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1 Introduction

This paper deals with approximate solutions of inconsistent linear systems
of the form n

a (t)
>
x � b (t) ; t 2 T

o
; (1)

where T is a (possibly in�nite) index set, a : T �! Rn and b : T �! R are
given mappings, and a (t)> represents the transpose of a (t). The system in
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(1) is called �nite (respectively, semi-in�nite) whenever the index set T is
�nite (in�nite). In the particular case of �nite linear systems, it is customary
to write at 2 Rn (respectively, bt 2 R) instead of a (t) (b (t)) for all t 2 T:
We will use both notations at our convenience.
The constraint systems of linear optimization problems (also called pro-

grams) with �nite dimensional decision space are expressed as (1). These
problems are called either �nite or semi-in�nite according to the nature of
its constraint system. In many (possibly inconsistent) linear semi-in�nite
programs arising in practice, T is either an interval of time, or a region in
the plane (or in the space) on which the functions a and b are continuous
(see, e.g., [9] and [11]). In particular, the constraint systems of the linear
semi-in�nite programs arising in the best uniform and L1 approximation of
real-valued functions by polynomials are always consistent [9, Chapter 1])
but, in general, the consistency or not of the system in (1) depends on the
data, i.e, the mappings a and b: In the linear semi-in�nite programming
(SIP in short) literature, the programs, as well as their corresponding con-
straint systems, are said to be discrete whenever T is a topological space
without accumulation points (e.g., a �nite set equipped with the discrete
topology) and continuous whenever T is a compact Hausdor¤ space and the
functions a and b are continuous on T:
In this paper we evaluate the infeasibility of a given x 2 Rn with respect

to a given inconsistent system
n
a (t)

>
x � b (t) ; t 2 T

o
by means of three

norms de�ned on certain spaces of functions. Since two of these de�nitions
involve integrals, on T; of functions depending on a and b, we must impose
suitable conditions on a; b and T guaranteeing integrability. Moreover, in
order to characterize the best approximation for one of these norms, we
must apply the Leibnitz integral rule for derivation under the integral sign,
which has been established for boxes, that is, cartesian products of (possibly
improper) compact intervals in R. For this reason, we consider in this paper
linear systems such that T is the union of two disjoint subspaces of some
Euclidean space Rm (at least one of them nonempty): a �nite set and a �nite
union of pairwise disjoint compact Hausdor¤ sets on which the mappings a
and b are continuous. More precisely, we assume that the index set in (1)
can be expressed as

T =
�
t1; :::; tq

	
[

0@ p[
j=1

Tj

1A � Rm;

where Tj is a box, ajTj 2 C (Tj ;R)
n
; bjTj 2 C (Tj ;R) ; j = 1; :::; p; where

C (Tj ;R) denotes the space of real-valued continuous functions on Tj ; and
the sets

�
t1; :::; tq

	
; T1; :::; Tp are pairwise disjoint.

Obviously,
�
a>t x � bt; t 2 T

	
is called discrete when

p[
j=1

Tj = ; (i.e.,

p = 0 6= q) and continuous when
�
t1; :::; tq

	
= ; (i.e., q = 0 6= p). We say

that
�
a>t x � bt; t 2 T

	
is a mixed system otherwise (i.e., when p 6= 0 6= q).
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Examples 1, 2, and 5 below deal with inconsistent discrete, continuous, and
mixed systems, respectively.
The residual of x 2 Rn is the nonzero real-valued continuous function

