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Abstract

We focus on density estimation using penalized loglikelihood method. We aim at
building an adaptive estimator in the sense that it converges at the optimal rate of
convergence without prior knowledge of its regularity. For this, we penalize the log-
likelihood by a function, which depends on the roughness of the density: the l

1 norm
of the wavelet coefficients of the log-density. In this setting, we prove adaptivity for
l
2 norm over a certain class of sets, Besov spaces.
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1 Introduction and Notations

Consider the estimation of a probability density f0 on a bounded domain
X based on independent samples Xi, i = 1, . . . , n. In classical parametric
estimation, some parametric model is often assumed of f(x) and the model
is fitted to the observations by maximum likelihood. But when few is known
about the law of the data, nonparametric method are to be considered. In
this work, we propose a new method, a penalized maximum likelihood with
a l1 penalty. We build an adaptive estimator, in the sense that it achieves
the optimal rate of convergence while built without any prior smoothness
assumption.

Email address: Jean-Michel.Loubes@math.univ-montp2.fr (Loubes
Jean-Michel).
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Nonparametric density estimation has been tackled by several authors. In-
deed, there are many routes to density estimation, including kernel methods
[4], smoothed histograms [5], spline methods in [23], wavelet basis in [15] or
maximum likelihood methods in [17], [20] [9], [10] or [11]. In this work, we will
concentrate on maximum penalized likelihood method. Good and Gaskins in
[17] were the first to introduce the idea of roughness penalty estimation. In-
deed, a naive application of maximum likelihood method leads to a too rough
estimates since if we maximize without constraint Ln(f) =

∑n
i=1 log f(Xi), the

maximizer often degenerates into a set of spikes at the data points. Hence, it
is natural to add a penalty over the complexity of the estimator in order to
restrict the set of admissible estimators. Complexity here means that we can
either control the size of an approximation set or the regularity of the solution
space. In a sieves type methodology, the penalty is of order the dimension of
the approximating space, see for instance the work by Birgé and Massart in
[3]. In our work, we will focus on smoothness type penalties. Given the ob-
servations X1, . . . , Xn and assuming that the density f0 belongs to a class of
functions F , the penalized loglikelihood estimator is defined as

f̂n = arg max
f∈F

(

1

n

n
∑

i=1

log f(Xi) − λ2
nI(f)

)

, (1)

where I(.) is a penalty and λ2
n a sequence of positive number decreasing to

zero, which balances the two terms of (1). The smaller λ2
n, the closer to the

data is the estimator. Hence the smoothing sequence must decrease to zero
but not too fast, such that the regularization effect occurs.
Choosing the penalty as well as the decay of the smoothing sequence determine
the asymptotic behavior of f̂n. Several choices have been investigated for the
penalty: in the original paper by Good and Gaskings [17], the authors propose

to use a flamboyancy functional such as I(f) = 2
∫

(

f
′′

)2
or I(f) = 2

∫

(√
f

′
)2

in [14]. Silverman in [20] chose I(f) =
∫

(

[log f ](3)
)2

. Other authors, see for

instance Tapia and Thompson in [19], have discretized the problem. Projection
methods onto different bases and penalty over the coefficients provide good
estimators. Stone in [21] or Barron and Sheu in [1] consider log-splines bases.
For a general review of penalization methods for density estimation, we refer
to [8]. Van de Geer in [22] provide a theorem for general penalties. Under
the assumption that there exists m > 0 such that f0 lies in a Sobolev space
Hm([0, 1]) and for a choice of penalty I(f) =

∫ 1
0 (f (m))2(t)dt, the consistency

in Hellinger distance h(., .) follows. More precisely it is proven that

h(f̃n, f0) = OP(λn)(1 + I(f0))

provided that the smoothing parameter decreases at the following rate:

λ−1
n = OP(n

m
2m+1 )(1 + I(f0))

1
2 .
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As a result, the estimator achieves the optimal rate of convergence but the
prior knowledge of its regularity m is needed for its construction.
Hence, the asymptotic behaviour of the estimates depends on an optimal
choice of the smoothing parameter λ2

n. In the previous works, the optimal
value relies either on the prior knowledge of the regularity of the class of func-
tions F , or is found with cross validation techniques, which prevents adaptive
estimation. That is the reason why we propose a l1 penalty whose sparsity
property is a key to adaptation, as in [18]. More precisely, under the assump-
tion that the log density belongs to a Besov space with regularity s, choosing
for penalty the l1 norm of the wavelet coefficients of the log density, leads to

an estimator converging at the minimax rate of convergence
(

n
logn

)−
2s

2s+1 for

the L2 norm.

