CHAOS OF A MARKOV OPERATOR
AND THE FOURTH MOMENT CONDITION
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Abstract. — We analyze from the viewpoint of an abstract Markov
operator recent results by D. Nualart and G. Peccati, and I. Nourdin
and G. Peccati, on the fourth moment as a condition on a Wiener
chaos to have a distribution close to Gaussian. In particular, we are
led to introduce a notion of chaos associated to a Markov operator
through its iterated gradients and present conditions on the (pure)
point spectrum for a sequence of chaos eigenfunctions to converge to
a Gaussian distribution. Convergence to gamma distributions may be
examined similarly.
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1. Introduction

In a striking contribution [Nu-P], D. Nualart and G. Peccati discovered a few
years ago that the fourth moment of homogeneous polynomial chaos on Wiener space
characterizes convergence towards the Gaussian distribution. Specifically, and in a
simplified (finite dimensional) setting, let F : RN — R, 1 < k < N, be defined by

N
F:F(IE): Z @iy ,yig Lig o Lig s T = (xla"'axN) ERN; (1)

i1,.ip=1

where a;, . ;, are real numbers vanishing on diagonals and symmetric in the indices.
Assume by homogeneity that [on F?dyy = 1 where dyn(z) = (27r)_N/2e_‘w|2/2dw is
the standard Gaussian measure on RY. Such a function F will be called homogeneous
of degree k. Let now F), on RN " n €N, N, — oo, be a sequence of such homogeneous
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polynomials of fixed degree k. The main theorem of D. Nualart and G. Peccati [Nu-P]
expresses that the sequence of distributions of the F},’s converges towards the standard
Gaussian distribution 7; on the real line if and only if

/R _ Fodyn, =3 (2)

(3 being the fourth moment of the standard normal). The result actually holds for
homogeneous chaos on the infinite dimensional Wiener space and the equivalence is
further described in terms of convergence of contractions. The proof of [Nu-P]| relies
on multiplication formulas for homogeneous chaos and the use of stochastic calculus.

Since [Nu-P] was published, numerous improvements and developments on this
theme have been considered (cf. e.g. [P-Tu], [N-OL], [No-P1], [No-P2|, [N-P-Reil],
[N-P-Rév]...). An introduction to some of these developments (with emphasis on
multiplication formulas) is the recent monograph [P-Ta] by G. Peccati and M. Taqqu.
In particular, the work by D. Nualart and S. Ortiz-Latorre [N-OL] introduces a
technological breakthrough with a new proof only based on Malliavin calculus and
the use of integration by parts on Wiener space. In this work, the convergence of
(Fu),en to a Gaussian distribution (and thus also (2)) is also shown to be equivalent
to the fact that

Var,, (|[VF,|*) = 0 (3)

where Var, is the variance with respect to vy, . Based upon this observation, recent
work by I. Nourdin and G. Peccati [No-P1], [No-P2] develops the tool of the so-called
Stein method (cf. e.g. [S], [C-G-S], [C-S], [R]) in order to quantify the convergence
towards the Gaussian distribution. Relying also on multiplication formulas and the use
of integration by parts on Wiener space, one key step in the investigation [No-P1] is
expressed by the following inequality: for a given homogeneous function F' of degree k
on RY normalized in L2(yy),

Var,, (|[VE[*) < C’“(/RN Frdyy — 3) (4)

where C} > 0 only depends on k. In particular, the proximity of f]RN F*dyyn to 3
controls the variance of |VF|?. Now, Stein’s method for homogeneous chaos on Wiener
space as developed in [No-P1] expresses that

d(v,71) < C Var,, (|VF|2)1/2 (5)

where d(v,71) stands for some appropriate distance between the law v of F' and 7,
so that |[VF|? being close to a constant forces the distribution of F to be close to a
Gaussian distribution. The conjunction of (4) and (5) thus describes how the fourth
moment condition controls convergence to a Gaussian.

The primary motivation of this work is to understand what structure of a functional
F allows for the preceding results, in particular thus the control by the fourth moment
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of the distance to the Gaussian distribution. In the process of this investigation,
we will revisit the preceding results and conclusions in the setting of a symmetric
Markov operator including as a particular example the Ornstein-Uhlenbeck operator
L = A —x-V corresponding to the Wiener space setting. In order to achieve this goal,
observe that the homogeneous polynomial F' of (1) is an eigenfunction with eigenvalue
k of the Ornstein-Uhlenbeck operator, that is —LF = kF. We shall therefore try to
understand what is necessary for an eigenfunction F' of a Markov operator in order
to satisfy an inequality such as (4). This investigation leads to define a notion of
chaos eigenfunction with respect to such a Markov operator with pure point spectrum
consisting of a countable sequence of eigenvalues, the homogeneous polynomial F' of
(1) being one example with respect to the Ornstein-Uhlenbeck operator. The main
achievement of this work is then the formulation of an explicit condition on the sequence
of eigenvalues under which a chaos eigenfunction satisfies an inequality such as (4).

