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Throughout this article we will consider connected orientable surfaces of
negative Euler characteristic and of finite topological type, meaning of finite
genus and with finitely many boundary components and/or cusps. We will
feel free to think about cusps as marked points, punctures or topological
ends. Sometimes we will need to make explicit mention of the genus and
number of punctures of a surface: in this case, we will write Sg,n for the
surface of genus g with n punctures and empty boundary. Finally, we define
the complexity of a surface X as the number κ(X) = 3g − 3 + p, where g is
the genus and p is the number of cusps and boundary components of X.

In order to avoid too cumbersome notation, we denote by

Homeo(X) =

f : X → X

∣∣∣∣∣∣
f is an orientation-preserving

homeomorphism fixing pointwise the
boundary and each puncture of X


the group of orientation-preserving self-homeomorphisms ofX relative to the
boundary and the set of punctures. We endow Homeo(X) with the compact-
open topology, and denote by Homeo0(X) the connected component of the
identity Id : X → X. It is well-known that Homeo0(X) consists of those
elements in Homeo(X) that are isotopic to Id : X → X relative to ∂X and
the set of punctures of X. The mapping class group Map(X) of X is the
group

Map(X) = Homeo(X)/Homeo0(X).

In the literature, Map(X) is sometimes referred to as the pure mapping
class group. We will also need to consider the extended mapping class group
Map∗(X), i.e. the group of all isotopy classes of self-homeomorphisms of X.
Note that if X has r boundary components and n punctures, we have an
exact sequence

0→ Zr → Map(X)→ Map∗(X)→ Z2 × Symr ×Symn → 1

where Syms is the group of permutations of the set with s elements.
Let T (X) andM(X) = T (X)/Map(X) be, respectively, the Teichmüller

and moduli spaces of X. The triad formed by Map(X), T (X) and M(X)
is often compared with the one formed, for n ≥ 3, by SLn Z, the symmet-
ric space SOn \SLnR, and the locally symmetric space SOn \ SLnR/ SLn Z.
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Here SLn Z stands as the paradigm of an arithmetic lattice in a higher
rank semi-simple algebraic group. This analogy has motivated many, pos-
sibly most, advances in the understanding of the mapping class group. For
example, Grossman [35] proved that Map(X) is residually finite; Birman,
Lubotzky and McCarthy [16] proved that the Tits alternative holds for sub-
groups of Map(X); the Thurston classification of elements in Map(X) mim-
ics the classification of elements in an algebraic group [91]; Harvey [37] in-
troduced the curve complex in analogy with the Tits’ building; Harer’s [36]
computation of the virtual cohomological dimension of Map(X) follows the
outline of Borel and Serre’s argument for arithmetic groups [18], etc... On
the other hand, the comparison between Map(X) and SLn Z has strong lim-
itations; for instance the mapping class group contains many infinite normal
subgroups of infinite index [25], has finite index in its abstract commensu-
rator [46], and has infinite dimensional second bounded cohomology [15]. In
addition, it is not known if the mapping class group contains finite index
subgroups Γ with H1(Γ;R) 6= 0. We refer to [49] for a survey on the analogy
between the mapping class group and arithmetic groups.

With the dictionary between Map(X) and SLn Z in mind, it is natural to
ask to what extent is there an analog of Margulis Superrigidity in the context
of mapping class groups. There are many interpretations of this rather vague
question. Our goal here is to discuss some of them, stating known results,
giving here and there an argument, and proposing a few concrete questions.
The plan of the paper is as follows:

In section 1 we briefly remind the reader of some rigidity theorems for ir-
reducible lattices in higher rank semi-simple Lie groups, such as Kahzdan’s
theorem asserting that such lattices have property (T), and the Mostow
Rigidity and Margulis Superrigidity theorems. We highlight three flavors of
the latter: a geometric version, asserting that maps between locally symmet-
ric spaces are homotopic to totally geodesic maps; a Lie theoretic version,
stating that homomorphisms between lattices arise from homomorphisms
between the ambient Lie groups; and a folkloric version, asserting that the
only homomorphisms between two lattices are the “obvious ones”, meaning
that they arise from linear algebra constructions.

In section 2 we discuss a result due to Farb-Masur [29], which states that
every homomorphism from a higher rank lattice to Map(X) has finite im-
age, sketching a proof due to Bridson-Wade [20]. We also discuss briefly
homomorphisms from Map(X) to lattices, proving for example that, under
any such homomorphism, Dehn twists are mapped to roots of unipotent el-
ements. As an application, we recover a result of Bridson [19] asserting that
Dehn twists are mapped to roots to multi-twists under arbitrary homomor-
phisms Map(X)→ Map(Y ), as long as X has genus at least 3.

This last result leads us to the main theme of this article: homomorphisms
between different mapping class groups. We begin section 3 by reminding
the reader of the rigidity of the curve complex and other closely related com-
plexes. We then discuss injective endomorphisms of mapping class groups,
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and give a proof of a result due to Ivanov asserting that every automorphism
of Map(X) is induced by a self-homeomorphism of X. We give this argu-
ment because it is easy and beautiful, but also because it parallels the proof
of the Mostow Rigidity theorem in higher rank, replacing the Tits building
by the curve complex. We end the section by giving some results that point
towards the following analog of folkloric superrigidity: homomorphisms be-
tween mapping class groups arise from manipulations of surfaces.

In section 4 we consider analogs of the Lie theoretic version of superrigid-
ity. The main problem is that, by work of Morita and Markovic, there is
no ambient group for the mapping class group: Map(X) is a quotient of
Homeo(X) but not a subgroup thereof. After reviewing a number of results
in this direction we propose what we call the Lie theoretic version of su-
perrigidity for homomorphisms between mapping class groups, namely that
every homomorphism Map(X) → Map(Y ) is induced by a homomorphism
Diffc(X)→ Diffc(Y ) between the associated groups of diffeomorphisms with
compact support disjoint from the boundary.

In section 5, we arrive to the geometric version of superrigidity. As will
be discussed, the obvious formulation of geometric superrigidity cannot hold
when we endow moduli space with any reasonable metric. However, we
propose the following: Every (irreducible) homomorphism between mapping
class groups induces a holomorphic map between the corresponding moduli
spaces. We will finish by discussing how harmonic maps could possibly
be used to prove that this is the case, and point out the main technical
difficulties.

Background. We assume that the reader has some previous understanding
of the mapping class group, and we refer to [28, 47] for basic facts and
definitions.

This paper was written during the program “Automorphisms of Free
Groups: Algorithms, Geometry and Dynamics” at the CRM, Barcelona.
We would like to thank the organizers of the program, as well as to express
our gratitude to the CRM for its hospitality.

1. Classical rigidity

In this section we review very briefly a few rigidity results for irreducible
lattices Γ in semi-simple Lie groups G. We refer the reader to [93, 79] and
to [50, 97] for very readable accounts of many of the topics discussed in this
section. More details can be found in [11, 63, 77, 98].

We start recalling some facts and terminology on semi-simple Lie groups
and lattices therein. We assume without further notice that the identity
component G0 of G has finite index in G - this is automatically the case
if G is algebraic. The universal cover G̃0 of G0 admits a Lie group struc-
ture so that the covering π : G̃0 → G0 becomes a group homomorphism.
Two groups whose identity components have isomorphic universal covers are
isogenous. The simply connected semi-simple group G̃0 splits as a product
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of simple groups; these are the factors of G. For the sake of concreteness
we assume that G has no compact factors. We denote by K a maximal
compact subgroup of G and we endow the quotient K\G with a G-invariant
Riemannian metric; K\G is the symmetric space of non-compact type as-
sociated to G. Note that the metric on K\G is in general not unique.
However, it is well-understood how these metrics relate to each other; more-
over, they all have non-positive sectional curvature. The real rank of G,
denoted rankR(G), is by definition equal to the rank of the symmetric space
K\G, i.e. the maximal dimension of a totally geodesic flat subspace.

A subgroup Γ of the semi-simple group G is a lattice if the associated
locally symmetric space K\G/Γ has finite volume. A lattice it uniform
if K\G/Γ is compact; otherwise it is non-uniform. A lattice Γ ⊂ G is

irreducible if the preimage of Γ∩G0 in the universal cover G̃0 of G0 projects
densely to every factor of G̃0; otherwise it is reducible. Notice that Γ is
reducible if and only if the locally symmetric space K\G/Γ is finitely covered
by a Riemannian product.

1.1. Property (T). Let G be a compactly generated topological group,
such as a Lie group or a finitely generated discrete group. A unitary action
Gy V on a Hilbert space has almost invariant vectors if for every compact
set C ⊂ G and every ε > 0, there is some unit vector v ∈ V with ‖gv−v‖ ≤ ε
for all g ∈ C. The group G is said to have Kazhdan’s property (T) if
every unitary representation of G that has almost invariant vectors also has
some invariant unit vector. We refer to [11] for a discussion of groups with
property (T).

Perhaps the prime examples of groups with property (T) are higher rank
Lie groups and lattices therein. More precisely we have:

Theorem 1.1 (Kahzdan). A semi-simple Lie group G has property (T) if
and only if no simple factor is isogenous to SO(1, n) or SU(1, n). Moreover,
G has property (T) if and only if lattices therein do as well.

It follows easily from the definition given above that a group has property
(T) then every finite extension and every quotient do as well. Since Z does
not have property (T), it follows from Kahzdan’s theorem that:

Corollary 1.2. Let Γ be a lattice in a semi-simple Lie group without factors
isogenous to SO(1, n) or SU(1, n). Then H1(Γ;R) = 0.

At this point we remind the reader of one of the deepest theorems in the
theory of lattices in higher rank groups, namely the following result due to
Margulis [63] asserting that normal subgroups of lattices are either finite or
have finite index.

