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1. Non-integrability of the equations of heavy gyrostat. The motion of heavy gyrostat
is governed by the equations

(1) Jo = (Jo+r)Xo + seXr e =exao,

where o= (w,, 0y, ©) is the angular velocity, Jo=(Aw,, Bw,, Cas) is the kinetic mo-
mentum, e=(e,, e,, ;) is the unit vector along the direction of the gravitational field,
r=(Xo, ¥o» 2,) is the centre of mass (the components of these vectors are referred to
the fixed in the body frame, formed by the principal axes of inertia at the fixed
point), € is the mass of the body. 4, B, C are the principal moments of inertia, and
A=(Ay, Ay, Ag) is the gyrostatic moment (see [5] for example). The system (1) admits
an equivalent formulation as a Hamiltenian system with two degrees of freedom. Thus,
for its Liouville complete integrability we need, besides the Hamiltonian

@) H=5 (@, Jo) + e(e, 1),

and the two geometric first integrals
(3) Hi=(Jo+), e), H,=(e, e),
an additional fourth first integral. Such integral does exist in the following three cases

i) Xo=yo=2,=0, H,=(Jo+A, Jo+A) (Zhukovskij [#]);

if) A=B, Xo=y,=0, A=2y=0, Hy=ay (Lagrange [®));

iif) A=B=2C, y,=2z,=0, A =2y=0,

H = (C(0?—02)— €X9e1)! +(2Ca,0,— e x4e,)2 — 4exphg00,e,
+224(07 + 02) (Cog—Ay) (Yehia [1)).

Remark. Note that the integrable case A=B=C, rXA=0,is equivalent to ii) after
suitable rotation of the inertial frame. For that reason we do ot consider this case
separately.

Suppose now that A=0. The system (1) turns into the customary Euler-Poisson
equations, and Zhukovskij and Yehia figst integrals (see above) turn into the well
known first integrals of Fuler and Kowalevski, respectively [%°). We recall here the
following classical result

Theorem (Husson [*]). The Euler-Poisson equations possess an additional alge-
braic first integral only in the three cases of Euler, Lagrange, and Kowalevski.

Our first remark is the following generalization of the Husson’s theorem.
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Theorem 1. The equations of heavy gyrostat (1) possess an additional algebraic
first integral only in the three cases of Zhukovskij, Lagrange, and Yehia.

Remark. It was believed umtil recently, that the equations of heavy gyrostat (1)
possessed an additional algebraic first integral only in the cases of Zhukovskij, Lag-
range, and Kowalevski (A,=Ay=A3=0 in the last case ) [1°]. Contrary to that asser-
tion, Yehia ['| found a new fourth first integral in the case iii) above.

Sketch of the proof of Theorem 1. If the system of ordinary differential equations

dxdt = Fxy Xop o oo %)y =1 2,000, 8,

where F,, i=1,2,...,n, are rational functions in x,,.... X, possesses k algebraic,
functionally independent first integrals, then it also possesses & rational, functionally
independent first integrals. Thus, to prove Theorem 1 it is enough to consider only
rational first integrals. Our proof consists of two steps. First we note that if the sy-
stem (1) possesses an additional rational first integral, then the corresponding Euler-
Poisson equations which are obtained from (1) after substituting A=0, also possess
an additional rational first integral (see [Y] for details). According to Husson’s theo-
rem, we may restrict our attention only to the cases of Euler, Lagrange, and Kowa-
levski (there are no restrictions on X, Ay and Az at this step). However, as in the
Fuler case an additional rational first integral exists for any choise of X, kg, %5, then
we turn to Lagrange and Kowalevski cases.

At the second step of the proof we apply the Painlevé property fest [°] to the
system (1) in Lagrange and Kowalevski cases. The conclusion is that this system
may be of Painlevé type only if A,;=2%,=0, i. e. the cases ii) and iii) above are iden-
tified. If A2++A2-=0 the system under consideration is not of Painlevé type, as it pos-
sesses a five-parameter family of solutions with logarithmic branch points. Suppose
now that the system (1) has an additional rational first integral H,. Substituting the
above five-parameter family of solutions into the first integrals [y, Hy, H, and H,,
we obtain on each generic level set

(4) f\cﬁ{H]:CD H2:C2, HZC:;, H4=C4}CCG

four algebraic relations for the five free parameters, and hence a union of algebraic
curves. Denote this set by [* Obviously I'* depends upon the choice of the cons-
tants ¢y, ¢y Cg €y as well upon the gyrostatic moment A (recall that the parameters
A, B, C, er are fixed according to either Lagrange or Kowalevski case). The next ob-
servation is that the algebraic relations defining I'* (and in particular the algebraic
relations defining T9=T*|,_o) do not restrict the value of the free parameter a,, cor-
responding to the Kowalevski’s exponent + 1. It means that I™ is a union of genus
zero curves (i. e. Riemann spheres). This fact is used earlier in [°]. In particular, tak-
ing the limit A —0, we conclude that T° is also a union of genus zero curves,
On the other hand the Kowalevski top (i. e. the system (1) in the case iii) under the
assumption A=0) is algebraically completely integrable [*]. The last means that Ac
can be completed generically into an Abelian variety, after adjoining the set I, and
it is a contradiction, as on an Abelian variety can not live a genus zero curve.