The article falls into three main parts. In the next section, Section 2, we
provide the main theorem which describes the behavior of the estimator. All
the technical lemmas are stated in Section 3, while the proofs are gathered in
Section 4.

2 Main results

Consider an independent random sample X1, . . . , Xn with unknown probabil-
ity density with respect to Lebesgue measure λ, f0 = dP

dλ
on [0, 1]. Assume

that there is a functional set F such that f0 ∈ F . For a given penalty I, define
the penalized maximum likelihood estimator f̃n

f̃n = arg max
f∈F

(

1

n

n
∑

i=1

log f(Xi) − λ2
nI(f)

)

. (2)

This estimator is well studied in [22] and is not adaptive. Hence we propose
the following procedure. First set

γ0 = log(f0) + b(γ0),

with b(γ0) = − ∫ log(f0)dP. So, to every density f ∈ F , we associate the vari-
able γ = log f + b(γ) lying in the correspondent functional class Γ. Indeed,
often in the literature of density estimation, it is more convenient to assume
some regularity properties over the logarithm of the density, moreover it en-
sures positivity of the estimator.
Since the density integrates to one, we have the useful relation

b(γ) = log
∫

eγ(x)dλ(x). (3)
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Moreover we have

b(γ) − b(γ0) = K(f,f0) (4)

where K(., .) is the Kullback-Leibler information. The two distance are linked
by the following inequality:

h2(f, f0) 6
1

2
K(f, f0).

We shall now consider the penalty function J : Γ → R
+: ∀γ ∈ Γ, J(γ) = I(f).

Hence, the penalized maximum log-likelihood estimator (2) can be written as
follows

γ̂n = arg max
γ∈Γ

(

1

n

n
∑

i=1

γ(Xi) − b(γ) − λ2
nJ(γ)

)

. (5)

In order to obtain an adaptive procedure, We do not consider a penalty de-
pending directly on the regularity of the unknown function, but, using ideas
analogous to the ones developed in Loubes and van de Geer [18], we consider
the l1-norm of coefficients of the function γ in a well chosen basis. More pre-
cisely, we assume that γ0 lies in a Besov space Bs

p∞([0, 1]) with s > 1
p
. In the

literature on density estimation, one often considers so-called Besov spaces
Bs
p,q([0, 1]). Such spaces are intrinsically connected to the analysis of curves

since the scale of Besov spaces yields the opportunity to describe the regular-
ity of functions, with more accuracy than the classical Hölder scale. General
references about Besov spaces are Besov, Il’in and Nikol’skii [2], Edmund and
Triebel [7] and DeVore and Lorentz [6]. The notation Bs

p,q([0, 1]) refers to the
case of functions on [0, 1], with “smoothness” s, and where p and q refer to Lp-
and Lq-norms with respect to Lebesgue measure. In our framework, the main
parameter is s, which stands for the regularity of the density to be estimated.
Consider a compactly supported wavelet basis (ψjk), j > 0, k = 0, . . . , 2j−1 of
Bs
p∞([0, 1]) with respect to Lebesgue measure, with enough regularity r > s.

Enough means here that the wavelet must have at least, r > s vanishing
moments, which corresponds to the regularity of the wavelet. We recall that
a wavelet regularity is expressed through its number of vanishing moments,
see e.g. Jaffard and Meyer [12] or Mallat [13]. Now for every function in
this Besov space, there are coefficients (βjk)j,k called the wavelet coefficients
such that we can write f =

∑

jk βjkψjk. Then a Besov norm for s > 1/p is
equivalent to an appropriate norm in the sequence space, that is, the space of
the wavelet coefficients, see DeVore and Lorentz [6] or Donoho, Johnstone,
Kerkyacharyan and Picard [16].

So decompose the log-density onto a wavelet basis and write γ0 =
∑

jk β
0
jkψjk.

For all resolution level j1 = j1(n), consider the approximation space Vj1
defined by Vj1 = Vect{ψjk, j < j1, k = 0, . . . , 2j − 1}. Write also γ1 =
∑

j<j1

∑2j−1
k=0 β

0
jkψjk, the projection of γ0 onto the space Vj1. Now we consider
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the following penalty for all γ ∈ Γ

J(γ) =
∑

j<j1

∑

k

|βjk|.

With that choice of penalty, we can prove the following theorem describing
the asymptotic behaviour of the penalized M-estimator (5).

