the weak convergence $\nabla \tilde{u}_{n_{k}} \rightharpoonup \nabla u$ in $L^{2}\left(\mathbf{R}^{3}\right)$ we get

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left|\frac{\partial u}{\partial x_{j}}\right|^{2} d x \leq \liminf _{k \rightarrow \infty} \int_{\mathbf{R}^{3}}\left|\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{j}}\right|^{2} d x \quad \text { for } j=1, \ldots, N . \tag{6.25}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
A(u) \leq \lim _{k \rightarrow \infty} A\left(\tilde{u}_{n_{k}}\right)=\lambda_{c} . \tag{6.26}
\end{equation*}
$$

From (6.22), (6.24) and (6.25) we obtain

$$
\begin{equation*}
B_{c}(u) \leq \lim _{k \rightarrow \infty} B_{c}\left(\tilde{u}_{n_{k}}\right)=0 \tag{6.27}
\end{equation*}
$$

Since $u \neq 0,(6.27)$ and Lemma 4.8 (i) imply $A(u) \geq T_{c}$. Then using (6.26) and the fact that $\lambda_{c} \leq T_{c}$, we infer that necessarily

$$
\begin{equation*}
A(u)=T_{c}=\lambda_{c}=\lim _{k \rightarrow \infty} A\left(\tilde{u}_{n_{k}}\right) \tag{6.28}
\end{equation*}
$$

The fact that $B_{c}\left(\tilde{u}_{n_{k}}\right) \longrightarrow 0,(6.22)$ and (6.24) imply that $\left(\int_{\mathbf{R}^{3}}\left|\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}}\right|^{2} d x\right)_{k \geq 1}$ converges. If $\int_{\mathbf{R}^{3}}\left|\frac{\partial u}{\partial x_{1}}\right|^{2} d x<\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{3}}\left|\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}}\right|^{2} d x$, we get $B_{c}(u)<\lim _{k \rightarrow \infty} B_{c}\left(\tilde{u}_{n_{k}}\right)=0$ in (6.27) and then Lemma 4.8 (i) implies $A(u)>T_{c}$, a contradiction. Taking (6.25) into account, we see that necessarily

$$
\begin{equation*}
\int_{\mathbf{R}^{3}}\left|\frac{\partial u}{\partial x_{1}}\right|^{2} d x=\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{3}}\left|\frac{\partial \tilde{u}_{n_{k}}}{\partial x_{1}}\right|^{2} d x \quad \text { and } \quad B_{c}(u)=0 \tag{6.29}
\end{equation*}
$$

Thus we have proved that $u \in \mathcal{C}$ and $\|\nabla u\|_{L^{2}\left(\mathbf{R}^{3}\right)}=\lim _{k \rightarrow \infty}\left\|\nabla \tilde{u}_{n_{k}}\right\|_{L^{2}\left(\mathbf{R}^{3}\right)}$. Combined with the weak convergence $\nabla \tilde{u}_{n_{k}} \rightharpoonup \nabla u$ in $L^{2}\left(\mathbf{R}^{3}\right)$, this implies the strong convergence $\nabla \tilde{u}_{n_{k}} \longrightarrow \nabla u$ in $L^{2}\left(\mathbf{R}^{3}\right)$. Then using the Sobolev embedding we find $\tilde{u}_{n_{k}} \longrightarrow u$ in $L^{6}\left(\mathbf{R}^{3}\right)$.

From the second part of (6.20) and (6.23) it follows that

$$
\begin{equation*}
\varphi^{2}\left(\left|r_{0}-\tilde{u}_{n_{k}}\right|\right)-r_{0}^{2} \longrightarrow \varphi^{2}\left(\left|r_{0}-u\right|\right)-r_{0}^{2} \quad \text { in } L^{2}\left(\mathbf{R}^{3}\right) \tag{6.30}
\end{equation*}
$$

Let $G(z)=\left|r_{0}-z\right|^{2}-\varphi^{2}\left(\left|r_{0}-z\right|\right)$. It is obvious that $G \in C^{\infty}(\mathbf{C}, \mathbf{R})$ and $|G(z)| \leq C \mid r_{0}-$ $\left.z\right|^{2} \mathbb{1}_{\left\{\left|r_{0}-z\right|>2 r_{0}\right\}} \leq C^{\prime}|z|^{2} \mathbb{1}_{\left\{|z|>r_{0}\right\}} \leq C^{\prime \prime}|z|^{3} \mathbb{1}_{\left\{|z|>r_{0}\right\}}$. Since $\tilde{u}_{n_{k}} \longrightarrow u$ in $L^{6}\left(\mathbf{R}^{3}\right)$, it is easy to see that $G\left(\tilde{u}_{n_{k}}\right) \longrightarrow G(u)$ in $L^{2}\left(\mathbf{R}^{3}\right)$ (see Theorem A4 p. 134 in [36]). Together with (6.30), this gives $\left|r_{0}-\tilde{u}_{n_{k}}\right|^{2}-r_{0}^{2} \longrightarrow\left|r_{0}-u\right|^{2}-r_{0}^{2}$ in $L^{2}\left(\mathbf{R}^{3}\right)$ and the proof of Theorem 6.2 is complete.

