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Abstract. – We analyze from the viewpoint of an abstract Markov

operator recent results by D. Nualart and G .Peccati , and I. Nourdin

and G. Peccati, on the fourth moment as a condition on a Wiener

chaos to have a distribution close to Gaussian. In particular, we are

led to introduce a notion of chaos associated to a Markov operator

through its iterated gradients and present conditions on the (pure)

point spectrum for a sequence of chaos eigenfunctions to converge to

a Gaussian distribution. Convergence to gamma distributions may be

examined similarly.
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1. Introduction

In a striking contribution [Nu-P], D. Nualart and G. Peccati discovered a few

years ago that the fourth moment of homogeneous polynomial chaos on Wiener space

characterizes convergence towards the Gaussian distribution. Specifically, and in a

simplified (finite dimensional) setting, let F : RN → R, 1 ≤ k ≤ N , be defined by

F = F (x) =
N∑

i1,...,ik=1

ai1,...,ik xi1 · · ·xik , x = (x1, . . . , xN ) ∈ RN , (1)

where ai1,...,ik are real numbers vanishing on diagonals and symmetric in the indices.

Assume by homogeneity that
∫
RN F 2dγN = 1 where dγN (x) = (2π)−N/2e−|x|

2/2dx is

the standard Gaussian measure on RN . Such a function F will be called homogeneous

of degree k. Let now Fn on RNn , n ∈ N, Nn →∞, be a sequence of such homogeneous
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polynomials of fixed degree k. The main theorem of D. Nualart and G. Peccati [Nu-P]

expresses that the sequence of distributions of the Fn’s converges towards the standard

Gaussian distribution γ1 on the real line if and only if∫
RNn

F 4
n dγNn

→ 3 (2)

(3 being the fourth moment of the standard normal). The result actually holds for

homogeneous chaos on the infinite dimensional Wiener space and the equivalence is

further described in terms of convergence of contractions. The proof of [Nu-P] relies

on multiplication formulas for homogeneous chaos and the use of stochastic calculus.

Since [Nu-P] was published, numerous improvements and developments on this

theme have been considered (cf. e.g. [P-Tu], [N-OL], [No-P1], [No-P2], [N-P-Rei1],

[N-P-Rév]...). An introduction to some of these developments (with emphasis on

multiplication formulas) is the recent monograph [P-Ta] by G. Peccati and M. Taqqu.

In particular, the work by D. Nualart and S. Ortiz-Latorre [N-OL] introduces a

technological breakthrough with a new proof only based on Malliavin calculus and

the use of integration by parts on Wiener space. In this work, the convergence of

(Fn)n∈N to a Gaussian distribution (and thus also (2)) is also shown to be equivalent

to the fact that

VarγNn

(
|∇Fn|2)→ 0 (3)

where VarγNn
is the variance with respect to γNn . Based upon this observation, recent

work by I. Nourdin and G. Peccati [No-P1], [No-P2] develops the tool of the so-called

Stein method (cf. e.g. [S], [C-G-S], [C-S], [R]) in order to quantify the convergence

towards the Gaussian distribution. Relying also on multiplication formulas and the use

of integration by parts on Wiener space, one key step in the investigation [No-P1] is

expressed by the following inequality: for a given homogeneous function F of degree k

on RN normalized in L2(γN ),

VarγN
(
|∇F |2

)
≤ Ck

(∫
RN

F 4 dγN − 3

)
(4)

where Ck > 0 only depends on k. In particular, the proximity of
∫
RN F 4 dγN to 3

controls the variance of |∇F |2. Now, Stein’s method for homogeneous chaos on Wiener

space as developed in [No-P1] expresses that

d(ν, γ1) ≤ C VarγN
(
|∇F |2

)1/2
(5)

where d(ν, γ1) stands for some appropriate distance between the law ν of F and γ1,

so that |∇F |2 being close to a constant forces the distribution of F to be close to a

Gaussian distribution. The conjunction of (4) and (5) thus describes how the fourth

moment condition controls convergence to a Gaussian.

The primary motivation of this work is to understand what structure of a functional

F allows for the preceding results, in particular thus the control by the fourth moment
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of the distance to the Gaussian distribution. In the process of this investigation,

we will revisit the preceding results and conclusions in the setting of a symmetric

Markov operator including as a particular example the Ornstein-Uhlenbeck operator

L = ∆−x ·∇ corresponding to the Wiener space setting. In order to achieve this goal,

observe that the homogeneous polynomial F of (1) is an eigenfunction with eigenvalue

k of the Ornstein-Uhlenbeck operator, that is −LF = kF . We shall therefore try to

understand what is necessary for an eigenfunction F of a Markov operator in order

to satisfy an inequality such as (4). This investigation leads to define a notion of

chaos eigenfunction with respect to such a Markov operator with pure point spectrum

consisting of a countable sequence of eigenvalues, the homogeneous polynomial F of

(1) being one example with respect to the Ornstein-Uhlenbeck operator. The main

achievement of this work is then the formulation of an explicit condition on the sequence

of eigenvalues under which a chaos eigenfunction satisfies an inequality such as (4).

The basic data will thus be a Markov operator L on some state space (E,F) with

invariant and reversible probability measure µ and symmetric bilinear carré du champ

operator

Γ(f, g) =
1

2

[
L(fg)− f Lg − g Lf

]
acting on functions f, g in a suitable domain A. For simplicity, we often write

Γ(f) = Γ(f, f) which is always non-negative. By invariance and symmetry of µ with

respect to L, the definition of the carré du champ operator Γ yields the integration by

parts formula ∫
E

f(−Lg) dµ =

∫
E

g(−Lf) dµ =

∫
E

Γ(f, g) dµ.

In particular
∫
E

Lfdµ = 0 since L1 = 0 by the Markov property. The operator L is

said in addition to be a diffusion operator if for every smooth function ϕ : R→ R, and

every f ∈ A,

Lϕ(f) = ϕ′(f) Lf + ϕ′′(f) Γ(f).

Alternatively, Γ is a derivation in the sense that Γ(ϕ(f), g) = ϕ′(f)Γ(f, g).

