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1 Introduction.

The LEGENDRE-FENCHEL transform (or conjugate) of a function ϕ : X →
R ∪ {+∞} is a function defined on the topological dual space X? of X as

p ∈ X? 7−→ ϕ∗(p) := sup
x∈X

[〈p, x〉 − ϕ(x)] .

In Convex analysis, the transformation ϕ  ϕ∗ plays a role analogous to
that of FOURIER’s or LAPLACE’s transform in other places in Analysis. In
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particular, one cannot avoid it in analysing a variational problem, more speci-
fically the so-called dual version of it. That explains why the LEGENDRE-
FENCHEL transform occupies a key place in any work on Convex analysis.

The purpose of the present note is to analyse the formula giving the
LEGENDRE-FENCHEL transform of the convex composite function g ◦ (f1, · · ·
, fm), with g and all the fi convex, in terms of g∗ and the fi

∗. Actually such
a formula is not new, even if it does not appear explicitly in books but only
in some specialized research papers. We intend here to derive such a result
in a short and clear-cut way, using only a “pocket theorem” from Convex
analysis; in particular, we shall not appeal to any result on convex mappings
taking values in ordered vector spaces, as is usually done in the literature.

Before going further, some comments on the historical development of
the convex analysis of g ◦ (f1, · · · , fm) are in order. First of all, the setting:
the fi

′s are convex functions on some general vector space X and g is an
increasing convex function on Rm (increasing means here that g(y) ≤ g(z)
whenever yi ≤ zi for all i); the resulting composite function g ◦ (f1, · · · , fm)
is convex on X. Then, how things evolved:

- Expressing the subdifferential of g ◦ (f1, · · · , fm) in terms of that of g
and those of the fi

′s was the first work carried out in the convex analysis of
g◦(f1, · · · , fm), as early as in the years 1965−1970. The goal was made easier
to achieve by the fact that one knew the formula aimed at (by extending to
subdifferentials the so-called chain rule in Differential calculus). The objec-
tive of obtaining the subdifferential of the convex composite function g ◦ F ,
with a vector-valued convex operator F, was pursued by several authors in
various ways, see [1], [2], [8] and references therein for recent contributions.

- To our best knowledge, the first attempt to derive [g ◦ (f1, · · · , fm)]∗ in
terms of g∗ and the fi

∗′s is due to KUTATELADZE in his note [4] and full-
fledged paper [5]. The working context was that of convex operators taking
values in ordered vector spaces, and this was also the case in most of the
subsequent papers on the subject. Not only was the case of real-valued fi

′s
somehow hidden in the main results in these papers (Theorem 3.7.1 in [5],
Proposition 4.11 (ii) in [1], Theorem 3.4 (ii) in [2], Theorem 2.8.10 in [8]), but
more importantly, the theorems were derived after some heavy preparatory
work : on subdifferential calculus rules for vector-valued mappings in [5], on
perturbation functions in [2], on ε-subdifferentials in [8]. All these aspects
are summarized in section 2.8 (especially bibliographical notes) of [8].

In the setting we are considering in the present paper, the expected for-
mula for the LEGENDRE-FENCHEL conjugate of g◦(f1, · · · , fm) is as follows:
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for all p ∈ X?,

[g ◦ (f1, · · · , fm)]∗(p) = min
αi≥0

[
g∗(α1, · · · , αm) +

(
m∑

i=1

αi fi

)∗

(p)

]
. (1)

This formula was proved in a simple way when m = 1 in [3, Chapter X,
Section 2.5]; we shall follow here the same approch as there, using only a
standard result in Convex analysis, the one giving the LEGENDRE-FENCHEL
conjugate of a sum of convex functions. However the formula (1) is not

always informative, take for example g(y1, · · · , ym) :=
m∑

i=1

yi, a situation in

which (1) does not say anything new; we therefore shall go a step further in

the expression of [g ◦ (f1, · · · , fm)]∗(p) by developing

(
m∑

i=1

αi fi

)∗

(p); hence

the final formula (7) below is obtained.
We end with some illustrations enhancing the versatility of the proved

formula.

2 The Legendre-Fenchel transform

of g ◦ (f1, · · · , fm).