To prove that any minimizer provided by Theorem 6.2 satisfies an Euler-Lagrange equation, we will need the next lemma. It is clear that for any $v \in \mathcal{X}$ and any $R>0$, the functional $\tilde{B}_{c}^{v}(w):=B_{c}(v+w)$ is C^{1} on $H_{0}^{1}(B(0, R))$. We denote by $\left(\tilde{B}_{c}^{v}\right)^{\prime}(0) . w=\lim _{t \rightarrow 0} \frac{B_{c}(v+t w)-B_{c}(v)}{t}$ its derivative at the origin.

Lemma 6.4 Assume that $N \geq 3$ and the conditions (A1) and (A2) are satisfied. Let $v \in \mathcal{X}$ be such that $\left(\tilde{B}_{c}^{v}\right)^{\prime}(0) . w=0$ for any $w \in C_{c}^{1}\left(\mathbf{R}^{N}\right)$. Then $v=0$ almost everywhere on \mathbf{R}^{N}.

Proof. We denote by v^{*} be the precise representative of v, that is $v^{*}(x)=\lim _{r \rightarrow 0} m(v, B(x, r))$ if this limit exists, and 0 otherwise. Since $v \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, it is well-known that $v=v^{*}$ almost everywhere on \mathbf{R}^{N} (see, e.g., Corollary 1 p. 44 in [14]). Throughout the proof of Lemma 6.4 we replace v by v^{*}. We proceed in three steps.

Step 1. There exists a set $S \subset \mathbf{R}^{N-1}$ such that $\mathcal{L}^{N-1}(S)=0$ and for any $x^{\prime} \in \mathbf{R}^{N-1} \backslash S$ the function $v_{x^{\prime}}:=v\left(\cdot, x^{\prime}\right)$ belongs to $C^{2}(\mathbf{R})$ and solves the differential equation

$$
\begin{equation*}
-\left(v_{x^{\prime}}\right)^{\prime \prime}(s)+i c\left(v_{x^{\prime}}\right)^{\prime}(s)+F\left(\left|r_{0}-v_{x^{\prime}}(s)\right|^{2}\right)\left(r_{0}-v_{x^{\prime}}(s)\right)=0 \quad \text { for any } s \in \mathbf{R} . \tag{6.31}
\end{equation*}
$$

Moreover, we have $\left|v_{x^{\prime}}(s)\right| \longrightarrow 0$ as $s \longrightarrow \pm \infty$ and $v_{x^{\prime}}$ satisfies the following properties:

$$
\begin{equation*}
v_{x^{\prime}} \in L^{2^{*}}(\mathbf{R}), \quad \varphi^{2}\left(\left|r_{0}-v_{x^{\prime}}\right|\right)-r_{0}^{2} \in L^{2}(\mathbf{R}) \quad \text { and } \quad\left(v_{x^{\prime}}\right)^{\prime}=\frac{\partial v}{\partial x_{1}}\left(\cdot, x^{\prime}\right) \in L^{2}(\mathbf{R}), \tag{6.32}
\end{equation*}
$$

$$
\begin{equation*}
F\left(\left|r_{0}-v_{x^{\prime}}\right|^{2}\right)\left(r_{0}-v_{x^{\prime}}\right) \in L^{2}(\mathbf{R})+L^{\frac{2^{*}}{2 p_{0}+1}}(\mathbf{R}) \tag{6.33}
\end{equation*}
$$

It is easy to see that $F\left(\left|r_{0}-v\right|^{2}\right)\left(r_{0}-v\right) \in L^{2}\left(\mathbf{R}^{N}\right)+L^{\frac{2^{*}}{2 p_{0}+1}}\left(\mathbf{R}^{N}\right)$. Since $v \in H_{l o c}^{1}\left(\mathbf{R}^{3}\right)$, using Theorem 2 p. 164 in [14] and Fubini's Theorem, respectively, we see that there exists a set $\tilde{S} \subset \mathbf{R}^{N-1}$ such that $\mathcal{L}^{N-1}(\tilde{S})=0$ and for any $x^{\prime} \in \mathbf{R}^{N-1} \backslash \tilde{S}$ the function $v_{x^{\prime}}$ is absolutely continuous, $v_{x^{\prime}} \in H_{l o c}^{1}(\mathbf{R})$ and (6.32)-(6.33) hold.