We refer to the lecture notes [B, Chapter 2] by D. Bakry for an introduction to

this abstract framework of Markov and carré du champ operators and a discussion of

some of the examples emphasized below. Additional general references include [D-M-

M] for further probabilitic interpretations and [B-H], [F-O-T] for contructions in terms

of Dirichlet forms. (See also [L2] and the forthcoming [B-G-L].) One prototype example

of a Markov diffusion operator is the Ornstein-Uhlenbeck operator acting on say the

algebra A of polynomial functions f on E = RN as Lf(x) = ∆f(x)− x · ∇f(x), with

invariant and reversible probability measure the Gaussian distribution µ = γN and

carré du champ Γ(f) = |∇f |2. One could consider its infinite dimensional extension

on Wiener space (cf. [B-H], [N, Chapter 1]), but for simplicity in the exposition we

stick here on the finite dimensional case as a reference example. The preceding general

setting also includes discrete examples, such as the two-point space and its products.
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Namely, on E = {−1,+1}N , let Lf = 1
2

∑N
i=1Dif where Dif(x) = f(τi(x)) − f(x),

x = (x1, . . . , xi, . . . , xN ), τi(x) = (x1, . . . ,−xi, . . . , xN ). L is invariant and symmetric

with respect to the uniform measure µ on {−1,+1}N with carré du champ Γ(f) =
1
4

∑N
i=1(Dif)2, but is not a diffusion operator.

These two examples actually entail a crucial chaos structure in the sense that the

generators L may be diagonalized in a sequence of orthogonal polynomials (Hermite

polynomials in the Gaussian case, Walsh polynomials in the cube example). See e.g. [B,

Chapter 1], [N, Chapter 1], [J, Chapter 2], [P-Ta, Chapter 5]. More precisely, setting

for k = (k1, . . . , kN ) ∈ NN , x = (x1, . . . , xN ) ∈ RN , Hk(x) = hk1(x1) · · ·hkN (xN ),

with (hk)k∈N the sequence of orthonormal Hermite polynomials on the real line, any

function f : RN → R in L2(γN ) may be written as

f =
∑
k∈N

∑
|k|=k

〈f,Hk〉Hk

where 〈· , ·〉 is the scalar product in L2(γN ) and where the second sum runs over all

k ∈ NN with |k| = k1 + · · · + kN = k. An element H = Hk with |k| = k is an

eigenfunction of the Ornstein-Uhlenbeck operator with −LH = kH and the spectrum

of the operator −L thus consists of the sequence of the non-negative integers. For fixed

k ∈ N, linear combinations

F =
∑
|k|=k

akHk (6)

define generic eigenfunctions (chaos) of −L with eigenvalue k, the homogeneous

function F of (1) being one example.

Similarly, if f : {−1,+1}N → R,

f =

N∑
k=0

∑
|A|=k

〈f,WA〉WA

where the second sum runs over all subsets A of {1, . . . , N} with k elements and

WA(x) =
∏
i∈A

xi, x = (x1, . . . , xN ) ∈ {−1,+1}N , A ⊂ {1, . . . , N},

are the so-called Walsh polynomials. For the discrete operator Lf = 1
2

∑N
i=1Dif ,

−LWA = kWA if |A| = k. The spectrum of −L is thus equal to N, and linear

combinations

F =
∑
|A|=k

aAWA (7)

describe the family of eigenfunctions (chaos) of −L with eigenvalue k.

A further example is Poisson space. In dimension one, let µ be the Poisson law

on N with parameter θ > 0. For a function f : N → R with finite support say, let
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Df(j) = f(j) − f(j − 1) for every j ∈ N (f(−1) = 0). The Poisson operator may

then be defined as Lf(j) = θDf(j + 1) − jDf(j), j ∈ N. It is not a diffusion. The

associated carré du champ operator is given by 2 Γ(f)(j) = θDf(j + 1)2 + jDf(j)2,

j ∈ N. The operator −L has a spectrum given by the sequence of the integers and

is diagonalized along the Charlier orthogonal polynomials. Multi-dimensional Poisson

models are similar.

Laplacians L = ∆ on (compact) Riemannian manifolds, and acting on families of

smooth functions, also enter this framework. These Laplacians are diffusion operators

and, in the compact case, have again a spectrum consisting of a countable sequence of

eigenvalues (cf. e.g. [G-H-L]).

This work will analyze properties of eigenfunctions of such Markov operators L,

that is functions F : E → R (in the domain of L) such that −LF = λF for some

λ > 0. (We emphasize that F and λ are thus rather eigenfunction and eigenvalue of

−L which is non-negative.) The ultimate goal of this work is to find conditions on such

an eigenfunction F of a diffusion operator L in order that the analogue of (4) holds,

and that the fourth moment condition then ensures the proximity with the Gaussian

distribution. We outline here the various steps of the investigation. The first step will

be to show (following [No-P1] in the Ornstein-Uhlenbeck setting) that Stein’s method

applied to an eigenfunction F indicates that it has a Gaussian distribution if (and only

if) its carré du champ Γ(F ) is constant (see Proposition 1 below). More precisely,

in accordance with (5), for suitable families of functions ϕ : R → R, and whenever∫
E
F 2dµ = 1, ∣∣∣∣ ∫

R
ϕ(F )dµ−

∫
R
ϕdγ1

∣∣∣∣ ≤ Cϕ Varµ
(
Γ(F )

)1/2
(8)

where Varµ is the variance with respect to µ.

On the basis of this result, the fourth moment condition appears quite naturally by

the integration by parts formula since (assuming the necessary domain and integrability

conditions)

λ

∫
E

F 4dµ =

∫
E

F 3(−LF )dµ = 3

∫
E

F 2Γ(F )dµ.

Moreover,
∫
E

Γ(F )dµ =
∫
E
F (−LF )dµ = λ

∫
E
F 2dµ, so that, still assuming by

homogeneity that
∫
E
F 2dµ = 1,

λ

(
1

3

∫
E

F 4dµ− 1

)
=

∫
E

F 2
(
Γ(F )− λ

)
dµ. (9)

This identity is the first indication that the proximity of
∫
E
F 4dµ with 3 actually

amounts to the proximity of Γ(F ) with its constant mean value λ.

