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Abstract

Given a convex function f defined for positive real variables, the so-called Csiszár f -divergence is
a function If defined for two n-dimensional probability vectors p = (p1, . . . , pn) and q = (q1, . . . , qn)

as If (p, q) := ∑n
i=1 qif (

pi
qi

). For this generalized measure of entropy to have distance-like properties,

especially symmetry, it is necessary for f to satisfy the following functional equation: f (x) = xf ( 1
x ) for

all x > 0. In the present paper we determine all the convex solutions of this functional equation by proposing
a way of generating all of them. In doing so, existing usual f -divergences are recovered and new ones are
proposed.
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1. Motivation

Given a convex function f : R+ → R∪{+∞}, the so-called Csiszár f-divergence is a function

If : Rn+ × R
n+ → R,

(p, q) �→ If (p, q) :=
n∑

i=1

qif

(
pi

qi

)
.

(Here R
n+ stands for the positive orthant of R

n, that is {p = (p1, . . . , pn) | pi � 0 for all i}, and
the specific meaning of qif (

pi

qi
) for qi = 0 will be made precise further.) The function If is

a generalized measure of entropy whose distance-like properties make it useful in information
theory, stochastic optimization and several other applications. This general notion of divergence
measures in a certain sense the “distance” between two probability distributions. The function f

is sometimes called the kernel of the f -divergence If . Indeed If (p, q) enjoys certain properties
of a distance between p = (p1, . . . , pn) and q = (q1, . . . , qn), but, without further assumptions
on the kernel function f , it is not a metric. First of all, to have If (p, q) = 0, it is necessary
to impose f (1) = 0, a normalization which is always possible to get at, provided that a spe-
cific affine function is added to f (see the first example in Section 2). Secondly, observe that
If (q,p) = If �(p, q), where f � is another kernel function defined as follows: for all x > 0,
f �(x) = xf ( 1

x
) (with an ad hoc limiting value at 0, see below). Moreover, as known in convex

analysis (cf. [1, vol. I, p. 5] for example), this involution f � f � preserves convexity: f � is
convex if and only if f is convex. So, for symmetry reasons on If , it is highly desirable that the
kernel function f satisfy f � = f . Thirdly, the convexity of f ensures that of If (more will be
said on that later on), whence If (p + r, q + s) � If (p, q) + If (r, s). All these questions moti-
vate the present work the aim of which is to answer the following question: what are the convex
functions f solving the functional equation

f � = f ? (1)

The sequel of the paper is organized into two sections. In Section 2, we list some examples of
convex functions solving (1): some of them give rise to the best known divergence functions used
in mathematical statistics, information theory and signal processing; some are new and are built
up from the characterization theorem (of solutions of (1)) derived in Section 3. Section 3 contains
the main result: a convex function f satisfies (1) if and only if a certain closed convex set Cf in
the plane, associated one-to-one with f , is symmetric with respect to the first bisecting line. Thus,
the “functional” equation f = f � is translated in terms of the simplest “geometrical” involution
in the plane: a symmetry with respect to a line. This allows us to generate systematically and
easily all the convex solutions of (1).

2. Mathematical setting and first examples

We begin by setting the mathematical context of our presentation and the notations used. The
reader is supposed to be familiar with basic concepts of convex analysis, for which we will adopt
the standard terminology of [1,2].
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2.1.

We denote by Γ (R+) the set of functions ϕ : R → R ∪ {+∞} satisfying the following prop-
erties:

• ϕ(x) = +∞ for all x < 0,

ϕ is finite at some point x0 > 0;
• ϕ is convex and lower-semicontinuous on R

(one also says that it is closed convex on R).