We begin by recalling some basic notations and results from Convex analysis.
Let X be a real Banach space; by X? we denote the topological dual

space of X, and (p, x) ∈ X? × X 7−→ 〈p, x〉 stands for the duality pairing.
The LEGENDRE-FENCHEL transform (or conjugate) of a function ϕ : X →
R ∪ {+∞} is defined on X? as

p ∈ X? 7−→ ϕ∗(p) := sup
x∈X

[〈p, x〉 − ϕ(x)] . (2)

Clearly only those x in dom ϕ := {x ∈ X | ϕ(x) < +∞} are relevant in the
calculation of the supremum in (2).

As a particular example of ϕ, consider the indicator function of a nonempty
set C in X, that is

iC(x) := 0 if x ∈ C, +∞ if not ; (3)
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then i∗C is the so-called support function of C, that is

i∗C =: σC : p ∈ X? 7−→ σC(p) = sup
x∈C

〈p, x〉. (4)

When α > 0, there is no ambiguity in defining αϕ: the resulting conjugacy

result is : (αϕ)∗(p) = αϕ∗(
p

α
). As for α = 0, one should be more careful

: we set (0ϕ)(x) = 0 if x ∈ dom ϕ, +∞ if not; in other words 0ϕ = idomϕ.
The corresponding conjugacy result is (0ϕ)∗ = σdom ϕ, a fact coherent with

the following result : αϕ∗(
p

α
) −→

α→0+
σdom ϕ(p) (at least for convex lower-

semicontinuous ϕ).
We denote by Γ0(X) the set of functions ϕ : X −→ R∪ {+∞} which are

convex, lower-semicontinuous and not identically equal to +∞ on X. The
next theorem is the key result we shall rely on in our proofs; it is a classical
one in Convex analysis (see [6, Théorème 6.5.8] for example).

Theorem 1. Let f1, · · · , fk ∈ Γ0(X). Suppose there is a point in
k⋂

i=1

dom fi

at which f1, · · · , fk−1 are continuous. Then, for all p ∈ X? :

(f1 + · · ·+ fk)
∗(p) = min

p1+···+pk=p

[f ∗1 (p1) + · · ·+ f ∗k (pk)] . (5)

The context of our work is the following one :
• f1, · · · , fm ∈ Γ0(X);

• g ∈ Γ0(Rm) and is increasing on Rm, i.e. g(y) ≤ g(z) whenever yi ≤ zi

for all i = 1, · · · , m.

The composite function g ◦ (f1, · · · , fm) is defined on X as follows :

[g ◦ (f1, · · · , fm)](x) =

 g[f1(x), · · · , fm(x)]
if fi(x) < +∞

for all i,
+∞ if not .

The resulting function g ◦ (f1, · · · , fm) is now convex on X. The minimal
assumption to secure that g ◦ (f1, · · · , fm) does not identically equal +∞ is

: there is a point x0 ∈
m⋂

i=1

dom fi such that (f1(x0), · · · , fm(x0)) ∈ dom g. We
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shall actually assume a little more to derive our main result below.

Theorem 2. With the assumptions listed above on g and the fi
′s,

we suppose :

(H)

 There is a point x0 ∈
m⋂

i=1

dom fi such that

(f1(x0), · · · , fm(x0)) lies in the interior of dom g.

Then : for all p ∈ X?,

[g ◦ (f1, · · · , fm)]∗(p) = min
α1≥0,···,αm≥0

[
g∗(α1, · · · , αm) +

(
m∑

i=1

αi fi

)∗

(p)

]
.

(6)
(with 0 fi = idom fi

).

If moreover there is a point in
m⋂

i=1

dom fi at which f1, · · · , fm−1 are con-

tinuous, then for all p ∈ X?,

[g ◦ (f1, · · · , fm)]∗(p) =

min
α1 ≥ 0, · · · , αm ≥ 0
p1 + · · ·+ pm = p

[
g∗(α1, · · · , αm) +

m∑
i=1

αi f
∗
i (

pi

αi

)

]
(7)

(where we interpret 0 f ∗i (pi

0
) = σdom fi

(pi)).