Normal Subgroup Theorem (Margulis). Let Γ be an irreducible lattice
in a semi-simple Lie group G with rankR(G) ≥ 2. If N / Γ is a normal
subgroup then either N or Γ/N is finite.
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Combining the Normal Subgroup Theorem and Corollary 1.2 one obtains
a much more powerful version of the latter:

Corollary 1.3. Let G be a semi-simple Lie group (as always without com-
pact factors) which is not isogenous to SO(1, n) or SU(1, n). If Γ ⊂ G is an
irreducible lattice, then H1(Γ;R) = 0.

1.2. Mostow Rigidity. Corollary 1.3 implies that lattices in semi-simple
Lie groups non-isogenous to SO(n, 1) and SU(n, 1) do not map onto free
groups, surface groups, infinite nilpotent groups, infinite solvable groups,
and so on. This lack of homomorphisms can be considered as the first and
most basic rigidity property of such lattices. Mostow’s theorem is a rigidity
result of a different kind. Namely, it asserts that isomorphisms between
lattices are restrictions of automorphisms of the ambient group:

Mostow Rigidity. Let G be a semi-simple Lie group without factors of di-
mension 3, and let Γ and Γ′ be irreducible lattices in G. Every isomorphism
Γ→ Γ′ is the restriction of an automorphism of G.

The Mostow Rigidity theorem is due to Mostow for uniform lattices
[76, 77] and to Prasad [82] in the non-uniform case. If rankR(G) ≥ 2,
Mostow shows that the isomorphism between the lattices Γ and Γ′ induces
an automorphism of the Tits building associated to G, using then that the
latter is rigid by Tits’s work [92]. If rankR(G) = 1 a different argument is
needed, and in fact there are many proofs in this case, notably for lattices
in SO(n, 1); see for example [90]. Local rigidity, that is, when generators of
Γ′ are sufficiently close to generators of Γ, was proved first by Weil [95, 96]
following an idea of Calabi and Vesentini for uniform lattices, and by Gar-
land and Raghunathan in the non-uniform case [83, 34]. We refer to [26] for
a discussion of the automorphisms of classical groups.

We discuss now two applications of the Mostow Rigidity theorem. Every
element A ∈ GLnR induces the automorphism X 7→ AXA−1 of SLnR.
In fact, we obtain in this way that Aut(SLnR) = PGLnR o Z/2Z where
X 7→ tX−1 is the non-trivial element Z/2Z. Supposing that n ≥ 3, one
gets from Mostow Rigidity that Aut(SLn Z) is the subgroup of Aut(SLnR)
preserving SLn Z:

Corollary 1.4. Aut(SLn Z) = PGLnZ o Z/2Z for all n ≥ 3.

Recall that the abstract commensurator Comm(G) of a group G is the
abstract group consisting of all equivalence classes of isomorphisms between
finite index subgroups of G, where two such isomorphisms φ : H1 → H2

and φ′ : H ′1 → H ′2 are equivalent if there is H, of finite index in both H1

and H ′1, such that φ|H = φ′|H . As long as n ≥ 3, it follows from Mostow
Rigidity that Comm(SLn Z) is the subgroup of Aut(SLnR) consisting of
those automorphisms φ such that SLn Z∩ φ(SLn Z) has finite index in both
SLn Z and φ(SLn Z). We get:

Corollary 1.5. Comm(SLn Z) = PGLnQo Z/2Z for all n ≥ 3.
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Recall that the commensurator CommG(Γ) of a subgroup Γ of a group
G is the subgroup of G consisting of those g ∈ G such that Γ ∩ gΓg−1 has
finite index in both Γ and gΓg−1. Suppose that G is as in the statement of
Mostow Rigidity. Then the group of inner automorphisms of G has finite
index in the group of all automorphisms, and hence it follows from Mostow
Rigidity that the image of the obvious homomorphism

CommG(Γ)→ Comm(Γ)

has finite index. If Γ is arithmetic, then Γ has infinite index in CommG(Γ).
A converse to this fact is due to Margulis [63]:

Theorem 1.6 (Margulis). Let G be a semi-simple Lie group and Γ ⊂ G an
irreducible lattice. Then Γ is arithmetic if and only if Γ has infinite index
in CommG(Γ).

1.3. Superrigidity. While Mostow Rigidity is concerned on the rigidity
of isomorphisms between lattices of the same ambient Lie group, Margulis
Superrigidity theorem is a rigidity theorem for arbitrary homomorphisms
from lattices in a Lie group to another Lie group [63, 98]:

Margulis Superrigidity. Let G and G′ be connected Lie groups with trivial
center and no compact factors. Suppose that rankR(G) ≥ 2 and let Γ ⊂ G be
an irreducible lattice. Then, every homomorphism φ : Γ → G′ with Zariski
dense image extends to a homomorphism φ̂ : G→ G′.

We have chosen a rather restrictive version of the Margulis Superrigidity
theorem, assuming for instance that φ has Zariski dense image. The more
general statement, which follows easily from the formulation above, remains
the same “up to compact groups”. For instance, for non-uniform lattices in
SLk R we have:

Corollary 1.7. Suppose that k ≥ 3, that Γ ⊂ SLk R is a non-uniform lattice
and that φ : Γ → GLnR is a homomorphism. Then there is a homomor-
phisms Φ : SLk R→ GLnR whose restriction to a finite index subgroup of Γ
agrees with φ.

A homomorphism SLk R → GLnR is, by definition, the same as an n-
dimensional representation of SLk R. All these are, or at least can in princi-
ple be, classified. In particular, in extremely vague and colloquial language,
one can interpret Margulis’s theorem as follows:

Folkloric version of superrigidity. Let G and G′ be semi-simple Lie
groups, with rankR(G) ≥ 2, and Γ ⊂ G a lattice. Every homomorphism
Γ→ G′ is one of the “obvious” ones.

Margulis Superrigidity has also a geometric formulation. Suppose that
G,G′ are semi-simple Lie groups and K ⊂ G and K ′ ⊂ G′ maximal compact
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subgroups. Denote by S = K\G and S′ = K ′\G′ be the associated sym-
metric spaces, endowed respectively with G-invariant and G′-invariant Rie-
mannian metrics. Recall that both S and S′ are simply connected complete
manifolds with non-positive sectional curvature, and hence contractible. In
particular, if Γ ⊂ G and Γ′ ⊂ G′ are, say for simplicity torsion-free, lattices,
then there is a one-to-one correspondence between the sets of conjugacy
classes of homomorphisms Γ → Γ′ and of free homotopy classes of maps
S/Γ → S/Γ′. In these terms, Margulis’s theorem implies that in every ho-
motopy class of maps there is a totally geodesic map, i.e. one which maps
geodesics to geodesics:

Geometric Superrigidity (Margulis). Let M and M ′ be irreducible locally
symmetric spaces of finite volume. If rankR(M) ≥ 2, then every map M →
M ′ is homotopic to a totally geodesic map.

This version of Geometric Superrigidity is very restrictive; a more general
version is in fact equivalent to the Margulis Superrigidity theorem itself.
Note also that there is no assumption on the rank of M ′. In fact, there are
versions of the Geometric Superrigidity theorem allowing for the target to
be just a manifold of non-positive curvature operator (see for example [51]).

2. Homomorphisms between lattices and Map(X)

When trying to extend superrigidity results to the setting of mapping
class groups, it is natural to suppose first that one of the involved groups
is a lattice in a higher rank Lie group. As we will discuss below, while
the situation for homomorphisms from lattices to mapping class groups is
completely settled, we are very far from understanding the possible homo-
morphisms from mapping class groups to linear groups.

2.1. From lattices to Map(X). On the one hand, lattices are residually
finite. On the other, every finite group is a subgroup of some mapping
class group. Combining these two facts we obtain many homomorphisms
from lattices to mapping class groups, all of them with finite image. The
content of the following theorem, proved by Farb-Masur [29] building on
earlier results by Ivanov and Kaimanovich-Masur [52], is that there are no
other homomorphisms from lattices to mapping class groups.

Theorem 2.1 (Farb-Masur). Let Γ be an irreducible lattice in semi-simple
Lie group G with rankR(G) ≥ 2. Then any homomorphism Γ → Map(X)
has finite image.

In the case when X = S0,n is a punctured sphere, this theorem follows
easily from Corollary 1.3 and an induction argument. Indeed, noting that
Map(S0,3) is trivial, we may suppose that every homomorphism from a lat-
tice to Map(S0,n−1) is trivial. Filling in a puncture of S0,n we obtain a
homomorphism Homeo(S0,n) → Homeo(S0,n−1) which induces a homomor-
phism at the level of mapping class groups. In fact, we have the following



8 JAVIER ARAMAYONA & JUAN SOUTO

version of the Birman exact sequence:

1→ π1(S0,n−1)→ Map(S0,n)→ Map(S0,n−1)→ 1

Our induction hypothesis implies that the image of Γ → Map(S0,n) is con-
tained in π1(S0,n−1), a free group. Corollary 1.3 then yields that every
homomorphism Γ to a free group is trivial. This proves the Farb-Masur
theorem if X is a punctured sphere.

The argument we just gave can also be used if X has genus at most 2,
but for the general case, deeper properties of the mapping class group are
necessary. For instance, prior to the work of Kaimanovich-Masur and Farb-
Masur, Ivanov had already proved Theorem 2.1 for non-uniform lattices
using the fact that solvable subgroups of Map(X) are virtually abelian [16].
A completely independent proof for uniform lattices is due to Bestvina-
Fujiwara [15]. Namely, they proved that any subgroup Λ of Map(X) that is
not virtually abelian has infinitely generated second bounded cohomology
H2
b (Λ;R). On the other hand, Burger-Monod [21] proved that if Γ is a

uniform irreducible lattice in a higher rank group then the homomorphism
H2
b (Γ;R)→ H2(Γ;R) is injective and hence the former is finitely generated.

