Exercices

Exercice 1. Soit P le polynôme défini par $P(x) = 3x^4 - 11x^3 + 12x^2 - 4x + 2$. Montrer que P' s'annule au moins une fois sur [0,1].

Exercice 2. Montrer que la dérivée de la fonction $f: x \mapsto \frac{\sin x}{x}$ s'annule au moins une fois sur chaque intervalle de la forme $[k\pi, (k+1)\pi], k \in \mathbb{Z}$.

Exercice 3. Démontrer le théorème des accroissements finis pour $f:[a,b] \to \mathbb{R}$ continue sur [a,b] et dérivable sur [a,b] en appliquant le théorème de Rolle à la fonction $F:[a,b] \to \mathbb{R}$ définie par $F(x) = f(x) - \frac{f(b) - f(a)}{b-a}(x-a)$.

Exercice 4. Soient f, g deux fonctions continues sur [a, b], dérivables sur [a, b] et telles que $g(a) \neq g(b)$. En appliquant le théorème de Rolle à la fonction

$$F(x) = (f(a) - f(b))g(x) - (g(a) - g(b))f(x),$$

montrer qu'il existe $c \in]a, b[$ tel que

$$\frac{f'(c)}{g'(c)} = \frac{f(a) - f(b)}{g(a) - g(b)}.$$

Exercice 5 (*). Soit p et q deux nombres réels et n un entier naturel non nul. Montrer que le polynôme

$$P_n(x) = x^n + px + q$$

admet au plus deux racines réelles si n est pair et au plus trois racines réelles si n est impair

Exercice 6. En appliquant le théorème des accroissements finis à la fonction Arctan, établir que pour tout t > 0, Arctan $t > \frac{t}{1+t^2}$.

Exercice 7 (*). Soit $f(x) = e^{1/x}$.

a) Montrer que pour tout x>0, il existe $c\in[x,x+1]$ tel que

$$f(x) - f(x+1) = \frac{1}{c^2}e^{1/c}$$
.

b) Déterminer

$$\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{x}} - e^{\frac{1}{x+1}} \right).$$

Exercice 8. Soit $f:[a,b] \to]0,\infty[$ une fonction continue sur [a,b] et dérivable sur]a,b[. Montrer qu'il existe $c \in]a,b[$ tel que

$$\frac{f(b)}{f(a)} = \exp\left[\frac{f'(c)}{f(c)}(b-a)\right].$$

Indication: on pourra utiliser la fonction $g = \ln f$.

Exercice 9 (*). Soient $a_0, a_1, \ldots, a_n, n+1$ réels vérifiant l'égalité

$$\frac{a_0}{1} + \frac{a_1}{2} + \dots + \frac{a_n}{n+1} = 0.$$

Montrer que le polynôme $P = a_0 + a_1x + \ldots + a_nx^n$ possède au moins une racine dans l'intervalle]0,1[.

Indication: considérer une primitive de P.

Exercice 10 (*). a) Montrer à l'aide du T.A.F. que pour tout x > 0,

$$\frac{1}{x+1} < \ln(x+1) - \ln(x) < \frac{1}{x}.$$

b) En déduire que les fonctions f et g définies par $f(x) = \left(1 + \frac{1}{x}\right)^x$ et

$$g(x) = \left(1 + \frac{1}{x}\right)^{x+1}$$
 sont monotones sur \mathbb{R}_+^* .

c) Déterminer

c) Déterminer
$$\lim_{x\to +\infty} x \ln \frac{x+1}{x} \quad \text{et} \quad \lim_{x\to +\infty} (x+1) \ln \frac{x+1}{x}.$$
 d) Déterminer
$$\lim_{x\to +\infty} f \text{ et } \lim_{x\to +\infty} g.$$

Exercice 11 (*). En utilisant la formule de Leibniz, calculer la dérivée n-ième de f pour

a)
$$f(x) = x^2 \ln(x)$$
.

a)
$$f(x) = x^2 \ln(x)$$
.
b) $f(x) = x^{n+1} \ln(x)$.

a) Soit f(x) = Arctan x. Trouver $c \in [0, 1]$ tel que Exercice 12.

$$f(1) = f(0) + f'(c).$$

b) Soit $g(x) = \ln(x)$, a = 1 et b = 3. Trouver $c \in [a, b]$ tel que

$$g(b) = g(a) + (b - a)g'(a) + \frac{(b - a)^2}{2}g''(c).$$

Remarque: $2/(2 - \ln 3) = 2.21888...$

a) Tracer sur un même graphique les graphes des fonctions Exercice 13.

$$f: x \mapsto e^x$$
, $g: x \mapsto 1$, $h: x \mapsto 1+x$ et $k: x \mapsto 1+x+x^2/2$.

b) Donner un encadrement de $e^x - (1+x)$ sur [0, 1/2].

Exercice 14 (*). Calculer $\sin(10^{-1})$ à 10^{-12} près en utilisant la formule de Taylor à un ordre bien choisi.

Exercice 15. Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par

$$f(x) = \frac{\sin(x) + \cos(x)}{1 + \cos^2(x)}.$$

Montrer que pour tout $a \in \mathbb{R}$, f'(x) s'annule sur l'intervalle $a, a + 2\pi$.