Proof. By definition, given p ∈ X?,

−[g ◦ (f1, · · · , fm)]∗(p) = inf
x∈X

{[g ◦ (f1, · · · , fm)](x)− 〈p, x〉}

= inf
fi(x) < +∞

for all i

{g[f1(x), · · · , fm(x)]− 〈p, x〉}

= inf
(y1,···,ym)∈Rm

[g(y1, · · · , ym) | fi(x) ≤ yi for all i] (8)

because g is assumed increasing on Rm.
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Let now F1 and F2 be defined on X × Rm as follows :
For (x, y1, · · · , ym) ∈ X × Rm,

F1(x, y1, · · · , ym) := −〈p, x〉+ g(y1, · · · , ym),

F2(x, y1, · · · , ym) := iepi f1(x, y1) + · · ·+ iepi fm(x, ym),

where epi fi denotes the epigraph of fi, that is the set of (x, yi) ∈ X×R such
that fi(x) ≤ yi.

Thus, (8) can be written as

−[g ◦ (f1, · · · , fm)]∗(p) =

inf
(x,y1,···,ym)∈X×Rm

[F1(x, y1, · · · , ym) + F2(x, y1, · · · , ym)] . (9)

We then have to compute the conjugate (at 0) of a sum of functions, however
in a favorable context since :

F1 ∈ Γ0(X × R), F2 ∈ Γ0(X × R), dom F1 = X × dom g.
According to the assumption (H) we made, there is a point (x0, f1(x0), · · · ,
fm(x0)) ∈ dom F2 at which F1 is continuous (indeed g is continuous at
(f1(x0), · · · , fm(x0)) whenever (f1(x0), · · · , fm(x0)) lies in the interior of dom g).
We therefore are in a situation where Theorem 1 applies :

[g ◦ (f1, · · · , fm)]∗(p) = (F1 + F2)
∗(0) [from (9)]

= min
s ∈ X?

(α1, · · · , αm) ∈ Rm

[F ∗
1 (−s, α1, · · · , αm) + F ∗

2 (s,−α1, · · · ,−αm)] .

(10)
The computation of the above two conjugate functions (F ∗

1 and F ∗
2 ) is easy

and gives :

F ∗
1 (−s, α1, · · · , αm) =

{
g∗(α1, · · · , αm) if s = p,

+∞ if not ;

F ∗
2 (s, β1, · · · , βm) = sup

fi(x) ≤ yi

for all i

(〈s, x〉+
m∑

i=1

βiyi)

= +∞ if at least one βi is > 0,
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= sup
x ∈ dom fi

for all i

[〈s, x〉+
m∑

i=1

βi fi(x)] if βi ≤ 0 for all i.

Consequently, the minimum in (10) is taken over s = p and those (α1, · · · , αm)
∈ Rm whose components are all nonnegative. Whence the formula (6) follows.

If there is a point x̃ ∈
m⋂

i=1

dom fi at which f1, · · · , fm−1 are continuous, then

x̃ ∈
m⋂

i=1

dom(αi fi) and α1 f1, · · · , αm−1 fm−1 are continuous at x̃ (if αi0 = 0,

αi0 fi0 = idom fi0
is indeed continuous at x̃, since x̃ necessarily lies in the

interior of dom fi0). We apply Theorem 1 again :

(
m∑

i=1

αi fi)
∗(p) = min

p1+···+pm=p

[
m∑

i=1

αi fi
∗(

p

αi

)

]
.

Plugging this into (6) yields the formula (7).

3 By way of illustrations.

Since g is assumed increasing in our setting, it is easy to prove that dom g∗ is
indeed included in (R+)m, thus the restriction in (6) or (7) to those αi which
are positive is not surprising. However one may wonder if the optimal α′

is in
these formulas are strictly positive or not. The answer is no, some of the α′

is
may be null, possibly all of them. As a general rule, one can say more about
the optimal α′

is only in particular instances.
Consider for example p ∈ X? such that [g ◦ (f1, · · · , fm)]∗(p) < +∞; then,

if σ⋂m
i=1 dom fi

(p) = +∞ or if g∗(0, · · · , 0) = +∞, one is sure that some of the
optimal α′

is in (6) or (7) are strictly positive (in either case, having all the
αi null leads to impossible equalities (6) and (7)). In some other situations
however, one is sure that all the optimal α′

is are strictly positive; see some
examples below.