Given $\phi \in C_{c}^{1}(\mathbf{R})$, we denote $\Lambda_{\phi}\left(x_{1}, x^{\prime}\right)=\left\langle\frac{\partial v}{\partial x_{1}}\left(x_{1}, x^{\prime}\right), \phi^{\prime}\left(x_{1}\right)\right\rangle+c\left\langle i \frac{\partial v}{\partial x_{1}}\left(x_{1}, x^{\prime}\right), \phi\left(x_{1}\right)\right\rangle+$ $\left\langle F\left(\left|r_{0}-v\right|^{2}\right)\left(r_{0}-v\right)\left(x_{1}, x^{\prime}\right), \phi\left(x_{1}\right)\right\rangle$. From (6.32) and (6.33) it follows that $\Lambda_{\phi}\left(\cdot, x^{\prime}\right) \in L^{1}(\mathbf{R})$ for $x^{\prime} \in \mathbf{R}^{N-1} \backslash \tilde{S}$. For such x^{\prime} we define $\lambda_{\phi}\left(x^{\prime}\right)=\int_{\mathbf{R}} \Lambda_{\phi}\left(x_{1}, x^{\prime}\right) d x_{1}$, then we extend the function λ_{ϕ} in an arbitrary way to \mathbf{R}^{N-1}. Let $\psi \in C_{c}^{1}\left(\mathbf{R}^{N-1}\right)$. It is obvious that the function $\left(x_{1}, x^{\prime}\right) \longmapsto \Lambda_{\phi}\left(x_{1}, x^{\prime}\right) \psi\left(x^{\prime}\right)$ belongs to $L^{1}\left(\mathbf{R}^{N}\right)$ and using Fubini's Theorem we get $\int_{\mathbf{R}^{N}} \Lambda_{\phi}\left(x_{1}, x^{\prime}\right) \psi\left(x^{\prime}\right) d x=\int_{\mathbf{R}^{N-1}} \lambda_{\phi}\left(x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}$. On the other hand, using the assumption of Lemma 6.4 we obtain $2 \int_{\mathbf{R}^{N}} \Lambda_{\phi}\left(x_{1}, x^{\prime}\right) \psi\left(x^{\prime}\right) d x=\left(\tilde{B}_{c}^{v}\right)^{\prime}(0) \cdot\left(\phi\left(x_{1}\right) \psi\left(x^{\prime}\right)\right)=0$. Hence we have $\int_{\mathbf{R}^{N-1}} \lambda_{\phi}\left(x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}=0$ for any $\psi \in C_{c}^{1}\left(\mathbf{R}^{N-1}\right)$ and this implies that there exists a set $S_{\phi} \subset \mathbf{R}^{N-1} \backslash \tilde{S}$ such that $\mathcal{L}^{N-1}\left(S_{\phi}\right)=0$ and $\lambda_{\phi}=0$ on $\mathbf{R}^{N-1} \backslash\left(\tilde{S} \cup S_{\phi}\right)$.

Denote $q_{0}=\frac{2^{*}}{2 p_{0}+1} \in(1, \infty)$. There exists a coutable set $\left\{\phi_{n} \in C_{c}^{1}(\mathbf{R}) \mid n \in \mathbf{N}\right\}$ which is dense in $H^{1}(\mathbf{R}) \cap L^{q_{0}^{\prime}}(\mathbf{R})$. For each n consider the set $S_{\phi_{n}} \subset \mathbf{R}^{N-1}$ as above. Let $S=$ $\tilde{S} \cup \bigcup_{n \in \mathbf{N}} S_{\phi_{n}}$. It is clear that $\mathcal{L}^{N-1}(S)=0$.

Let $x^{\prime} \in \mathbf{R}^{N-1} \backslash S$. Fix $\phi \in C_{c}^{1}(\mathbf{R})$. There is a sequence $\left(\phi_{n_{k}}\right)_{k \geq 1}$ such that $\phi_{n_{k}} \longrightarrow$ ϕ in $H^{1}(\mathbf{R})$ and in $L^{q_{0}^{\prime}}(\mathbf{R})$. Then $\lambda_{\phi_{n_{k}}}\left(x^{\prime}\right)=0$ for each k and (6.32)-(6.33) imply that $\lambda_{\phi_{n_{k}}}\left(x^{\prime}\right) \longrightarrow \lambda_{\phi}\left(x^{\prime}\right)$. Consequently $\lambda_{\phi}\left(x^{\prime}\right)=0$ for any $\phi \in C_{c}^{1}(\mathbf{R})$ and this implies that $v_{x^{\prime}}$ satisfies the equation (6.31) in $\mathcal{D}^{\prime}(\mathbf{R})$. Using (6.31) we infer that $\left(v_{x^{\prime}}\right)^{\prime \prime}$ (the weak second derivative of $v_{x^{\prime}}$) belongs to $L_{l o c}^{1}(\mathbf{R})$ and then it follows that $\left(v_{x^{\prime}}\right)^{\prime}$ is continuous on \mathbf{R} (see, e.g., Lemma VIII. 2 p. 123 in [8]). In particular, we have $v_{x^{\prime}} \in C^{1}(\mathbf{R})$. Coming back to (6.31) we see that $\left(v_{x^{\prime}}\right)^{\prime \prime}$ is continuous, hence $v_{x^{\prime}} \in C^{2}(\mathbf{R})$ and (6.31) holds at each point of R. Finally, we have $\left|v_{x^{\prime}}\left(s_{2}\right)-v_{x^{\prime}}\left(s_{1}\right)\right| \leq\left|s_{2}-s_{1}\right|^{\frac{1}{2}}| |\left(v_{x^{\prime}}\right)^{\prime} \|_{L^{2}}$; this estimate and the fact that $v_{x^{\prime}} \in L^{2^{*}}(\mathbf{R})$ imply that $v_{x^{\prime}}(s) \longrightarrow 0$ as $s \longrightarrow \pm \infty$.

Step 2. There exist two positive constants k_{1}, k_{2} (depending only on F and c) such that for any $x^{\prime} \in \mathbf{R}^{N-1} \backslash S$ we have either $v_{x^{\prime}}=0$ on \mathbf{R} or there exists an interval $I_{x^{\prime}} \subset \mathbf{R}$ with $\mathcal{L}^{1}\left(I_{x^{\prime}}\right) \geq k_{1}$ and $\left|\left|r_{0}-v_{x^{\prime}}\right|-r_{0}\right| \geq k_{2}$ on $I_{x^{\prime}}$.