The next step in the investigation, the main result of this note, describes a chaos

structure of an eigenfunction F of a Markov operator L (not necessarily diffusive) with
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spectrum consisting in a sequence S = {0 = λ0 < λ1 < λ2 < · · ·} of eigenvalues in

order that whenever F is such a chaos with eigenvalue λk normalized in L2(µ),

Varµ
(
Γ(F )

)
≤ Ck

∫
E

F 2
(
Γ(F )− λk

)
dµ (10)

for some finite constant Ck only depending on S. The relations (8), (9) and (10)

together therefore describe how the fourth moment condition
∫
E
F 4dµ ∼ 3 ensures

that Γ(F ) is close to constant and thus that the distribution of F is close to Gaussian.

This family of inequalities may then be used to describe convergence to a Gaussian

distribution of a sequence of such chaos eigenfunctions. The abstract chaos structure

underlying these results is defined by means of the iterated gradients of the Markov

operator L and is shown to easily cover the examples of Wiener, Walsh or Poisson chaos.

For example, the chaos structure of the homogeneous polynomial F of (6) actually

amounts to the fact that ∇k+1F = 0. The proof of (10) will proceed by a standard

and direct algebraic Γ-calculus on eigenfunctions involving the iterated gradients of the

operator L, and avoiding any type of multiplication formulas for chaos.

Turning to the content of this note, Section 2 briefly presents Stein’s method applied

to an eigenfunction of a Markov diffusion operator. The next section discusses the

iterated gradients and the associated Γ-calculus on eigenfunctions, of fundamental use

in the investigation. Section 4 introduces the notion of chaos of a Markov operator

with pure point spectrum and presents the aforementioned main result (10), proved in

Section 6. The last section briefly describes analogous conclusions for convergence to

gamma distributions covering recent results of [No-P2].

It should be carefully emphasized that the present exposition develops more the

algebraic and spectral descriptions of the problem under investigation (and concentrates

on a proof of (10)) rather than the analytic issues on domains and classes of functions

involved in the analysis. In particular, we work with families of functions in the domain

of the Markov operator and its carré du champ and with eigenfunctions assumed

to satisfy all the necessary domain and integrability conditions required to develop

integration by parts and the associated Γ-calculus. These properties are classically

and easily satisfied for the main examples in mind, the Gaussian case, the discrete

cube or the setting of the Laplace operator on a compact Riemannian manifold. Note

however that the extension from the finite dimensional Gaussian setting to the infinite

dimensional one requires basic analysis on Wiener space as presented for example in

the first chapter of [N] (see also [P-Ta]) in order to fully justify the domain issues

and the various conclusions. These aspects, carefully developed in the aforementioned

references, are not discussed here. Further conditions ensuring the validity of the results

presented here might be developed in broader contexts.
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2. Stein’s method for eigenfunctions

We start our investigation with a brief exposition of Stein’s lemma applied to

eigenfunctions of a diffusion operator. We refer to [S], [C-G-S], [C-S], [R] and the

references therein for general introductions on Stein’s method. The results below are

mere adaptations of the investigation [No-P1] by I. Nourdin and G. Peccati in Wiener

space to which we refer for further details. Throughout this section, L is thus a diffusion

operator with invariant and reversible measure µ and carré du champ Γ as described

in the introduction. All the necessary domain and integrability conditions on the

eigenfunctions under investigation are implicitely assumed, and are satisfied for the

main Ornstein-Uhlenbeck example (cf. [No-P1]).

We first illustrate at a qualitative level Stein’s method in this abstract context.

Given a measurable map F : E → R, say that L commutes to F if there exists a

Markov operator L on the real line such that for every ϕ : R→ R (in the domain of L
and such that ϕ ◦ F is in the domain of L),

L(ϕ ◦ F ) = (Lϕ)(F ).

In this case, the image measure µF of µ by F is the invariant measure of L.

One model factorization operator L on R is the Ornstein-Uhlenbeck operator

Lψ = ψ′′ − xψ′ with invariant measure the standard Gaussian distribution dγ1(x) =

e−x
2/2 dx√

2π
. Let then F be an eigenfunction of −L with eigenvalue λ > 0. The

observation here, at the root of Stein’s argument, is that whenever Γ = Γ(F ) is (µ-

almost everywhere) constant, then L commutes to F through the Ornstein-Uhlenbeck

operator L and thus the distribution µF of F is Gaussian. Namely, note first that by

integration by parts,
∫
E

Γ dµ =
∫
E
F (−LF )dµ = λ

∫
E
F 2dµ so that if Γ is constant and

F is normalized in L2(µ), then Γ = λ. Then, for ϕ : R → R smooth enough, by the

chain rule formula for the diffusion operator L,

L(ϕ ◦ F ) = ϕ′(F ) LF + ϕ′′(F ) Γ = −λFϕ′(F ) + ϕ′′(F ) Γ.

Hence, if Γ = λ,

L(ϕ ◦ F ) = λ (Lϕ)(F )

so that L commutes to F and thus µF is the invariant measure of the Ornstein-

Uhlenbeck operator L characterized as the Gaussian distribution γ1.

For an eigenfunction F , Γ = Γ(F ) constant thus forces the distribution of F to be

Gaussian. Now, as such, this observation is not of much use and to describe convergence

to normal as for sequences of homogeneous polynomials in the introduction, it should be

suitably quantified in the form of inequality (8) in order to express that the proximity

of Γ with a constant value forces the distribution of F to be close to Gaussian. This is

the content of the classical Stein lemma as described in the next statement.
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Proposition 1. Let F be an eigenfunction of −L with eigenvalue λ > 0 and set

Γ = Γ(F ). Denote by µF the distribution of F . Given ϕ : R → R integrable with

respect to µF and γ1, let ψ be a smooth solution of the associated Stein equation

ϕ−
∫
R ϕdγ1 = ψ′ − xψ. Then,∣∣∣∣ ∫

R
ϕdµF −

∫
R
ϕdγ1

∣∣∣∣ ≤ Cϕ
λ

(∫
E

(Γ− λ)2dµ

)1/2

(11)

where Cϕ = ‖ψ′‖2∞. In particular, if
∫
E
F 2dµ = 1,∣∣∣∣ ∫

R
ϕdµF −

∫
R
ϕdγ1

∣∣∣∣ ≤ Cϕ
λ

Varµ(Γ)1/2.