3.1 The sum of the k largest values.

Suppose that the increasing g ∈ Γ0(Rm) is positively homogeneous; it is
then the support function of a closed convex set C ⊂ (R+)m (namely the
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subdifferential of g at the origin). The LEGENDRE-FENCHEL transform g∗

of g is the indicator function of C so that (6) and (7) are simplified into :

[g ◦ (f1, · · · , fm)]∗(p) = min
α1,···,αm∈C

[
(

m∑
i=1

αi fi)
∗(p)

]
; (11)

= min
α1, · · · , αm ∈ C

p1 + · · ·+ pm = p

[
m∑

i=1

αi f
∗
i (

pi

αi

)

]
. (12)

A first example, with a bounded C, is g(y1, · · · , ym) =
m∑

i=1

y+
i (where y+

i

stands for the positive part of yi). Here g is the support function of C =

[0, 1]m and (11)-(12) give an expression of

(
m∑

i=1

f+
i

)∗

(p).

A more interesting example of g as the support function of C, still with
a bounded C, is the following one : for an integer k ∈ {1, · · · , m}, let

gk(y1, · · · , ym) := the sum of the k largest values among the α′
is.

It is not difficult to realize that gk is the support function of the compact
convex polyhedron

Ck := {(α1, · · · , αm) ∈ [0, 1]m | α1 + · · ·+ αm = k} . (13)

Since dom gk = Rm, the corollary below readily follows from Theorem 2.

Corollary 3. Let f1, · · · , fm ∈ Γ0(X), let ϕk be defined on X as

ϕk(x) := the sum of the k largest values among the fi(x)′s.

We suppose there is a point in
m⋂

i=1

dom fi at which f1, · · · , fm−1 are continu-

ous. Then : for all p ∈ X?

ϕ∗
k(p) = min

α1, · · · , αm ∈ Ck

p1 + · · ·+ pm = p

[
m∑

i=1

αi f
∗
i (

pi

αi

)

]
. (14)
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The two “extreme” cases, k = 1 or k = m, are interesting to consider.
If k = 1, ϕ1(x) = max

i=1,···,m
fi(x), C1 is the so-called unit-simplex in Rm,

and (14) reduces to a well-known formula on (max
i

fi)
∗(p) :

(max
i

fi)
∗(p) = min

α1 ≥ 0, · · · , αm ≥ 0
α1 + · · ·+ αm = 1
p1 + · · ·+ pm = p

[
m∑

i=1

αi f
∗
i (

pi

αi

)

]
. (15)

If k = m, ϕm(x) =
m∑

i=1

fi(x), Cm is the singleton {(1, · · · , 1)}, and Corollary

3 takes us back to Theorem 1.

3.2 Smoothing the max function.

A way of smoothing the nondifferentiable function max
i

(y1, · · · , ym) is via the

so-called log-exponential function. Given ε > 0, let Θε : Rm −→ R be
defined as following:

(y1, · · · , ym) ∈ Rm 7−→ Θε(y1, · · · , ym) := ε log (e
y1
ε + · · ·+ e

ym
ε ).

Such a function is studied in full detail in [7] for example : Θε is a (finite-
valued) increasing convex function on Rm, whose LEGENDRE-FENCHEL
transform is given below ([7, p. 482]):

Θ∗
ε(α1, · · · , αm) =

 ε

m∑
i=1

αi log αi
if α1 ≥ 0, · · · , αm ≥ 0

and α1 + · · ·+ αm = 1,

+∞ if not

(16)

(the entropy function multiplied by ε).
When f1, · · · , fm ∈ Γ0(X), the nonsmooth function max

i=1,···,m
fi can be

approximated by the function Θε ◦ (f1, · · · , fm), smooth whenever all the f ′is
are smooth.
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Here again dom Θε = Rm, so that the next corollary is an immediate
application of Theorem 2.

Corollary 4. Let f1, · · · , fm ∈ Γ0(X); we assume there is a point in
m⋂

i=1

dom fi at which f1, · · · , fm−1 are continuous.