To see this, fix $x^{\prime} \in \mathbf{R}^{N-1} \backslash S$ and denote $g=\left|r_{0}-v_{x^{\prime}}\right|^{2}-r_{0}^{2}$. Then $g \in C^{2}(\mathbf{R}, \mathbf{R})$ and g tends to zero at $\pm \infty$. Proceeding exactly as in [33], p. 1100-1101 we integrate (6.31) and we see that g satisfies

$$
\begin{equation*}
\left(g^{\prime}\right)^{2}(s)+c^{2} g^{2}(s)-4\left(g(s)+r_{0}^{2}\right) V\left(g(s)+r_{0}^{2}\right)=0 \quad \text { in } \mathbf{R} . \tag{6.34}
\end{equation*}
$$

Using (1.4) we have $c^{2} t^{2}-4\left(t+r_{0}^{2}\right) V\left(t+r_{0}^{2}\right)=t^{2}\left(c^{2}-v_{s}^{2}+\varepsilon_{1}(t)\right)$, where $\varepsilon_{1}(t) \longrightarrow 0$ as $t \longrightarrow 0$. In particular, there exists $k_{0}>0$ such that

$$
\begin{equation*}
c^{2} t^{2}-4\left(t+r_{0}^{2}\right) V\left(t+r_{0}^{2}\right)<0 \quad \text { for } t \in\left[-2 k_{0}, 0\right) \cup\left(0,2 k_{0}\right] . \tag{6.35}
\end{equation*}
$$

If $g=0$ on \mathbf{R} then $\left|r_{0}-v_{x^{\prime}}\right|=r_{0}$ and consequently there exists a lifting $r_{0}-v_{x^{\prime}}(s)=r_{0} e^{i \theta(s)}$ with $\theta \in C^{2}(\mathbf{R}, \mathbf{R})$. Using equation (6.31) and proceeding as in [33] p. 1101 we see that either $r_{0}-v_{x^{\prime}}(s)=r_{0} e^{i \theta_{0}}$ or $r_{0}-v_{x^{\prime}}(s)=r_{0} e^{i c s+\theta_{0}}$, where $\theta_{0} \in \mathbf{R}$ is a constant. Since $v_{x^{\prime}} \in L^{2^{*}}(\mathbf{R})$, we must have $v_{x^{\prime}}=0$.

If $g \not \equiv 0$, the function g achieves a negative minimum or a positive maximum at some $s_{0} \in \mathbf{R}$. Then $g^{\prime}\left(s_{0}\right)=0$ and using (6.34) and (6.35) we infer that $\left|g\left(s_{0}\right)\right|>2 k_{0}$. Let $s_{2}=\inf \{s<$ $\left.s_{0}| | g(s) \mid \geq 2 k_{0}\right\}, s_{1}=\sup \left\{s<s_{2} \mid g(s) \leq k_{0}\right\}$, so that $s_{1}<s_{2},\left|g\left(s_{1}\right)\right|=k_{0},\left|g\left(s_{2}\right)\right|=2 k_{0}$ and $k_{0} \leq|g(s)| \leq 2 k_{0}$ for $s \in\left[s_{1}, s_{2}\right]$. Denote $M=\sup \left\{4\left(t+r_{0}^{2}\right) V\left(t+r_{0}^{2}\right)-c^{2} t^{2} \mid t \in\left[-2 k_{0}, 2 k_{0}\right]\right\}$. From (6.34) we obtain $\left|g^{\prime}(s)\right| \leq \sqrt{M}$ if $g(s) \in\left[-2 k_{0}, 2 k_{0}\right]$ and we infer that

$$
k_{0}=\left|g\left(s_{2}\right)\right|-\left|g\left(s_{1}\right)\right| \leq\left|\int_{s_{1}}^{s_{2}} g^{\prime}(s) d s\right| \leq \sqrt{M}\left(s_{2}-s_{1}\right),
$$

hence $s_{2}-s_{1} \geq \frac{k_{0}}{\sqrt{M}}$. Obviously, there exists $k_{2}>0$ such that $\left|\left|r_{0}-z\right|^{2}-r_{0}^{2}\right| \geq k_{0}$ implies $\left|\left|r_{0}-z\right|-r_{0}\right| \geq k_{2}$. Taking $k_{1}=\frac{k_{0}}{\sqrt{M}}$ and $I_{x^{\prime}}=\left[s_{1}, s_{2}\right]$, the proof of step 2 is complete.

Step 3. Conclusion.
Let $K=\left\{x^{\prime} \in \mathbf{R}^{N-1} \backslash S \mid v_{x^{\prime}} \not \equiv 0\right\}$. It is standard to prove that K is \mathcal{L}^{N-1}-measurable. The conclusion of Lemma 6.4 follows if we prove that $\mathcal{L}^{N-1}(K)=0$. We argue by contradiction and we assume that $\mathcal{L}^{N-1}(K)>0$.

