GAPS AND FATOU THEOREMS FOR SERIES IN SCHAUDER BASIS OF HOLOMORPHIC FUNCTIONS

PATRICE LASSÈRE & NGUYEN THANH VAN

ABSTRACT. We prove a gap theorem and the "Fatou change-of-sign theorem" for expansions in common Schauder basis of holomorphic functions.

1. INTRODUCTION

Let $\Omega \subset \mathbb{C}$ be an open set and $K \subset \Omega$ a compact. A regular condenser in \mathbb{C} is a pair $\mathcal{C} = (\Omega, K)$ such that $K = \widehat{K}_{\Omega}$ (the holomorphic hull of K in Ω) and the extremal subharmonic function

$$h_{\Omega,K}(z) := \sup\{u(z) : u \in SH(\Omega) : u \le 1, u_{/K} \le 0\}$$

is continuous on Ω and has boundary value 1 on $\partial \Omega$.

Let $(F_n)_n$ be a common Schauder basis of $\mathcal{O}(\Omega)$ (space of holomorphic functions on Ω equiped with the compact-convergence topology) and $\mathcal{O}(K)$ (space of germs of holomorphic functions on K equiped with the inductive limit topology $\lim_{K \subset U} \mathcal{O}(U)$) (for the existence of such a basis see Nguyen T.V. [5] or Bagby [1]). $(F_n)_n$ is then a basis for $O(\Omega_\alpha)$ ($\forall \alpha \in]0, 1[$) where $\Omega_\alpha = \{z \in \Omega : h_{\Omega,K}(z) < \alpha\}$. We will prove the following

1.1 Theorem : Suppose $\Omega \setminus K$ connected. Let $\alpha \in]0,1[$ and $f \in \mathcal{O}(\Omega_{\alpha})$ which is not analytically continuable to Ω_{β} for any $\beta \in]\alpha,1[$. Let $\sum_{n\geq 0} c_n F_n$ be the expansion of f in the basis $(F_n)_n$ in $\mathcal{O}(\Omega_{\alpha})$. Then there exists a sequence $\varepsilon = (\varepsilon_n)_n \in \{0,1\}^{\mathbb{N}}$ (resp. $\{-1,1\}^{\mathbb{N}}$) such that the function $f_{\varepsilon} = \sum_{n\geq 0} \varepsilon_n c_n F_n$ is not analytically continuable through any point of $\partial \Omega_{\alpha}$.

1.2 Remark : We know (Mityagin [4]) that any basis is absolute, so $\sum_{n\geq 0} c_n F_n$ converges normally on every compact of Ω_{α} and so $f_{\varepsilon} \in \mathcal{O}(\Omega_{\alpha})$.

¹⁹⁹¹ Mathematics Subject Classification. 30B50, 30B40.

Key words and phrases. Expansions, Schauder basis, Change of sign, Gap.

2. Preliminary results

2.1 Theorem : (Sicial [8] Cor.3.4 and also Saint Raymond [7] lemma 4) Let $(f_n)_n$ be a sequence of holomorphic functions in an open set Ω of \mathbb{C}^d . Let D be the set of points $a \in \Omega$ such that the serie $\sum_{n\geq 0} f_n$ is normally convergent on a neighbourhood of a. Assume that $\overline{D} \subset \Omega$. Then there exists $\varepsilon = (\varepsilon_n)_n \in \{0,1\}^{\mathbb{N}}$ (resp. $\{-1,1\}^{\mathbb{N}}$) such that the function $f_{\varepsilon} = \sum_{n\geq 0} \varepsilon_n f_n$ cannot be continued analytically through any boundary point of D.

Sicial proved this theorem for $\varepsilon \in \{0,1\}^{\mathbb{N}}$, but his proof works as well for $\varepsilon \in \{-1,1\}^{\mathbb{N}}$.

2.2 Definition : Let $C = (\Omega, K)$ be a regular condenser in \mathbb{C} . A sequence $(f_n)_n \subset \mathcal{O}(\Omega)$ is said C-regular when there exists R > 1 such that

$$\lim_{n \to \infty} \|f_n\|_{\Delta}^{1/n} = R^{\alpha_{\Delta}}$$

for every compact disc $\Delta \subset \Omega \setminus K$, with $\alpha_{\Delta} := \sup_{z \in \Delta} h_{\Omega,K}(z)$ and $\|.\|_{\Delta}$ is the sup norm on Δ .

