3 L2 PCP − Préparation à l'oral : Algèbre Linéaire, Réduction des Endomorphismes.

9 * 9

Exercice 1. Soit $A \in M_n(\mathbb{C})$ de rang 1.

- 1) Trouver une base \mathscr{B} de \mathbb{C}^n dans laquelle A est d'allure simple et en déduire que $\det(A+I_n)=\operatorname{trace}(A)+1$.
- 2) Quel est le polynôme caractéristique de A? En déduire que A est diagonalisable si et seulement si $trace(A) \neq 0$.
 - 3) Soit $\omega = e^{2i\pi/5}$ et $A = ((\omega^{k+l}))_{0 \le k, l \le 4} \in M_5(\mathbb{C})$. A est-elle diagonalisable? Que vaut $\exp(A)$?

Exercice 2. Soit $A \in M_2(\mathbb{Z})$, on suppose qu'il existe $N \in \mathbb{N}$ tel que $A^N = I_2$.

- 1) Montrer que A est inversible et diagonalisable.
- 2) Que dire des valeurs propres de A?
- 3) Si les valeurs propres de A sont réelles montrer que $A^2 = I_2$.
- 3) Etudier le cas où elles ne sont pas réelles.
- 4) Montrer que $A^{12} = I_2$.

Exercice 3. Soit $A \in M_3(\mathbb{R})$ vérifiant $A^4 = A^2$. Si 1 et -1 sont valeurs propres de A, montrer que A est diagonalisable.

Exercice 4. Soit $A \in GL_6(\mathbb{R})$ vérifiant $A^3 - 3A^2 + 2A = 0$ et trace(A) = 8. Quel est le polynôme caractéristique de A? montrer que A est diagonalisable.

Exercice 5. Soit $A \in M_n(\mathbb{R})$ vérifiant $A^4 + A^3 + 2A^2 + A + I_n = 0$. Montrer que n est pair, que A est diagonalisable et que $trace(A) \in -\mathbb{N}$.

Exercise 6. Pour $f \in \mathcal{C}([0,1])$ on considère l'application $L(f): [0,1] \mapsto \mathbb{R}$ définie par

$$L(f)(x) = \begin{cases} f(0) & si \ x = 0, \\ \frac{1}{x} \int_0^x f(t)dt & si \ x \in]0,1]. \end{cases}$$

- 1) Montrer que L est bien un endomorphisme de $\mathscr{C}([0,1])$.
- 2) Valeurs propres et sous-espaces propres de L, commentaire?

Exercice 7. Soient $A, B, C \in M_2(\mathbb{R})$. On se propose de montrer qu'il existe $(a, b, c) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ tel que aA + bB + cC possède une valeur propre double.

- 1) Traiter le cas où la famille $\{A, B, C\}$ est libre dans $M_3(\mathbb{R})$
- 2) Quelle est la dimension de l'espace vectoriel $\left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, (a,b) \in \mathbb{R}^2 \right\}$?.
- 3) En déduire le cas général.

Exercice 8. Pour $A \in M_n(\mathbb{R})$ on pose : $\varphi : A \in M_n(\mathbb{R}) \longmapsto \varphi(A) = -A + tr(A)I_n$.

- 1) Montrer que $\varphi \in \mathcal{L}(M_n(\mathbb{R}))$.
- 2) Soit λ une valeur propre de φ . Montrer que $\lambda = -1$ ou n-1.
- 3) Montrer que le sous espace propre associé à la valeur propre $\lambda = -1$ est l'ensemble \mathscr{R} des matrices de trace nulle. Déterminer sa dimension grâce au théorème du rang convenablement appliqué.
 - 4) Montrer que le sous espace propre associé à la valeur propre $\lambda = n-1$ est une droite.
 - 5) φ est-elle diagonalisable?