If $x^{\prime} \in K$, it follows from step 2 that there exists an interval $I_{x^{\prime}}$ of length at least k_{1} such that $\left(\varphi^{2}\left(\left|r_{0}-v_{x^{\prime}}\right|\right)-r_{0}^{2}\right)^{2} \geq \eta\left(k_{2}\right)$ on $I_{x^{\prime}}$, where η is as in (3.30). This implies $\int_{\mathbf{R}}\left(\varphi^{2}\left(\left|r_{0}-v\left(x_{1}, x^{\prime}\right)\right|\right)-r_{0}^{2}\right)^{2} d x_{1} \geq k_{1} \eta\left(k_{2}\right)$ and using Fubini's theorem we get

$$
\begin{aligned}
& \int_{\mathbf{R}^{N}}\left(\varphi^{2}\left(\left|r_{0}-v(x)\right|\right)-r_{0}^{2}\right)^{2} d x=\int_{K}\left(\int_{\mathbf{R}}\left(\varphi^{2}\left(\left|r_{0}-v\left(x_{1}, x^{\prime}\right)\right|\right)-r_{0}^{2}\right)^{2} d x_{1}\right) d x^{\prime} \\
& \geq k_{1} \eta\left(k_{2}\right) \mathcal{L}^{N-1}(K) .
\end{aligned}
$$

Since $v \in \mathcal{X}$, we infer that $\mathcal{L}^{N-1}(K)$ is finite.
It is obvious that there exist $x_{1}^{\prime} \in K$ and $x_{2}^{\prime} \in \mathbf{R}^{N-1} \backslash(K \cup S)$ arbitrarily close to each other. Then $\left|v_{x_{1}^{\prime}}\right| \geq k_{2}$ on an interval $I_{x_{1}^{\prime}}$ of length k_{1}, while $v_{x_{2}^{\prime}} \equiv 0$. If we knew that v is uniformly continuous, this would lead to a contradiction. However, the equation (6.31) satisfied by v involves only derivatives with respect to x_{1} and does not imply any regularity properties of v with respect to the transverse variables (note that if v is a solution of (6.31), then $v\left(x_{1}+\delta\left(x^{\prime}\right), x^{\prime}\right)$ is also a solution, even if δ is discontinuous). For instance, for the GrossPitaevskii nonlinearity $F(s)=1-s$ it is possible to construct bounded, C^{∞} functions v such that $v \in L^{2^{*}}\left(\mathbf{R}^{N}\right),(6.31)$ is satisfied for a.e. x^{\prime}, and the set K constructed as above is a nontrivial ball in \mathbf{R}^{N-1} (of course, these functions do not tend uniformly to zero at infinity, are not uniformly continuous and their gradient is not in $L^{2}\left(\mathbf{R}^{N}\right)$).

We use that fact that one transverse derivative of v (for instance, $\frac{\partial v}{\partial x_{2}}$) is in $L^{2}\left(\mathbf{R}^{N}\right)$ to get a contradiction.

For $x^{\prime}=\left(x_{2}, x_{3}, \ldots, x_{N}\right) \in \mathbf{R}^{N-1}$, we denote $x^{\prime \prime}=\left(x_{3}, \ldots, x_{N}\right)$. Since $v \in H_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, from Theorem 2 p. 164 in [14] it follows that there exists $J \subset \mathbf{R}^{N-1}$ such that $\mathcal{L}^{N-1}(J)=0$ and $u\left(x_{1}, \cdot, x^{\prime \prime}\right) \in H_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ for any $\left(x_{1}, x^{\prime \prime}\right) \in \mathbf{R}^{N-1} \backslash J$. Given $x^{\prime \prime} \in \mathbf{R}^{N-2}$, we denote

$$
\begin{aligned}
& K_{x^{\prime \prime}}=\left\{x_{2} \in \mathbf{R} \mid\left(x_{2}, x^{\prime \prime}\right) \in K\right\}, \\
& S_{x^{\prime \prime}}=\left\{x_{2} \in \mathbf{R} \mid\left(x_{2}, x^{\prime \prime}\right) \in S\right\}, \\
& J_{x^{\prime \prime}}=\left\{x_{1} \in \mathbf{R} \mid\left(x_{1}, x^{\prime \prime}\right) \in J\right\} .
\end{aligned}
$$

Fubini's Theorem implies that the sets $K_{x^{\prime \prime}}, S_{x^{\prime \prime}}, J_{x^{\prime \prime}}$ are $\mathcal{L}^{1}-$ measurable, $\mathcal{L}^{1}\left(K_{x^{\prime \prime}}\right)<\infty$ and $\mathcal{L}^{1}\left(S_{x^{\prime \prime}}\right)=\mathcal{L}^{1}\left(J_{x^{\prime \prime}}\right)=0$ for \mathcal{L}^{N-2}-a.e. $x^{\prime \prime} \in \mathbf{R}^{N-2}$. Let

$$
\begin{align*}
G= & \left\{x^{\prime \prime} \in \mathbf{R}^{N-2} \mid K_{x^{\prime \prime}}, S_{x^{\prime \prime}}, J_{x^{\prime \prime}} \text { are } \mathcal{L}^{1}\right. \text { measurable, } \tag{6.36}\\
& \left.\mathcal{L}^{1}\left(S_{x^{\prime \prime}}\right)=\mathcal{L}^{1}\left(J_{x^{\prime \prime}}\right)=0 \text { and } 0<\mathcal{L}^{1}\left(K_{x^{\prime \prime}}\right)<\infty\right\} .
\end{align*}
$$

Clearly, G is \mathcal{L}^{N-2}-measurable and $\int_{G} \mathcal{L}^{1}\left(K_{x^{\prime \prime}}\right) d x^{\prime \prime}=\mathcal{L}^{N-1}(K)>0$, thus $\mathcal{L}^{N-2}(G)>0$. We claim that

$$
\begin{equation*}
\int_{\mathbf{R}^{2}}\left|\frac{\partial v}{\partial x_{2}}\left(x_{1}, x_{2}, x^{\prime \prime}\right)\right|^{2} d x_{1} d x_{2}=\infty \quad \text { for any } x^{\prime \prime} \in G \tag{6.37}
\end{equation*}
$$