This implies that any homomorphism Γ → Map(X) has virtually abelian
image and now one concludes using again Corollary 1.3.

To finish the discussion of Theorem 2.1, we sketch an alternative beautiful
argument due to Bridson-Wade [20]. Suppose that φ : Γ → Map(X) is a
homomorphism with infinite image. From Corollary 1.3 we obtain that its
image is not virtually abelian and hence cannot consist solely of roots of
multi-twists. This implies that we can assume, up to replacing Γ by a
finite index subgroup and X by an open subsurface, that the image φ(Γ) ⊂
Map(X) of φ contains a pseudo-Anosov element f . It is known - see [25] for
much more powerful results - that there is n such that the normal closure
H = 〈〈fn〉〉 of the n-th power of f is an infinitely generated free subgroup of
Map(X). It follows that φ−1(H) is an infinite normal subgroup of Γ. From
the Normal Subgroup Theorem we derive that φ−1(H) is itself a lattice. By
construction φ−1(H) maps non-trivially to the free group H, contradicting
Corollary 1.3. This proves the Farb-Masur Theorem.

2.2. From Map(X) to lattices. While Theorem 2.1 asserts that there are
no interesting homomorphisms from lattices to mapping class groups, there
are many homomorphisms in the other direction. For instance, suppose that
X is surface of genus g. The action of Map(X) on the first integer homology
of X induces an action Map(X) y Z2g: if X is closed then Z2g ' H1(X;Z);
otherwise Z2g is the quotient of H1(X;Z) by the submodule generated by
cycles parallel to the boundary or which bound a punctured disk in X. The
action Map(X) y Z2g preserves the unimodular non-degenerate alternating
bilinear form induced by the algebraic intersection number. In other words
we obtain the symplectic representation

Map(X)→ Sp2g(Z)
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This homomorphism is surjective, but very far from injective. Its kernel, the
Torelli group Tor(X), is an infinite group as long as g ≥ 2. In fact, Mess [74]
proved that the Torelli group of a closed surface of genus 2 is an infinitely
generated free group.

Suppose now that π : X ′ → X is a finite cover. There is a finite index
subgroup G of Homeo(X) that lifts to Homeo(X ′), meaning that there is a
continuous homomorphism

G → Homeo(X ′), f 7→ f̂

so that π(f̂(x)) = f(π(x)) for all x ∈ X ′. This homomorphism induces a ho-
momorphism Γ→ Map(X ′) where Γ is the finite index subgroup of Map(X)
whose elements are represented by elements in G. Now, composing this
homomorphism with the symplectic representation Map(X ′) → Sp2g′(Z),
where g′ is the genus of X ′, we obtain a representation

(2.1) Γ→ Sp2g′(Z)

The representations (2.1) have been studied by Looijenga [59] for abelian
covers π : X ′ → X, who used them to prove that there are epimorphisms of
finite index subgroups of Map(X) onto arithmetic groups with arbitrarily
large Q-rank.

Remark. Notice that since Γ has finite index in Map(X) we can induce up
this representation and obtain a homomorphism Map(X) → Sp2g′′(Z) for
some suitable choice of g′′.

Although there is no general result in this direction, it is to be expected
that none of the representations (2.1) are faithful. On the other hand,
Koberda [55] proved that for every non-trivial f ∈ Map(X) there is a finite
cover π : X ′ → X such that f belongs to the domain of (2.1) but not to the
kernel.

Continuing with the same notation, note that the representation (2.1) is
not irreducible: the kernel of H1(π) : H1(X ′;Z)→ H1(X,Z) is an invariant
subspace. Suppose that X has genus 2 and X ′ genus 3; hence π has degree
2. Restricting (2.1) to Ker(H1(π)) we obtain a finite index subgroup Γ ⊂
Map(X) and a representation

Γ→ SL2 Z = Aut(Ker(H1(π)))

whose image has finite index. Noting that SL2 Z is virtually free we get
hence that Map(X) virtually surjects onto a free group. We give now a
different construction, more aligned with the spirit of this paper, for such
homomorphisms:

Lemma 2.2. If X has genus at most 2, then there is a finite index subgroup
of Map(X) that surjects onto a non-abelian free group.

Proof. We prove the claim only if X has genus 2, leaving the other cases to
the reader. To begin with, let X̄ be the surface obtained from X by filling
in all punctures and capping off all boundary components with disks. The
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embedding of X into X̄ induces a homomorphism Homeo(X)→ Homeo(X̄);
in fact the induced homomorphism Map(X) → Map(X̄) is surjective. It
hence follows that it suffices to prove the claim for X̄.

The hyperelliptic involution τ of X̄ is central in Map(X̄) and every ele-
ment in Map(X̄) is represented by a τ -equivariant homeomorphism. Thus,
there is a sujective homomorphism

π : Map(X)→ Map∗(X/τ)

to the extended mapping class group of the 6-punctured sphere X/τ =
S0,6; here we understand the orbifold points of X/τ as marked points. The
mapping class group Map(X/τ) has finite index in the extended mapping
class group Map∗(X/τ) and surjects onto Map(S0,4), a free group (compare
with the paragraph after the statement of Theorem 2.1). Hence the claim
follows. �

Since groups with property (T) do not virtually surject onto free groups
we get:

Corollary 2.3. Suppose that X is a surface of finite topological type and
genus g ≤ 2. Then Map(X) does not have property (T). �

Andersen [2] has announced that mapping class groups of arbitrary sur-
faces of finite topological type also fail to have property (T). This does how-
ever not say anything about the existence of homomorphisms from finite
index subgroups of Map(X) onto Z, or even onto non-abelian free groups.
This is one of the outstanding open problems in this field:

Question 1. Do mapping class groups of surfaces of genus g ≥ 3 virtually
surject onto free groups?

Clearly, if the answer to Question 1 is positive, then it is impossible
to classify all homomorphisms from Map(X) to lattices. On the other
hand, it is possible to prove that there are no non-trivial representations
Map(X) → GLnC if n is relatively small with respect to the genus of
X. For instance, Franks-Handel [33] showed that every homomorphism
Map(Sg,0) → GLnC is trivial if n < 2g. In this spirit we wish to point

out that Kielak [54] has proved that, as long as n ≥ 6 and m < n(n+1)
2 ,

every homomorphism Out(Fn) → GLm Z factors through the natural pro-
jection Out(Fn) → GLn Z. A similar result should hold for the mapping
class group as well. However, Kielak uses extensively that Out(Zn) contains
rather large finite groups such as Zn2 o Symn or Z2× Symn+1 - on the other
hand, the mapping class group of a surface of genus g has no finite subgroups
with more than 84(g − 1) elements. Nevertheless, the following very useful
observation might come handy when trying to prove a Map(X) analog of
Kielak’s theorem:

Proposition 2.4. Suppose that X is a surface of genus g ≥ 3 and Γ ⊂
Map(X) a finite index subgroup. For every n ∈ N, there is k ∈ N such that
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for every homomorphism ρ : Γ → GLnC and every multi-twist µ ∈ Γ, we
have that ρ(µ)k is unipotent.

Proposition 2.4 will follow easily once we have proved the following:

Lemma 2.5. Suppose that X is a surface of genus g ≥ 2, δγ ∈ Map(X) a
Dehn twist along a boundary component γ of X, Γ ⊂ Map(X) a finite index
subgroup, and m such that δmγ ∈ Γ. For every n ∈ N there is k ∈ N such that

for every homomorphism ρ : Γ→ GLnC we have that ρ(δmγ )k is unipotent.

Proof. Let d be the index of Γ in Map(X), and note that we can induce up
the representation ρ to a representation Map(X) → GLndC whose restric-
tion to Γ is the sum of d copies of ρ. In other words, we can assume that ρ
was defined on Map(X) to begin with, and so m = 1.

Let λ1, . . . , λr be the eigenvalues of the linear transformation ρ(δγ) and
consider the decomposition of Cn into generalized eigenspaces

Cn = E(λ1)⊕ · · · ⊕ E(λr).

Note that the spaces E(λi) are ρ(Map(X))-invariant because δγ is central
in Map(X). In particular, the homomorphism

Map(X)→ C∗, φ 7→ det(ρ(φ)|Eλi )

is well-defined for i = 1, . . . , r. On the other hand, this homomorphism
has finite image because C∗ is abelian and H1(Map(X);R) = 0 [57]. This
implies that λi is a root of unity for all i, and thus the claim follows. �

We are now ready to prove Proposition 2.4:

Proof of Proposition 2.4. First, note that it suffices to prove the claim if
µ = δmγ is a power of a Dehn twist along a single curve γ. Assuming that
this is the case, let Xγ be the complement of an open regular neighborhood
of γ in X, and observe that a connected component Z of Xγ has genus at
least 2. The embedding ι : Z → X induces a continuous homomorphism
Homeo(Z)→ Homeo(X), and hence a homomorphism

ι# : Map(Z)→ Map(X).

Moreover, there is a boundary component η of Z such that ι#(δη) = δγ .
From Lemma 2.5 we obtain that ρ(δmγ ) = (ρ◦ι#)(δmη ) is a root of a unipotent
element, as we needed to prove. �

Observing that a compact Lie group G has no unipotent elements other
than the identity we deduce:

Corollary 2.6. Suppose that X has genus ≥ 3, Γ ⊂ Map(X) a finite in-
dex subgroup and G a compact Lie group. There is k such that for every
homomorphism ρ : Γ → G we have ρ(µ)k ∈ Ker(ρ), for every multi-twist
µ ∈ Γ. �
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Notice that there are many representations with infinite image of Map(X)
into compact Lie groups. A source of such examples are the so-called quan-
tum representations; see [66] for a discussion of this topic.