Let us turn now to the Lagrange case. One may check that if (©;, ©g, @3 €y, € ey)
is the five-parameter family of solutions with logarithmic branch points, then after
subsfituting A=0, the variable w;=F, is a linear function in @, which does not va-
nish identically. This implies that the four aglebraic relations (4) on the five free para-
meters restrict the values of «,, which contradicts to the observation above. Thus
Theorem 1 is proved. Complete proof of this theorem will appear elsewhere.

9. The gyrostat of Yehia as Clebsch geodesic motion on E(3). Recently Haine a.
Horozov ['], using a transparent algebraic procedure, found a birational change of
the variables, connecting the Kowalevski top and the so-called integrable Clebsch
case of geodesic motion on the Euclidean motion Lie group E (3). Our second remark
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is that the gyrostat of Yehia can be realised in a similar way as Clebsch geodesic
motion on E(3). This leads in particular to explicite formulae for its solutions in
terms of genus {wo hyperelliptic theta functions []. We shall follow closely the nota-
tion of [%]. After substituting A=B=2C=2, er=(1,0, 0), A;=2,=0, in (1) and chang-

ing the variables as x;=0;+i0), X,=0,—i0, X;=0; y;=e,
n=xi—(e1+ey), ya=xi—(e,—e,),
the equations describing the gyrostat of Yehia take the form
Xy =X3%) — Yg — hgXy, Y1 = 23 — 2hoxy i <= —gt"’
(5) Xy=—X3Xy + Y3+ hgXa, ¥y = —2x3 g + Whgxl,
Xg= X — X2+ 91— Yo Yo= %3 — ) — X2 — y,).
The first integrals of this system read
1+ Xl + X~y — =4
(6) xv’f:f:z + :a) = ."’1:72 —yle + (x5 + Ay) y3=B
XX+ V5 —Yixg — VoXi + YYo= C + D2
V1¥a = 20501 + X3) ¥3 — X1Xa(x3 — Ag))=D2.

One may prove that the system (5) is algebraically completely integrable. Thus each
generic level set Ac (4) can be completed into an Abelian variety 7. The natural

. involution o: (x4, X3 X3 Y1 Yo ¥3) — (%o, X1, X35 Vi Y ¥Ya)

flips the sign of the vector field (5) and represents the reflection on T (about some
of the 16 fixed points of o on T). The zero locus of the Abelian function Xi—Xg
on T is an odd divisor K, linearly equivalent to the pole divisor I'® (the analytic set
I is defined in section 1). The space L(K)={f meromorphic on 7, (f) = —K]} splits
into an odd and an even piece L(K) = L_(K)® Ly (K) with

o el b )
LH(K) T {pl_— X— X L= -T—_g,

= Ahe . e ety
P3= X1—Xa 27 Xy — X
(7) L= W =) — %) +(a+6) s+ 2s(1 + x1.05) ;
: 2(x1 — x3) :
! (s — M) (1 + o) — (X + x9) y3 + 2051 — x1%) R |
* 2(x1 — x3) }’ i e

and L(K) = {1, "L‘Mi:’_’*i*} The embedding

Xy — X
Ac=TNK—C% (%y, X3 Xp, Yo Yo V3) = (P1s Poy P L1y 1y, 1)
maps the vector field (5) into the system

p=v.HXp ¥ ATE o
I=7,H X p+ v.Axl,

;SO | (

H==(|L[* +(Qp,p))

(8)
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c—-1 —IiB N1+C)
Q=) —B —-4+M B |,
i(1+C) B 1-C
which describes integrable Clebsch geodesic motion on E(3) for the right invariant

metric (L g)

The system (8) possesses two geometric first integrals H = {(p,p), F!s,={3, p), and the
additional fourth first integral reads Hy= — (Q/, 1) + det Q' p, p).

At last we note that in ([, p) coordinates the level surface (6) takes the form
(H, =1, B, =%, H=(MN-A)8, A, =(0(A-22)—D%4}cCs

The system (8) is integrated first by Kétter [7. It coincides, up to linear change
of the variables, with the Euler-Manakov equations on so(4). In this context the pro-
blem is integrated by Dubrovin [12].
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