Proof. Since µF is the distribution of F under µ, and by the Stein equation,∫
R
ϕdµF −

∫
R
ϕdγ1 =

∫
E

ϕ(F )dµ−
∫
R
ϕdγ1 =

∫
E

[
ψ′(F )− Fψ(F )

]
dµ.

Now −LF = λF so that

ψ′(F )− Fψ(F ) = ψ′(F ) + λ−1 LF ψ(F )

and hence, after integration by parts with respect to the operator L and the use of the

diffusion property, ∫
R
ϕdµF −

∫
R
ϕdγ1 =

∫
E

ψ′(F )[1− λ−1Γ]dµ.

Together with the Cauchy-Schwarz inequality,∣∣∣∣ ∫
R
ϕdµF −

∫
R
ϕdγ1

∣∣∣∣ ≤ (∫
E

ψ′(F )2dµ

)1/2(∫
E

[1− λ−1Γ]2dµ

)1/2

which amounts to (11). If
∫
E
F 2dµ = 1, then

∫
E

Γ dµ =
∫
E
F (−LF )dµ = λ and thus∫

E
(Γ− λ)2dµ = Varµ(Γ). The proof of Proposition 1 is complete.

Proposition 1 is thus investigated in [No-P1] for Wiener chaos. As is discussed

there (Lemma 1.2 and Theorem 3.1), the constant Cϕ in (11) of Proposition 1 can be

uniformly bounded inside specific classes of functions. For instance, Cϕ ≤ 2 when ϕ is

the characteristic function of a Borel set (corresponding to the total variation distance)

and Cϕ ≤ 1 when ϕ is the characteristic function of a half-line (corresponding to the

Kolmogorov distance).

For the further purposes, observe, as is classical (cf. [S], [R]), that Stein’s

strategy may be developed similarly for the Laguerre operator on the positive half-

line Lpψ = xψ′′ + (p − x)ψ′, p > 0, with invariant measure the gamma distribution
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dgp(x) = Γ(p)−1xp−1e−xdx. Let F be an eigenfunction of −L with eigenvalue λ > 0

and Γ = Γ(F ). As above, for every ϕ : R→ R smooth enough, setting G = F + p,

L(ϕ ◦G) = ϕ′(G) LF + ϕ′′(G) Γ

= −λFϕ′(G) + ϕ′′(G) Γ

= λ
(

(p−G)ϕ′(G) +
1

λ
Γϕ′′(G)

)
.

In this case, if Γ = λG,

L(ϕ ◦G) = λ (Lpϕ)(G)

so that µG is the invariant measure of Lp characterized as the gamma distribution gp.

For this example of the Laguerre operator, the criterion for an eigenfunction F to

have a gamma distribution is thus that Γ = λ(F + p). On the basis of this qualitative

description of Stein’s method for the Laguerre operator, the next statement illustrates

the analogue of Proposition 1 for this model.

Proposition 2. Let F be an eigenfunction of −L with eigenvalue λ > 0 and set

Γ = Γ(F ). Let p > 0 and denote by µF+p the distribution of F + p. Given ϕ : R→ R
integrable with respect to µF+p and gp, let ψ be a smooth solution of the associated

Stein equation ϕ−
∫
R ϕdgp = xψ′ + (p− x)ψ. Then,

∣∣∣∣ ∫
R
ϕdµF+p −

∫
R
ϕdgp

∣∣∣∣ ≤ Cϕ
λ

(∫
E

(
Γ− λ(F + p)

)2
dµ

)1/2

(12)

where Cϕ = ‖ψ′‖2∞. In particular, if
∫
E
F 2dµ = p,∣∣∣∣ ∫

R
ϕdµF+p −

∫
R
ϕdgp

∣∣∣∣ ≤ Cϕ
λ

Varµ(Γ− λF )1/2.

Proof. Set again G = F + p. Start as in the proof of Proposition 1, namely∫
R
ϕdµG −

∫
R
ϕdgp =

∫
E

ϕ(G)dµ−
∫
R
ϕdgp =

∫
E

[
Gψ′(G) + (p−G)ψ(G)

]
dµ.

Since −LF = λF and thus LG = λ(p−G),

Gψ′(G) + (p−G)ψ(G) = Gψ′(G) + λ−1LGψ(G).

After integration by parts with respect to the operator L and the use of the diffusion

property, ∫
R
ϕdµG −

∫
R
ϕdgp =

∫
E

ψ′(G)[G− λ−1Γ]dµ.
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The conclusion follows similarly from the Cauchy-Schwarz inequality.

Proposition 2 is similarly investigated in [No-P1] in the context of Stein’s method

on Wiener space. Again the the constant Cϕ in (12) may be bounded only in terms of

p inside specific classes of functions (cf. [No-P1, Lemma 1.3 and Theorem 3.11])

Analogues of Stein’s lemma in the context of the preceding statements have been

investigated on discrete Poisson or Bernoulli spaces in [P-S-T-U], [P-Z], [N-P-Rei2]. In

those examples, the control of the variance of Γ is not enough to ensure proximity to

a Gaussian distribution and has to be supplemented by various additional conditions.

3. Iterated gradients

This section presents the family of the iterated gradients of a Markov operator

and the basic (algebraic) Γ-calculus on eigenfunctions at the root of the investigation.

Given a symmetric Markov operator L as above (not necessarily a diffusion operator),

recall following [B], [L1], the iterated gradients Γm, m ≥ 2, associated to L defined

according to the rule defining Γ = Γ1 as

Γm(f, g) =
1

2

[
LΓm−1(f, g)− Γm−1(f,Lg)− Γm−1(g,Lf)

]
for functions f, g in a suitable class A. By extension, Γ0(f, g) = fg. For simplicity,

set Γm(f) = Γm(f, f). Note that in general Γm(f) for m ≥ 2 is not necessarily non-

negative. The Γ2 operator has been introduced first by D. Bakry and M. Émery [B-E]

to describe curvature properties of Markov operators and to provide a simple criterion

to ensure spectral gap and functional inequalities (cf. [B, Chapter 6], [L2] and [B-G-

L]). This criterion will be used in Proposition 4 below. The iterated gradients Γm have

been exploited in [L1] towards variance and entropy expansions.