Indeed, let $x^{\prime \prime} \in G$. Fix $\varepsilon>0$. Using (6.36) we infer that there exist $s_{1}, s_{2} \in \mathbf{R}$ such that $\left(s_{1}, x^{\prime \prime}\right) \in \mathbf{R}^{N-1} \backslash(K \cup S),\left(s_{2}, x^{\prime \prime}\right) \in K$ and $\left|s_{2}-s_{1}\right|<\varepsilon$. Then $v\left(t, s_{1}, x^{\prime \prime}\right)=0$ for any $t \in \mathbf{R}$. From step 2 it follows that there exists an interval I with $\mathcal{L}^{1}(I) \geq k_{1}$ such that $\left|v\left(t, s_{2}, x^{\prime \prime}\right)\right| \geq\left|\left|r_{0}-v\left(t, s_{2}, x^{\prime \prime}\right)\right|-r_{0}\right| \geq k_{2}$ for $t \in I$. Assume $s_{1}<s_{2}$. If $t \in I \backslash J_{x^{\prime \prime}}$ we have $v\left(t, \cdot, x^{\prime \prime}\right) \in H_{l o c}^{1}(\mathbf{R})$, hence

$$
\begin{aligned}
& k_{2} \leq\left|v\left(t, s_{2}, x^{\prime \prime}\right)-v\left(t, s_{1}, x^{\prime \prime}\right)\right|=\left|\int_{s_{1}}^{s_{2}} \frac{\partial v}{\partial x_{2}}\left(t, \tau, x^{\prime \prime}\right) d \tau\right| \\
& \leq\left(s_{2}-s_{1}\right)^{\frac{1}{2}}\left(\int_{s_{1}}^{s_{2}}\left|\frac{\partial v}{\partial x_{2}}\left(t, \tau, x^{\prime \prime}\right)\right|^{2} d \tau\right)^{\frac{1}{2}} .
\end{aligned}
$$

Clearly, this implies $\int_{s_{1}}^{s_{2}}\left|\frac{\partial v}{\partial x_{2}}\left(t, \tau, x^{\prime \prime}\right)\right|^{2} d \tau \geq \frac{k_{2}^{2}}{\varepsilon}$. Consequently

$$
\int_{\mathbf{R}^{2}}\left|\frac{\partial v}{\partial x_{2}}\left(x_{1}, x_{2}, x^{\prime \prime}\right)\right|^{2} d x_{1} d x_{2} \geq \int_{I} \int_{s_{1}}^{s_{2}}\left|\frac{\partial v}{\partial x_{2}}\left(t, \tau, x^{\prime \prime}\right)\right|^{2} d \tau d t \geq \frac{k_{1} k_{2}^{2}}{\varepsilon} .
$$

Since the last inequality holds for any $\varepsilon>0,(6.37)$ is proved. Using (6.37), the fact that $\mathcal{L}^{N-2}(G)>0$ and Fubini's Theorem we get $\int_{\mathbf{R}^{N}}\left|\frac{\partial v}{\partial x_{2}}\right|^{2} d x=\infty$, contradicting the fact that $v \in \mathcal{X}$. Thus necessarily $\mathcal{L}^{N-1}(K)=0$ and the proof of Lemma 6.4 is complete.

Proposition 6.5 Assume that $N=3$ and the conditions (A1) and (A2) are satisfied. Let $u \in \mathcal{C}$ be a minimizer of E_{c} in \mathcal{C}. Then $u \in W_{\text {loc }}^{2, p}\left(\mathbf{R}^{3}\right)$ for any $p \in[1, \infty), \nabla u \in W^{1, p}\left(\mathbf{R}^{3}\right)$ for $p \in[2, \infty)$ and there exists $\sigma>0$ such that $u_{1, \sigma}$ is a solution of (1.3).

Proof. The proof is very similar to the proof of Proposition 5.6. It is clear that $A(u)=$ $E_{c}(u)=T_{c}$ and u is a minimizer of A in \mathcal{C}. For any $R>0$, the functionals \tilde{B}_{c}^{u} and $\tilde{A}(v):=$ $A(u+v)$ are C^{1} on $H_{0}^{1}(B(0, R))$. We proceed in four steps.

Step 1. There exists $w \in C_{c}^{1}\left(\mathbf{R}^{3}\right)$ such that $\left(\tilde{B}_{c}^{u}\right)^{\prime}(0) . w \neq 0$. This follows from Lemma 6.4.
Step 2. There exists a Lagrange multiplier $\alpha \in \mathbf{R}$ such that

$$
\begin{equation*}
\tilde{A}^{\prime}(0) \cdot v=\alpha\left(\tilde{B}_{c}^{u}\right)^{\prime}(0) \cdot v \quad \text { for any } v \in H^{1}\left(\mathbf{R}^{3}\right), v \text { with compact support. } \tag{6.38}
\end{equation*}
$$