T 3 t 7!
�
a>t x� bt

�
+
:= max

�
0; a>t x� bt

	
;

whose size can be measured in di¤erent ways, e.g., by the L1; L1; and
L2 norms in the space C (T;R) of real-valued continuous functions on T:
We consider the problem of computing the best approximate solution of�
a>t x � bt; t 2 T

	
for these norms (i.e., �nding those x 2 Rn minimizing

the corresponding norm of the residual).
The best uniform solutions to

�
a>t x � bt; t 2 T

	
are the optimal solu-

tions to the problem

P0 : Minx2Rn f0 (x) = max
t2T

�
a>t x� bt

�
+
= max

t2T

�
a>t x� bt

�
;

the best L1�solutions are the optimal solutions to the problem

P1 : Minx2Rn f1 (x) =
pX
j=1

Z
Tj

�
a>t x� bt

�
+
dt1:::dtm +

qX
k=1

�
a>tkx� btk

�
+
;

and, �nally, the best least squares solutions are the optimal solutions to

P2 : Minx2Rn f2 (x) =
1

2

pX
j=1

Z
Tj

h�
a>t x� bt

�
+

i2
dt1:::dtm+

1

2

qX
k=1

h�
a>tkx� btk

�
+

i2
:

(We take the square of the Euclidean norm for the sake of smoothness of
the objective function and divide by 2 to simplify the expressions of the
gradient of f2:)
We illustrate these unconstrained convex optimization problems with a

simple example.

Example 1 Consider the discrete system, with n = 2; p = 0 and q = 3,

fx1 � �1;�x1 � �1; x2 � 1g ;

whose inequalities are indexed with t = 1; 2; 3: It is easy to see that

f0 (x) = max fjx1j+ 1; x2 � 1g ;

f1 (x) =

8>>>>>><>>>>>>:

x1 + x2; x 2 [1;+1[� [1;+1[ ;
x2 + 1; x 2 [�1; 1]� [1;+1[ ;
�x1 + x2; x 2 ]�1;�1]� [1;+1[ ;
�x1 + 1; x 2 ]�1;�1]� ]�1; 1] ;
2; x 2 [�1; 1]� ]�1; 1] ;
x1 + 1; x 2 [1;+1[� ]�1; 1] ;
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and

f2 (x) =
1

2

n�
(x1 + 1)+

�2
+
�
(�x1 + 1)+

�2
+
�
(x2 � 1)+

�2o
:

One immediately realizes that the set of minimizers of f0 is f0g � ]�1; 2] ;
that the set of minimizers of f1 is [�1; 1]�]�1; 1]; after solving six very sim-
ple linear programs, and veri�es, with more e¤ort (see [5, Example 2.2.1]),
that the set of minimizers of f2 is f0g� ]�1; 1] : Thus, the three problems,
P0; P1 and P2 have multiple optimal solutions and none of the objective
functions, f0; f1 and f2, is coercive.

Obviously, the functions f0; f1 and f2 are bounded from below, but
their in�mum values can be unattainable; in other words, it may happen
that the sets of best uniform, L1 and least squares solutions be empty as
the following example shows:

Example 2 Consider the system �1 =
�
�t2x � �2t; t 2 [0; 1]

	
(with n =

m = p = 1 and q = 0). Since atx� bt = t (2� tx) ; we have

atx� bt � 0()

8<: t 2
�
0; 2x

�
; if x > 0;

t 2 R+; if x = 0;
t 2
�
�1; 2x

�
[ R+; if x < 0:

So,

ft 2 R : atx� bt � 0g =

8<:
�
0; 2x

�
; if x > 0;

R+; if x = 0;�
�1; 2x

�
[ R+; if x < 0;

and

ft 2 [0; 1] : atx� bt � 0g =
�
[0; 1] ; if x � 2;�
0; 2x

�
; else.

Consequently,

f0 (x) =

�
2� x; if x � 1;
1
x ; else,

f1 (x) =

�
1� x

3 ; if x � 2;
4
3x2 ; else,

and

f2 (x) =

�
2
3 �

x
2 +

x2

10 ; if x � 2;
8

15x3 ; else,

so that the three functions are decreasing and di¤erentiable, and their in�-
mum (zero) is not attained.
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Observe that the existence of linear systems such that f0; f1 and f2
are decreasing is independent of the dimension of the space of variables
(consider, e.g., the system