Theorem 1 Assume that ∃0 < C <∞, supγ∈Γ |γ| 6 C. For j1 such that 2j1 =

0
(

n
logn

)

, and the smoothing sequence such that λ2
n > c

√

logn
n

for c a constant,

hence the penalized log-likelihood estimator defined for γ0 ∈ Bs
p∞([0, 1]) as

γ̂n = arg max
γ=
∑

j<j1

∑2j
−1

k=0
βjkψjk∈Γ





1

n

n
∑

i=1

γ(Xi) − b(γ) − λ2
n

∑

j<j1

∑

k

|βjk|


 ,

is such that there exists a finite positive constant C2 such that

‖γ̂n − γ0‖2 = OP

(

n

logn

)−
2s

2s+1

.

The proof of this theorem relies on empirical process theory. It is postponed
to the appendix, Section 4.

Remark 2 The condition supγ∈Γ |γ| 6 C, is similar to the usual condition
in log-likelihood estimation where a lower bound for the density is required:
∃η0 > 0, f = dP

dλ
> η2

0.

Remark 3 Throughout all the paper, we are not concerned with the issue of
the existence of a solution to the maximization problem (5), and we make
the assumption that a solution always exists. If not, consider the following
approximation for a sequence ǫn → 0:

γ̃n = arg max
γ∈Γ

(

1

n

n
∑

i=1

γ(Xi) − b(γ) − λ2
nJ(γ) + ǫn

)

.

For a choice ǫn = O( 1
n
), the estimator γ̃n has the same asymptotic rate of

convergence as γ̂n.

The penalized log-likelihood estimator is pseudo-adaptive over the Besov class
of functions {Bs

p∞([0, 1]), s > 1/p} since it is convergent at the minimax rate
of convergence up to a logarithmic factor for a quadratic loss and its unknown
regularity is not used in its definition. The l1 penalty provides adaptivity in
density estimation in the same way as in the regression scheme, where the
equivalence between l1 penalty and a soft-thresholded estimator is obvious. In
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density estimation, soft-thresholded estimators and penalized maximum like-
lihood estimator with l1 penalty does not have the same expression. Never-
theless the sparsity constraint over the coefficients is of the same type, leading
to similar asymptotic behaviours and turning maximum likelihood estimator
into an adaptive estimator.

3 Technical Lemmas

In this section, we recall several results that are at the starting point of the
proof of Theorem 1. The proofs can be found in [18].
Throughout all this paper, for a given set A, we will use the notation #A
for the cardinality of the set A. For m = (j, k), consider the penalty J(γ) =
∑

m∈Λ |βm|, for Λ a finite set. Let In be any subset of Λ and define

Nn = #In, JN(γ) =
∑

m∈In

|βm|, JM(γ) =
∑

m/∈In

|βm|.

Hence we have
J(γ) = JN(γ) + JM(γ) =

∑

m∈Λ

|βm|.

Consider the set of functions γ =
∑

m∈Λ βmψm, for which

∑

m∈Λ

|βm|ρ 6 1,

for some 0 6 ρ 6 2. We may think of ρ as a roughness parameter: if ρ = 0, we
assume the convention x0 = 1 if x is non zero and 00 = 0. As a consequence
we get

∑

m∈Λ

|βm|0 = #{βm, βm 6= 0}

So for ρ = 0 the function γ may have at most 1 non-zero coefficient, whereas,
on the other extreme, ρ = 2 only requires that γ is within the n-dimensional
unit ball. We can point out that the sets {β, ∑m∈Λ |βm|p 6 1} increase for the
inclusion as ρ becomes large. Thus, the smaller ρ the “smoother” γ will be.
This is also reflected by the entropy calculation: the smaller ρ, the smaller the
entropy, see [18] for more comments on this topic.
The following lemma provides upper bound for the penalty term when the
objective function γ belongs to a ball of space with roughness ρ.

Lemma 4 Suppose that
∑

m∈Λ

|βm|ρ 6 1,

for some 0 6 ρ < 1. Take Jn = {m : |βm| > λ2
n}. We obtain that

Nn 6 λ−2ρ
n JM 6 λ2(1−ρ)

n ,
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and as a result we get

λ2
nN

1
2
n + λnJ

1
2
M 6 2λ2−ρ

n .

For γ0 =
∑

j

∑

k βjkψjk ∈ Bs
pq, we get for J > 0:







J
∑

j=1

2j((2s+1) p

2
−1) q

p







2j
∑

k=1

|βjk|p






q

p







1
q

6 1. (6)

This quantity is equivalent to the Besov semi-norm. Throughout, we assume
s > 0, p > 1, and q > 1. In the Besov space interpretation, Bspq (with J = ∞)
corresponds (in the sense of norm equivalence) to a Besov ball in the space
Bs
pq([0, 1]).