The argument used in the proof of Proposition 2.4 also imposes restric-
tions on the image of Dehn twists under homomorphisms to groups which
a priori are not linear. For example, we recover the following result due to
Bridson [19]:

Theorem 2.7 (Bridson). Suppose that X,Y are surfaces of finite type, X
of genus at least 3, and let Γ ⊂ Map(X) be a finite index subgroup. Any
homomorphism φ : Γ→ Map(Y ) maps multi-twists to roots of multi-twists.

Proof. As was the case in the proof of Proposition 2.4, it suffices to prove
the claim for powers of Dehn twists δmγ ∈ Γ. We also assume, for the sake of
concreteness, that γ is non-separating and hence that the complement Xγ

of an open regular neighborhood of γ in X is connected and has genus at
least 2. Let

ι# : Map(Xγ)→ Map(X)

be the homomorphism induced by the inclusion of Xγ in X, and let η be a
boundary component of Xγ with ι#(δη) = δγ .

Seeking a contradiction, suppose that φ(δmγ ) is not a root of a multi-
twist. In other words, there is a φ(δmγ )-invariant open π1-injective sub-
surface Z ⊂ Y of negative Euler characteristic on which φ(δmγ ) acts as a
pseudo-Anosov element. Suppose that Z is the, up to isotopy, largest such
subsurface, let λ ⊂ Z be the recurrent geodesic lamination supporting all at-
tracting laminations of δmγ , and let Mλ be the space of measured laminations
supported by λ. Note that Mλ is an open convex set in a finite dimensional
real vector space Vλ. The centralizer ZMap(Y )(φ(δmγ )) of φ(δmγ ) in Map(Y )
preserves Z and λ, and acts by linear transformations on Vλ, meaning that
we have a homomorphism

ρ : ZMap(Y )(φ(δmγ ))→ GL(Vλ)

By construction, the image of φ(δmγ ) = (φ◦ ι#)(δmη ) is semi-simple of infinite
order. In other words, the homomorphism φ◦ι# contradicts Lemma 2.5. �

Bridson’s original proof [19] of Theorem 2.7 made use of the action of
Map(Y ) on the Weil-Peterson completion of Teichmüller space, which is a
CAT(0) space. In those terms, Lemma 2.5 amounts to saying that central
elements in groups Γ with H1(Γ;R) = 0 do not act as infinite order semi-
simple isometries of CAT(0) spaces. In fact, Lemma 2.5 follows from this
assertion. However, the proof of Theorem 2.7 we present here has the virtue
that it applies to other situations where no CAT(0) geometry is available:
for instance, the same argument applies, once we replace laminations by
trees, to prove that if X has at least genus 3, then every homomorphism
Γ→ Out(Fn) from a finite index subgroup Γ ⊂ Map(X) to the group of outer
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automorphisms of a free group maps multi-twists to polynomially growing
automorphisms.

To conclude this section, recall that Thurston’s classification of the ele-
ments in the mapping class group mimics the classification of elements in
Lie groups as unipotents, semi-simple, or of mixed type. In this analogy,
multi-twists are the analogue of unipotents, and pseudo-Anosov of semi-
simple elements. Homomorphisms between Lie groups preserve the Jordan
decomposition and hence the type. Seen in this light, Proposition 2.4 and
Theorem 2.7 assert that the “type” of multi-twists is preserved. On the
other hand it is well-known that, in general, type is not preserved. For in-
stance, Papadopoulos [80] noted that every element in Sp2g(Z) is the image
of a pseudo-Anosov element under the symplectic representation. As we will
see below (Theorem 3.10) there are also homomorphisms between mapping
class groups mapping pseudo-Anosov elements to multi-twists.

3. Combinatorial superrigidity for mapping class groups

As mentioned earlier, the folkloric version of Mostow and Margulis su-
perrigidity asserts that the only homomorphisms between lattices are the
“obvious ones”. In light of this, one may wonder whether there is an anal-
ogous phenomenon in the context of mapping class groups, namely if every
homomorphism Map(X)→ Map(Y ), at least subject to suitable conditions
on X and Y , is induced by a manipulation of the underlying surfaces. A
natural starting point for the problem is to study automorphisms of the map-
ping class group, or isomorphisms between finite index subgroups thereof.
Such isomorphisms are induced by a self-homeomorphism of X, by work
of Ivanov. The key tool to prove this result, by itself analogous to Mostow
Rigidity, is to use the rigidity of the curve complex or of one of the other sim-
ilar complexes built from multicurves on X. We start reviewing the rigidity
of such complexes (see also [72]), then discuss automorphisms and injective
endomorphisms of Map(X), and conclude this section by reviewing what is
known about homomorphisms between different mapping class groups.

3.1. Simplicial rigidity. Let X be a surface of finite topological type. The
curve complex C(X) is the simplicial complex whose vertices are homotopy
classes of essential simple closed curves on X, and where a set of vertices of
C(X) spans a simplex if the corresponding curves have representatives that
are pairwise distinct and disjoint. Observe that Map∗(X) acts on C(X) by
simplicial automorphisms.

The curve complex was introduced by Harvey [37] in analogy with Tits
buildings for Lie groups, and has since been used to prove a number of
results that highlight the comparison between mapping class groups and
lattices in Lie groups. For instance, Borel and Serre [18] used the ratio-
nal Tits building associated to an arithmetic group to compute the virtual
cohomological dimension of the group. Similar arguments using the curve
complex allowed Harer [36] to calculate the virtual cohomological dimension
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of Map(X). Crucially, the curve complex encodes the structure of the thin
part of Teichmüller space in a similar fashion as a rational Tits building re-
flects the combinatorics of the end of the locally symmetric space associated
to an arithmetic group.

Tits [92] proved that Tits buildings are simplicially rigid; more concretely,
if B is an irreducible thick spherical building of rank at least 2 associated to a
linear algebraic group G, then every simplicial automorphism of B is induced
by an automorphism of G. The corresponding result for curve complexes is
originally due to Ivanov [45], and was later extended by Korkmaz [56] and
Luo [60]:

Theorem 3.1 (Ivanov). If X has complexity κ(X) ≥ 2 and X 6= S1,2,
then every automorphism C(X) → C(X) is induced by a homeomorphism
X → X.

Recall that the complexity of a surface X is defined as the number κ(X) =
3g−3+p, where g and p are, respectively, the genus and the number of punc-
tures and boundary components of X. If κ(X) = 1, then the curve complex
C(X) is an infinite discrete set and, as such, has all sorts of automorphisms.
The exceptional case of S1,2 is somewhat different. Indeed, Luo [60] observed
that the natural two-fold branched cover S1,2 → S0,5 induces an isomor-
phism C(S1,2) ' C(S0,5) between curve complexes. Moreover, Map∗(S0,5)
acts transitively on C(S0,5). It hence follows that there is an automorphism
of C(S1,2) which takes a separating curve to a non-separating one, and thus
cannot be induced by a homeomorphism of S1,2. On the other hand, Luo [60]
proved that every automorphism of C(S1,2) mapping non-separating curves
to non-separating curves is induced by a surface homeomorphism.

As it turns out, it is possible to relax the condition of the self-map of the
curve complex being an automorphism. In this direction, combining results
of Irmak [41, 42], Bell-Margalit [12] and Behrstock-Margalit [10], one obtains
the analog of Theorem 3.1 for superinjective self-maps of the curve complex;
here, a map C(X) → C(X) is superinjective if it maps pairs of curves that
intersect to pairs of curves that intersect. More generally, Shackleton [86]
proved that the conclusion of Theorem 3.1 remains valid for locally injective
simplicial maps C(X)→ C(X), namely those which are injective on the star
of every vertex of C(X):

Theorem 3.2 (Shackleton). If X has complexity κ(X) ≥ 2 and X 6= S1,2,
then every locally injective simplicial map C(X) → C(X) is induced by a
homeomorphism X → X.

Besides the curve complex, there are various other Map(X)-invariant
“multicurve complexes” built from simple closed curves on a surface. Some
of these are subcomplexes of C(X) spanned by a given class of vertices of
C(X). For example, the non-separating curve complex Cns(X) is the sub-
complex of C(X) whose vertices correspond to non-separating curves.
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Other such complexes have as vertices a given type of multicurve on the
surface, and adjacency corresponds to performing “elementary moves” on
that type of multicurve. A notable example is the pants complex P(X),
whose vertices are homotopy classes of pants decompositions of X, and
where two pants decompositions are adjacent in P(X) if they share all but
one curves, and the remaining two curves either fill a 4-holed sphere and
intersect exactly twice, or they fill a 1-holed torus and intersect exactly once.
Another example, somewhere intermediate between C(X) and P(X), is the
Hatcher-Thurston complex HT (X). The vertices of HT (X) correspond to
cut systems of X, namely sets of g curves that together do not separate X,
and two vertices are adjacent if they share g − 1 curves, and the remaining
two curves intersect exactly once.

Again in analogy with the simplicial rigidity of buildings, a common theme
has been to prove that any automorphism of any such complex is induced
by a homeomorphism of the underlying surface. This was done by Irmak
[43] for the non-separating curve complex, by Margalit [62] for the pants
complex, and by Irmak-Korkmaz [44] for the Hatcher-Thurston complex. In
every single case, the proof boils down to showing that an automorphism
of the complex in question induces an automorphism of the curve complex,
and then applying Theorem 3.1. We refer to McCarthy-Papadopoulos [72]
for an overview of these and various other related results.

It is in fact reasonable to expect that, for any complex of multicurves
K(X) associated to X for which there is no obvious obstruction such as be-
ing disconnected, every automorphism (resp. locally injective, injective or
superinjective) simplicial map K(X) → K(X) is induced by a homeomor-
phism X → X.

A more challenging problem is to understand all possible injections be-
tween complexes of multicurves associated to two different surfaces:

Question 2. Let K(X) and K(Y ) be complexes of multicurves associated to
distinct surfaces X and Y . Understand all (locally) injective, or superinjec-
tive, simplicial maps K(X)→ K(Y ).