The following elementary lemma will be of constant use throughout this note

and concentrates on the significant properties of the iterated gradients of a given

eigenfunction. Recall that we assume the necessary domain and integrability conditions

to justify the relevant identities.

Lemma 3. Let F be an eigenfunction of −L with eigenvalue λ. Set Γm = Γm(F ),

m ≥ 1. Then, for every m ≥ 1,

Γm =
1

2
LΓm−1 + λΓm−1 =

(1

2
L + λ Id

)m−1
Γ. (13)

Furthermore, for every m,n ≥ 1,∫
E

ΓnΓmdµ =

∫
E

Γn−1Γm+1dµ. (14)
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In particular, by selecting n = 1, for every m ≥ 1,∫
E

Γ Γmdµ =

∫
E

F 2Γm+1dµ. (15)

Proof. Equality (13) is an immediate consequence of the definition of Γm and the

eigenfunction property

Γm(F ) =
1

2
LΓm−1(F )− Γm−1(F,LF ) =

1

2
LΓm−1(F ) + λΓm−1(F ).

The conclusion follows by iteration.

Recalling the notation Γm = Γm(F ), multiply the preceding identity by Γn and

integrate with respect to µ to get, by symmetry,

2

∫
E

ΓnΓmdµ =

∫
E

Γm−1LΓndµ+ 2λ

∫
E

Γn Γm−1dµ.

Changing the role of n and m− 1, by symmetry again,

2

∫
E

Γm−1Γn+1dµ =

∫
E

Γm−1LΓndµ+ 2λ

∫
E

Γm−1Γndµ

and the identity (14) follows. The proof of the lemma is complete.

The following statement is a first illustration of the method developed next. It

expresses a kind of rigidity result under the geometric Γ2 curvature condition mentioned

previously.

Proposition 4. Assume that the operator L is of curvature ρ > 0 in the sense of

Bakry-Émery [B-E] ([B, Chapter 6]), that is Γ2(f) ≥ ρΓ(f) for every f ∈ A. If F is an

eigenfunction of −L with eigenvalue ρ, then Γ(F ) is (µ-almost everywhere) constant.

In case L is a diffusion operator, the distribution of F is Gaussian.

It might be useful to recall ([B, Chapter 6], [L2], [B-G-L]) that under the curvature

condition of the statement, λ ≥ ρ for every non-zero eigenvalue λ of −L. In particular,

L is ergodic in the sense that if Γ(f) = 0 then f is constant (µ-almost everywhere).

It is also worthwhile mentioning that for the model space consisting of the Ornstein-

Uhlenbeck diffusion operator L = ∆− x · ∇ with invariant measure γN , ρ = 1 and the

eigenfunctions with eigenvalue 1 are the linear functions

F (x) =
N∑
i=1

aixi, x = (x1, . . . , xN ) ∈ RN ,

whose distributions are of course Gaussian. Since Gaussian Wiener chaos of order

larger than or equal to 2 do not contain any non-zero Gaussian variable [J], [Nu-P],

11



Proposition 4 thus expresses a kind of rigidity property in the sense that if F is a

non-zero eigenfunction of the Ornstein-Uhlenbeck operator L with eigenvalue λ, then

F is Gaussian if and only if Γ(F ) is constant, and if and only if λ = ρ = 1.

The proof of Proposition 4 is rather straigthforward. Write as before Γm(F ) = Γm,

m ≥ 1. By Lemma 3 (formula (13)), Γ2 = 1
2 LΓ + ρΓ. Therefore, under the curvature

condition Γ2(f) ≥ ρΓ(f), LΓ ≥ 0. But then

0 ≤
∫
E

Γ LΓ dµ = −
∫
E

Γ(Γ)dµ ≤ 0,

so that Γ = Γ(F ) is (µ-almost everywhere) constant. The final assertion of the

statement then follows from Stein’s lemma (Proposition 1).

4. Chaos of a Markov operator

This section is devoted to the main conclusions of this work. We are thus given,

on a state space E, a Markov operator L with symmetric and invariant probability

measure µ and carré du champ Γ (acting on a suitable algebra of functions A). Assume

in addition that L has a pure point spectrum consisting of a countable sequence of

eigenvalues S = {0 = λ0 < λ1 < λ2 < · · ·} (more precisely, S is the spectrum of −L)

(cf. [R-S], [Y], [B-G-L]). Since λ1 > 0, L is ergodic (in the sense that if Γ(f) = 0, then

f is constant).

Given the spectrum S = {0 = λ0 < λ1 < λ2 < · · ·}, define for every k ∈ N the

polynomial of degree k in the real variable X,

Qk(X) =

k−1∏
i=0

(X − λi) =

k∑
i=1

1

i!
Q

(i)
k (0)Xi

(Q0 ≡ 1). Define then the bilinear form (acting on A×A)

Qk(Γ) =
k∑
i=1

1

i!
Q

(i)
k (0) Γi.

The following main definition introduces the notion of chaos associated to L and its

spectrum S.

Definition 5. An eigenfunction F of −L with eigenvalue λk (−LF = λkF ) is said

to be a chaos of degree k ≥ 1 relative to S if Qk+1(Γ)(F ) = 0 (µ-almost everywhere).

We call F a chaos eigenfunction (with eigenvalue λk).

Motivation for the preceding definition is provided by the Ornstein-Uhlenbeck

operator with spectrum S = N. Namely, it is easily shown in this case (see [L1,

12



§2]) that Qk(Γ)(F ) = |∇kF |2. Any eigenfunction F as in (6) is such that ∇kF is

constant and ∇k+1F = 0 leading thus to Definition 5. In the infinite dimensional

setting of an abstract Wiener space (E,H, µ) with separable Hilbert space H, referring

to [N, Chapter 1] for notation and terminology, the Ornstein-Uhlenbeck operator L has

domain D2,2 and Qk(Γ)(F ) = ‖DkF‖2H⊗k for any F ∈ Dk,2 where D is the derivative

operator (use as in the finite dimensional case the commutation [L, D] = D and the

chain rule formula [N, Proposition 1.4.5]). Now, if JkF denotes the projection of F (in

Dk,2) on the k-th Wiener chaos, LJkF = −kJkF and Dk(JkF ) = J0D
kF = E(DkF )

so that JkF thus defines a k-chaos in the sense of Definition 5. For example, in case

H = L2(T,B, ν) where ν is a σ-finite atomless measure on a measurable space (T,B),

the elements JkF may be represented as multiple stochastic integrals

Ik(fk) =

∫
T

· · ·
∫
T

fk(t1, . . . , tk)W (dt1) · · ·W (dtk)

of symmetric functions fk on L2(T k) with respect to the white noise W and

DkIk(fk) =
{
fk(t1, . . . , tk); t1, . . . , tk ∈ T

}
.