The basic data will thus be a Markov operator L on some state space (E, F) with
invariant and reversible probability measure 1 and symmetric bilinear carré du champ
operator

L(f,g9) = % [L(fg) — fLg—gLf]

acting on functions f,g in a suitable domain A. For simplicity, we often write
I(f) = I'(f, f) which is always non-negative. By invariance and symmetry of p with
respect to L, the definition of the carré du champ operator I' yields the integration by
parts formula

/Ef(—L9>duZ/Eg(—Lf)duszF(f,mdu-

In particular [ g Lfdp = 0 since L1 = 0 by the Markov property. The operator L is
said in addition to be a diffusion operator if for every smooth function ¢ : R — R, and
every f € A,

Lo(f) = &' (HLf + " (HT).
Alternatively, T" is a derivation in the sense that T'(¢(f),g) = ¢’ ()T ([, g).

We refer to the lecture notes [B, Chapter 2] by D. Bakry for an introduction to
this abstract framework of Markov and carré du champ operators and a discussion of
some of the examples emphasized below. Additional general references include [D-M-
M] for further probabilitic interpretations and [B-H], [F-O-T] for contructions in terms
of Dirichlet forms. (See also [L2] and the forthcoming [B-G-L].) One prototype example
of a Markov diffusion operator is the Ornstein-Uhlenbeck operator acting on say the
algebra A of polynomial functions f on E = RY as Lf(z) = Af(z) — z - Vf(z), with
invariant and reversible probability measure the Gaussian distribution © = 5 and
carré du champ I'(f) = |[Vf|?. One could consider its infinite dimensional extension
on Wiener space (cf. [B-H|, [N, Chapter 1]), but for simplicity in the exposition we
stick here on the finite dimensional case as a reference example. The preceding general
setting also includes discrete examples, such as the two-point space and its products.
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Namely, on E = {—1,+1}", let Lf = %Zi\le D;f where D, f(z) = f(ri(z)) — f(x),
= (21, ..., %...,xN), Ti(x) = (z1,...,—x4,...,xxN). L is invariant and symmetric
with respect to the uniform measure p on {—1,+1}" with carré du champ I'(f) =
%Zf\il(Di f)?2, but is not a diffusion operator.

These two examples actually entail a crucial chaos structure in the sense that the
generators L. may be diagonalized in a sequence of orthogonal polynomials (Hermite
polynomials in the Gaussian case, Walsh polynomials in the cube example). See e.g. [B,
Chapter 1], [N, Chapter 1], [J, Chapter 2|, [P-Ta, Chapter 5]. More precisely, setting
for k = (k}l, ceey kZN) € NN, r = (5171, e ,.IN) S RN, Hﬁ(x) = hkl(.’lil) e hkN(.’L'N),
with (hx),cy the sequence of orthonormal Hermite polynomials on the real line, any
function f : RY — R in L2(yy) may be written as

f:Z Z(f?HE>HE

keN |k|=k

where (-, -) is the scalar product in L?(yy) and where the second sum runs over all
k € NV with |k| = ky +--- +ky = k. An element H = Hy with |k| = k is an
eigenfunction of the Ornstein-Uhlenbeck operator with —LH = kH and the spectrum
of the operator —L thus consists of the sequence of the non-negative integers. For fixed
k € N, linear combinations

F=>" apH (6)

|k|=k

define generic eigenfunctions (chaos) of —L with eigenvalue k, the homogeneous
function F' of (1) being one example.

Similarly, if f: {-1,+1}¥ = R,

f:Z Z <f7WA>WA

k=0|A|=k

where the second sum runs over all subsets A of {1,..., N} with k elements and

Wa(x) =[x, z=(x1,....2n) e {-1,+1}", AC{1,...,N},
1EA

are the so-called Walsh polynomials. For the discrete operator Lf = %Zfil D;f,
—LWy = kW, if |A| = k. The spectrum of —L is thus equal to N, and linear
combinations

F = Z CLAWA (7)

|A|=k
describe the family of eigenfunctions (chaos) of —L with eigenvalue k.
A further example is Poisson space. In dimension one, let i be the Poisson law

on N with parameter § > 0. For a function f : N — R with finite support say, let
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Df(j) = f(4j) — f(j — 1) for every j € N (f(—1) = 0). The Poisson operator may
then be defined as Lf(j) = 0Df(j+ 1) — jDf(j), j € N. It is not a diffusion. The
associated carré du champ operator is given by 2T(f)(j) = 0Df(5 + 1) + jDf(5)3,
j € N. The operator —L has a spectrum given by the sequence of the integers and
is diagonalized along the Charlier orthogonal polynomials. Multi-dimensional Poisson
models are similar.

Laplacians L. = A on (compact) Riemannian manifolds, and acting on families of
smooth functions, also enter this framework. These Laplacians are diffusion operators
and, in the compact case, have again a spectrum consisting of a countable sequence of
eigenvalues (cf. e.g. [G-H-LJ).

This work will analyze properties of eigenfunctions of such Markov operators L,
that is functions F' : E — R (in the domain of L) such that —LF = AF for some
A > 0. (We emphasize that F' and A are thus rather eigenfunction and eigenvalue of
—L which is non-negative.) The ultimate goal of this work is to find conditions on such
an eigenfunction F' of a diffusion operator L in order that the analogue of (4) holds,
and that the fourth moment condition then ensures the proximity with the Gaussian
distribution. We outline here the various steps of the investigation. The first step will
be to show (following [No-P1] in the Ornstein-Uhlenbeck setting) that Stein’s method
applied to an eigenfunction F' indicates that it has a Gaussian distribution if (and only
if) its carré du champ I'(F') is constant (see Proposition 1 below). More precisely,
in accordance with (5), for suitable families of functions ¢ : R — R, and whenever

fEde,uzl,
‘/@(F)du—/sod%
R R

where Var, is the variance with respect to p.