In most cases, obvious examples of simplicial injections K(X) → K(Y )
are given by subsurface inclusions ι : X → Y . Indeed, for curve complexes,
a subsurface inclusion ι : X → Y induces an injective simplicial map ψ :
C(X) → C(Y ) by the rule ψ(α) = ι(α); in the case of the pants complex, ι
induces an injective simplicial map ψ : P(X) → P(Y ) by first choosing a
multicurve Q ⊂ Y which is the union of ∂(ι(X)) and a pants decomposition
of Y \ ι(X), and then setting ψ(P ) = ι(P ) ∪Q, for every P ∈ P(X).

A more bewildering construction of injective maps between curve com-
plexes is the following. Let X be a surface with boundary, and let ι : X → Y
be a subsurface inclusion such that Y \ X is not a pair of pants. Choose
curves α ⊂ X and β ⊂ Y \X. Then the simplicial map φ : C(X) → C(Y )
given by φ(γ) = ι(γ) for all γ 6= α, and φ(α) = β, is injective (but not
superinjective).
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Another class of examples of injections between curve complexes comes
from “puncturing” a surface. To do so endow X with a hyperbolic structure
and choose a point x ∈ X in the complement of the union of all simple closed
geodesics on X; this can be done because there are only countably many
such geodesics. In this way we obtain a natural injective simplicial map
C(X)→ C(X\x). Moreover, using for example a result of Birman-Series [17],
we may choose two discs in the complement of the union of all simple closed
geodesics on X. Denoting by Y the surface obtained from X by removing the
interior of each disc, and then gluing together the boundaries of the discs, we
obtain an injection C(X)→ C(Y ); observe that genus(Y ) = genus(X) + 1.

As a general principle, the rigidity of complexes of multicurves seems to
increase with the cardinality of the multicurve representing a vertex. The
following result, proved in [3], is an extreme case of this behavior:

Theorem 3.3 (Aramayona [3]). Let X and Y be compact orientable surfaces
and assume that κ(X) ≥ 2. Every locally injective simplicial map P(X) →
P(Y ) is induced by a subsurface inclusion X → Y .

An interesting intermediate example is the Hatcher-Thurston complex:
observe that, unlike in the case of pants complexes, puncturing a surface
induces an injective simplicial map between the corresponding Hatcher-
Thurston complexes. It seems however possible to prove that all injections
HT (X)→ HT (Y ) are obtained as a combination of puncturing and subsur-
face inclusions.

3.2. Automorphisms and injective endomorphisms. In this section
we discuss the following result, due to Ivanov [46] and McCarthy [71], and
a few of its extensions:

Theorem 3.4 (Ivanov, McCarthy). Let X be a surface of genus at least 3.
Then Aut(Map(X)) = Map∗(X).

We now sketch the proof of Theorem 3.4 for closed surfaces X of genus
at least 4, using a simplified version of the arguments in [6]. The idea is to
deduce from Theorem 2.7 that every automorphism

φ : Map(X)→ Map(X)

induces an automorphism φ∗ : Cns(X) → Cns(X), which is in turn induced
by a mapping class by a result of Irmak [43]. To define φ∗ we proceed
as follows. Given a non-separating curve γ ⊂ X consider the Dehn twist
δγ along γ. By Theorem 2.7, φ(δγ) is a root of a multi-twist, which has
infinite order since φ is injective. Let φ∗(γ) be the non-empty multicurve
supporting any multi-twist power of φ(δγ). The following lemma is the heart
of the argument:

Lemma 3.5. If γ ⊂ X is a non-separating curve then φ∗(γ) is also a non-
separating curve. Moreover, φ∗ : Cns(X)→ Cns(X) is an automorphism.
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Proof. Note that the multicurve φ∗(γ) is φ(δγ)-invariant. First, we claim
that each individual component of φ∗(γ) is preserved by φ(δγ). Denoting by
Xγ the surface obtained from X by removing the interior of a regular neigh-
borhood of γ, recall that δγ is central in the image of the homomorphism
ι# : Map(Xγ) → Map(X) induced by the inclusion Xγ → X. Therefore,
φ(ι#(Map(Xγ)) preserves the multicurve φ∗(γ).

Since Xγ has genus at least 3, a result of Paris [81] yields that every
homomorphism from Map(Xγ) to a symmetric group on at most 4(g− 1) +
4 = 4g elements is trivial. Thus, noting that φ∗(γ) has at most 3g − 3
components, we deduce that φ(ι#(Map(Xγ)), and a fortiori also φ(δγ), does
not permute the components of φ∗(γ).

Next, we claim that φ∗(γ) is in fact a single curve. Arguing by contra-
diction, suppose that φ∗(γ) has k ≥ 2 elements. As Dehn twists about
non-separating curves are conjugate in Map(X), then φ∗(γ

′) also has k ele-
ments for every γ′ ⊂ X non-separating. Since X is closed, we may extend
γ to a pants decomposition P such that no two elements of P together sep-
arate X. Then φ∗(P ) consists of (3g − 3)k possibly equal, but otherwise
pairwise disjoint, curves; since k ≥ 2, the pigeonhole principle implies that
there are α, β ∈ P distinct such that φ∗(α) ∩ φ∗(β) 6= ∅. Now, Map(X)
is generated by Dehn twists about a set of simple closed curves such that
each one of them is disjoint from either α or β, and thus we deduce that
φ(Map(X)) fixes the multicurve φ∗(α) ∩ φ∗(β), contradicting that φ is an
automorphism.

Therefore, φ∗(γ) is a single curve on X. We now prove that φ∗(γ) is
non-separating. Indeed, the elements of φ∗(P ) all have the same topological
type, again because any two Dehn twists about non-separating curves are
conjugate in Map(X), and there are at most g − 1 separating curves on X
with the same topological type.

Having proved that φ∗(γ) is a non-separating curve for every such curve
γ ⊂ X we obtain that the rule γ → φ∗(γ) defines a map φ∗ : Cns(X) →
Cns(X) of the non-separating curve complex of X. The self-map of Cns(X)
associated to φ−1 is the inverse of φ∗, and hence the latter is an automor-
phism of Cns(X). �

Continuing with the proof of Theorem 3.4, note that it follows from
Lemma 3.5 and from the rigidity of Cns(X) [43] that there is a homeo-
morphism f : X → X such that φ(δγ) is a root of a power of the Dehn twist
along f(γ) = φ∗(γ). The φ-equivariance of φ∗ yields that φ(δγ) fixes φ∗(η)
for every non-separating curve η ⊂ X disjoint from γ. This observation
implies easily that φ(δγ) = δf(γ). In other words, the automorphisms φ and

g 7→ fgf−1 agree on the set of Dehn twists along non-separating curves,
and hence are identical because such Dehn twists generate Map(X). This
concludes the discussion of Theorem 3.4. �
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Theorem 3.4 remains true if one considers only finite index subgroups
of mapping class groups. Indeed, Ivanov [45] proved that every automor-
phisms between finite index subgroups of Map(X) is the restriction of an
automorphism of Map(X). As an immediate consequence, the abstract com-
mensurator of the mapping class group is the extended mapping class group:

Corollary 3.6 (Ivanov). Comm(Map(X)) = Map∗(X).

In the same spirit, combining results of Korkmaz [56], Irmak [41, 42],
Bell-Margalit [12], Behrstock-Margalit [10] and Shackleton [86], one gets:

Theorem 3.7. Let X be a surface other than S0,n for n ≤ 4, S1,n for
n ≤ 2 or S2,0. Let Γ be a subgroup of finite index in Map(X). Then every
injective homomorphism Γ→ Map(X) is the restriction of an automorphism
of Map(X).

Recall that a group G is co-Hopfian if every injective homomorphism
G→ G is an isomorphism. As a consequence of Theorem 3.7, we obtain:

Corollary 3.8. Let X be a surface other than S0,n for n ≤ 4, or S1,n for
n ≤ 2. Then every finite index subgroup of Map(X) is co-Hopfian.

The strategy of the proofs of the results we just mentioned is similar to
the one of the proof of Theorem 3.4. One shows that the, say injective,
homomorphism in question induces a simplicial automorphism of a rigid
complex such as the curve complex. As was the case in the proof of Theorem
3.4, the key idea to obtain this map is to exploit commutativity relations
in Map(X). Note for instance that the subgroup of Map(X) generated by
the Dehn twists along the components of a pants decomposition of X is free
abelian of maximal rank, by a result of Birman-Lubotzky-McCarthy [16].

3.3. General homomorphisms. We now discuss homomorphisms between
different mapping class groups. On the one hand, the theme may be in-
formally described as that “imposing certain topological conditions on the
domain and target surfaces gives rise to strong restrictions on the homo-
morphisms that can appear”. On the other, all known examples and results
point towards an affirmative answer to the following vague question:

Question 3. Suppose that X has genus at least 3. Does every homomor-
phism Map(X)→ Map(Y ) arise from a manipulation of surfaces?

While the phrase “manipulation of surfaces” is not precise, we hope that
it will have acquired a more definite meaning by the end of this section.

The first result about homomorphisms between mapping class groups of
distinct surfaces X and Y is a theorem of Ivanov-McCarthy [48], who proved
that there are no injective homomorphisms when κ(Y ) = κ(X) + 1:

Theorem 3.9 (Ivanov-McCarthy). If X and Y have empty boundary, X has
genus at least 3 and κ(Y ) ≤ κ(X) + 1, then every injective homomorphism
Map∗(X)→ Map∗(Y ) is induced by a homeomorphism X → Y .
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In [48], Ivanov and McCarthy also consider some lower genus cases of
Theorem 3.9; for X and Y both of genus zero, this theorem is due Bell-
Margalit [12].