�
�t2xn � �2t; t 2 [0; 1]

	
in Rn). Consequently,

regarding the existence of approximate solutions for continuous and mixed
systems, our main objective will be to give su¢ cient conditions as general
as possible.
There exists a stream of works dealing with discrete inconsistent linear

systems with di¤erent purposes:
1. Correcting the data, i.e., determining the smallest perturbation of the

perturbable data of an inconsistent system Ax 5 b providing a consistent
one (see, e.g., [1], [16], and [4], whose results also apply to continuous incon-
sistent systems). The analyzed perturbations a¤ect either the pair (A; b), or
the matrix A; or the column vector b, and are measured with a variety of
norms.
2. Calculating error bounds, i.e. positive scalars that multiplied by the

norm of the residual of any x 2 Rn provide bounds for the distance between
x and the set of minimizers of that norm ([18]).
3. Numerical methods to compute best least squares solutions (see, e.g.,

the recent paper [22] on variants of Han�s algorithm [12], whose fundamen-
tals are the existence and characterization theorems for discrete inconsistent
system proved in the latter paper; the recent work [5] provides two new
proofs of Han�s existence theorem; two additional works, [6] and [17], on
the so-called hybrid algorithm). To the best of our knowledge, no extension
of these results and methods to continuous and mixed linear inconsistent
systems is still available.
The paper is organized as follows: Section 2 provides necessary or su¢ -

cient conditions for the existence of best uniform solutions, which are also
characterized; Sections 3 and 4 are concerned with the characterization of
best L1 and L2 solutions; Section 5 contains some comments on the possible
use of the presented results in applications; �nally, Section 6 presents some
conclusions.

2 Best uniform solutions

We now introduce the necessary notation. The zero vector in Rn is denoted
by 0n: Given a set X � Rn; we denote by convX; coneX = R+ convX;
intX; clX; bdX; and rintX the convex hull of X; the convex conical hull
of X; the interior of X; the closure of X; the boundary of X , and the
relative interior of X; respectively. The indicator function of X is IX :
Rn ! R[f+1g, de�ned by IX (x) = 0; if x 2 X; and IX (x) = +1;
otherwise. Given a function f : Rn ! R = R[f+1;�1g ; its domain is
dom f = fx 2 Rn : f (x) < +1g ; and its epigraph is

epi f =
�
(x; �) 2 Rn+1 : f (x) � �

	
:

If dom f 6= ; and �1 =2 f(Rn) the function f is called proper, and if epi f
is closed we say that f is a closed function.
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The closure of a proper convex function f is the closed proper function
cl f such that

epi(cl f) = cl(epi f):

The Legendre-Fenchel conjugate of f is the function f� : Rn ! R de�ned
by

f� (u) = sup
x2Rn

�
u>x� f (x)

�
:

Given a family of proper convex functions on Rn, the convex hull of
these functions is the convex function convt2T ft de�ned by

(conv
t2T

ft)(x) = inf

(
� : (x; �) 2 conv

 [
t2T

epi ft

!)
:

It is well-known (e.g. [23, Theorem 16.5]) that if fft; t 2 Tg is a family
of closed proper convex functions on Rn; then�

sup
t2T

ft

��
= cl (conv ff�t ; t 2 Tg) : (2)

In this section the special structure of T is of no use, except the fact
that it is a compact set. In other words, we are considering the system

� := fa>t x � bt; t 2 Tg

with T compact and the functions t 7! at and t 7! bt continuous. The
inconsistency of � entails

f0(x) = maxfa>t x� bt; t 2 Tg > 0, for all x 2 Rn:

Now we derive the conjugate of f0: If

ft(x) := a
>
t x� bt; t 2 T;

since
f�t (�) = Ifatg(�) + bt; t 2 T;

(2) and the compactness of the set

C := convf(at; bt) : t 2 Tg;

yield

epi f�0 = cl

 
conv

([
t2T

f(at; bt) + R+(0n; 1)g
)!

