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Introduction

Hastings-Metropolis algorithm (1/2)

Given

a target density π on X ⊆ Rd (to simplify the talk)

a proposal transition kernel q(x, y)

define {Xk, k ≥ 0} iteratively as

(i) draw Y ∼ q(Xk, ·)
(ii) compute

α(Xk, Y ) = 1 ∧ π(Y )

π(Xk)

q(Y,Xk)

q(Xk, Y )

(iii) set Xk+1 =

{
Y with prob. α(Xk, Y )
Xk with prob. 1− α(Xk, Y )
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Hastings-Metropolis algorithm (2/2)

Then (Xk)k≥0 is a Markov chain with transition kernel P

P (x,A) =

∫
α(x, y)q(x, y)λ(dy) + 1IA(x)

∫
(1− α(x, y)) q(x, y)λ(dy)

Under conditions on π and q

Ergodic behavior : P k(x, ·) d−→ π

Explicit control of ergodicity ‖P k(x, ·)− π‖TV ≤ B(x, k)

Law of Large Numbers

1

n

n∑
k=1

f(Xk)
a.s.−→

∫
f π dλ

Central Limit Theorem

√
n

(
1

n

n∑
k=1

f(Xk)−
∫
f π dλ

)
d−→ N (0, σ2

f )
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ex. : Efficiency of a Gaussian Random Walk Hastings-Metropolis

When λ ≡ Lebesgue on R and q(x, ·) ≡ N (x, θ)

efficiency compared through the (estimated) lag-s autocovariance function

γs = E [X0Xs]− (E [X0])2 whenX0 ∼ π
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For 3 different values of θ : [top] a path (Xk, k ≥ 1) [bottom] s 7→ γ(s)/γ(0)

↪→ Online Adaption of the design parameters θ
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Examples of adaptive and interacting MCMC

The Adaptive Metropolis sampler

Example 1 : Adaptive Metropolis (1/2)

Proposed by Haario et al. (2001) : learn on the fly the optimal covariance
of the Gaussian proposal distribution

Define a process {Xk, k ≥ 0} such that

(i) update the chain :

P (Xk+1 ∈ A|Fk) ≡ one step of Gaussian HM, with covariance matrix θk

(ii) update the estimate of the covariance matrix

θk+1 = function (k, θk, Xk+1) .
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Examples of adaptive and interacting MCMC

The Adaptive Metropolis sampler

Example 1 : Adaptive Metropolis (2/2)

The general framework :

Let Pθ be a Gaussian Hastings-Metropolis kernel ; θ is the covariance
matrix of the Gaussian proposal distribution.

For any θ : πPθ = π

The adaptive algorithm :

(i) Sample
Xk+1|Fk ∼ Pθk (Xk, ·)

(ii) Update the parameter θk+1 by using θk, Xk+1.

Here, θ is a covariance matrix.



Adaptive and Interacting Markov chain Monte Carlo

Examples of adaptive and interacting MCMC

The Wang-Landau sampler

Example 2 : Wang-Landau (1/4)

Proposed by Wang and Landau (2001) for sampling systems in molecular
dynamics ; many metastable states ↔ many local modes separated with
deep valleys.

Idea : Let X1, · · · ,Xd be a partition of X. Set

πθ?(x) ∝
d∑
i=1

π(x)

θ?(i)
1IXi(x) θ?(i) = π(Xi)

The idea is to obtain samples (approx.) under πθ? . Then, by an
importance ratio, these samples will approximate π.

roughly :
1

n

n∑
k=1

δXk ≈ πθ? =⇒ 1

n

n∑
k=1

θ?(i)1IXk∈Xi δXk ≈ π

WL is an algorithm which provides an estimation of θ? and samples
approx. distributed under πθ? .
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The Wang-Landau sampler

Example 2 : Wang-Landau (2/4)

Define {Xk, k ≥ 0} iteratively

(i) Sample

Xk+1|Fk ∼ MCMC sampler with target distribution πθk

(ii) Update the parameter

θk+1 = function (k, θk, Xk+1)

The parameter {θk, k ≥ 0} is updated through a Stochastic
Approximation procedure θn+1 = θn + γn+1h(θn) + γn+1noisen+1 with mean
field h such that if {θk, k ≥ 0} converges, its limiting value is θ?.
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The Wang-Landau sampler

Example 2 : Wang-Landau (3/4)
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Figure: [left] level curves of π [center] Target density π [right] Partition of the state space
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The Wang-Landau sampler