⎫⎪⎪⎬
⎪⎪⎭

The properties of ϕ ∈ Γ (R+) are classical and can be found in any book on convex analysis,
see [1, Chapter I, vol. I] for example. We cast some of them:

• If ϕ ∈ Γ (R+), the value ϕ(0) is determined by the values of ϕ on (0, ε) for ε > 0 as small
as desired;

• If ϕ ∈ Γ (R+), so is ϕ�. In particular, ϕ�(0) is the “slope at infinity” of ϕ, that is

ϕ′∞ = lim
t→+∞

ϕ(x0 + t) − ϕ(x0)

t
,

where x0 > 0 is any point at which ϕ is finite.

2.2.

Let us denote by G(R+) the set of f ∈ Γ (R+) such that f = f �. The next properties clearly
come from the definitions themselves: if f ∈ G(R+),

• f (0) = f ′∞ (equality in R ∪ {+∞});
• Either f is finite on some (0, ε), ε > 0, in which case domf (the set on which f is finite)

is (0,+∞) or f takes the value +∞ on some (0, ε), in which case domf is a line-segment
with end-points r and 1/r for some 0 < r < 1;

• f is always finite-valued at x0 = 1. The “extreme” case is when f is the indicator function
of the singleton {1} plus a constant (i.e., domf = {1}, that is: f (1) = c ∈ R, f (x) = +∞
otherwise). In the other cases, domf contains a line-segment [r,1/r] for some 0 < r < 1
(so that 1 ∈ int(domf )).

If we start with ϕ in Γ (R+), T (ϕ) := 1
2 (ϕ + ϕ�) clearly lies in G(R+), if domf contains

a line-segment [r,1/r] for some 0 < r � 1. Evidently, T (f ) = f if and only if f ∈ G(R+).
Note also that ϕ� is normalized (i.e., ϕ�(1) = 0) whenever ϕ is; so is T (ϕ). We call T (ϕ) the
symmetrized form of the kernel function ϕ.

The transform T (·) may serve to build up functions in G(R+); it however does not help
much for parameterizing G(R+), for two reasons: firstly it is not one-to-one, secondly (and more
important), it is difficult to devise the appropriate ϕ such that T (ϕ) = f when specific properties
on f are desired (like the behavior around a point). G(R+) is a convex cone (of Γ (R+)), closed
for the topology of pointwise convergence. Note also the following properties:

• The only functions f ∈ G(R+) which are constant on their domain (with 1 ∈ int(domf )) are
indicator functions of line-segments [r,1/r] for some 0 < r < 1, plus the other “extreme”
case, the indicator function of R+. Thus, if f ∈ G(R+) and 1 ∈ int(domf ), f + c /∈ G(R+)

whenever c 
= 0;
• G(R+) is stable by the max operation: if f1 and f2 are in G(R+), so is max(f1, f2).
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2.3. Divergence functions

In dealing with the ϕ-divergence function attached with the kernel function ϕ ∈ Γ (R+), we
have to make precise the meaning of qiϕ(

pi

qi
) when qi equals 0. This is done via the following

key-result from convex analysis: the so-called closed perspective function of ϕ defined on R
2 as

(x, y) ∈ R × R �→ ϕ̃(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

yϕ(x
y
) if y > 0,

ϕ′∞x if x > 0 and y = 0,

0 if x = 0 and y = 0,

+∞ if x < 0 and y = 0, or y < 0,

(2)

is a closed convex function [1, vol. II, pp. 40–41], [2, p. 67]. So, 0ϕ( 0
0 ) is interpreted as 0, while

0ϕ(x
0 ) is ϕ′∞x for x > 0. The function ϕ̃ turns out to be convex as a function of both x and y, it is

actually the support function of a closed convex set in R
2, a property which will be instrumental

in deriving the main result in Section 3.
To have the f -divergence function If meaningful, it is necessary to have If (p, q) � 0 for all

(p, q) ∈ R
n+ × R

n+; this is indeed achieved when f ∈ G(R+) is normalized.

Proposition 1. Let f ∈ G(R+) be normalized; then f � 0 on R+, so that If � 0 on R
n+ × R

n+.