Step 3. We have $\alpha<0$.
The proof of steps 2 and 3 is the same as the proof of steps 2 and 3 in Proposition 5.6.
Step 4. Conclusion.
Let $\beta=-\frac{1}{\alpha}$. Then (6.38) implies that u satisfies

$$
-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\beta\left(\frac{\partial^{2} u}{\partial x_{2}^{2}}+\frac{\partial^{2} u}{\partial x_{3}^{2}}\right)+i c u_{x_{1}}+F\left(\left|r_{0}-u\right|^{2}\right)\left(r_{0}-u\right)=0 \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{3}\right) .
$$

For $\sigma^{2}=\frac{1}{\beta}$ we see that $u_{1, \sigma}$ satisfies (1.3). It is clear that $u_{1, \sigma} \in \mathcal{C}$ and $u_{1, \sigma}$ minimizes A (respectively E_{c}) in \mathcal{C}. Finally, the regularity of $u_{1, \sigma}$ (thus the regularity of u) follows from Lemma 5.5.

7 Further properties of traveling waves

By Propositions 5.6 and 6.5 we already know that the solutions of (1.3) found there are in $W_{l o c}^{2, p}\left(\mathbf{R}^{N}\right)$ for any $p \in[1, \infty)$ and in $C^{2}\left(\mathbf{R}^{N}\right)$. In general, a straightforward boot-strap argument shows that the finite energy traveling waves of (1.1) have the best regularity allowed by the nonlinearity F. For instance, if $F \in C^{k}([0, \infty))$ for some $k \in \mathbf{N}^{*}$, it can be proved that all finite energy solutions of (1.3) are in $W_{l o c}^{k+2, p}\left(\mathbf{R}^{N}\right)$ for any $p \in[1, \infty)$ (see, for instance, Proposition 2.2 (ii) in [33]). If F is analytic, it can be proved that finite energy traveling waves are also analytic. In the case of the Gross-Pitaevskii equation, this has been done in [5].

A lower bound $K(c, N)$ on the energy of traveling waves of speed $c<v_{s}$ for the GrossPitaevskii equation has been found in [35]. The constant $K(c, N)$ is known explicitly and we have $K(c, N) \longrightarrow 0$ as $c \longrightarrow v_{s}$. In the case of general nonlinearities, we know that any finite energy traveling wave u of speed c satisfies the Pohozaev identity $P_{c}(u)=0$, that is $u \in \mathcal{C}$. Then it follows from Lemma 4.7 that $A(u) \geq \frac{N-1}{2} T_{c}>0$.

Our next result concerns the symmetry of those solutions of (1.3) that minimize E_{c} in \mathcal{C}.
Proposition 7.1 Assume that $N \geq 3$ and the conditions (A1), (A2) in the introduction hold. Let $u \in \mathcal{C}$ be a minimizer of E_{c} in \mathcal{C}. Then, after a translation in the variables $\left(x_{2}, \ldots, x_{N}\right)$, u is axially symmetric with respect to $O x_{1}$.

Proof. Let T_{c} be as in Lemma 4.7. We know that any minimizer u of E_{c} in \mathcal{C} satisfies $A(u)=\frac{N-1}{2} T_{c}>0$. Using Lemma $4.8(\mathrm{i})$, it is easy to prove that a function $u \in \mathcal{X}$ is a minimizer of E_{c} in \mathcal{C} if and only if

$$
\begin{equation*}
u \text { minimizes the functional }-P_{c} \text { in the set }\left\{v \in \mathcal{X} \left\lvert\, A(v)=\frac{N-1}{2} T_{c}\right.\right\} . \tag{7.1}
\end{equation*}
$$

The minimization problem (7.1) is of the type studied in [32]. All we have to do is to verify that the assumptions made in [32] are satisfied, then to apply the general theory developed there.

Let Π be an affine hyperplane in \mathbf{R}^{N} parallel to $O x_{1}$. We denote by s_{Π} the symmetry of \mathbf{R}^{N} with respect to Π and by Π^{+}, Π^{-}the two half-spaces determined by Π. Given a function $v \in \mathcal{X}$, we denote

$$
v_{\Pi^{+}}(x)=\left\{\begin{array}{ll}
v(x) & \text { if } x \in \Pi^{+} \cup \Pi, \\
v\left(s_{\Pi}(x)\right) & \text { if } x \in \Pi^{-},
\end{array} \quad \text { and } \quad v_{\Pi^{-}}(x)= \begin{cases}v(x) & \text { if } x \in \Pi^{-} \cup \Pi \\
v\left(s_{\Pi}(x)\right) & \text { if } x \in \Pi^{+}\end{cases}\right.
$$

It is easy to see that $v_{\Pi^{+}}, v_{\Pi^{-}} \in \mathcal{X}$. Moreover, for any $v \in \mathcal{X}$ we have

$$
A\left(v_{\Pi^{+}}\right)+A\left(v_{\Pi^{-}}\right)=2 A(v) \quad \text { and } \quad P_{c}\left(v_{\Pi^{+}}\right)+P_{c}\left(v_{\Pi^{-}}\right)=2 P_{c}(v)
$$

This implies that assumption $\left(\mathbf{A} \mathbf{1}_{c}\right)$ in [32] is satisfied.
By Propositions 5.6 and 6.5 and Lemma 5.5 we know that any minimizer of (7.1) is C^{1} on \mathbf{R}^{N}, hence assumption $\left(\mathbf{A} \mathbf{2}_{c}\right)$ in [32] holds. Then the axial symmetry of solutions of (7.1) follows directly from Theorem 2 ' in [32].