We remark that some relation between the complexities of the surfaces
X and Y is necessary for Theorem 3.9 to hold. For instance, as explained
in [48], one may obtain injective homomorphisms between mapping class
groups of punctured surfaces as follows. Let X be a surface with one punc-
ture, and κ : Y → X a characteristic cover such that the peripheral loop
on X lifts. Since κ is characteristic, every homeomorphism of X lifts to a
homeomorphism of Y ; moreover, we can choose such lift to fix a preferred
preimage of the puncture of X. In this way we obtain an injective homo-
morphism Map∗(X)→ Map∗(Y ) between the associated extended mapping
class groups.

It is worth mentioning that, composing the homomorphism Map∗(X)→
Map∗(Y ) just described with the homomorphism induced by forgetting all
but one punctures of Y , one obtains an injective homomorphism mapping a
pseudo-Anosov to a multi-twist [4]:

Theorem 3.10 (Aramayona-Leininger-Souto). Suppose X has genus g ≥ 2
and one puncture. Then there exist a surface Y of genus g′ > g and an
injective homomorphism Map(X) → Map(Y ) with the following property:
there exists f ∈ Map(X) pseudo-Anosov such that φ(f) is a multi-twist.

Note that the construction above uses in a crucial way that X has punc-
tures. However, also in [4] we proved:

Theorem 3.11 (Aramayona-Leininger-Souto). For every closed surface X
of genus at least 2, there are a closed surface Y 6= X and an injective
homomorphism φ : Map(X)→ Map(Y ).

The homomorphism needed to prove Theorem 3.11 is also constructed
using covers, although this time the covers we employ are far from being
characteristic.

Continuing with the discussion of Theorem 3.9, note that the assumption
∂X = ∅ is crucial: indeed, if X is allowed to have boundary, there are
numerous examples of injective homomorphisms Map(X) → Map(Y ), with
κ(Y ) = κ(X)+1, as can be seen by considering the homomorphism induced
by a subsurface embedding X → Y .

Finally, observe that Theorem 3.9 does not hold for non-injective homo-
morphisms. Indeed, let X be a closed surface and consider the homomor-
phism Map(X)→ Map(Y ) provided by Theorem 3.11. Puncturing X often
enough we obtain a surface Z with κ(Z) = κ(Y ). Then the composition
of Map(X) → Map(Y ) with the homomorphism Map(Z) → Map(X) given
by forgetting all the punctures of Z is a non-injective, but also highly non-
trivial, homomorphism that is clearly not induced by a homeomorphism
between Z and Y .
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This last example shows that in general there might be non-injective, but
also non-trivial, homomorphisms, while there are no injective ones. In [6]
we classified all non-trivial homomorphisms between mapping class groups
of surfaces satisfying suitable genus bounds. Before stating this result, we
need some terminology. Let X and Y be surfaces of finite topological type,
consider the cusps as marked points, and denote the underlying (compact)
surfaces by |X| and |Y |. By an embedding ι : X → Y we understand a
continuous injective map ιtop : |X| → |Y | with the property that whenever

y ∈ ιtop(|X|) ⊂ |Y | is a marked point of Y in the image of ιtop, then ι−1
top(y) is

also a marked point of X. As remarked in [6], every embedding ι : X → Y
is isotopic to a composition of the three operations we have encountered
earlier in this paper: filling punctures, deleting boundary components, and
subsurface embeddings. Every embedding ι : X → Y induces a (continuous)
homomorphism Homeo(X)→ Homeo(Y ) and hence a homomorphism

ι# : Map(X)→ Map(Y ).

The content of the following theorem, proved in [6], is that subject to suitable
genus bounds, every non-trivial homomorphism is in fact induced by an
embedding:

Theorem 3.12 (Aramayona-Souto). Suppose that X and Y are surfaces
of finite topological type, of genus g ≥ 6 and g′ ≤ 2g − 1 respectively; if Y
has genus 2g − 1, suppose also that it is not closed. Then every nontrivial
homomorphism

φ : Map(X)→ Map(Y )

is induced by an embedding X → Y .

Remark. Several special cases of Theorem 3.12 were obtained simultaneously
and independently by Castel [24].

Note that the assumption in Theorem 3.12 that the genus of Y be less
than twice that of X is necessary. Indeed, suppose that X has non-empty
connected boundary and let Y be the double of X. Let X1, X2 be the two
copies of X inside Y , and for x ∈ X denote by xi the corresponding point
in Xi. Given a homeomorphism f : X → X fixing pointwise the boundary
and the punctures define

f̂ : Y → Y, f̂(xi) = (f(x))i ∀xi ∈ Xi

The homomorphism

Homeo(X)→ Homeo(Y ), f 7→ f̂

induces a homomorphism φ : Map(X)→ Map(Y ) that is not induced by an
embedding X → Y . Note that the Dehn twist about ∂X is contained in the
kernel of φ, and thus φ descends to a (injective) homomorphism

(3.1) Map(Sg,1)→ Map(S2g, 0)
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We now discuss a few particular cases of Theorem 3.12. First observe that
there is no embedding X → Y if the genus of Y is less than that of X;
it follows that, under this assumption, every homomorphism Map(X) →
Map(Y ) is trivial. This result is due, for X closed, to Harvey-Korkmaz [38].

If X is closed, then any embedding X → Y is necessarily a homeomor-
phism; as a consequence we deduce that if X and Y are non-homeomorphic
closed surfaces of genus g ≥ 6 and g′ ≤ 2g − 2, respectively, then every
homomorphism Map(X)→ Map(Y ) is trivial. This provides an affirmative
answer to a conjecture of Berrick-Matthey, who proved in [13] that for ev-
ery m there are infinitely many values of g for which every homomorphism
Map(Sg,0)→ Map(Sg+m,0) is trivial.

In addition, if X has genus at least 6 (in fact 4, as explained in [6]) and
empty boundary, then every non-trivial endomorphism Map(X)→ Map(X)
is induced by a self-homeomorphism of X; this generalizes Ivanov’s and Mc-
Carthy’s Theorem 3.4 to homomorphisms that are not necessarily injective.

See [6] for other corollaries of the above theorem.

The basic idea of the proof of Theorem 3.12 is similar to the proof of The-
orem 3.4 sketched above: one derives from Theorem 2.7 that φ maps Dehn
twists along non-separating curves to Dehn twists along non-separating
curves, and hence induces a map φ∗ : Cns(X) → Cns(Y ). Since φ∗ may
well fail to be injective, we cannot use directly any known rigidity result for
the curve complex - recall in addition that, if the genus of Y is larger than
that of X, then there is a number of exotic embeddings C(X)→ C(Y ). We
circumvent this problem by exploiting the presence of the homomorphism
φ : Map(X) → Map(Y ): although it is not made explicit in [6], the ar-
gument somehow boils down to a rigidity theorem for φ-equivariant maps
between curve complexes.

4. Lie theoretic superrigidity

Having discussed in the previous section results in the spirit of the folk-
loric take on superrigidity, we now explore a possible analogy with the Lie
theoretic version of Margulis’s theorem. Recall that the latter asserts that
homomorphisms between higher rank lattices virtually arise from homomor-
phisms between the ambient Lie groups. The first difficulty one faces when
even thinking of extending this result to the setting of mapping class groups
is the lack of an ambient group, as we discuss next.

4.1. The Morita-Markovic theorems. By definition Map(X) is defined
as a quotient of Homeo(X):

1→ Homeo0(X)→ Homeo(X)→ Map(X)→ 1

It is also well-known that one can replace the group Homeo(X) by many
other groups. What we mean by this is just the observation that whenever
G(X) ⊂ Homeo(X) is a subgroup such that every mapping class has a
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representative in G(X), we have

(4.1) 1→ G0(X)→ G(X)→ Map(X)→ 1

where G0(X) = G(X) ∩ Homeo0(X). There are many interesting choices
for such a group G(X), for instance the groups of diffeomorphisms, Ck-
diffeomorphisms, analytic diffeomorphisms, etc... In all these cases it is an
interesting problem to study if the sequence (4.1) splits. More generally, one
can wonder if for a given subgroup Γ of Map(X) there is a homomorphism
Γ 99K G(X) which makes the following diagram commute:

Γ

��yy
1 // G0(X) // G(X) // Map(X) // 1

If the homomorphism Γ 99K G(X) exists then we call it the lift, and say that
Γ lifts to G(X); otherwise, we say that Γ does not lift. The first non-lifting
result is due to Morita [75]:

Theorem 4.1 (Morita). If X is a closed surface of genus g ≥ 3, then
Map(X) does not lift to the diffeomorphism group Diff(X) of X.

In [75], Morita proved Theorem 4.1 for g ≥ 5 showing that the existence
of a lift would imply the vanishing of certain cohomology classes of moduli
space, which are known not to vanish. Later on, the genus bound was im-
proved and the proofs became simpler. For instance, in [32] Franks-Handel
derive the theorem above for g ≥ 3 applying Thurston’s stability theorem to
fixed points of partially pseudo-Anosov elements. Also, while Morita’s proof
applies to lifting to the group of C2-diffeomorphisms, the Franks-Handel ar-
gument applies to the group of C1-diffeomorphisms as well. A much more
involved argument shows that in fact the statement of Morita’s theorem
remains true for g ≥ 2 and the group of homeomorphisms:

Theorem 4.2 (Markovic). If X is a closed surface of genus g ≥ 2, then
Map(X) does not lift to Homeo(X).

Theorem 4.2 was proved by Markovic [64] for g ≥ 5 and by Markovic-Saric
[65] for g ≥ 2.