The discrete operator Lf = 1
2

∑N
i=1Dif on the cube {−1,+1}N and the Poisson

operator are further instances entering this definition with again S = N (see [L1, §2]).

On the cube {−1,+1}N for example,

Qk(Γ)(F ) =
1

22k

∑
(Di1 · · ·DikF )2

where the sum is over distinct i1, . . . , ik ∈ {1, . . . , N} and thus any F of the form (7)

is a k-chaos (k < N).

There are of course examples of eigenfunctions which are not chaos. For instance,

the Laguerre operator on the positive half-line Lpψ = xψ′′ + (p − x)ψ′, p > 0, has

spectrum equal to N (with eigenvectors the Laguerre orthogonal polynomials with

respect to the gamma distribution gp), but the eigenfunction F = x−p with eigenvalue

1 is not a 1-chaos as Q2(Γ)(F ) = − 1
2 F .

According to the preceding examples, another possible definition of k-chaos would

have been that Qk(Γ)(F ) is constant. (If F is normalized in L2(µ), then [L1, p. 443],∫
E

Qk(Γ)(F )dµ =

∫
E

FQk(−L)F dµ = Qk(λk),

hence Qk(Γ)(F ) = Qk(λk).) Now, it is easily checked (using (13) of Lemma 3) that

if F is an eigenfunction of −L with eigenvalue λk, then LQk(Γ)(F ) = 2Qk+1(Γ)(F ).

In particular therefore, if Qk(Γ)(F ) is constant, then Qk+1(Γ)(F ) = 0. Conversely, if

Qk+1(Γ)(F ) = 0, by ergodicity, Qk(Γ)(F ) is constant. It will turn out more simple in

the proofs of the main results to use the first definition of chaos (as Qk+1(Γ)(F ) = 0).

13



The following statements are the main results of this work. Recall the polynomials

Qk(X) and set, for k ≥ 1, X ∈ R,

Rk+1(X) =
1

X2

[
Qk+1(X)−Q(1)

k+1(0)X
]

=
k+1∑
i=2

1

i!
Q

(i)
k+1(0)Xi−2

and

Tk+1(X) = Rk+1(X + λk)−Rk+1(λk).

Thus for example, Q2(X) = X2 − λ1X, R2 ≡ 1 and T2 ≡ 0, Q3(X) =

X3− (λ1 + λ2)X2 + λ1λ2X, R3(X) = X − (λ1 + λ2) and T3(X) = X. Set furthermore

πk = λ1 · · ·λk, k ≥ 1 (π0 = 1).

The following theorem puts forward the fundamental identity at the root of this

work.

Theorem 6. In the preceding setting, let F be a k-chaos eigenfunction with

eigenvalue λk, k ≥ 1. Set Γ = Γ(F ). Then,

πk−1

∫
E

Γ2dµ = πk

∫
E

F 2Γ dµ+ (−1)k
∫
E

ΓTk+1

(
L
2

)
Γ dµ. (16)

Corollary 7. In the preceding setting, let F be a k-chaos eigenfunction with

eigenvalue λk, k ≥ 1. Set Γ = Γ(F ). If

(−1)kTk+1

(
− λn

2

)
≤ 0 for every n ∈ N, (17)

then ∫
E

Γ2dµ ≤ λk
∫
E

F 2Γ dµ. (18)

In particular, if F is normalized in L2(µ), then
∫
E

Γ dµ =
∫
E
F (−LF )dµ = λk and thus

Varµ(Γ) ≤ λk
(∫

E

F 2Γ dµ− λk
)
. (19)

Under the additional diffusion hypothesis on L, according to (9), inequality (19) of

Corollary 7 may be expressed equivalently as

Varµ(Γ) ≤ λ2k
(

1

3

∫
E

F 4dµ− 1

)
. (20)

In particular, if
∫
E
F 4dµ = 3, then Γ = Γ(F ) is constant and by Stein’s lemma

(Proposition 1), the distribution of F is Gaussian.

14



The next statement describes a fundamental instance for which the spectral

condition (17) in Corollary 7 is fulfilled.

Theorem 8. The spectral condition (17) in Corollary 7,

(−1)kTk+1

(
− λn

2

)
≤ 0 for every n ∈ N,

is satisfied when S = (λn)n∈N = N.

As a consequence of this result, the conclusions of Corollary 7 apply to the examples

of the Ornstein-Uhlenbeck, Bernoulli and Poisson operators. As such, some of the main

conclusions of [No-P1] are covered by the preceding general statement, and in particular

the initial result of [Nu-P], namely that if (Fn)n∈N is a sequence of homogeneous

Gaussian chaos, normalized in L2(γNn), Nn → ∞, then (Fn)n∈N converges to a

Gaussian distribution as soon as
∫
E
F 4
ndµ→ 3.

For discrete models as the cube or the Poisson space, the picture is less satisfactory.

For instance on the cube E = {−1,+1}Nn , Nn →∞, if Fn =
∑
|A|=k a

n
AWA, n ∈ N, is

a sequence of Walsh chaos of degree k normalized in L2(µ) for the uniform measure µ,

and if
∫
E
F 2
n Γ(Fn)dµ→ k, then as an application of Corollary 7, Γ(Fn)→ k in L2(µ).

Now Γ(F ) being constant in this case is not always discriminative (as shown by the

example of F (x) = x1 · · ·xk) and further conditions have to be imposed on the sequence

(Fn)n∈N to ensure convergence towards a Gaussian distribution. This analysis has been

recently achieved in [N-P-Rei2]. Similar additional conditions have been studied on

Poisson spaces in [P-S-T-U], [P-Z]. The input of Corollary 7 on convergence of chaos

in these discrete examples is that it reduces the convergence Γ(Fn) → λk in L2(µ) by

the weaker condition
∫
E
F 2
n Γ(Fn)dµ→ λk.