Acknowledgements. I am indebted to Jean-Claude Saut, who brought this subject to my attention almost ten years ago, for many useful and stimulating conversations. I am also very grateful to Radu Ignat, Clément Gallo, Alberto Farina, David Chiron and Mihai Bostan for interesting discussions.

References

[1] L. Almeida, F. Béthuel, Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998) pp. 1-49.
[2] I. V. Barashenkov, A. D. Gocheva, V. G. Makhankov, I. V. Puzynin, Stability of soliton-like bubbles, Physica D 34 (1989), pp. 240-254.
[3] I. V. Barashenkov, V. G. Makhankov, Soliton-like "bubbles" in a system of interacting bosons, Phys. Lett. A 128 (1988), pp. 52-56.
[4] N. Berloff, Quantised vortices, travelling coherent structures and superfluid turbulence, in Stationary and time dependent Gross-Pitaevskii equations, A. Farina and J.-C. Saut eds., Contemp. Math. Vol. 473, AMS, Providence, RI, 2008, pp. 26-54.
[5] F. Béthuel, P. Gravejat, J.-C. Saut, Travelling-waves for the Gross-Pitaevskii equation II, Comm. Math. Phys. 285 (2009), pp. 567-651.
[6] F. Béthuel, G. Orlandi, D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc. (JEMS) 6 (2004), pp. 17-94.
[7] F. Béthuel, J.-C. Saut, Travelling-waves for the Gross-Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), pp. 147-238.
[8] H. Brézis, Analyse fonctionnelle, Masson, Paris, 1983.
[9] H. Brézis, J. Bourgain, P. Mironescu, Lifting in Sobolev Spaces, Journal d'Analyse Mathématique 80 (2000), pp. 37-86.
[10] H. Brézis, E. H. Lieb, Minimum Action Solutions for Some Vector Field Equations, Comm. Math. Phys. 96 (1984), 97-113.
[11] D. Chiron, Travelling-waves for the Gross-Pitaevskii equation in dimension larger than two, Nonlinear Analysis 58 (2004), pp. 175-204.
[12] C. Coste, Nonlinear Schrödinger equation and superfluid hydrodynamics, Eur. Phys. J. B 1 (1998), pp. 245-253.
[13] A. De Bouard, Instability of stationary bubbles, SIAM J. Math. Anal. 26 (3) (1995), pp. 566-582.
[14] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, 1992.
[15] A. FARINA, Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in \mathbf{R}^{k}, Diff. Int. Eq. 11 (6) (1998), pp. 875-893.
[16] A. Farina, From Ginzburg-Landau to Gross-Pitaevskii, Monatsh. Math. 139 (2003), pp. 265-269.
[17] P. GÉrard, The Cauchy Problem for the Gross-Pitaevskii Equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (5) (2006), pp. 765-779.
[18] P. Gérard, The Gross-Pitaevskii equation in the energy space, in Stationary and time dependent Gross-Pitaevskii equations, A. Farina and J.-C. Saut eds., Contemp. Math. Vol. 473, AMS, Providence, RI, 2008, pp. 129-148.
[19] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, $3^{r d}$ ed., Springer-Verlag, 2001.
[20] J. Grant, P.H. Roberts, Motions in a Bose condensate III. The structure and effective masses of charged and uncharged impurities, J. Phys. A: Math., Nucl. Gen., 7 (1974), pp. 260-279.
[21] P. Gravejat, A nonexistence result for supersonic travelling waves in the GrossPitaevskii equation, Comm. Math. Phys. 243 (1) (2003), pp. 93-103.
[22] E. P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (2), (1963), pp. 195-207.
[23] S. V. Iordanskir, A. V. Smirnov, Three-dimensional solitons in He II, JETP Lett. 27 (10) (1978), pp. 535-538.
[24] C. A. Jones, P. H. Roberts, Motions in a Bose condensate IV, Axisymmetric solitary waves, J. Phys A: Math. Gen. 15 (1982), pp. 2599-2619.
[25] C. A. Jones, S. J. Putterman, P. H. Roberts, Motions in a Bose condensate V. Stability of wave solutions of nonlinear Schrödinger equations in two and three dimensions, J. Phys A: Math. Gen. 19 (1986), pp. 2991-3011.
[26] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Springer-Verlag, Paris, 1993.
[27] Y. S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep. 298 (1998), pp. 81-197.
[28] Y. S. Kivshar, D. E. Pelinovsky, Y. A. Stepanyants, Self-focusing of plane dark solitons in nonlinear defocusing media, Phys. Rev. E 51 (5) (1995), pp. 5016-5026.
[29] E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math. 74 (1983), pp. 441-448.
[30] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part I, Ann. Inst. H. Poincaré, Anal. non linéaire 1 (1984), pp. 109-145.
[31] M. Mariş, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures Appl. 81 (2002), pp. 1207-1239.
[32] M. Mariş, On the symmetry of minimizers, Arch. Rational Mech. Anal., in press; DOI 10.1007/s00205-008-0136-2, arXiv:0712.3386.
[33] M. Mariş, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, SIAM J. Math. Anal. 40 (3) (2008), pp. 1076-1103.
[34] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
[35] E. Tarquini, A lower bound on the energy of travelling waves of fixed speed for the Gross-Pitaevskii equation, Monatsh. Math. 151 (4) (2007), pp. 333-339.
[36] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

