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Abstract

The purpose of the present paper is to study the limit cycles of one-parameter perturbed plane Hamilto-
nian vector field Xε

Xε :
{

ẋ = Hy + εf (x, y)

ẏ = −Hx + εg(x, y),
H = 1

2
y2 + U(x)

which bifurcate from the period annuli of X0 for sufficiently small ε. Here U is a univariate polynomial of 
degree four without symmetry, and f, g are arbitrary cubic polynomials in two variables.

We take a period annulus and parameterize the related displacement map d(h, ε) by the Hamiltonian 
value h and by the small parameter ε. Let Mk(h) be the k-th coefficient in its expansion with respect to ε. 
We establish the general form of Mk and study its zeroes. We deduce that the period annuli of X0 can 
produce for sufficiently small ε, at most 5, 7 or 8 zeroes in the interior eight-loop case, the saddle-loop case, 
and the exterior eight-loop case respectively. In the interior eight-loop case the bound is exact, while in the 
saddle-loop case we provide examples of Hamiltonian fields which produce 6 small-amplitude limit cycles. 
Polynomial perturbations of X0 of higher degrees are also studied.
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1. Introduction

We consider cubic systems in the plane which are small perturbations of Hamiltonian systems 
with a center. Our goal is to estimate the number of limit cycles produced by the perturbation. The 
Hamiltonians we consider have the form H = y2 + U(x) where U is a polynomial of degree 4. 
In this paper we exclude from consideration the four symmetric Hamiltonians H = y2 +x2 ±x4, 
H = y2 − x2 + x4 and H = y2 + x4 because they require a special treatment, see [6]. Therefore, 
one can use the following normal form of the Hamiltonian

H = 1

2
y2 + 1

2
x2 − 2

3
x3 + a

4
x4, a �= 0,

8

9
. (1)

An easy observation shows that the following four topologically different cases occur:

a < 0 saddle-loop,

0 < a < 1 eight loop,

a = 1 cuspidal loop,

a > 1 global center.

There is one period annulus in the saddle-loop and the global center cases, two annuli in the 
cuspidal loop case, and three annuli in the eight loop case. Note that a = 8

9 is the symmetric 
eight loop case which we are not going to deal with. Take small ε > 0 and consider the following 
one-parameter perturbation of the Hamiltonian vector field associated to H :

ẋ = Hy + εf (x, y),

ẏ = −Hx + εg(x, y), (2)
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where f and g are arbitrary cubic polynomials with coefficients aij and bij at xiyj , respectively. 
As well known, if we parameterize the displacement map by the Hamiltonian level h, then the 
following expansion formula holds

d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + . . . , h ∈ � (3)

where � is an open interval depending on the case and the period annulus we consider. There is a 
lot of papers investigating system (2), but most of them deal with M1(h) only or consider pertur-
bations like f (x, y) = 0, g(x, y) = (α0 + α1x + α2x

2)y. See e.g. the book by Colin Christopher 
and Chengzhi Li [1] for more comments and references. In what follows we consider for a first 
time the full 20-parameter cubic deformation (2) of the Hamiltonian system associated to H . 
We suppose, however, that the arbitrary cubic polynomials f, g do not depend on the small pa-
rameter ε. To study the full neighborhood of the Hamiltonian system associated to H , it is also 
necessary to allow that f, g depend analytically on ε.

Our first goal will be to calculate explicitly the first several coefficients M1, M2, etc., in (3)
and then determine the least integer m such that system (2) becomes integrable provided that the 
first m coefficients in (3) do vanish.

Let us rewrite system (2) in a Pfaffian form

dH = εω, ω = g(x, y)dx − f (x, y)dy. (4)

We first establish that if M1(h) ≡ 0, then one can express the cubic one-form ω in the perturbation 
as

ω = d[Q(x,y) − ( a
5 λ − 2

5μ)x5 − a
6 μx6] + (λx + μx2)dH (5)

where Q(x, y) = ∑
1≤i+j≤4 qij x

iyj and λ, μ are parameters. Obviously, there are simple ex-
plicit linear formulas connecting qij , λ and μ to the coefficients of f and g, see the Appendix. 
Below, we shall consider qij , λ and μ as the parameters of the perturbation.

Theorem 1. The perturbation (4)–(5) is integrable if and only if either of the two conditions 
holds:

1) λ = μ = 0;
2) q01 = q11 = q21 = q31 = q03 = q13 = 0.

In the first case system (4) becomes Hamiltonian and in the second one it becomes time-
reversible.

If M1(h) = M2(h) = M3(h) = M4(h) ≡ 0, then the perturbation is integrable.