Example 2 : Wang-Landau (3/4)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2

−1

0

1

2

3

−2.5−2−1.5−1−0.500.511.522.5

0

1

2

3

4

5

6

7

8

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure: [left] level curves of π [center] Target density π [right] Partition of the state space

0 2 4 6 8 10 12

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

beta=4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

beta=4

Figure: [left] Wang Landau, T = 110 000. [right] Hastings Metropolis, T = 2 106 ; the red line is at x = 110 000



Adaptive and Interacting Markov chain Monte Carlo

Examples of adaptive and interacting MCMC

The Wang-Landau sampler

Example 2 : Wang-Landau (4/4)

The general framework :

Let πθ be a distribution.

Let Pθ be MCMC sampler with target distribution πθ.

For any θ : πθPθ = πθ

The adaptive algorithm :

(i) Sample
Xk+1|Fk ∼ Pθk (Xk, ·)

(ii) Update the parameter θk+1 by using θk, Xk+1.

Here, θ = (θ(1), · · · , θ(d)) is a probability on {1, · · · , d}.
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Examples of adaptive and interacting MCMC

The Equi-Energy sampler

Example 3 : Equi-Energy (1/3)

Proposed by Kou et al. (2006) to sample multimodal target density π
Based on an auxiliary process designed to admit π1/T (T > 1) as
target distribution.
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The transition kernel Xk → Xk+1 is

Pθk (Xk, ·) = (1− ε) Q(Xk, ·)︸ ︷︷ ︸
MCMC with target π

+ε Q̃θk (Xk, ·)︸ ︷︷ ︸
kernel depending on

the empirical distribution θk of the auxiliary process
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Examples of adaptive and interacting MCMC

The Equi-Energy sampler

Example 3 : Equi-Energy (2/3)
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The Equi-Energy sampler

Example 3 : Equi-Energy (3/3)

The general framework :

Let Pθ be the kernel associated to a EE-transition when the equi-energy
jump uses a point sampled under the distribution θ.

Under assumptions, for any θ : ∃πθ s.t. πθPθ = πθ.

The adaptive algorithm :

(i) Sample
Xk+1|Fk ∼ Pθk (Xk, ·)

(ii) Update the distribution θk+1 by using θk and (auxiliary process)k+1.

Here, θk is an empirical distribution on X.
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Convergence results

Unfortunately ...

Unfortunately · · ·
Unfortunately, adaption can destroy the convergence.

Consider the following adapted Markov chain.
Let θ ∈ (0, 1). A Markov chain with transition matrix

Pθ =

(
1− θ θ
θ 1− θ

)
converges to the stationary distribution π = (1/2; 1/2).

Fix t0, t1 ∈ (0, 1). Define an adapted chain as follows :

Xk+1|Fk ∼
{

Pt0 (Xk, ·) if Xk = 0
Pt1 (Xk, ·) if Xk = 1

≡ Pθk (Xk, ·) with θk = tXk .

Then, (Xk)k is a Markov chain, with transition matrix(
1− t0 t0
t1 1− t1

)
but it converges to the distribution π̃∝ (t1, t0) 6= π.
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Convergence results

Unfortunately ...

Unfortunately · · ·
Unfortunately, adaption can destroy the convergence.

Consider the following adapted Markov chain.
Let θ ∈ (0, 1). A Markov chain with transition matrix
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Fix t0, t1 ∈ (0, 1). Define an adapted chain as follows :
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1− t0 t0
t1 1− t1
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but it converges to the distribution π̃∝ (t1, t0) 6= π.
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Convergence results

Ergodic behavior

Ergodicity (1/2)

Roberts and Rosenthal (2007); F., Moulines and Priouret (2012)

E [f(Xt)]− πθ?(f) = E [f(Xt)− E [f(Xt)|Ft−`]]

+ E
[
E [f(Xt)|Ft−`]− P `θt−`f(Xt−`)

]
+ E

[
P `θt−`f(Xt−`)− πθt−`(f)

]
+ E

[
πθt−`(f)− πθ?(f)

]
Convergence when

the first term is null

the second term is small when adaption is diminishing

the third term is small when the transition kernels (Pθ, θ ∈ Θ) are ergodic
(enough), at a rate which is uniform (enough) in θ (containment
condition)
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Convergence results

Ergodic behavior

Ergodicity (2/2)

The last term : E
[
πθt−`(f)− πθ?(f)

]
1 Case 1 : πθ = π for any θ.