Lemma 5 Suppose that β = (βjk) satisfies (6), with ρ = 2/(2s + 1) 6

min(p, q), and J <∞. Then

J
∑

j=1

2j
∑

k=1

|βj,k|ρ 6 Jq−
ρ

q . (7)

4 Appendix

Proof of Lemma 5:

By Hölder’s inequality, for a sequence a1, . . . , aL, and for t > 1,

L
∑

l=1

|al| 6 L
t−1

t

(

L
∑

l=1

|al|t
)

1
t

. (8)

Apply this first with L = J , |aj | =
∑2j

k=1 |βjk|ρ, and t = q/ρ. Then we find

J
∑

j=1







2j
∑

k=1

|βjk|ρ






6 J
q−ρ

q







J
∑

j=1







2j
∑

k=1

|βjk|ρ






q

ρ







ρ

q

. (9)

Next, apply (8) with L = 2j, |aj,k| = |βjk|ρ, and t = p/ρ. This yields







2j
∑

k=1

|βjk|ρ






6







2
j(p−ρ)

p (
2j
∑

k=1

|βjk|p)
ρ

p







.
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Do this for each j = 1, . . . J , and insert the result in (9):

J
q−ρ

q







J
∑

j=1







2j
∑

k=1

|βjk|ρ






q

ρ







ρ

q

6 J
q−ρ

q







J
∑

j=1







2
j(p−ρ)

p (
2j
∑

k=1

|βjk|p)
ρ

p







q

ρ







ρ

q

= J
q−ρ

q







J
∑

j=1

2j(
p−ρ

p
) q

ρ







2j
∑

k=1

|βjk|p






q

p







ρ

q

6 J
q−ρ

q ,

since
(

p− ρ

p

)

q

ρ
=
(

(2s+ 1)
p

2
− 1

)

q

p
.

Proof of Theorem 1:

Set γ1 the projection of γ0 onto the approximation space Vj1. The estimation
error can be split in two terms: a stochastic term and an approximation error.

||γ̂n − γ0|| 6 ||γ̂n − γ1|| + ||γ1 − γ0||.

From the property of the wavelet basis and the choice of the level j1 we have,
since γ0 ∈ Bs

p∞([0, 1]):

||γ1 − γ0|| 6 2−j1s 6

(

n

log n

)−s/2

.

Such upper bound only involves the regularity of the log-density γ0, measured
in terms of Besov spaces.
Now we turn on the stochastic error. The proof involves a concentration in-
equality for the empirical process, as it is stated in [22]. The following upper
bound stands for all γ ∈ Γ,

|
∫

(γ − γ1)d(Pn −P)| = |
∫

∑

m

(βm − β0
m)ψmd(Pn − P)|

6 sup
m

∣

∣

∣

∣

∫

ψmd(Pn − P )
∣

∣

∣

∣

J(γ − γ1).

We must derive a concentration inequality over |∫ ψmd(Pn − P)|, from a Bern-
stein type inequality. Recall that for ξ1, . . . , ξn i.i.d bounded random variables
such that Eξi = 0, Eξ2

i 6 σ2, |ξi| 6 ‖ξ‖∞ <∞, then:

P

(

| 1
n

n
∑

i=1

ξi| > λ

)

6 2 exp

(

− nλ2

2(σ2 + ‖ξ‖∞λ/3)

)

, ∀λ > 0.
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Previous inequality gives here the following upper bound:

P

(

|
∫

ψmd(Pn − P )| > Tn

)

6 2 exp(− nT 2
n

2(σ2 + 3/2||Y ||∞)
)

where Yi = ψm(Xi)−E(ψm(Xi)) are independent random variables with zero
mean. Here σ2 6 ||f0||∞ and ||Y ||∞ 6 2j/2M. So, using Bernstein inequality,
there exists a finite constant A such that,

P(sup
m

|
∫

ψmd(Pn −P)| > Tn) 6 2 exp(−A((nT 2
n) ∧ (nTn))).

Using this inequality we obtain:

P(
∑

m∈Λ

|
∫

ψmd(Pn −P)| > Tn) 6
∑

m∈Λ

2 exp(−AnT 2
n)

6 |Λ|2 exp(−AnT 2
n).