< C,, Var, (T(F)) (8)

On the basis of this result, the fourth moment condition appears quite naturally by
the integration by parts formula since (assuming the necessary domain and integrability
conditions)

/\/ F4d,u:/ FS(—LF)du:B/ F?T(F)dp.
E E E

Moreover, [,T(F)du = [, F(=LF)dpy = X[, F?du, so that, still assuming by
homogeneity that f = F 2du = 1

A(%/JEF‘*du—l) :/EFQ(F(F)—)\)du. (9)

This identity is the first indication that the proximity of [ g P 4dp with 3 actually
amounts to the proximity of I'(F') with its constant mean value A.

The next step in the investigation, the main result of this note, describes a chaos
structure of an eigenfunction F' of a Markov operator L (not necessarily diffusive) with
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spectrum consisting in a sequence S = {0 = A\g < A\; < Ay < ---} of eigenvalues in
order that whenever F' is such a chaos with eigenvalue \;, normalized in L?(p),

Var, (D(F)) < Ck/ F?(T(F) — M) du (10)

for some finite constant Cj only depending on S. The relations (8), (9) and (10)
together therefore describe how the fourth moment condition [ gL 4dp ~ 3 ensures
that I'(F') is close to constant and thus that the distribution of F is close to Gaussian.
This family of inequalities may then be used to describe convergence to a Gaussian
distribution of a sequence of such chaos eigenfunctions. The abstract chaos structure
underlying these results is defined by means of the iterated gradients of the Markov
operator L and is shown to easily cover the examples of Wiener, Walsh or Poisson chaos.
For example, the chaos structure of the homogeneous polynomial F' of (6) actually
amounts to the fact that V¥ F = 0. The proof of (10) will proceed by a standard
and direct algebraic I'-calculus on eigenfunctions involving the iterated gradients of the
operator L, and avoiding any type of multiplication formulas for chaos.

Turning to the content of this note, Section 2 briefly presents Stein’s method applied
to an eigenfunction of a Markov diffusion operator. The next section discusses the
iterated gradients and the associated I'-calculus on eigenfunctions, of fundamental use
in the investigation. Section 4 introduces the notion of chaos of a Markov operator
with pure point spectrum and presents the aforementioned main result (10), proved in
Section 6. The last section briefly describes analogous conclusions for convergence to
gamma distributions covering recent results of [No-P2].

It should be carefully emphasized that the present exposition develops more the
algebraic and spectral descriptions of the problem under investigation (and concentrates
on a proof of (10)) rather than the analytic issues on domains and classes of functions
involved in the analysis. In particular, we work with families of functions in the domain
of the Markov operator and its carré du champ and with eigenfunctions assumed
to satisfy all the necessary domain and integrability conditions required to develop
integration by parts and the associated I'-calculus. These properties are classically
and easily satisfied for the main examples in mind, the Gaussian case, the discrete
cube or the setting of the Laplace operator on a compact Riemannian manifold. Note
however that the extension from the finite dimensional Gaussian setting to the infinite
dimensional one requires basic analysis on Wiener space as presented for example in
the first chapter of [N] (see also [P-Ta]) in order to fully justify the domain issues
and the various conclusions. These aspects, carefully developed in the aforementioned
references, are not discussed here. Further conditions ensuring the validity of the results
presented here might be developed in broader contexts.



2. Stein’s method for eigenfunctions

We start our investigation with a brief exposition of Stein’s lemma applied to
eigenfunctions of a diffusion operator. We refer to [S], [C-G-S], [C-S], [R] and the
references therein for general introductions on Stein’s method. The results below are
mere adaptations of the investigation [No-P1] by I. Nourdin and G. Peccati in Wiener
space to which we refer for further details. Throughout this section, L is thus a diffusion
operator with invariant and reversible measure p and carré du champ I' as described
in the introduction. All the necessary domain and integrability conditions on the
eigenfunctions under investigation are implicitely assumed, and are satisfied for the
main Ornstein-Uhlenbeck example (cf. [No-P1]).

We first illustrate at a qualitative level Stein’s method in this abstract context.
Given a measurable map F' : EF — R, say that L commutes to F' if there exists a
Markov operator £ on the real line such that for every ¢ : R — R (in the domain of £
and such that ¢ o F' is in the domain of L),

L(po F) = (Lp)(F).

In this case, the image measure pp of u by F' is the invariant measure of L.

One model factorization operator £ on R is the Ornstein-Uhlenbeck operator
Ly = " — x9)’ with invariant measure the standard Gaussian distribution dvy;(z) =
o=’/ 2d—“ﬂ. Let then F' be an eigenfunction of —L with eigenvalue A > 0. The
observation here, at the root of Stein’s argument, is that whenever I' = I'(F') is (u-
almost everywhere) constant, then L. commutes to F' through the Ornstein-Uhlenbeck
operator £ and thus the distribution pur of F' is Gaussian. Namely, note first that by
integration by parts, [, I'du = [, F(=LF)dp = X [, F?dpu so that if T' is constant and
F is normalized in L?(u), then T' = X\. Then, for ¢ : R — R smooth enough, by the
chain rule formula for the diffusion operator L,

LigoF) = (F)LF + ¢"(F)T = —AF¢'(F) + ¢ (F)T.