Proof. If domf = {1}, the only possibility for f is to be the indicator function of {1}, which is
positive.

The other possibility is to have 1 lying in int(domf ) (cf. Section 2.2). Then consider a sub-
derivative s of f at 1 [1, vol. I, p. 22]; we have

f (x) � f (1) + s(x − 1) = s(x − 1) for all x � 0.

So,

xf

(
1

x

)
� xs

(
1

x
− 1

)
= s(1 − x) for all x > 0.

In sum, since f (x) = xf ( 1
x
) for all x > 0,

f (x) �
∣∣s(x − 1)

∣∣ for all x > 0, (3)

an inequality which extends to R+ (because f ∈ Γ (R+)). Thus, f � 0 on R+ (and therefore
on R).

As an immediate consequence,

f̃ (x, y) = x
y

x
f

(
1

y/x

)
� 0 whenever x > 0 and y > 0,

an inequality which extends to the whole of R
2 (cf. the definitions in (2)). Whence the positivity

of If on R
n+ × R

n+ is proved. �
There are shorter proofs of the positivity of f under the normalization assumption; note how-

ever that (3) provides an estimate of “how positive f is” in terms of the length of subderivatives
of f at the point 1.

Note that the positivity of Iϕ(p, q) was proved in [3, Corollary 3.1] under the sole assumption
that the normalized ϕ is in Γ (R+), but only for those p,q ∈ R

n+ satisfying
∑n

i=1 pi = ∑n
i=1 qi .
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2.4. Examples

Here we list some examples of f ∈ G(R+); in each case we note if the considered f is defined
as the symmetrized form of some ϕ ∈ Γ (R+), how to normalize it, and what divergence function
it gives rise to (when the kernel function is named after someone, we recall it, borrowing from [3]
for that).

Example 2.1. For a ∈ R, let f :x � 0 �→ f (x) := a(x + 1). This is one of the simplest functions
in G(R+). Indeed if f ∈ G(R+), then

x > 0 �→ f (x) − f (1)

2
(x + 1) (4)

is again in G(R+), but normalized now.
Let G0(R+) denote the set of f ∈ G(R+) which are normalized. Then, as for G(R+), G0(R+)

is a closed convex cone and, according to what has just been explained,

G(R+) = G0(R+) + Rf1, (5)

where f1 stands for the basic function x > 0 �→ x + 1.

Example 2.2 (Kullback–Leibler). Let ϕ ∈ Γ (R+) be defined as x > 0 �→ ϕ(x) := − log(x). The
symmetrized form of ϕ is

x > 0 �→ 1

2

[
x log(x) − log(x)

]
,

which turns out to be normalized.
The corresponding f -divergence is

(p, q) ∈ R
n+ × R

n+ �→ If (p, q) = 1

2

n∑
i=1

[
pi log

(
pi

qi

)
+ qi log

(
qi

pi

)]
.

Example 2.3 (Hellinger). Let f ∈ G(R+) be defined as: f :x � 0 �→ f (x) := (1 − √
x )2. This

function is normalized, and the corresponding f -divergence is

If (p, q) =
n∑

i=1

(
√

pi − √
qi )

2.

Example 2.4 (Renyi). For α > 1, let ϕ ∈ Γ (R+) be defined as ϕ(x) := xα . Then the symmetrized
and normalized form of ϕ is

f :x > 0 �→ 1

2

[
xα + x1−α − (x + 1)

]
.

The corresponding f -divergence is

If (p, q) = 1

2

n∑
i=1

[
pα

i q1−α
i + p1−α

i qα
i − (pi + qi)

]
.
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Example 2.5 (The χ2-kernel). Let ϕ ∈ Γ (R+) be defined by ϕ(x) := (x − 1)2. The symmetrized
and normalized form of ϕ is

f :x > 0 �→ f (x) = 1

2

(
x2 − x + 1

x
− 1

)
.