Corollary 1. The perturbation (2) is integrable if and only if either of the two conditions holds:

1) The divergence fx + gy is zero.
2) The polynomials f and g are respectively odd and even in y.

If M1(h) = M2(h) = M3(h) = M4(h) ≡ 0, then the perturbation is integrable.
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When the perturbation is integrable, all coefficients Mk(h) do vanish in the respective period 
annulus and the Poincaré map is the identity. When the perturbation is not integrable (that is 
neither of the conditions in Theorem 1 holds), one can prove the following result. Take an oval 
δ(h) contained in the level set H = h, h ∈ � and define the integrals

Ik(h) =
∮

δ(h)

xkydx, k = 0,1,2, . . .

Theorem 2. The first four coefficients Mk(h), 1 ≤ k ≤ 4 have the form

Mk(h) = αk(h)I0(h) + βk(h)I1(h) + γk(h)I2(h)

where αk(h), βk(h), γk(h) are polynomials of degree at most one. The second coefficient M2(h)

has the maximum possible number of zeroes in � among Mk(h).

We use the above results in deriving upper bounds for the number of limit cycles bifurcating 
from the open period annuli in the cases when the Hamiltonian has three real and different critical 
values. For this, we take a perturbation with M1(h) ≡ 0 and M2(h) �≡ 0, with all six coefficients 
independently free.

Theorem 3. 

(i) In the interior eight-loop case, at most five limit cycles bifurcate from each one of the annuli 
inside the loop.

(ii) In the exterior eight-loop case, at most eight limit cycles bifurcate from the annulus outside 
the loop.

(iii) In the saddle-loop case, at most seven limit cycles bifurcate from the unique period annulus.

The proof is based on a refinement of Petrov’s method which we apply to the much more 
general case when the coefficients in Mk(h) are polynomials of arbitrary degree n, thus Mk(h)

being an element of a module of dimension 3n + 3.

Theorem 4. Let the coefficients αk(h), βk(h) and γk(h) in the expression of Mk(h) be polynomi-
als of degree n with real coefficients. Then Mk(h) has in the respective interval � at most 3n + 2
zeroes in the interior eight-loop case, at most 4n + 4 in the exterior eight-loop case, and at most 
4n + 3 zeroes in the saddle-loop case.

In order to demonstrate that Chebyshev’s property (no more zeroes than the dimension minus 
one) would not also hold in the saddle-loop case, we provide an estimate from below for the 
number of bifurcating small-amplitude limit cycles around the center at the origin which concerns 
all Hamiltonian parameters a �= 0, 89 .

Theorem 5. For a close to − 8
3 , function M1(h) can produce four small limit cycles around the 

origin. For a close to − 8
9 , function M2(h) can produce six such limit cycles. For all other values 

of a ∈ R, the number of small limit cycles produced by the function Mk(h) equals its dimension 
minus one.
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The limit cycle in addition in the saddle-loop case is obtained by moving slightly the Hamil-
tonian parameter a in appropriate direction from the respective fraction.

The paper is organized as follows. At the beginning, we compute explicitly the coefficients 
Mk for k = 1, 2, 3, 4. It is easily seen from their explicit expressions that for each k they form a 
set which is

• a vector space of dimension four, for k = 1
• a vector space of dimension six, for k = 2
• a union of three distinct five-dimensional vector spaces, for k = 3
• a union of three distinct straight lines, for k = 4,

and when M1 = M2 = M3 = M4 = 0, then the perturbation becomes integrable. The function 
M2 takes therefore the form

M2(h) = αI0(h) + βI1(h) + γ I2(h) (6)

where α, β, γ are arbitrary linear functions in h.
Next, considering the generalized situation when M2 is a function of the form (6) in which 

α, β, γ are arbitrary degree n polynomials in h, we establish that M2 would have at most 3n + 2
zeroes in the interior eight-loop case, 4n + 4 zeroes in the exterior eight-loop case, 4n + 3 ze-
roes in the saddle-loop case. We apply these results to our problem by taking n = 1. Finally, we 
provide examples of Hamiltonian fields in the saddle-loop case which produce 4 and 6 small-
amplitude limit cycles, respectively when M1 �≡ 0, and M1 ≡ 0 but M2 �≡ 0. For all other cases, 
the number of such small-amplitude limit cycles is less than the respective dimension.

2. Calculation of the coefficients Mk(h)

In this section we are going to calculate the first four coefficients in (3). We use the recursive 
procedure proposed by Françoise [2], see also [7,8].

2.1. The coefficient M1(h)

We begin with the easy calculation of M1(h).

Proposition 1. 