= C + R+(0n; 1);

and

f�0 (u) = min

8<:X
t2T

�tbt

������
�t � 0; only �nitely many positive,X
t2T

�t = 1; and
X
t2T

�tat = u

9=; : (3)
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According to Theorem 11.8(d) in [24], the function f0 never is 1-coercive
since dom f�0 6= Rn.
Corollary 3.1.1 in [9] establishes that � =

�
a>t x � bt; t 2 T

	
is inconsis-

tent if and only if �
0n
�1

�
2 cl cone

��
at
bt

�
: t 2 T

�
: (4)

From now on we only deal with an inconsistent system � =
�
a>t x � bt; t 2 T

	
:

The following proposition gives a necessary condition (N), which is indepen-
dent of the right-hand side b; and a su¢ cient condition (S) for the existence
of a best uniform solution for �:

Proposition 1 (Existence of best uniform solutions) Given an incon-
sistent system � =

�
a>t x � bt; t 2 T

	
; the following statements hold:

(S) If � is discrete or satis�es

0n 2 rint conv fat : t 2 Tg ; (5)

then there exists a best uniform solution. When the convex hull in (5) is full
dimensional, then the set of best uniform solutions is bounded.
(N) If there exists a best uniform solution, then�

0n
�1

�
2 cone

��
at
bt

�
: t 2 T

�
: (6)

Proof Proof: It is based on well-known results of convex analysis.
(S) If � is an inconsistent discrete system, f0 is a polyhedral function which
is bounded from below, so its minimum is attained.

Suppose now that
p[
j=1

Tj 6= ; and that � is inconsistent. Then x will be

a best uniform solution of � if and only if 0n 2 @f0(x); but this happens if
and only if x 2 @f�0 (0n); i.e. @f�0 (0n) is the set of best uniform solutions of
�. Since dom f�0 = convfat : t 2 Tg; we have

0n 2 rint convfat : t 2 Tg =) @f�0 (0n) 6= ;;

and

0n 2 int convfat : t 2 Tg =) @f�0 (0n) is non-empty and compact.

(N) If there exists a best uniform solution of �; x, we have x 2 @f�0 (0n);
and

f0(x) + f
�
0 (0n) = 0

>
n x = 0:
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Since � is inconsistent, f0(x) > 0; entailing f�0 (0n) < 0: Then, according to
the expression of f�0 given in (3), there will exist scalars �t � 0; only �nitely
many positive, and such that

X
t2T

�t = 1;

X
t2T

�tat = 0n; and f�0 (0n) =
X
t2T

�tbt:

Therefore X
t2T

�t
jf�0 (0n)j

�
at
bt

�
=

�
0n
�1

�
;

and we get the aimed necessary condition (6).

Remark 1 It is also possible to prove Proposition 1 by using linear SIP
theory as P0 is equivalent to the linear SIP problem

P 00 : Min(x;xn+1)2Rn+1 xn+1
subject to a>t x� xn+1 � bt; t 2 T:

To prove (S), one can assume that
p[
j=1

Tj 6= ;: By [9, Theorem 8.1(v)], P 00

is solvable if and only if�
0n
�1

�
2 rint cone

��
at
�1

�
: t 2 T

�
;

which is equivalent to (5). On the other hand, by [9, Theorem 8.1(vi)], the
optimal set of P 00 is bounded if and only if�

0n
�1

�
2 int cone

��
at
�1

�
: t 2 T

�
;

which is equivalent to 0n 2 int conv fat : t 2 Tg :
Regarding (N), under the assumptions on the system in (1), the dual prob-
lem of P 00 in Haar�s sense is also solvable with the same optimal value
f0(x) > 0 (see, e.g., [9, Theorem 8.1]). This means that there exist scalars
�t � 0; only �nitely many positive such thatX

t2T
�t

�
�at
1

�
=

�
0n
�1

�
and �

X
t2T

�tbt = f0(x):

The rest of the proof is as above.