2.3 Fundamental Lemma : Let C be a regular condenser, let $(f_n) \subset \mathcal{O}(\Omega)$ be a C-regular sequence and $(c_n)_n$ be a sequence of complex numbers satisfying

$$\limsup_{n \to \infty} |c_n|^{1/n} = R^{-\alpha},$$

then there exists $\varepsilon = (\varepsilon_n)_n \in \{0,1\}^{\mathbb{N}}$ (resp. $\{-1,1\}^{\mathbb{N}}$) such that the function $f_{\varepsilon} = \sum_{n\geq 0} \varepsilon_n c_n f_n \in \mathcal{O}(\Omega_{\alpha})$ is not analytically continuable through any point of $\partial \Omega_{\alpha}$.

Proof: Let

$$D = \{ z \in \Omega : \sum_{n \ge 0} c_n f_n \text{ converges normally in a neighborhood of } z \}.$$

Following the above theorem of Siciak, it suffices to prove that $D = \Omega_{\alpha}$. Evidently $\Omega_{\alpha} \subset D$. Let $a \in \Omega \setminus \overline{\Omega_{\alpha}}, \ \Delta = \overline{D}(a, r) \subset \Omega \setminus \overline{\Omega_{\alpha}}$. The hypothesis on $(f_n)_n$ implies :

 $\forall \rho \in]0,1[, \exists A(\rho) = A \text{ such that } ||f_n||_{\Delta} \ge A\rho^n R^{n\alpha_{\Delta}}, \forall n \in \mathbb{N}.$ The hypothesis on $(c_n)_n$ implies :

$$\forall \tau \in]0,1[, \exists B(\tau) = B, \exists (n_k)_k \nearrow \infty \quad \text{such that} \\ |c_{n_k}| \ge B\tau^{n_k} R^{-\alpha n_k}, \quad \forall k \in \mathbb{N}.$$

If we choose ρ and τ such that $r := \rho \tau R^{\alpha_{\Delta} - \alpha} > 1$, then

$$||c_{n_k}f_{n_k}||_{\Delta} \ge ABr^{n_k} \nearrow \infty,$$

GAPS AND FATOU THEOREMS FOR SERIES INSCHAUDER BASIS OF HOLOMORPHIC FUNCTION ${\bf S}$

and $a \notin D$. So $D \supset \overline{\Omega_{\alpha}}$. Because $\overrightarrow{\Omega_{\alpha}} = \Omega_{\alpha}$, we have $D = \Omega_{\alpha}$.

3. Proof of the theorem :

Recall (Nguyen [5], Bagby [1]) that there exists a common basis $(B_n)_n$ of $\mathcal{O}(\Omega)$ and $\mathcal{O}(K)$ satisfying

$$\lim_{n \to \infty} \|B_n\|_{\partial \Omega_{\alpha}}^{1/n} = R^{\alpha}, \quad \forall \, \alpha \in]0, 1[,$$

where $R = \exp(2\pi/C)$ and C is the capacity of the condenser C:

$$C := \inf\left\{\int \int_{\Omega \setminus K} |\nabla u(z)|^2 dx dy, \ u \in \mathcal{C}^1(\Omega \setminus K), u_{\partial\Omega} \equiv 1, \ u_{\partial K} \equiv 0\right\}$$

By the simultaneous quasi-equivalence theorem of Dragilev (Dragilev [2], Nguyen-Lassère [6]) there exists $(\alpha_n)_n \subset \mathbb{C}^*$ and a bijection π : $\mathbb{N} \to \mathbb{N}$ such that the basis $(G_n)_n$ where $G_n = \alpha_n F_{\pi(n)}$ is equivalent to $(B_n)_n$ in $\mathcal{O}(\Omega_\alpha), \forall \alpha \in]0, 1[$. This means that the relations $T(B_n) := G_{\pi_n}, n \in \mathbb{N}$ define a simultaneous isomorphism T for all the spaces $\mathcal{O}(\Omega_\alpha), (\alpha \in]0, 1[$). One deduces easily from this that

$$(\bigstar) \qquad \qquad \lim_{n \to \infty} \|G_n\|_{\partial \Omega_{\alpha}}^{1/n} = R^{\alpha}, \quad \forall \, \alpha \in]0, 1[.$$

Lemma : (Nguyen [5] page 228) Let $C = (\Omega, K)$ be a regular condenser with $\Omega \setminus K$ connected. Let $(G_n)_n$ be a sequence of holomorphic functions on Ω such that

$$\lim_{n \to \infty} \|G_n\|_{\partial \Omega_{\alpha}}^{1/n} = R^{\alpha}, \quad \forall \, \alpha \in]0, 1[,$$

then, for any compact disc $\Delta \subset \Omega \setminus K$ we have

$$\lim_{n \to \infty} \|G_n\|_{\Delta}^{1/n} = R^{\alpha_{\Delta}}, \quad \text{where} \quad \alpha_{\Delta} = \sup_{z \in \Delta} h_{\Omega,K}(z).$$