The associated f -divergence is

If (p, q) = 1

2

n∑
i=1

(
p2

i

qi

+ q2
i

pi

− pi − qi

)

= 1

2

n∑
i=1

(
(pi − qi)

2

pi

+ (qi − pi)
2

qi

)

(the so-called symmetrized χ2-distance between p and q).

Example 2.6. For a > 0, let f :x � 0 �→ f (x) := a|x − 1|. This is one of the most used kernel
functions. Clearly, f ∈ G0(R+), and the attached f -divergence is

If (p, q) = a

n∑
i=1

|pi − qi |

(called the variation distance between p and q).

Example 2.7. Let f ∈ G(R+) be defined by f (x) := √
x2 + 1. Its normalized version is

f0 :x > 0 �→ f0(x) =
√

x2 + 1 −
√

2

2
(x + 1).

Whence we get the associated f0-divergence:

If0(p, q) =
n∑

i=1

[√
p2

i + q2
i −

√
2

2
(pi + qi)

]
.

Example 2.8. Let f ∈ G(R+) be defined by f (x) := −√
x. When normalized, this kernel func-

tion gives rise to

f0 :x > 0 �→ f0(x) = −√
x + 1

2
(x + 1).

The corresponding f0-divergence has the following expression:

If0(p, q) =
n∑

i=1

[
1

2
(pi + qi) − √

piqi

]

(summation of the gaps between the arithmetical means and the geometrical means of the
(pi, qi)).

Example 2.9. Let f ∈ G(R+) be defined as the following:

f (x) := 1
if x � 1, x2 if x > 1.
x
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After normalization we get at

f0(x) := 1

x
− 1

2
(x + 1) if x � 1, x2 − 1

2
(x + 1) if x > 1.

This gives rise to the rather original f0-divergence below:

If0(p, q) =
n∑

i=1

{ [max(pi, qi)]2

min(pi, qi)
− 1

2
(pi + qi)

}
.

Example 2.10. We end our list with an example of kernel function taking the value +∞ out
of some interval of (0,+∞). For 0 < r � 1, let fr ∈ G0(R+) be defined as the indicator of the
line-segment [r,1/r], that is:

fr(x) := 0 if r � x � 1

r
, +∞ otherwise.

Then,

Ifr (p, q) =
{

0 if all the pi and qi are strictly positive and r � pi

qi
� 1

r
for all i;

+∞ otherwise.

3. The main result

As we began explaining in Section 2.3, with any ϕ ∈ Γ (R+), it is possible to associate its
closed perspective function ϕ̃ (cf. (2)). This function is closed convex and positively homoge-
neous (jointly in the real variables x and y), it is therefore the support function of a closed convex
set of R

2: we call such a set the generator of ϕ, and denote it by Cϕ . Since ϕ̃(x, y) = +∞ for
x < 0 or y < 0, the asymptotic (or recession) cone of Cϕ contains the negative orthant R

2−. An
asymptotic cone of Cϕ strictly larger than R

2− corresponds exactly to the case where ϕ takes
the value +∞ on some x > 0 (this asymptotic cone cannot be the whole of R

2 since we have
assumed by definition that ϕ is finite at some x0 > 0 (cf. beginning of Section 2.1). A little bit
simpler but equivalent way of defining Cϕ is:

Cϕ =
{
(p, q) ∈ R

2
∣∣∣∣ px + qy � yϕ

(
x

y

)
for all x > 0 and y > 0

}
(6)

(the support function ϕ̃ of Cϕ is just the closure of the function which takes the value yϕ(x
y
)

whenever x > 0 and y > 0, and +∞ elsewhere).
The next result characterizes those f which are in G(R+) in terms of a very simple geomet-

rical involution: the symmetry with respect to a line. We alluded to this result in our earlier work
on the Legendre–Fenchel conjugate of the reciprocal (or inverse) of a function [4, p. 548].