Example 1 shows that condition (5) is not necessary for the existence of
a best uniform solution, as

02 =

�
0
0

�
2 bd conv

��
1
0

�
;

�
�1
0

�
;

�
0
1

��
:
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Moreover,

argmax

�
a>t

�
0

x2

�
� bt : t 2 T

�
= f1; 2; 3g ;

with 02 2 conv fa1; a2; a3g ; while, for any x2 < 2;

argmax

�
a>t

�
0

x2

�
� bt : t 2 T

�
= f1; 2g ;

with 02 2 conv fa1; a2g, con�rming that any element of f0g � ]�1; 2] is a
best uniform solution (observe that (8) given later fails at all these points).
The next example shows that, in a similar way, condition (6) meaning that
� contains a �nite inconsistent subsystem does not guarantee the existence
of uniform solutions to �:

Example 3 Replacing the right-hand side in the system �1 (see Example 2)
�2t; by �2t� 1; for the new system, say �2;

f0 (x) =

�
3� x; if x � 1;
1 + 1

x ; else,

so that its in�mum, now 1; is still unattainable. The di¤erence is that �2
satis�es the necessary condition for the existence of uniform solution as
(a0; b0) = (0;�1) while �1 does not. Thus, the necessary condition given in
Proposition 1 is not su¢ cient.

Proposition 2 (Characterization of best uniform solutions) A given
x 2 Rn is a best uniform solution if and only if

0n 2 conv
�
at : t 2 argmaxfa>t x� bt : t 2 T

	
g: (7)

In particular, if

0n 2 int conv
�
at : t 2 argmaxfa>t x� bt : t 2 T

	
g; (8)

then x is the unique best uniform solution.

Proof The �rst statement comes from 0n 2 @f0(x) and the Valadier formula
(e.g. [13, VI Corollary 4.4.4]). The second statement is a consequence of the
so-called Polyak�s condition for the existence of sharp minimum [21].

Remark 2 The proof of Proposition 2 based on linear SIP theory is not
so simple. Let (x; xn+1) 2 Rn+1 with set of active indices T (x; xn+1) :=�
t 2 T : a>t x� xn+1 = bt

	
:

On the one hand, by [9, Theorem 7.1], (x; xn+1) 2 Rn+1 is an optimal
solution of P 00 if and only if�

0n
�1

�
2 cone

��
at
�1

�
: t 2 T (x; xn+1)

�
;

i.e.,
0n 2 conv fat : t 2 T (x; xn+1)g : (9)
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In this case, xn+1 = maxt2T
�
a>t x� bt

�
and so T (x; xn+1) = argmaxfa>t x�

bt : t 2 Tg which replaced in (9) yields (7).
On the other hand, if (10) holds, i.e.,�

0n
�1

�
2 int cone

��
at
�1

�
: t 2 argmaxfa>t x� bt : t 2 Tg

�
; (10)

then, by [9, Theorem 10.6],
�
x;maxt2T

�
a>t x� bt

��
is a strongly unique

optimal solution of P 00:

The next example illustrates the application of Proposition 2 to a con-
tinuous inconsistent system.

Example 4 Consider the deterministic counterpart of the uncertain system
in R2 f�2x1 � 0; 2x1 � 0g ; with uncertainty intervals of the form ��" for
each coe¢ cient �; with " > 0; formulated as PR in (17). This counterpart is
the inconsistent continuous system

�
a>t x � bt; t 2 T

	
; where T = T1 [ T2;

with Tj =
�
(�1)j 2; 0; 0

�
+ C; j = 1; 2; C = [�"; "]3 ; at = (t1; t2)

> and

bt = t3 for all t = (t1; t2; t3) 2 T: Let us analyze the particular case " = 1:
The problem to be solved is

P 00 : Min(x1;x2;x3)2R3 x3
subject to t1x1 + t2x2 � x3 � t3; t 2 T1 [ T2;

where all constraints of t1x1+t2x2�x3 � t3; t 2 Tj ; are consequences of the
inequalities corresponding to the extreme points of Tj : Observe also that,
for these points, �xed t1 and t2; t3 takes values �1; with t1x1+t2x2�x3 � 1
being a consequence of t1x1 + t2x2 � x3 � �1: So, P 00 is equivalent to the
problem P 000 obtained by replacing the constraints corresponding to indices
t 2 T1 [ T2 with the subsystem formed by the following eight inequalities:

�x1 + x2 � x3 � �1; (a)