Hence, if I' = A,
L(po F) = A(Lp)(F)

so that L commutes to F' and thus pp is the invariant measure of the Ornstein-
Uhlenbeck operator £ characterized as the Gaussian distribution ;.

For an eigenfunction F', I' = T'(F') constant thus forces the distribution of F' to be
Gaussian. Now, as such, this observation is not of much use and to describe convergence
to normal as for sequences of homogeneous polynomials in the introduction, it should be
suitably quantified in the form of inequality (8) in order to express that the proximity
of I' with a constant value forces the distribution of F' to be close to Gaussian. This is
the content of the classical Stein lemma as described in the next statement.
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Proposition 1. Let F' be an eigenfunction of —L with eigenvalue A\ > 0 and set
I' = I'(F). Denote by up the distribution of F. Given ¢ : R — R integrable with
respect to up and 71, let ¢ be a smooth solution of the associated Stein equation

¢ — Jgpdy = — x1p. Then,
o ; 1/2
< S ( fo-xpan) (1)

/s@duF—/sod%
R R

where C, = ||1Z/||io In particular, if [, F?dp =1,
‘/ pdpr — / pdn
R R

Proof. Since pup is the distribution of F' under u, and by the Stein equation,

/RsoduF—/Rsodw=/Es0(F)du—/Rsodvl=/E[@b (F) — Fy(F)]dp.
Now —LF = AF so that

C
< T‘P VarM(F)l/Q.

V/(F) = Fy(F) = ¢/(F) + AT LF ¢(F)

and hence, after integration by parts with respect to the operator L and the use of the
diffusion property,

/RSOdMF—/Rng’yl:/Ez//(F)[l—)\_lF]d,u.

Together with the Cauchy-Schwarz inequality,

pdup — [ wdn| < | [ &(F)du - [1— A 'T)%dp .
R R 5 ;

which amounts to (11). If [ F?du =1, then [, T'dy = [, F(—LF)dp = X and thus
J(T' = X\)2dp = Var, (T). The proof of Proposition 1 is complete. O

Proposition 1 is thus investigated in [No-P1] for Wiener chaos. As is discussed
there (Lemma 1.2 and Theorem 3.1), the constant C, in (11) of Proposition 1 can be
uniformly bounded inside specific classes of functions. For instance, C, < 2 when ¢ is
the characteristic function of a Borel set (corresponding to the total variation distance)
and C, < 1 when ¢ is the characteristic function of a half-line (corresponding to the
Kolmogorov distance).

For the further purposes, observe, as is classical (cf. [S], [R]), that Stein’s
strategy may be developed similarly for the Laguerre operator on the positive half-
line £,9 = x¢" + (p — x)¢’, p > 0, with invariant measure the gamma distribution
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dgp(z) = T(p)~'aP~le*dx. Let F be an eigenfunction of —L with eigenvalue A
and I' = T'(F'). As above, for every ¢ : R — R smooth enough, setting G = F + p,

LipoG) = ¢'(G)LF +¢"(G)T
= APY/(C) +"(@)T
= M- G)P(G) + 1 T"(@)).

In this case, if I' = AG,
L(poG) = A(Lyp)(G)

>0

so that pg is the invariant measure of £, characterized as the gamma distribution g,.

For this example of the Laguerre operator, the criterion for an eigenfunction F' to
have a gamma distribution is thus that I' = A\(F + p). On the basis of this qualitative
description of Stein’s method for the Laguerre operator, the next statement illustrates

the analogue of Proposition 1 for this model.

Proposition 2. Let F' be an eigenfunction of —L with eigenvalue A\ > 0 and set
I'=T(F). Let p > 0 and denote by pp, the distribution of F +p. Given ¢ : R - R
integrable with respect to up4, and g, let b be a smooth solution of the associated

Stein equation ¢ — [, ¢ dg, = x)’ + (p — ). Then,

‘/s@dump—/sodgp
R R

where C, = ||¢/||%.. In particular, if [ F2dp = p,
/ pdppyp — /  dgp
R R

Proof. Set again G = F' + p. Start as in the proof of Proposition 1, namely

< %(/E (= A(F +p))2du) -

C

< T“” Var, (T — AF)Y/2.

(12)

/R pduc — /R pdg, = /E o(G)dp — /R o dg, = /E [GY'(G) + (p — G)v(G)] dp.

Since —LF = AF and thus LG = A\(p — G),
Gy (G) + (p = G)Y(G) = GY'(G) + AT'LG 4(G).

After integration by parts with respect to the operator L. and the use of the diffu
property,

/RSOdHG—/RgOdgp:/IE@D’(G)[G—)\_lF]du.
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The conclusion follows similarly from the Cauchy-Schwarz inequality. O

Proposition 2 is similarly investigated in [No-P1] in the context of Stein’s method
on Wiener space. Again the the constant C,, in (12) may be bounded only in terms of
p inside specific classes of functions (cf. [No-P1, Lemma 1.3 and Theorem 3.11])

Analogues of Stein’s lemma in the context of the preceding statements have been
investigated on discrete Poisson or Bernoulli spaces in [P-S-T-U], [P-Z], [N-P-Rei2]. In
those examples, the control of the variance of I' is not enough to ensure proximity to
a Gaussian distribution and has to be supplemented by various additional conditions.