Theorem 2. f ∈ G(R+) if and only if its generator Cf is symmetric with respect to the first
bisecting line in the plane R

2 (of equation y = x).

Proof. We have Cf defined as in (6). The keypoint of the proof is the following: To have f ∈
G(R+), that is, satisfying

f (u) = uf

(
1
)

for all u > 0,

u
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is equivalent to having

yf

(
x

y

)
= xf

(
y

x

)
for all x > 0 and y > 0. (7)

The geometrical interpretation of (7), via (6), is: Cf is invariant by the transformation (x, y) �→
(y, x), i.e., Cf is symmetric with respect to the first bisecting line in the plane R

2. �
Let C denote the collection of closed convex sets in R

2, whose recession cones contain R
2−

(but different from R
2), and symmetric with respect to the first bisecting line in R

2. The back
and forth relation between the f ∈ G(R+) and the C in C is summarized below:

• f ∈ G(R+) � Cf ∈ C whose support function is f̃ (cf. (6))

• C ∈ C � fC :x > 0 �→ fC(x) := σC(x,1);
}

(8)

above σC designates the support function of C.
The second part of this correspondence is actually the process we used for designing the

functions f of G(R+) proposed in Examples 2.7–2.9, etc. Indeed, the geometrical properties
of C in C are translated into functional properties on fC : for example, a polyhedral C will give
rise to a polyhedral fC , the behavior of the boundary curve of C (when x → −∞ or y → −∞ for
a boundary point (x, y) of C) yields all the information on the behavior of fC in the neighborhood
of 0 or +∞. In short: given prescribed properties of the aimed function f ∈ G(R+), it is possible
to devise C ∈ C such that fC = f .

Note that, in terms of the generator Cf , normalizing f amounts to translating Cf in an (a, a)

vector direction. When f is normalized, the boundary curve of Cf passes through (0,0).
When considering the problem we have tackled, a natural question in the context of con-

vex analysis we would raise is: what if the Legendre–Fenchel transformation enters into the
picture? In fact, for ϕ ∈ Γ (R+), the Legendre–Fenchel conjugate ϕ∗ of ϕ is the support func-
tion of {(x,−y) | (x, y) ∈ epif ∗} ([1, vol. II, Proposition 1.2.1], [2, Corollary 13.5.1]). Thus:
f ∈ G(R+) if and only if epif ∗ is symmetric with respect to the second bisecting line in the
plane R

2 (of equation y = −x). So, to come back to our C ∈ C, the generator Cf of f ∈ G(R+)

is nothing else than the copy of epif ∗ by the symmetry (x, y) �→ (x,−y) in R
2.

We end by inviting the reader to put the scheme (8) into practice by drawing the generator Cf

of the f in Examples 2.2–2.10, and by devising new f ∈ G(R+) from C ∈ C. Below we present
some instances.

From f to Cf . The generator Cf of f ∈ G(R+) can also be viewed as the subdifferential of
the associated perspective function f̃ at (0,0). Consider for the sake of simplicity the case where
f is finite on (0,+∞), so that the closure of dom f̃ is R

2+ and the asymptotic (or recession) cone
of Cf = ∂f̃ (0,0) is R

2−. According to [2, Theorem 2.5.6] or [1, vol. I, Section 6.3]:

Cf = co
−→∇ f̃ (0,0) + R

2−, (9)

where
−→∇ f̃ (0,0) is the set of all limits of sequences {∇f̃ (xn, yn)} such that f̃ is differentiable at

(xn, yn) and (xn, yn) tends to (0,0) as n → +∞. Here, the calculation in (9) is made easier due
to the fact that f̃ is positively homogeneous, whence its gradient is constant along the half-rays
directed by (x, y), x > 0 and y > 0. Indeed we have

∇f̃ (x, y) =
(

f ′
(

x
)

, f

(
x

)
− x

f ′
(

x
))
y y y y
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Fig. 1.

whenever f is differentiable at y/x, so that a parameterization of the (essential part of the)
boundary curve of Cf is provided by(

f ′(s), f (s) − sf ′(s)
)
, s > 0. (10)

In the smooth case (i.e., when f is differentiable on (0,+∞)), the closed convex hull operation
is unnecessary in (9). In the nonsmooth case, we have to connect with line segments the pieces
of curves obtained in

−→∇ f̃ (0,0).