�3x1 + x2 � x3 � �1; (b)

�x1 � x2 � x3 � �1; (c)

�3x1 � x2 � x3 � �1; (d)

x1 + x2 � x3 � �1; (e)

3x1 + x2 � x3 � �1; (f)

x1 � x2 � x3 � �1; (g)

3x1 � x2 � x3 � �1: (h)

If we sum term by term the inequalities (a), (c), (e) and (g), we conclude
that �x3 � �1 is a consequence of the inequality system above and so, an
optimal solution of P 00 is (0; 0; 1) ; which means that x = (0; 0) minimizes f0
with f0 (0; 0) = 1:
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We now observe that a>t x�bt = �t3 attains its maximum on T at the union
of the lower facets of T1 and T2; i.e.,

argmax
�
a>t x� bt : t 2 T

	
= ([�3;�1]� [�1; 1]� f�1g)
[ ([1; 3]� [�1; 1]� f�1g) :

Hence x satis�es (7) and (8), i.e., it is the unique best uniform solution.

3 Best L1 solutions

In the discrete case P1 consists in minimizing a nonnegative (convex) piece-
wise linear function. This allows us to assert the existence of solutions as in
Proposition 1 (without any assumption on the data (atk ; btk) ; k = 1; :::; q).
Next we focus on the characterization of optimal solution in the mixed case
(the corresponding to the discrete and the continuous cases can be seen as
particular cases).

Proposition 3 (Characterization of L1-solutions) A given x 2 Rn is
a best L1-solution if and only if

0n 2
pX
j=1

Z
Tj

Ajt dt+
X

1�k�q:
a>
tk
x=b

tk

convfatk ; 0ng+
X

1�k�q:
a>
tk
x>b

tk

atk ; (11)

where

Ajt :=

8<: fatg; if a>t x� bt > 0;
convfat; 0ng; if a>t x� bt = 0;
f0ng; if a>t x� bt < 0;

andZ
Tj

Ajtdt =

(
z =

Z
Tj

u(t)dt : u(:) is a Lebesgue-integrable selection in Aj(:)

)
:

Proof In this mixed setting, the L1 solutions are those vectors x satisfying

0n 2 @

8<:
pX
j=1

Z
Tj

�
a>t x� bt

�
+
dt1:::dtm +

qX
k=1

�
a>tkx� btk

�
+

9=; : (12)

Taking into account that the function t 7!
�
a>t x� bt

�
+
is continuous on

each Tj , that x 7!
�
a>t x� bt

�
+
is convex and �nite-valued for each x 2 Rn,

and so it is a normal convex integrand (see, e.g. [24, Proposition 14.39]),
we can write (applying e.g. [14, Theorem 4, §8.3] and observing that all the
integrals are �nite-valued convex functions)

0n 2
pX
j=1

Z
Tj

@
�
a>t x� bt

�
+
dt+

qX
k=1

@
�
a>tkx� btk

�
+
; (13)
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whereZ
Tj

@
�
a>t x� bt

�
+
dt =

(
z =

Z
Tj

u(t) dt

���� u(:) is Lebesgue-integrable in Tjand u(t) 2 @
�
a>t x� bt

�
+
; t 2 Tj

)
:

4 Best least squares solutions

Concerning the existence, Han�s original proof in [12] as also the new proofs
in [5] (all for the discrete case) are not easily adaptable to continuous sys-
tems. We therefore just propose a characterization of solutions.

Proposition 4 (Characterization of L2 solutions) A given x 2 Rn is
a least squares solution if and only if

pX
j=1

Z
Tj

�
a>t x� bt

�
+
atdt1:::dtm +

qX
k=1

�
a>tkx� btk

�
+
atk = 0n: (14)

Proof We can assume without loss of generality that p � 1 and q � 1:
Denoting by p+ : R! R the positive part function, i.e., p+ (y) = max fy; 0g ;
and by ht : Rn! R the a¢ ne function such that ht (x) = a>t x � bt; t 2 T;
we can write

f2 (x) =
1

2

pX
j=1

Z
Tj

�
p2+ � ht

�
(x) dt1:::dtm +

1

2

qX
k=1

�
p2+ � htk

�
:

Obviously, p2+ is convex and di¤erentiable, with
dp2+(y)

dy = 2p+ (y) for all
y 2 R while rht (x) = at for all x 2 Rn:
Let t 2 Tj ; with j 2 f1; :::; pg : Then x 7!