3. Iterated gradients

This section presents the family of the iterated gradients of a Markov operator
and the basic (algebraic) I'-calculus on eigenfunctions at the root of the investigation.
Given a symmetric Markov operator L as above (not necessarily a diffusion operator),
recall following [B], [L1], the iterated gradients T',,, m > 2, associated to L defined
according to the rule defining I' =T'; as

Con(£56) = 3 [Lm 1(£,9) = Ton1(f, L) = oa-1(g, 1)

for functions f, g in a suitable class A. By extension, I'¢(f,g) = fg. For simplicity,
set I'yn(f) = I (f, ). Note that in general I',,(f) for m > 2 is not necessarily non-
negative. The T’y operator has been introduced first by D. Bakry and M. Emery [B-E]
to describe curvature properties of Markov operators and to provide a simple criterion
to ensure spectral gap and functional inequalities (cf. [B, Chapter 6], [L2] and [B-G-
L]). This criterion will be used in Proposition 4 below. The iterated gradients T',,, have
been exploited in [L1] towards variance and entropy expansions.

The following elementary lemma will be of constant use throughout this note
and concentrates on the significant properties of the iterated gradients of a given
eigenfunction. Recall that we assume the necessary domain and integrability conditions
to justify the relevant identities.

Lemma 3. Let F' be an eigenfunction of —L with eigenvalue \. Set I'),, = T, (F),
m > 1. Then, for every m > 1,

1 1 m—1
L= 5 L0y + ALyt = <§L+)\Id) T. (13)
Furthermore, for every m,n > 1,

E E
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In particular, by selecting n = 1, for every m > 1,

/rrmdu:/ﬁrmﬂdu. (15)
E E

Proof. Equality (13) is an immediate consequence of the definition of I',,, and the
eigenfunction property

1 1
Fin(F) = 5 L1 (F) = Tt (F,LF) = 5 L1 (F) 4 AT (F).

The conclusion follows by iteration.

Recalling the notation I';,, = T',,,(F), multiply the preceding identity by I',, and
integrate with respect to u to get, by symmetry,

2/ FnFmdu:/Fm_lLFnd,u+2)\/ T, Tp1dp.
E E E

Changing the role of n and m — 1, by symmetry again,

2/ Fm_1Fn+1d,lL:/ Fm_lLFndﬂ+2)\/ Fm—andﬂ
E E E

and the identity (14) follows. The proof of the lemma is complete. O

The following statement is a first illustration of the method developed next. It
expresses a kind of rigidity result under the geometric I'; curvature condition mentioned
previously.

Proposition 4. Assume that the operator L is of curvature p > 0 in the sense of
Bakry-Emery [B-E] ([B, Chapter 6]), that is T5(f) > pD(f) for every f € A. If F is an
eigenfunction of —L with eigenvalue p, then I'(F') is (u-almost everywhere) constant.
In case L is a diffusion operator, the distribution of F' is Gaussian.

It might be useful to recall ([B, Chapter 6], [L2], [B-G-L]) that under the curvature
condition of the statement, A > p for every non-zero eigenvalue A of —L. In particular,
L is ergodic in the sense that if I'(f) = 0 then f is constant (p-almost everywhere).
It is also worthwhile mentioning that for the model space consisting of the Ornstein-
Uhlenbeck diffusion operator L = A — z - V with invariant measure vy, p = 1 and the
eigenfunctions with eigenvalue 1 are the linear functions

N
F(x)zzaixia 213:<£C1,...,.’13N)€RN,
i=1

whose distributions are of course Gaussian. Since Gaussian Wiener chaos of order
larger than or equal to 2 do not contain any non-zero Gaussian variable [J], [Nu-P],
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Proposition 4 thus expresses a kind of rigidity property in the sense that if F' is a
non-zero eigenfunction of the Ornstein-Uhlenbeck operator L with eigenvalue A, then
F is Gaussian if and only if I'(F’) is constant, and if and only if A = p = 1.

The proof of Proposition 4 is rather straigthforward. Write as before I',,, (F') = Ty,
m > 1. By Lemma 3 (formula (13)), 'y = 5 LT + pI". Therefore, under the curvature
condition I's(f) > pT'(f), LT' > 0. But then

og/reru:—/r(r)dugo,
E E

so that T' = T'(F) is (u-almost everywhere) constant. The final assertion of the
statement then follows from Stein’s lemma (Proposition 1).

4. Chaos of a Markov operator

This section is devoted to the main conclusions of this work. We are thus given,
on a state space F, a Markov operator L. with symmetric and invariant probability
measure f and carré du champ I" (acting on a suitable algebra of functions A). Assume
in addition that L has a pure point spectrum consisting of a countable sequence of
eigenvalues S = {0 = \g < A\; < A2 < ---} (more precisely, S is the spectrum of —L)
(cf. [R-S], [Y], [B-G-L]). Since A\; > 0, L is ergodic (in the sense that if I'(f) = 0, then
f is constant).

Given the spectrum S = {0 = Ao < A1 < Ay < ---}, define for every k € N the
polynomial of degree k in the real variable X,

k—1 k
Q(x) = [T =2 =Y g o 0)x

(Qo = 1). Define then the bilinear form (acting on A x A)

il o
|

The following main definition introduces the notion of chaos associated to L and its
spectrum S.