Let f as in the statement of the theorem. Then, in $\mathcal{O}(\Omega_{\alpha})$, we have

$$f = \sum_{n \ge 0} c_n F_n = \sum_{n \ge 0} d_n G_n = \sum_{n \ge 0} d_n \alpha_n F_{\pi(n)}$$

the series converge normally on any compact of Ω_{α} because any Schauder basis of a Fréchet nuclear space is absolute (Mityagin, [4]). The sequence $(d_n)_n$ satisfies evidently

$$\limsup_{n \to \infty} |d_n|^{1/n} = R^{-\alpha}$$

as consequence of (\bigstar) and the hypothesis $f \notin \mathcal{O}(\Omega_{\beta}), \forall \beta > \alpha$.

By the fundamental lemma, $\exists \varepsilon' = (\varepsilon'_n)_n \in \{0,1\}^{\mathbb{N}}$ (resp. $\{-1,1\}^{\mathbb{N}}$) such that the function

$$f_{\varepsilon'} = \sum_{n \ge 0} \varepsilon'_n d_n G_n = \sum_n \varepsilon'_n d_n \alpha_n F_{\pi(n)} = \sum_n \varepsilon'_{\pi^{-1}(n)} c_n F_n$$

holomorphic in Ω_{α} , is not analytically continuable through any point of $\partial \Omega_{\alpha}$ ($c_n = d_{\pi^{-1}(n)} \alpha_{\pi^{-1}(n)}$ by uniqueness of coefficients and the different series, absolutly convergent, are commutatively convergent). To conclude, it suffices to put $\varepsilon_n = \varepsilon'_{\pi^{-1}(n)}$.

Remark : The following example was suggested by the referee : Let $\Omega := \{z \in \mathbb{C} : |z^2 - 1| < 2\}, K := \{z \in \mathbb{C} : |z^2 - 1| \leq a\}$ where 0 < a < 1. Here $h_{\Omega,K}(z) = \log^+ \frac{|z^2 - 1|}{a} / \log \frac{2}{a}$. If $\alpha = \frac{\log \frac{1}{a}}{\log \frac{2}{a}}$ then Ω_{α} is the union of two disjoints components D_1 (with $-1 \in D_1$) and D_2 (with $1 \in D_2$) whose closures intersect at the point 0. Let f_1, f_2 be two different entire functions (e.g. two different constant functions) and consider $f(z) := f_j(z), \ j = 1, 2$. Then $f \in \mathcal{O}(\Omega_{\alpha})$ and does not have analytic continuation to any Ω_{β} with $\alpha < \beta < 1$. By the theorem, there exists a sequence $\varepsilon \in \{-1, 1\}$ (resp. $\varepsilon \in \{0, 1\}$) such that the function $f_{\varepsilon} := \sum_{n \geq 0} \varepsilon_n c_n F_n$ does not have analytic continuation across any boundary point of Ω_{α} .

References

- [1] Bagby T. "On interpolation by rationals functions", Duke Math. J. 6 (1969), 95-104.
- [2] Dragilev M.M. "Compatibility regular bases of Köthe spaces", Math. Notes 19 (1976), no. 1-2, 69-73.
- [3] Fatou P. "Séries trigonométriques et séries de Taylor", Acta. Math. 39 (1906), 335-400.
- [4] Mityagin B. "Approximate dimension and bases in nuclear spaces", Russian Math. Surveys 16 (1961), 59-127.
- [5] Nguyen T.V. "Bases de Shauder dans certains espaces de fonctions holomorphes", Ann. Inst. Fourier 22 (1972), 169-253.
- [6] Nguyen T.V. & Lassère P. "Bases communes holomorphes : nouvelle extension du théorème de Whittaker", Ann. Polon. Math. 58.3 (1993), 311-318.
- [7] Saint Raymond J. "Fonctions séparément analytiques", Ann. Inst. Fourier 40-1 (1990), 79-90.
- [8] Siciak J. "Domains of convergence of Laplace series", Microlocal analysis and complex Fourier analysis, World Sci. Publishing, River Edge, NJ, (2002), 261-272.

LASSÈRE PATRICE & NGUYEN THANH VAN : LABORATOIRE DE MATHÉMATIQUES E.PICARD, UMR CNRS 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 TOULOUSE. LASSERE@picard.ups-tlse.fr & nguyen@picard.ups-tlse.fr