Example 3.1. (Example 2.2 revisited.) According to the parameterization process described
above, the boundary curve of the generator Cf attached with the Kullback–Leibler function f is(

1

2

(
1 + log(s) − 1

s

)
,

1

2

(− log(s) − s + 1
))

, s > 0. (11)

See f and Cf in Fig. 1.

Example 3.2. (Example 2.9 revisited.) The essential part of the boundary curve of Cf is provided
by two pieces of curves:(

− 1

s2
− 1

2
,−2

s
− 1

2

)
, 0 < s � 1;(

2s − 1

2
,−s2 − 1

2

)
, s > 1. (12)

We then connect them with a line segment, so that to obtain
−→∇ f̃ (0,0). See f and Cf in Fig. 2.

Example 3.3. (Example 2.7 revisited.) We have here:

∇f̃ (0,0) =
{(

s√
2

−
√

2
,

1√
2

−
√

2
) ∣∣∣∣ s � 0

}
, (13)
s + 1 2 s + 1 2
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Fig. 2.

Fig. 3.

a quarter of the unit circle centered at (−
√

2
2 ,−

√
2

2 ). We have to add two half-lines (the boundary
of R

2−) to get the whole boundary curve of Cf . See f ,
−→∇ f̃ (0,0) and Cf in Fig. 3.

From C to fC . The value at x > 0 of the function fC ∈ G(R+) associated with C ∈ C is
obtained by maximizing a linear form on C, namely:

fC(x) = sup
{
px + q

∣∣ (p, q) ∈ C
}
. (14)
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Fig. 4.

Example 3.4. For a � 1, let C ∈ C be drawn on the left part of Fig. 4. Then the corresponding
fC ∈ G(R+) is defined as following:

fC(x) =
⎧⎨
⎩

1 − ax if 0 < x � 1/a,
0 if 1/a < x � a,
x − a if x > a.

We end by giving an analytical characterization of convex functions solving the functional
equation (1). The following result deals with the simpler case of nonnegative functions satisfying
the normalization condition f (1) = 0.

Proposition 3. Let f : [1,+∞) → R ∪ {+∞} be a convex function satisfying f (1) = 0. Extend
it to (0,1] by setting f (x) = xf ( 1

x
). Then the resulting function is convex (and satisfies the

functional equation (1)) if and only if f is nonnegative.

Proof. The “only if” statement follows from Proposition 1. Conversely, if f is nonnegative then,
as its extension is also convex on (0,1], to deduce convexity on the whole of (0,+∞) it suffices
to observe that 1 is a (global) minimum. �
Theorem 4. Let f : [1,+∞) → R∪{+∞} be convex, and continuous at 1 (from the right). Extend
it to (0,1) by setting f (x) = xf ( 1

x
). Then the resulting function is convex (and satisfies the

functional equation (1)) if and only if

f (1) � 2f ′+(1).

Proof. By Proposition 3, the extension is convex if and only if its normalized form

x > 0 �→ g(x) = f (x) − f (1)

2
(x + 1)

is nonnegative, which is in turn equivalent to the nonnegativity of g′+(1) = f ′+(1) − f (1)
2 . �

The preceding characterization covers all convex solutions of (1) except the trivial ones
(i.e., those consisting of the sum of the indicator function of the singleton {1} with a constant).

Proposition 3 and Theorem 4 admit obvious counterparts, which we omit, starting from a
convex function f : (0,1] → R ∪ {+∞}.
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