Definition 5. An eigenfunction F' of —L with eigenvalue A\, (—LF = A\ F') is said
to be a chaos of degree k > 1 relative to S if Qp4+1(I)(F) = 0 (p-almost everywhere).
We call F' a chaos eigenfunction (with eigenvalue \).

Motivation for the preceding definition is provided by the Ornstein-Uhlenbeck
operator with spectrum S = N. Namely, it is easily shown in this case (see [L1,
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§2]) that Qx(T)(F) = |V*F|?2. Any eigenfunction F' as in (6) is such that VXF is
constant and V*T'F = 0 leading thus to Definition 5. In the infinite dimensional
setting of an abstract Wiener space (E, H, 1) with separable Hilbert space H, referring
to [N, Chapter 1] for notation and terminology, the Ornstein-Uhlenbeck operator L has
domain D*? and Q(I')(F) = ||D"’F||§{®k for any F' € D*? where D is the derivative
operator (use as in the finite dimensional case the commutation [L, D] = D and the
chain rule formula [N, Proposition 1.4.5]). Now, if JiF' denotes the projection of F (in
Dk’Q) on the k-th Wiener chaos, LJyF = —kJyF and D*(J,F) = JoD*F = E(D*F)
so that JpF' thus defines a k-chaos in the sense of Definition 5. For example, in case
H = 1%(T, B,v) where v is a o-finite atomless measure on a measurable space (T, B),
the elements Ji F' may be represented as multiple stochastic integrals

I(f / / Feltry o te) W(dt1) - W (dty)
of symmetric functions f; on L2(T%) with respect to the white noise W and

DFIc(fi) = {frltr, . te); t1,..., tg € T}.

The discrete operator Lf = %Zf\il D;f on the cube {—1,+1}" and the Poisson
operator are further instances entering this definition with again S = N (see [L1, §2]).
On the cube {—1,+1}" for example,

QUIN(F) = 5o (Di -+ Dy P’

where the sum is over distinct i1,...,4, € {1,..., N} and thus any F of the form (7)
is a k-chaos (k < N).

There are of course examples of eigenfunctions which are not chaos. For instance,
the Laguerre operator on the positive half-line £, = z¢” + (p — z)¢', p > 0, has
spectrum equal to N (with eigenvectors the Laguerre orthogonal polynomials with
respect to the gamma distribution g, ), but the eigenfunction F' = x —p with eigenvalue
1 is not a 1-chaos as Q2(T')(F) = —1 F.

According to the preceding examples, another possible definition of k-chaos would
have been that Q. (T')(F) is constant. (If F' is normalized in L?(u), then [L1, p. 443],

/E Qu(T)(F)dy = /E FQu(~L)F dji = Qu(Mp).

hence Qi (I")(F) = Qr(Ag).) Now, it is easily checked (using (13) of Lemma 3) that
if F'is an eigenfunction of —L with eigenvalue \g, then LQ(I')(F) = 2Qk+1(I")(F).
In particular therefore, if Qx(I")(F') is constant, then Qx41(I')(F) = 0. Conversely, if
Qr+1(T)(F) = 0, by ergodicity, Q(I")(F') is constant. It will turn out more simple in
the proofs of the main results to use the first definition of chaos (as Qx+1(I')(F) = 0).
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The following statements are the main results of this work. Recall the polynomials
Qr(X) and set, for k > 1, X € R,

k+1
1 i ie
B (X) = 55 [Qunn(X) - QL OX] = 3 QL)X

and
Tr41(X) = Rpr1 (X + M) — Ry (An).

Thus for example, @Q2(X) = X2 -\ X, Ry =1 and T = 0, @Q3(X) =
X3 - ()\1 + )\Q)XZ + )\1)\2X, R3(X> =X - ()\1 + /\2) and Tg(X) = X. Set furthermore

'/Tk:)\l“‘)\k, k‘Zl (7T0:1).

The following theorem puts forward the fundamental identity at the root of this
work.

Theorem 6. In the preceding setting, let F' be a k-chaos eigenfunction with
eigenvalue A\, k > 1. Set I' = I'(F'). Then,

7rk_1/ F2d,u:7rk/ F2Fd,u+(—1)k/ I Tyot1 (%)L dp. (16)
E E E

Corollary 7. In the preceding setting, let F' be a k-chaos eigenfunction with
eigenvalue A\, k > 1. Set I' =T'(F). If

(=) " Ty (- An) <0 forevery n €N, (17)

then
/r%zug Ak/ F2T dp. (18)
E E

In particular, if F' is normalized in L*(p1), then [, T'dy = [, F(—LF)dp = A, and thus

Var, (') < )\k</E F?I'dy — )\k). (19)

Under the additional diffusion hypothesis on L, according to (9), inequality (19) of
Corollary 7 may be expressed equivalently as

Var, (I') < A7 (é /E Fidy — 1>. (20)

In particular, if fE Fidy = 3, then T' = I'(F) is constant and by Stein’s lemma
(Proposition 1), the distribution of F' is Gaussian.

14



The next statement describes a fundamental instance for which the spectral
condition (17) in Corollary 7 is fulfilled.

Theorem 8. The spectral condition (17) in Corollary 7,
(—1)’“Tk+1( - )‘T") <0 forevery n €N,

is satisfied when S = (\,),, .y = N.