So far, we have only considered the lifting problem for the whole mapping
class group. In fact, Morita’s original result for g ≥ 5 applies also to finite
index subgroups. At the other end of the spectrum, Kerckhoff proved [53]
that finite subgroups of Map(X) lift to Diff(X). Also, it follows from Kerck-
hoff’s result that virtually abelian and virtually free subgroups of Map(X)
lift to Diff(X) as well. On the other hand, it has been conjectured that
surface subgroups in Map(X) need not lift. The following result [14] points
in this direction:

Theorem 4.3 (Bestvina-Church-Souto). If X has genus at least 2 and x ∈
X, then no finite index subgroup of π1(X,x) ⊂ Map(X,x), the kernel of the
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Birman exact sequence

1→ π1(X,x)→ Map(X,x)→ Map(X)→ 1

lifts to the group of diffeomorphisms of X fixing x.

In general, deciding which subgroups of Map(X) lift and which do not is
a very interesting problem:

Question 4. Determine which subgroups of Map(X) lift to Diff(X). More
concretely, determine for example if the subgroup generated by two Dehn
twists along curves which intersect once lifts to Diff(X).

Until now, we have only considered the lifting problem as an algebraic
problem, namely one about the (non-)existence of splittings of an exact
sequence. There is however a different point of view, which we discuss
next. Suppose for the sake of simplicity that X is a closed surface. Every
action G y X of a group G by orientation-preserving homeomorphisms
induces a homomorphism G→ Map(X). From this point of view, Morita’s
(resp. Markovic’s) theorem assert that there is no smooth (continuous)
action of Map(X) on X which induces the identity on Map(X). In [22],
Cantat and Cerveau proved that in fact Map(X) does not act by analytic
diffeomorphisms on any surface:

Theorem 4.4 (Cantat-Cerveau). Suppose that X has genus at least 3, that
Y is a closed surface with χ(Y ) < 0, and let Γ be a finite index subgroup of
Map(X). There is no effective analytic action Γ y Y .

A word of warning: it would be perhaps natural to think that if there is
no analytic or smooth action of a group on a manifold, then there should
not be any continuous action either. In general, this is certainly not the
case. For example, the extended mapping class group Map∗(X) of a closed
surface X acts on the unit tangent bundle T 1X of X in such a way that the
composition

Map∗(X)→ Out(π1(T 1X))→ Out(π1(X)) ' Map∗(X)

is the identity. In fact, the “natural” action is only Hölder, but it can be
conjugated to a Lipschitz action. On the other hand, if X has genus at least
12, there is no such smooth action [89].

4.2. Inducing up homomorphisms. All the results we just discussed as-
sert that Map(X) is not a subgroup of the “ambient groups” of homeomor-
phisms or diffeomorphisms of X. However, in all known examples, every ho-
momorphism between mapping class groups of surfaces of sufficiently large
genus is induced by a homomorphism between the corresponding “ambient
groups”. In fact, whenever any meaning is given to the sentence “manipu-
lation of surfaces” as in Question 3, the following statement is true:

If a homomorphism φ : Map(X) → Map(Y ) arises from
a manipulation of surfaces, then there is a homomorphism
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Φ : Diffc(X)→ Diffc(Y ) so that the following diagram com-
mutes:

Diffc(X)
Φ //

��

Diffc(Y )

��
Map(X)

φ // Map(Y )

Here Diffc(X) is the group of diffeomorphisms with compact
support in X \ ∂X.

Continuing with the same notation, we say that Φ induces φ.

Remark. Notice that if X has cusps, then Diffc(X)∩Homeo0(X) is not the
identity component of Diffc(X). Therefore, but just for the sake of clarity,
we assume for the rest of this section that X is a compact surface, possibly
with non-empty boundary.

The Lie theoretic version of Margulis Superrigidity asserts that homomor-
phisms between lattices (virtually) extend to homomorphisms of the ambient
groups; in other words, homomorphisms between lattices are (virtually) in-
duced by homomorphisms of the ambient groups. We wonder if the same is
true for homomorphisms between mapping class groups:

Question 5. Suppose that X has genus at least 3. Is it true that every
homomorphism φ : Map(X) → Map(Y ) is (virtually) induced by a homo-
morphism Φ : Diffc(X)→ Diffc(Y )?

In some way, question 5 is of motivational nature. At least the authors do
not see any possibility of giving a positive answer, should that be the case,
without previously having classified all homomorphisms between mapping
class groups. We think however that understanding all homomorphisms
Diffc(X) → Diffc(Y ) would be interesting in its own right, and would also
provide relevant information about the possible homomorphisms between
mapping class groups. Any homomorphism Diffc(X) → Diffc(Y ) should in
fact arise from manipulations of surfaces... and it might be actually possible
to prove that this is the case.

Question 6. Determine all non-trivial continuous homomorphisms Φ :
Diffc(X)→ Diffc(Y ).

The remainder of this section is devoted to discuss a few known facts
related to Question 6. To begin with, it is a classical theorem by Filipkiewicz
[31] - valid in every dimension - that every isomorphism Diffc(X) ' Diffc(Y )
is induced by a diffeomorphism X \ ∂X ' Y \ ∂Y . Similar results are
also known for isomorphisms between automorphisms groups of geometric
structures such as, for instance, a volume form or a symplectic form [8,
9, 84], but there are very few results on general homomorphisms between
groups of diffeomorphisms. Only in dimension 1 is the situation completely
understood:
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Theorem 4.5 (Mann). Suppose that M and N are 1-dimensional manifolds
with empty boundary, and let Φ : Diffc(M)→ Diffc(N) be a homomorphism
whose image Φ(Diffc(M)) acts transitively on N . Then Φ is induced by a
diffeomorphism M ' N .

Remark. The formulation of Mann’s theorem given here is not to be found
in [61], but it is easily seen to be equivalent to the results therein.

The situation in dimension greater than 1 is much more complicated as
indicated by the following result:

Theorem 4.6 (Aramayona-Leininger-Souto). Let M be a closed connected
manifold whose fundamental group surjects onto the symmetric group Sym3.
Then there are a non-trivial connected finite cover M ′ →M and an injective
homomorphism Diff(M)→ Diff(M ′) whose image acts transitively on M ′.

In [4], this theorem is only stated in dimension 2, but the proof of the
statement here is identical. Note that Theorem 3.11 follows directly from
Theorem 4.6, and observe that the condition on the fundamental group
seems to be of some importance:

Proposition 4.7. Suppose that X = S2 or that X = T2. If Y is a surface
and there is a non-trivial homomorphism Φ : Diff0(X) → Diff0(Y ) then Y
is diffeomorphic to X.

Proof. For the sake of concreteness we will only prove Proposition 4.7 if
X = S2. Then SO3 ⊂ Diff0(X). Since Diff0(X) is simple [69, 70], we obtain
that either Φ is trivial or Φ(SO3) is isomorphic to SO3. In particular, the
compact group SO3 acts on Y . This is only possible if Y = S2. �

The simplicity of the identity component of the group of diffeomorphisms
(with compact support) has numerous other consequences:

Theorem 4.8. Suppose that X is a closed surface of genus g ≥ 6 and that
Y has genus 2 ≤ g′ ≤ 2g − 2. If X 6= Y , then there is no non-trivial
homomorphism Φ : Diff(X)→ Diff(Y ).

Proof. It follows from Theorem 3.12 that every homomorphism Map(X)→
Map(Y ) is trivial. In particular, the image Φ(f) of any non-trivial f ∈
Diff(X) of finite order has finite order and is isotopic to the identity. This
implies that it is actually the identity and hence that f ∈ Ker(Φ). Let now
g ∈ Diff0(X) be arbitrary without commuting with f , noting that [f, g] ∈
Ker(Φ) ∩ Diff0(X). Since Diff0(X) is simple, it follows that Diff0(X) ⊂
Ker(X). Thus, the homomorphism Φ factors through a homomorphism
Φ′ : Map(X) → Diff(Y ). Moreover, every finite order element of Map(X)
belongs to the kernel of Φ′. Since Map(X) is generated by finite order
elements, we have proved that Φ′, and hence Φ, is trivial. �
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5. Geometric superrigidity

As mentioned in section 1, in addition to the folkloric and Lie theoretic
versions, Margulis Superrigidity also has a geometric interpretation in terms
of maps between locally symmetric spaces. In this section, we explore to
which extent there might be a geometric version of superrigidity in the
context of mapping class groups. After reviewing some facts and known
results about Teichmüller and moduli spaces, we discuss why the literal
translation of Geometric Superrigidity cannot possibly hold. We propose
instead a holomorphic version of superrigidity for homomorphisms between
mapping class groups, motivated by rigidity results for maps between Kähler
manifolds.

5.1. Background on Teichmüller and moduli spaces. We refer the
reader to [39, 40, 78] for basic facts on Teichmüller space. Throughout
this section we will assume that surfaces have finite analytic type; that is,
they have finite topological type and empty boundary. Given such a surface
X, the Teichmüller space T (X) is the space of (parabolic) holomorphic
structures on X up to isotopy fixing the punctures. Equivalently, T (X) is
the space of isotopy classes of finite area complete hyperbolic metrics on X.
The mapping class group Map(X) acts discretely on T (X) and it is due to
Ahlfors [1] that T (X) admits a Map(X)-invariant complex structure, with

respect to which T (X) is biholomorphic to a bounded domain in Cκ(X). In
particular, the moduli space

M(X) = T (X)/Map(X)

is, by definition, a complex orbifold. Teichmüller space is a classifying space
for proper actions E(Map(X)) of the mapping class group, meaning that the
action is proper and that fixed-point sets of subgroups are either empty or
contractible. In particular, there is a one-to-one correspondence between free
homotopy classes of orbifold maps M(X) → M(Y ) and conjugacy classes
of homomorphisms Map(X)→ Map(Y ).

As mentioned in section 1, the spaces T (X) and M(X) serve as the
Map(X)-analogs of the symmetric and locally symmetric space for a higher
rank lattice. However, a first and major difference between Teichmüller
space and a symmetric space is that, while a symmetric space has a huge
group of isometries, Teichmüller space does not have many:

Theorem 5.1 (Avramidi [7]). Suppose that X 6= S0,4, S1,1, S1,2 and let ρ be
a Map∗(X)-invariant complete Finsler metric on T (X), of finite covolume.
Then Map∗(X) is the full group of isometries of (T (X), ρ).