5. Chaos of order 1 and 2

Before turning to the general proofs of Theorem 6 and Corollary 7, and to get a

better feeling about these statements, we discuss in this section the particular values

k = 1 and k = 2. Recall that we write for simplicity Γm = Γm(F ), m ≥ 1, for an

eigenfunction F .

When k = 1, that is Q2(Γ) = Γ2 − λ1Γ = 0, multiplying this identity by F 2 and

integrating with respect to µ, it follows thanks to Lemma 3 (formula (15)) that∫
E

Γ2dµ = λ1

∫
E

F 2Γ dµ.

Now here R2 ≡ 1, and thus T2 ≡ 0, so that both the fundamental identity (16) and

the spectral condition (17) are automatically satisfied.

15



When k = 2, start from Q3(Γ) = Γ3 − (λ1 + λ2) Γ2 − λ1λ2 Γ = 0. Multiplying by

F 2 and integrating, it follows similarly thanks to Lemma 3 (formula (15)) that∫
E

Γ Γ2dµ− (λ1 + λ2)

∫
E

Γ2dµ+ λ1λ2

∫
E

F 2Γ dµ = 0.

By (13) of Lemma 3, Γ2 = 1
2 LΓ + λ2 Γ so that

1

2

∫
E

Γ LΓ dµ− λ1
∫
E

Γ2dµ+ λ1λ2

∫
E

F 2Γ dµ = 0.

Here R3(X) = X − (λ1 + λ2) and T3(X) = X so that the fundamental identity (16)

holds and the spectral condition (17) amounts to λn ≥ 0 for every n ∈ N.

One observation on which we will come back in the next section is that, in the

case k = 2, only the inequality Q3(Γ) ≥ 0 is used in order to reach the conclusions

of Corollary 7. A further observation is that for chaos of order 1 or 2, the spectral

condition (17) is fulfilled for any sequence of eigenvalues 0 = λ0 < λ1 < λ2 < · · ·. This

is clearly not the case when k ≥ 3.

6. Proofs of Theorems 6 and 8

In this section, we establish Theorem 6 and Corollary 7, and Theorem 8. Let thus

F be a k-chaos with eigenvalue λk. (If necessary, we may assume that k ≥ 3 according

to the preceding section.) Write as usual Γm for Γm(F ), m ≥ 1.

As in the preceding section for chaos of order 1 or 2, start as a first step from the

chaos hypothesis Qk+1(Γ) = 0. Multiply this identity by F 2 and integrate with respect

to µ. By definition of Qk+1 and (15) of Lemma 3,

0 =

∫
E

F 2Qk+1(Γ)dµ =
k+1∑
i=1

1

i!
Q

(i)
k+1(0)

∫
E

F 2Γi dµ

= Q
(1)
k+1(0)

∫
E

F 2Γ dµ+
k+1∑
i=2

1

i!
Q

(i)
k+1(0)

∫
E

Γ Γi−1 dµ.

(21)

Now, by (13) of Lemma 3,

k+1∑
i=2

1

i!
Q

(i)
k+1(0)

∫
E

Γ Γi−1 dµ =
k+1∑
i=2

1

i!
Q

(i)
k+1(0)

∫
E

Γ
(1

2
L + λk Id

)i−2
Γ dµ

=

k+1∑
i=2

1

i!
Q

(i)
k+1(0)

i−2∑
`=0

(
i− 2

`

)
1

2`
λi−2−`k

∫
E

Γ L`Γ dµ

=
k−1∑
`=0

k+1∑
i=`+2

(
i− 2

`

)
1

i!
Q

(i)
k+1(0)λi−2−`k

1

2`

∫
E

Γ L`Γ dµ.
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Recalling the definition of the polynomial Rk+1, note that

k+1∑
i=`+2

(
i− 2

`

)
1

i!
Q

(i)
k+1(0)λi−2−`k =

1

`!
R

(`)
k+1(λk).

Hence
k+1∑
i=2

1

i!
Q

(i)
k+1(0)

∫
E

Γ Γi−1 dµ =

k−1∑
`=0

1

`!
R

(`)
k+1(λk)

1

2`

∫
E

Γ L`Γ dµ.

Now
k−1∑
`=0

1

`!
R

(`)
k+1(λk)X` = Rk+1(X + λk) = Tk+1(X) +Rk+1(λk)

so that

k+1∑
i=2

1

i!
Q

(i)
k+1(0)

∫
E

Γ Γi−1 dµ =

∫
E

ΓTk+1

(
L
2

)
Γ dµ+Rk+1(λk)

∫
E

Γ2dµ.

The fundamental identity (16) of Theorem 6 then follows from (21) together with the

fact that

Q
(1)
k+1(0) = (−1)kλ1 · · ·λk = (−1)kπk

and

Rk+1(λk) = (−1)k+1λ1 · · ·λk−1 = (−1)k+1πk−1.

The proof is complete.

Corollary 7 is deduced from Theorem 6 through the following classical and

elementary property, consequence of the point spectrum hypothesis.

Lemma 9. If P is a polynomial,
∫
E
uP (L)u dµ ≥ 0 for every u (in the L2(µ)-

domain of P (L)) if (and only if) P (−λn) ≥ 0 for every n ∈ N.

Proof. For each n ∈ N, denote by En the eigenspace associated to the eigenvalue

λn so that L2(µ) =
⊕

n∈NEn since S = (λn)n∈N is the spectrum of L. Decompose then

u in L2(µ) as u =
∑
n∈N un with un ∈ En, n ∈ N, so that P (L)u =

∑
n∈N P (−λn)un

and ∫
E

uP (L)u dµ =
∑
n∈N

P (−λn)

∫
E

u2ndµ

from which conclusion follows.

As mentioned for chaos of order 2, when k is even, only the inequality Qk+1(Γ) ≥ 0

is used in order to reach the conclusions of Corollary 7.

17



We next turn to the proof of Theorem 8, checking the spectral condition (17)

(−1)kTk+1

(
− λn

2

)
≤ 0, n ∈ N, for S = (λn)n∈N = N. Since in this case

Tk+1(X) = Rk+1(X + k)− (−1)k+1(k − 1)!, we have to show that

(n
2
− k
)−2[ k∏

i=0

(n
2
− i
)
− k!