As a consequence of this result, the conclusions of Corollary 7 apply to the examples
of the Ornstein-Uhlenbeck, Bernoulli and Poisson operators. As such, some of the main
conclusions of [No-P1] are covered by the preceding general statement, and in particular
the initial result of [Nu-P], namely that if (F),),.y is a sequence of homogeneous
Gaussian chaos, normalized in L*(yn,), N, — oo, then (F,),.y converges to a
Gaussian distribution as soon as [, Fydu — 3.

For discrete models as the cube or the Poisson space, the picture is less satisfactory.
For instance on the cube E = {—1,+1}¥» N, — oo, if F,, = szk a’k Wa,neN,is
a sequence of Walsh chaos of degree k normalized in L?(u) for the uniform measure p,
and if [, F3T(F,)duw — k, then as an application of Corollary 7, I'(F,) — k in L?(p).
Now I'(F') being constant in this case is not always discriminative (as shown by the
example of F'(x) = x1 - - - x) and further conditions have to be imposed on the sequence
(F),,en to ensure convergence towards a Gaussian distribution. This analysis has been
recently achieved in [N-P-Rei2]. Similar additional conditions have been studied on
Poisson spaces in [P-S-T-U], [P-Z]. The input of Corollary 7 on convergence of chaos
in these discrete examples is that it reduces the convergence I'(F},,) — \; in L?(u) by
the weaker condition [, F2T'(F,)dp — Ag.

5. Chaos of order 1 and 2

Before turning to the general proofs of Theorem 6 and Corollary 7, and to get a
better feeling about these statements, we discuss in this section the particular values
k =1 and k = 2. Recall that we write for simplicity T',, = I',,,(F), m > 1, for an
eigenfunction F'.

When k = 1, that is Q2(T') = I's — A" = 0, multiplying this identity by F? and
integrating with respect to p, it follows thanks to Lemma 3 (formula (15)) that

/FQd,u:)\l/ F2T dp.
E E

Now here Ry = 1, and thus T5 = 0, so that both the fundamental identity (16) and
the spectral condition (17) are automatically satisfied.

15



When k = 2, start from Q3(I') = I's — (A1 + A2) ' — A; A2 ' = 0. Multiplying by
F? and integrating, it follows similarly thanks to Lemma 3 (formula (15)) that

/rrgdﬂ—(AﬁAQ)/ F2du+)\1)\2/ F?Tdp = 0.
E E E

By (13) of Lemma 3, I'; = %LF + Ao T so that

1
—/ ILT dy — )\1/ du + )\1)\2/ F?Tdu = 0.

2 JE E E

Here R3(X) = X — (A + A2) and T5(X) = X so that the fundamental identity (16)
holds and the spectral condition (17) amounts to A, > 0 for every n € N.

One observation on which we will come back in the next section is that, in the
case k = 2, only the inequality Q3(I') > 0 is used in order to reach the conclusions
of Corollary 7. A further observation is that for chaos of order 1 or 2, the spectral
condition (17) is fulfilled for any sequence of eigenvalues 0 = \g < A\; < Ay < ---. This
is clearly not the case when k > 3.

6. Proofs of Theorems 6 and 8

In this section, we establish Theorem 6 and Corollary 7, and Theorem 8. Let thus
F be a k-chaos with eigenvalue ;. (If necessary, we may assume that & > 3 according
to the preceding section.) Write as usual I', for Iy, (F'), m > 1.

As in the preceding section for chaos of order 1 or 2, start as a first step from the
chaos hypothesis Q1(I') = 0. Multiply this identity by F? and integrate with respect
to p. By definition of Qx41 and (15) of Lemma 3,

k:—|—1
/ F2Qp 1 (T)dp = ZZ, Q) (0) /E F2r, dy
B4 (21)
= QL0 )/ Fgrdu+z QU )/Errz-_ldu.
Now, by (13) of Lemma 3,
k+1 k+1 5
Z’L' Qk;_|_1 /Erri—ldﬂ ](3_1 /EF L+)\k1d> Fd,u
k+1 1—2
—ZZ,QM Z( )—)\Z 2= E/FLEFd,u
£=0
—kzl Iil ( 2)% Q) ()N 5216/ PLT dy.
£=0 1=0+2
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Recalling the definition of the polynomial Rj1, note that

k+1

i— ¢
> ( , ) QL O = B, Ow).
i=L+2
Hence
k+1 ©
¢
¥ Qk+1 /PFZ ydp = Zﬂ Rk+1(Ak)2/PL T dp.
Now
k—1 1 .
o R\ ()XY = Ryt (X + M) = Thr (X) + Rier (M)
¢=0
so that
k+1

Z 'Qk+1 /FFi_lduz/FTk+1(%)qu+Rk+1()\k)/ Idp.
il E E E

The fundamental identity (16) of Theorem 6 then follows from (21) together with the
fact that

QM (0) = (—1)FA - M = (~1)m,

and
Ris1(Ae) = (=D A1-- Apq = (=),

The proof is complete. O

Corollary 7 is deduced from Theorem 6 through the following classical and
elementary property, consequence of the point spectrum hypothesis.

Lemma 9. If P is a polynomial, [,uP(L)udu > 0 for every u (in the L*(p)-
domain of P(L)) if (and only if) P(—M\,) > 0 for every n € N.