Avramidi’s work builds on a previous result by Farb-Weinberger [30].
It does not apply to the Weil-Peterson metric because the latter is not
complete, but in this case the result had already been established by Masur-
Wolf [68], using again the rigidity of the curve complex (Theorem 3.1).
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5.2. Failure of geometric superrigidity. Avramidi’s result may be in-
terpreted as asserting that, unlike in the case of symmetric spaces, there is
no preferred Map(X)-invariant metric on Teichmüller space. Indeed, there
is a number of well-known Map(X)-invariant metrics on T (X) with respect
to whichM(X) has finite volume: these include the Teichmüller metric, the
Weil-Petersson metric and McMullen’s Kähler hyperbolic metric. See [58]
for other examples as Map(X)-invariant metrics on Teichmüller space.

The next result, which is a direct consequence of Theorem 3.10 above,
states that the geometric version of Margulis Superrigidity has no literal
translation to the context of mapping class groups:

Theorem 5.2 (Aramayona-Leininger-Souto). Suppose that X = Sg,1 with
g ≥ 2. Then there are Y 6= X and a map M(X)→M(Y ) such that, when
M(X) andM(Y ) are endowed with any reasonable metric, is not homotopic
to any totally geodesic map.

The reader might wonder what the term reasonable means in the state-
ment of Theorem 5.2. For instance, it suffices that pseudo-Anosov elements
have an axis (or quasi-axis) while multi-twists do not, so any of the metrics
mentioned above is reasonable in this sense. The condition that the metric
be reasonable stems from the fact that the map M(X) →M(Y ) in Theo-
rem 5.2 is proper and injective, and therefore one could first choose a metric
on M(X), push it forward, and extend it to a metric on M(Y ).

5.3. Holomorphic rigidity? Lacking a literal translation of the geometric
version of Margulis Superrigidity, we now propose another potential version
of superrigidity for maps between moduli spaces, which could be thought of
as “holomorphic rigidity”. We remark that the most naive possible inter-
pretation of this, namely that every map M(X)→M(Y ) be homotopic to
a holomorphic map, cannot possibly hold either. Indeed, there is no holo-
morphic map in the homotopy class of maps M(Sg,1)→M(S2g,0) given by
the homomorphism (3.1). However, there is an obvious holomorphic (and
totally geodesic) map M(Sg,1)) → M̄(S2g,0) to the Mumford-Deligne com-
pactification of M(S2g,0). We recall that M̄(S2g,0) is a projective algebraic
variety; as a topological space, it is the metric completion ofM(S2g,0) with
respect to the Weil-Petersson metric [67].

The problem with the map M(Sg,1) →M(S2g,0) above is that the asso-
ciated homomorphism Map(Sg,1) → Map(S2g,0) is not irreducible, meaning
that its image fixes a curve on Y . On the other hand, every known example
of an irreducible homomorphism between mapping class groups of analyti-
cally finite surfaces induces a holomorphic map between the corresponding
moduli spaces. In fact, we think that the answer to the following question
may well be positive:

Question 7. Suppose that X and Y have finite analytic type and suppose
that X has genus at least 3. Let φ : Map(X) → Map(Y ) be an irreducible
homomorphism. Is there a φ-equivariant holomorphic map T (X)→ T (Y )?
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Before sketching a possible approach to Question 7, we wish to point out
a basic problem: even if one knew that the answer were positive, one would
not gain much information about homomorphisms between mapping class
groups, or equivalently about homotopy classes of maps between moduli
spaces. The reason is that, while in the case of lattices Margulis Super-
rigidity implies that understanding homomorphisms between lattices boils
down to problems in representation theory, and hence in linear algebra and
combinatorics, not much is known about the possible holomorphic maps
M(X) →M(Y ). However, a relatively simple observation is that in every
non-trivial homotopy class there is at most one holomorphic map [5]:

Theorem 5.3 (Aramayona-Souto). Suppose that Γ ⊂ Map(X) has finite
index and let φ : Γ → Map(Y ) be a homomorphism. Suppose also that
f1, f2 : T (X) → T (Y ) are φ-equivariant holomorphic maps. If f1 is not
constant, then f1 = f2.

The idea of the proof of Theorem 5.3 is the following. The Weil-Petersson
metric on moduli space is Kähler, geodesically convex, and has negative cur-
vature. Eells and Sampson [27] derived from a variant of the Wirtinger in-
equality and Stokes’ theorem, that every holomorphic map between Kähler
manifolds with closed domain is harmonic. If, moreover, the target is nega-
tively curved and geodesically convex, then finite energy harmonic maps are
unique in their homotopy class. In particular, if the moduli space M(X)
were closed, then Theorem 5.3 would follow directly from the Eells-Sampson
theorem. Since moduli space is not closed, one shows that the boundary
terms appearing when applying Stokes’ theorem vanish, and that every holo-
morphic map M(X) → M(Y ) has finite energy. To do so we endow the
domain with McMullen’s Kähler hyperbolic metric [73] instead of the Weil-
Peterson metric. The former metric has the virtue of being bi-Lipschitz
to the Teichmüller metric, and thus, by the Kobayashi-hyperbolicity of the
Teichmüller metric, the holomorphic maps fi are Lipschitz and hence have
finite energy.

Note that Theorem 5.3 implies that every non-existence (resp. rigidity)
theorem for homomorphisms between mapping class groups implies a non-
existence (rigidity) result for non-constant holomorphic maps between the
corresponding moduli spaces. In this direction, combining Theorem 3.12
and Theorem 5.3 we obtain [5]:

Theorem 5.4 (Aramayona-Souto). Let X and Y be Riemann surfaces of
finite analytic type of genus g ≥ 6 and g′ ≤ 2g − 1 respectively. Moreover,
in the equality case suppose that Y is not closed. Then, every non-constant
holomorphic map M(X)→M(Y ) is a forgetful map.

The result of Eells-Sampson on which we modeled the proof of Theorem
5.3 is perhaps the simplest instance of Kähler rigidity. A much more elabo-
rate result along these lines is the following version of Siu’s rigidity theorem
[88] due to Carlson-Toledo [23]:
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Theorem 5.5 (Siu, Carlson-Toledo). Let M be a closed Kähler manifold,
and N a hermitian locally symmetric space other than H2. Let f : M → N
be a harmonic map, and suppose that there is a point x ∈ M such that
dfxTxM = Tf(x)N . Then f is either holomorphic or antiholomorphic.

Recall that a symmetric space is hermitian if it is Kähler. We now give
a very brief sketch of the proof of Theorem 5.5. First, one uses a Bochner
formula, Stokes’ theorem, and the fact that N has non-positive hermitian
curvature R(X,Y, X̄, Ȳ ) ≤ 0 to prove f is pluriharmonic; in other words,
the restriction of f to every germ of Riemann surface in M is harmonic.
Moreover, using that the curvature operator R of N is given in a very con-
crete fashion, it follows that if dfx is surjective then f is either holomorphic
or antiholomorphic at x. Analiticity, plus the existence of some x where dfx
is surjective, implies that f is holomorphic on an open dense set, and hence
holomorphic overall. This concludes the sketch of the proof of Theorem 5.5.

It should be noted that the condition that dfx is surjective at a point can
be relaxed to a much weaker one, namely that the rank be sufficiently large.
In fact, the strategy we just sketched has been implemented by Schumacher
[87] for harmonic maps with respect to the Weil-Peterson metric:

Theorem 5.6 (Schumacher). Let f : M̄(X) → M̄(Y ) be a harmonic
map with f(M(X)) ⊂ M(Y ) and f(M̄(X) \ M(X)) ⊂ M̄(Y ) \ M(Y ).
If rank df ≥ 4 at a point, then f is holomorphic or antiholomorphic.

In the light of Schumacher’s theorem, proving that every irreducible ho-
momorphism φ : Map(X) → Map(Y ) induces a harmonic map M(X) →
M(Y ) should go a long way towards obtaining a positive answer to Question
7. Equivalently, one should prove that there is a φ-equivariant harmonic map
Φ : T (X) → T (Y ). As long as we endow T (X) with McMullen’s Kähler
metric and T (Y ) with the Weil-Peterson metric, it follows from Theorem
2.7 that there is a φ-equivariant map such that the induced map between
moduli spaces has finite energy. Now, it follows from general principles that
there is a harmonic map

Φ : T (X)→ T̄ (Y )

where T̄ (Y ) is the Weil-Peterson completion of T (Y ). At this point, we face
two difficulties:

(1) Prove that if φ is irreducible, then Φ(T (X)) ⊂ T (Y ).
(2) Assuming (1), prove the analogous statement of Theorem 5.6.

We believe that (1) is the heart of the matter, but in any case, there is a
number of technical problems one would need to surmount when trying to
implement this strategy. Perhaps one could first try to prove:

Question 8. Suppose that X has at least genus 3, Γ ⊂ Map(X) be a finite
index subgroup, and N a closed manifold of constant negative curvature. Is
it true that for every homomorphism φ : Γ → π1(N), and every k ≥ 3, the
map Hk(φ) : Hk(π1(N);R)→ Hk(Γ;R) is trivial?
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Question 8 is motivated by the following result due to Sampson [85]:

Theorem 5.7 (Sampson). Let M be a closed Kähler manifold, N a closed
manifold of constant negative curvature, and f : M → N a harmonic map.
Then rank df ≤ 2.

We refer the reader to Toledo [94] for a beautiful survey on the topic of
Kähler rigidity.
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[80] A. Papadopoulos, Difféomorphismes pseudo-Anosov et automorphismes symplectiques
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