(n
2
− k
)]
≥ (k − 1)!.

When n
2 = k, the expression on the left-hand side is equal to k!

∑k
i=1

1
i so that the

conclusion holds in this case. When n
2 6= k, we need to show that

(n
2
− k
)−1[ k−1∏

i=0

(n
2
− i
)
− k!

]
≥ (k − 1)!.

Assume first that n ≥ 2k + 1. Then

k−1∏
i=0

(n
2
− i
)

=
(n

2
− k + 1

) k−2∏
i=0

(n
2
− i
)

≥
(n

2
− k + 1

) k∏
i=2

(
i+

1

2

)
≥
(n

2
− k + 1

)
k! .

Hence (n
2
− k
)−1[ k−1∏

i=0

(n
2
− i
)
− k!

]
≥ k!

which answers this case. We turn to the case where n ≤ 2k−1 for which it is necessary

to check that
k−1∏
i=0

(n
2
− i
)
≤ n

2
(k − 1)!.

It is enough to assume that n is odd, n = 2p− 1, 1 ≤ p ≤ k. Then

k−1∏
i=0

(n
2
− i
)

=

p−1∏
i=0

(n
2
− i
) k−1∏
i=p

(n
2
− i
)
≤

p∏
i=1

(
i− 1

2

) k−p∏
i=1

(
i− 1

2

)
.

Therefore, the inequality to establish amounts to

p−1∏
i=1

(
i− 1

2

) k−p∏
i=1

(
i− 1

2

)
≤ (p− 1)!(k − p)! ≤ (k − 1)!

which is trivially satisfied. The claims thus holds in this case too. Theorem 8 is

therefore established.
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7. Convergence to gamma distributions

In this last section, we briefly address the analogues of Theorem 6 and Corollary 7

in the context of convergence to gamma distributions on the basis of the corresponding

Stein characterization of Proposition 2. The main conclusion is obtained by a simple

variation on the fundamental identity (16) of Theorem 6. In particular, the analysis

covers the recent results of [No-P2] (see also [No-P1]) in the context of Wiener chaos.

The framework is the one of the preceding sections, with a Markov operator L with

spectrum S = (λn)n∈N and invariant and reversible probability measure µ and carré

du champ Γ. Recall πk = λ1 · · ·λk, k ≥ 1, and the polynomials Rk+1 and Tk+1 of

Theorem 6.

The following theorem addresses approximation of a k-chaos F by a gamma

distribution via the control of Varµ(Γ − λkF ) as emphasized in Proposition 2. As

announced, the proof is an easy modification on the fundamental identity (16) of

Theorem 6.

Theorem 10. Let F be a k-chaos with eigenvalue λk, k ≥ 1, such that
∫
E
F 2dµ =

p > 0. Set Γ = Γ(F ). Under the spectral condition (17) (−1)kTk+1

(
− λn

2

)
≤ 0 for

every n ∈ N, it holds

Varµ(Γ− λkF ) ≤ λk
∫
E

F 2Γ dµ+Ak

∫
E

F Γ dµ− pBk − p2λ2k

where

Ak =
2(−1)kλk
πk−1

Rk+1

(λk
2

)
and Bk =

(−1)kλ2k
πk−1

Rk+1

(λk
2

)
.

In the diffusion case,

λk

∫
E

F 4dµ = 3

∫
E

F 2Γ dµ and λk

∫
E

F 3dµ = 2

∫
E

F Γ dµ

so that the conclusion of the theorem reads

Varµ(Γ− λkF ) ≤ λ2k
3

∫
E

F 4dµ+
Akλk

2

∫
E

F 3dµ− pBk − p2λ2k.

Consider now the example where S = N for which we know from Theorem 8 that

the spectral condition (17) holds. The inequality of Theorem 10 takes a nicer form

when k ≥ 2 is even. Indeed in this case (−1)kλkRk+1(λk

2 ) = −2k! so that

1

k
Varµ(Γ− λkF ) ≤

∫
E

F 2Γ dµ− 4

∫
E

F Γ dµ+ 2pk − p2k.
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In particular in the diffusion case,

3

k2
Varµ(Γ− λkF ) ≤

∫
E

F 4dµ− 6

∫
E

F 3dµ+ 6p− 3p2. (22)

This inequality (22) then ensures, through Stein’s lemma (Proposition 2), that if

(Fn)n∈N is a sequence of k-chaos such that
∫
E
F 2
ndµ = p for every n and∫

E

F 4
ndµ− 6

∫
E

F 3
ndµ+ 6p− 3p2 → 0,

then (Fn + p)n∈N converges in distribution to the gamma distribution with parameter

p, that is the main result of [No-P2].

Proof (of Theorem 10). Let thus F be a k-chaos with
∫
E
F 2dµ = p, hence∫

E
Γ dµ = pλk. Set U = Γ − λkF (so

∫
E
Udµ = pλk). It is immediately checked

that ∫
E

Γ2dµ =

∫
E

U2dµ+ 2λk

∫
E

F Γ dµ− pλ2k

= Varµ(U) + 2λk

∫
E

F Γ dµ− p(1− p)λ2k

and, for every ` ≥ 1,∫
E

Γ L`Γ dµ =

∫
E

U L`U dµ+ 2(−1)`λ`+1
k

∫
E

F Γ dµ− p(−1)`λ`+2
k .

Therefore, the fundamental identity (16) of Theorem 6 takes the form, after a little of

algebra,

(−1)k
∫
E

UTk+1

(
L
2

)
U dµ− πk−1 Varµ(U) + πk

∫
E

F 2Γ dµ

+ 2(−1)kλkRk+1

(
λk

2

)∫
E

F Γ dµ− p(−1)kλ2kRk+1

(
λk

2

)
− p2λ2kπk−1 = 0.

Under the spectral condition (17) (−1)kTk+1(−λn

2 ) ≤ 0 for every n ∈ N,

πk−1 Varµ(U) ≤ πk
∫
E

F 2Γ dµ+ 2(−1)kλkRk+1

(
λk

2

)∫
E

F Γ dµ

− p(−1)kλ2kRk+1

(
λk

2

)
− p2λ2kπk−1

which amounts to the statement of the theorem. The proof is complete.
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