Proof. For each n € N, denote by E,, the eigenspace associated to the eigenvalue
An so that L2 () = @,,c En since S = (An),,cy is the spectrum of L. Decompose then
win L2(p) as u = Y, o Un with u, € En, n € N, so that P(L)u = Y, .y P(=Xn)un

and
/ L)udu = ZP /u du
E

neN

from which conclusion follows. O

As mentioned for chaos of order 2, when k is even, only the inequality Qx41(I') >0
is used in order to reach the conclusions of Corollary 7.
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We next turn to the proof of Theorem 8, checking the spectral condition (17)

(~1)*Ths1( — 22) < 0, n € N, for S = (A\n),ey = N. Since in this case
Trr1(X) = Rpy1(X + k) — (=1)**1(k — 1)!, we have to show that

n 2 | |

(3-%) m%ﬂ)—’f(r’f)} (k- 1)t

When 5 = k, the expression on the left-hand side is equal to k! Zle % so that the
conclusion holds in this case. When 5 # k, we need to show that

k—1

(g_@_l[ﬂ (g-i)-k!} > (k— 1)\,

1=0

Assume first that n > 2k + 1. Then

(-9 = G-+ T (-

> (2o ) (Y = (B ok

G- (TG ) ]

.
N

Hence

which answers this case. We turn to the case where n < 2k —1 for which it is necessary

to check that
k—1

H(g—z) gg(k—l)!.

=0

It is enough to assume that n is odd, n =2p—1,1 < p < k. Then

() -TG-) TG -9 =16 DT -3)

Therefore, the inequality to establish amounts to

p—1

H(“)ﬂ(")- — DIk —p)! < (k—1)!

=1

which is trivially satisfied. The claims thus holds in this case too. Theorem 8 is
therefore established.
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7. Convergence to gamma distributions

In this last section, we briefly address the analogues of Theorem 6 and Corollary 7
in the context of convergence to gamma distributions on the basis of the corresponding
Stein characterization of Proposition 2. The main conclusion is obtained by a simple
variation on the fundamental identity (16) of Theorem 6. In particular, the analysis
covers the recent results of [No-P2] (see also [No-P1]) in the context of Wiener chaos.

The framework is the one of the preceding sections, with a Markov operator L with
spectrum S = (A,), oy and invariant and reversible probability measure p and carré
du champ I'. Recall 7 = A1 ---Ag, £ > 1, and the polynomials Ry41 and Tjyq of
Theorem 6.

The following theorem addresses approximation of a k-chaos F' by a gamma
distribution via the control of Var,(I' — Ay F') as emphasized in Proposition 2. As
announced, the proof is an easy modification on the fundamental identity (16) of
Theorem 6.

Theorem 10. Let F' be a k-chaos with eigenvalue A\, k > 1, such that fE F2dy =
p > 0. Set I' = T'(F). Under the spectral condition (17) (—1)*Ty41( — ’\7") < 0 for
every n € N, it holds

Var, (I' = A\ F) < )\k/ F?Tdyp + Ak;/ FT'dy— pBy, —pzki
E E
where
2(—1>k)\k Ak (_1)14:)\2 Ak

Av=—r—— Ren(G)  and Bi= T ()

In the diffusion case,

)\k/F4du:3/F2qu and )\k/F:”du:Q/Fqu
E E E E

so that the conclusion of the theorem reads

Y Apg
Var, (I — A\ F) < ?’f / Fdp + 5 / F3dy — pBy, — p* 3.
E E

Consider now the example where S = N for which we know from Theorem 8 that
the spectral condition (17) holds. The inequality of Theorem 10 takes a nicer form
when k > 2 is even. Indeed in this case (—1)¥\yRj41(2k) = —2k! so that

1
EVaru(I‘— A F) §/

le“du—4/ FTdu + 2pk — p°k.
E E
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In particular in the diffusion case,

3
ﬁVaru(F—)\kF)S/JEF4du—6/JEF3du+6p—3p2. (22)

This inequality (22) then ensures, through Stein’s lemma (Proposition 2), that if
(Fn),ey is a sequence of k-chaos such that [, F2du = p for every n and

/ngu—ﬁ/ F3du +6p — 3p* — 0,
E E

then (F), + p), oy converges in distribution to the gamma distribution with parameter
p, that is the main result of [No-P2].

Proof (of Theorem 10). Let thus F be a k-chaos with [, F?du = p, hence
JpTdp = ph. Set U =T — \F (so [, Udp = pAg). It is immediately checked

that
/F2d,u:/U2d,u—|—2)\k/FFd,u—p)\i
E E E

:VarH(U)+2/\k/ FTdu—p(l—p)X;
E

and, for every ¢ > 1,
/ LLTdu :/ ULfUdu+2(—1)fAf;+1/ FTdu—p(—1)° A2
E E E

Therefore, the fundamental identity (16) of Theorem 6 takes the form, after a little of
algebra,

(1) / UTiy1(5)U dp — 71 Var, (U) +7Tk/ F2T du
E E
+ 2(—1)k>\kRk+1(%)/ FTdp—p(—=1)" ; Riy1(2) — p*Npm—1 = 0.
B

Under the spectral condition (17) (—1)¥Ty (-2

Tn) < 0 for every n € N,

Thk—1 Varu(U) S 7Tk/
E

— p(=1)* A} Ry (3) — p* i

which amounts to the statement of the theorem. The proof is complete. O

F°Tdp + 2(—1)’“)\kRk+1(’\7k)/ FTdp
E
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