If we choose Tn = c
√

logn
n

then if the set of indices Λ is polynomial in n, for c
large enough we have

P(sup
m∈Λ

|
∫

|ψm|d(Pn − P)| > Tn) 6 2
|Λ|
nAc2

→ O.

Now recall our model: we consider a wavelet basis m = (j, k) and we begin
to approximate the log-density by its projection onto the space Vj1 for the
convenient choice of j1 that. Moreover, we have made the assumption that
the log-density belongs to a Besov space Bs

p∞([0, 1]) and is bounded in the
supremum norm. As a result,

P( sup
06j6j1,k

|
∫

ψjkd(Pn − P)| > Tn) 6

j1
∑

j=0

∑

k

P(|
∫

ψjkd(Pn − P)| > Tn)

6

j1
∑

j=0

∑

k

2 exp(−Aj((nT 2
n) ∧ (nTn)))

6 2
j1
∑

j=0

2j exp(−AnT 2
n)

for a choice of Tn and j1 such that Tn = c
√

logn
n

and 2j1 6 1/c
√

n
logn

, we have

P( sup
06j6j1,k

|
∫

ψjkd(Pn −P)| > Tn) 6 22j1 exp(−AnT 2
n)

6 2/c
n1/2−Ac2

√
logn

.
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As soon as we have chosen c large enough, the last quantity tends to zero as
n increases. The condition over the choice of the constant c can be written as:

c2 > max(||f0||∞, 2/3||ψ||∞).

Then on an event of probability one we can write that for every λ2
n > c

√

logn
n

we have
sup

(j,k)∈Λ
|
∫

ψjkd(Pn −P)| 6 λ2
n.

The following inequality is a direct consequence of the definition of the M-
estimator (5).

b(γ̂n) − b(γ1) + λ2
nJ(γ̂n) 6

∫

(γ̂n − γ1)d(Pn − P) + λ2
nJ(γ1).

As a matter of fact, recalling the definition of γ̂n and using the fact that γ is,
by construction, a centered variable, we get that:

∀γ ∈ Γ,
∫

γ̂ndPn − b(γ̂n) − λ2
nJ(γ̂n) >

∫

γdPn − b(γ) − λ2
nJ(γ)

∫

γ̂ndPn − b(γ̂n) − λ2
nJ(γ̂n) >

∫

γ1dPn − b(γ1) − λ2
nJ(γ1)

∫

(γ̂n − γ1)dPn + λ2
nJ(γ1) > b(γ̂n) − b(γ1) + λ2

nJ(γ̂n)
∫

(γ̂n − γ1)d(Pn −P) + λ2
nJ(γ1) > b(γ̂n) − b(γ1) + λ2

nJ(γ̂n)

Now, consistency of the estimator and a Taylor’s expansion of b(γ) lead to:

b(γ̂n) − b(γ1) = E‖γ̂n(X1) − γ1(X1)‖2/(1 +O(1)). (10)

But since dP
dλ

> η2, we have

||γ̂n − γ1||2
1 +OP(1)

+ λ2
nJ(γ̂n) 6

∫

(γ̂n − γ1)dPn + λ2
nJ(γ1). (11)

As a result, for the stochastic term, we have the following inequality:

||γ̂n − γ1||2
1 +OP(1)

+ λ2
nJ(γ̂n) 6 λ2

nJ(γ̂n − γ1) + λ2
nJ(γ1).

Set Λ = {j < j1, k = 0, . . . , 2j − 1}. Or

||γ̂n − γ1||2
1 +OP(1)

+ λ2
nJM(γ̂n) 6 λ2

nJN(γ̂n − γ1) + λ2
nJM(γ̂n − γ1)

+λ2
n(JN(γ1) − JN (γ̂n)) + λ2

nJM(γ1)

6 2‖γ̂n − γ1‖λ2
nN

1
2
n + λ2

nJM(γ̂n) + 2λ2
nJM(γ1),
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or

‖γ̂n − γ1‖2
6 2‖γ̂n − γ1‖λ2

nN
1
2
n + 2λ2

nJM(γ0).

So we obtain, using Lemma 4 and Lemma 5 with ρ = 2/(2s + 1) and In =
{m = (j, k), |βm| > λ2

n}:

||γ̂n − γ1|| 6 O
(

λ2
nN

1/2
n + λnJ

1/2
M

)

6 O

(

logn

n

)2−ρ

6 O

(

logn

n

) s
2s+1

.

And, by comparison of the two rates of convergence, we have, for C2 a positive
finite constant:

||γ̂n − γ0|| 6 C2

(

logn

n

) s
2s+1

,

which concludes the proof.
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