ex. Adaptive Metropolis

2 Case 2 : explicit expression of πθ.

ex. Wang-Landau F., Jourdain, Kuhn, Lelièvre & Stoltz (2012)

3 Case 3 : NO expression of πθ BUT we have an expression of Pθ.
↪→ F., Moulines & Priouret (2012) check if πθ inherits the smooth-in-θ conditions on
the kernel Pθ.

ex. Equi-Energy sampler F., Moulines & Priouret (2012) and Schreck, F. & Moulines (2013)
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Convergence results

Central Limit Theorems

Central Limit Theorem (1/2)

n∑
k=1

f(Xk)− πθ? (f) =
n∑
k=1

(
f(Xk)− πθk−1

(f)
)

+
n∑
k=1

πθk−1
(f)− πθ? (f)

In the case of a (non adaptive) Markov chain i.e. Pθ = P then the
variance in the CLT is given by

σ2(f) =

∫
π(dx) (Λf)2 (x)−

(∫
π(dx) Λf(x)

)2

where Λf is the solution to the Poisson equation f − π(f) = Λf − PΛf .

For adapted and interacting MCMC, it is true that

σ2(f) =

∫
πθ?(dx) (Λθ?f)2 (x)−

(∫
πθ?(dx) Λθ?f(x)

)2

?

↪→ Not always : adaption/interaction may introduce an additional term.
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Convergence results

Central Limit Theorems

Central Limit Theorem (2/2)

recall : Xk+1|Fk ∼ Pθk (Xk, ·) πθkPθk = πθk
and

n∑
k=1

f(Xk)− πθ? (f) =
n∑
k=1

(
f(Xk)− πθk−1

(f)
)

+
n∑
k=1

πθk−1
(f)− πθ? (f)

General conditions are provided by F., Moulines, Priouret, Vandekerkhove (2012)

For Adaptive Metropolis : Saksman, Vihola (2010), F., Moulines, Priouret, Vandekerkhove (2012)

πθ = π for any θ.

Step 1 : show that limn θn = θ? w.p.1

Step2 : NO additional term

σ2(f) =

∫
π(dx) (Λθ?f)2 (x)−

(∫
π(dx) Λθ?f(x)

)2
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Convergence results

Central Limit Theorems

Central Limit Theorem (2/2)

recall : Xk+1|Fk ∼ Pθk (Xk, ·) πθkPθk = πθk
and

n∑
k=1

f(Xk)− πθ? (f) =
n∑
k=1

(
f(Xk)− πθk−1

(f)
)

+
n∑
k=1

πθk−1
(f)− πθ? (f)

General conditions are provided by F., Moulines, Priouret, Vandekerkhove (2012)

For Wang-Landau : F. Jourdain, Kuhn, Kelièvre & Stoltz (2012)

πθPθ = πθ.

Step 1 : show that limn θn = θ? w.p.1

Step 2 : NO additional term

σ2(f) =

∫
πθ? (dx) (Λθ?f)2 (x)−

(∫
πθ? (dx) Λθ?f(x)

)2

since the Stochastic Approximation update of θn implies that rapidly enough

‖πθn (f) − πθ? (f)‖ ≤ C‖θn − θ?‖ → 0

.
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Convergence results

Central Limit Theorems

Central Limit Theorem (2/2)

recall : Xk+1|Fk ∼ Pθk (Xk, ·) πθkPθk = πθk
and

n∑
k=1

f(Xk)− πθ? (f) =
n∑
k=1

(
f(Xk)− πθk−1

(f)
)

+
n∑
k=1

πθk−1
(f)− πθ? (f)

General conditions are provided by F., Moulines, Priouret, Vandekerkhove (2012)

For Equi-Energy : F., Moulines, Priouret & Vandekerkhove (2012)

πθPθ = πθ.

Step 1 : show that limn θn = θ? in some sense (convergence of measures)

Step 2 : additional term

σ2(f) =

∫
πθ? (dx) (Λθ?f)2 (x)−

(∫
πθ? (dx) Λθ?f(x)

)2

+ γ2(f)

where γ2(f) collects the fluctuations of the auxiliary process

n
−1/2

bntc∑
j=1

(
f(Yj) − θ?(f)

)
d−→ γ

2
(f)Bt (Bt)std Brownian
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Conclusion

There exist tools in the literature to prove the validity of adaptive and
interacting MCMC.
Results on the asymptotic behavior of the algorithms.

What about explicit rate of convergence, explicit control of errors after a
fixed number of iterations ? How to define a measure of efficiency ?
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