Then : for all p ∈ X?,

[Θε ◦ (f1, · · · , fm)]∗(p) =

min
α1 ≥ 0, · · · , αm ≥ 0
α1 + · · ·+ αm = 1
p1 + · · ·+ pm = p

[
ε

m∑
i=1

αi log αi +
m∑

i=1

αi f
∗
i (

pi

αi

)

]
.

(17)

Compare (17) with (15): since the entropy function ε
m∑

i=1

αi log αi is negative

and bounded from below by −ε log m (achieved at α1 = · · · = αm =
1

m
), we

have :
(max

i

fi)
∗ − ε log m ≤ [Θε ◦ (f1, · · · , fm)]∗ ≤ (max

i

fi)
∗. (18)

3.3 Optimality conditions in Convex minimization.

Let K be a closed convex cone in Rm, let f1, · · · , fm be convex functions on
X and

S := {x ∈ X | (f1(x), · · · , fm(x)) ∈ K} . (19)

As an example, suppose K = (R−)m : S is then a constraint set represented
by inequalities in Convex minimization.

The indicator function iS of S is nothing else than iK ◦ (f1, · · · , fm). We
are again in the context considered in section 3.1 with g = iK the support
function of the polar cone K◦ of K. We can thus express the support function
of S, that is the LEGENDRE-FENCHEL transform of the composite function
iK ◦ (f1, · · · , fm) in terms of the f ∗i

′s.
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Corollary 5. We assume the following on the f ′is and K :
• All the fi : X −→ R are convex and continuous on X (as it is usually

the case in applications);
• There is a point x0 ∈ X such that (f1(x0), · · · , fm(x0)) lies in the inte-

rior of K (this is SLATER’s constraint qualification condition).
• K is a closed convex cone of Rm containing (R−)m.
Then : for all 0 6= p ∈ X? such that σS(p) < +∞,

σS(p) = min
0 6= (α1, · · · , αm) ∈ K◦

p1 + · · ·+ pm = p

[
m∑

i=1

αi f
∗
i (

pi

αi

)

]
. (20)

Proof. The function iK ∈ Γ0(X) is increasing because of the assumption
(R−)m ⊂ K. We have assumed there is a point x0 ∈ X such that (f1(x0), · · · ,
fm(x0)) lies in the interior of the domain of iK . Thus, by applying Theorem
2, we obtain :

σS(p) = [iK ◦ (f1, · · · , fm)]∗(p) = min
(α1, · · · , αm) ∈ K◦

p1 + · · ·+ pm = p

[
m∑

i=1

αi f
∗
i (

pi

αi

)

]
.

Note that K◦ ⊂ (R+)m but, since σdom fi
(pi) = +∞ for pi 6= 0, all the optimal

αi are not null simultaneously.

To pursue our illustration further, consider the following minimization
problem :

(P) Minimize f0(x) over S,

where S is described as in (19).
We suppose:

• f0 ∈ Γ0(X) is continuous at some point of S;

• vopt := inf
S

f0 > −∞ (f0 is bounded from below on S);

• vopt > inf
X

f0 ((P) is genuinely a constrained problem);

• Assumptions on the f ′is and K made in Corollary 5.

11



Corollary 6. Under the assumptions listed above, we have :

−vopt = min
0 6= (α1, · · · , αm) ∈ K◦

p1 + · · ·+ pm = p 6= 0

[
f ∗0 (−p) +

m∑
i=1

αi f
∗
i (

pi

αi

)

]
. (21)

This result is an alternate formulation, in the dual form (in the spirit of [6,
Chapter VII]), of the existence of LAGRANGE-KARUSH-KUHN-TUCKER
multipliers in (P) : there exist positive α1, · · · , αm such that

vopt = min
X

[
f0(x) +

m∑
i=1

αi fi(x)

]
.

Proof of Corollary 6. By definition,

vopt = −(f0 + iS)∗(0).

Applying Theorem 1, we transform the above into :

−vopt = min
p∈X?

[f ∗0 (−p) + σS(p))] . (22)

The optimal p cannot be null, as otherwise we would have −vopt = f ∗0 (0) =
− inf

X

f0, which is excluded by assumption.

It then remains to apply the result of Corollary 5 to develop σS(p) in (22).
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