Z
Tj

�
p2+ � ht

�
(x) dt1:::dtm is

convex and di¤erentiable, with gradient

r
 Z

Tj

�
p2+ � ht

�!
(x) = 2

Z
Tj

�
a>t x� bt

�
+
atdt1:::dtm; (15)

provided by the Leibnitz integral rule for derivation under the integral sign,
taking into account that the partial derivatives or gradients are continuous
and bounded by integrable functions (see, e.g., [19, Section 14.2]).
Analogously,

r
�
p2+ � htk

�
(x) = 2

�
a>tkx� btk

�
+
atk ; k = 1; :::; q: (16)

The conclusion follows from (15), (16), and the well-known coincidence
of global minima and critical points for convex di¤erentiable functions.
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5 Applications

Linear SIP problems frequently arise in applications, in many cases with
constraint systems which can be consistent or not depending on the data
(see, e.g., [11] and references therein). One of the �elds where inconsistent
linear systems arise more frequently in practice is robust linear optimization,
which provides a deterministic framework for uncertain problems, as large
uncertainty sets may provide inconsistent robust counterparts. The next
examples illustrates this situation in robust production planning.

Example 5 The basic production planning model consists of maximizing the
cash-�ow c (x1; :::; xn) of the total production, with xi denoting the produc-
tion level of the i-th commodity, and the decision vector x = (x1; :::; xn)
must satisfy p linear constraints a>j x � bj ; where the components of aj
are the technological coe¢ cients while bj represents the available amount of
the j-th resource. In practical situations the coe¢ cients of the constraints
(except the positivity constraints xi � 0) are uncertain while the objective
function c is deterministic. The robust optimization approach provides a
deterministic framework for uncertain problems (see, e.g., [2], [3] and refer-
ences therein). Following this conservative approach, the input data, (aj ; bj),
j 2 J , are uncertain vectors and (aj ; bj) 2 Tj � Rn+1, where the sets Tj
are speci�ed uncertainty sets. For the sake of simplicity, assume that all
the uncertainty sets are boxes, i.e., that each coe¢ cient of a>j x � bj takes
values in a given interval in R. By enforcing the constraints for all possible
uncertainties within Tj , j 2 J , the uncertain production planning problem
is captured by the so-called robust counterpart

PR : Maxx2Rn c (x)

subject to t1x1 + :::+ tnxn � tn+1; t 2
p[
j=1

Tj ;

�xk � 0; k = 1; :::; n;

(17)

which is a linear SIP problem whose mixed constraint system can be written

as
n
a (t)

>
x � b (t) ; t 2 T

o
in (1), with T =

p[
j=1

Tj [
�
t1; :::; tn

	
� Rn+1;

tk := (�ek; 0) ; where ek denotes the k�th element of the canonical ba-
sis of Rn; k = 1; :::; n; a (t) = (t1; :::; tn)

>
; and b (t) = tn+1 for all t =

(t1; :::; tn+1) 2 T: We may assume that the boxes T1; :::; Tp are pairwise
disjoint and �

t1; :::; tn
	
\

0@ p[
j=1

Tj

1A = ; (18)

(otherwise, replace Tj with Tj � fjg ; j = 1; :::; p; and tk with
�
tk; p+ k

�
;

k = 1; :::; n). When the the union of
�
t1; :::; tn

	
with the boxes Tj ; j =
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1; :::; p; is too large, we may have

�
0n
�1

�
2 cone

0@�t1; :::; tn	 [ p[
j=1

Tj

1A ;
so that, by (4), PR is inconsistent, and the decision maker has two options:
either reducing the length of the uncertainty intervals (bounds for these
lengths can be found in [8] and references therein) or, assuming a minimum
risk, select a best approximate solution for the constraint system of PR:

The practical application of the previous results depends on the tractabil-
ity of the problems P0; P1; and P2:
When the given inconsistent system is discrete, P0 can be reformulated

as a linear program P 00 that can e¢ ciently be solved by any of the well-
known simplex-like or interior-point methods; when the system is contin-
uous, the linear semi-in�nite program P 00 can be solved by simplex-like,
cutting-plane, and grid discretization methods; �nally, when the system
is mixed, only grid discretization methods are viable, taking into account
that

�
t1; :::; tq

	
should be part of any grid (a brief survey of these methods

can be found in [10, Chapter 1]). In many economic problems (production
planning, allocation of resources, portfolio, etc.) with interval uncertain con-
straints a>j x � bj , all the sets f(at; bt) ; t 2 Tjg ; j = 1; :::; p; are boxes, in
which case P 00 can be reformulated as an ordinary linear program following
the same strategy as in Example 4 (by eliminating redundant constraints).
The main di¢ culty with solving P1 and P2 analytically, in the continuous

and mixed cases, is that one can hardly get explicit formulas for the integrals
of
�
a>t x� bt

�
+
and its square in terms of the variables x1; :::; xn; although

they can be easily evaluated for particular values of x = (x1; :::; xn) by
getting a convenient representation of the polytope

�
t 2 Tj : a>t x� bt � 0

	
once checked that a>t x� bt � 0 for some extreme point of Tj ; otherwiseZ

Tj

�
a>t x� bt

�
+
dt1:::dtm =

Z
Tj

h�
a>t x� bt

�
+

i2
dt1:::dtm = 0:

For instance, in Example 4, for x = (0; 2) ; a>t x � bt = 2t2 � t3 � 0 for
(1; 1;�1) 2 T1;

�
t 2 T1 : a>t x� bt � 0

	
= [�3;�1]�

�
(t2; t3) 2 [�1; 1]2 : t2 �

t3
2

�
;

and Z
T1

�
a>t x� bt

�
+
dt1dt2dt3 =

Z �1

�3
dt1

Z 1

�1
dt3

Z 1

t3
2

(2t2 � t3) dt2

=

Z �1

�3
dt1

Z 1

�1

�
t23
4 � t3 + 1

�
dt3 =

13
3 :



Best approximate solutions of inconsistent linear inequality systems 15

The advantage of P2 over P1 consists of the di¤erentiability of the objective
function f2 and the fact that its gradient (the function in the left-hand side
of (14) is Lipschitz continuous, property guaranteeing the convergence of the
steepest descent method, the quadratic convergence of Newton�s method,
etc.

6 Conclusions

We have analyzed in this paper di¤erent aspects of the best approximation
problem for inconsistent continuous and mixed linear systems when the
infeasibility is measured with either the uniform norm, or the Euclidean
norm, or the L1 norm, which are now compared with di¤erent criteria:

�Robustness (in the sense of sensitivity with respect to error data): Due
to the presence of square terms in f2, least squares solutions are more
sensible to error data (the coe¢ cients of the systems) than best uniform
and L1 solutions. This is the same situation as in regression analysis and
other branches of statistics.

�Tractability: Thanks to the di¤erentiability of f2; least squares solutions
are more easily computable by the numerical methods for unconstrained
programs than best uniform and L1 solutions. However, best uniform
solutions can be approximated by using e¢ cient linear SIP numerical
methods when m is su¢ ciently small.

�Characterization of solutions: We have provided characterizations of the
best approximate solutions for the three norms in terms of the data,
but the simplest one corresponds to best uniform solutions. So, best
approximate solutions are preferable from the stopping rule perspective.

�Existence of solutions: We have characterized the existence of best uni-
form solutions; providing existence theorems for least squares solutions
and best L1 solutions remains an open problem.

�Generality: The results on best uniform solutions are valid for systems
with an arbitrary index set T (not necessarily the union of a �nite set
with a family of boxes).
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