(i) The function M1(h) has the form

M1(h) = α1I0(h) + β1I1(h) + γ1I2(h), (7)

where α1 is a first-degree polynomial in h and β1, γ1 are constants, depending on the per-
turbation.

(ii) If M1(h) ≡ 0, then one can rewrite the one-form ω as (5) where Q is a polynomial of degree 
four without constant term and λ, μ are constant parameters.

Proof. By a simple calculation, one can rewrite ω in the form ω = dQ(x, y) + yq(x, y)dx with 
Q and q certain polynomials of degree 4 and 2, respectively. Denote for a moment by cij the 
coefficient in q at xiyj . Then
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yq(x, y)dx = (c01 + c11x)y2dx + (c00 + c10x + c20x
2)ydx + c02y

3dx.

Next, y3dx = (2H − x2 + 4
3x3 − a

2 x4)ydx = (2H − x2)ydx + yd( 1
3x4 − a

10x5). Using the 
identity 1

3x4 − a
10x5 = 4

15a
H − 2

5xH + ( 8
45a

+ 1
5 )x3 − 2

15a
x2 − 2

15a
y2 + 1

5xy2 we derive the 
equation

y3dx = d( 1
7xy3 − 2

21a
y3) + ( 2

7a
− 3

7x)ydH + [ 12
7 H − 2

7a
x + ( 4

7a
− 3

7 )x2]ydx. (8)

Replacing in the formula above and taking into account that M1(h) = ∮
δ(h)

ω = ∮
δ(h)

yq(x, y)dx, 
one obtains formula (7) with

α1 = c00 + 12
7 c02h, β1 = c10 − 2

7a
c02, γ1 = c20 + ( 4

7a
− 3

7 )c02.

Now, M1(h) ≡ 0 is equivalent to c00 = c10 = c20 = c02 = 0 (see Corollary 2 below) and ω
becomes ω = dQ − 1

2y2(λ + 2μx)dx where λ = −2c01, μ = −c11. On the other hand (modulo 
terms dQ)

− 1
2y2(λ + 2μx)dx = (λx + μx2)d(H − 1

2x2 + 2
3x3 − a

4 x4)

= (λx + μx2)dH + (λx + μx2)(−x + 2x2 − ax3)dx

= (λx + μx2)dH + d(− a
5 λx5 + 2

5μx5 − a
6 μx6).

Proposition 1 is proved. �
2.2. The coefficient M2(h)

By (5), if λ = μ = 0, then the perturbation is Hamiltonian and all coefficients Mk do vanish. 
We will assume below that λ and μ are not both zero. Then the calculation of M2(h) makes 
sense. Denote by qij the coefficient at xiyj in Q. Below, we split Q into an odd and even part 
Q = Q1 + Q2 with respect to y.

Proposition 2. 

(i) If M1(h) ≡ 0, then the function M2(h) has the form

M2(h) = α2I0(h) + β2I1(h) + γ2I2(h), (9)

where α2, β2 and γ2 are first-degree polynomials in h with coefficients depending on the 
perturbation.

(ii) If M1(h) = M2(h) ≡ 0, then the odd part of Q(x, y) becomes:
(a) Q1 = q11(x − 2x2 + ax3)y, if μ = 0;
(b) Q1 = − 1

2q11(1 − 2x + ax2)y, if λ = 0;
(c) Q1 = q11(x + aλ

2μ
x2)y, if a ≤ 1 and aλ2 + 4λμ + 4μ2 = 0;

(d) Q1 = 0, if λμ �= 0 and aλ2 + 4λμ + 4μ2 �= 0.
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Proof. As well known, the second coefficient in (3) is obtained by integrating the one-form 
ω2 = (λx + μx2)ω, that is

M2(h) =
∮

δ(h)

ω2 =
∮

δ(h)

(λx + μx2)dQ(x, y) = −
∮

δ(h)

(λ + 2μx)Q1(x, y)dx

= −
∮

δ(h)

(λ + 2μx)[(q01 + q11x + q21x
2 + q31x

3)y + (q03 + q13x)y3]dx.

Next, multiplying (8) by x and expressing the first term on the right-hand side in a proper form, 
we obtain identity

xy3dx = d( 1
8x2y3 − 1

14a
xy3 − 1

126a2 y3) + ( 1
42a2 + 3

14a
x − 3

8x2)ydH

+[( 1
7a

+ 3
2x)H − 1

42a2 x + ( 1
21a2 − 2

7a
)x2 + ( 1

2a
− 3

8 )x3]ydx. (10)

In a similar way, multiplying (10) by x, we get

x2y3dx = d( 1
9x3y3 − 1

18a
x2y3 − 2

189a2 xy3 − 2
1701a3 y3)

+ ( 2
567a3 + 2

63a2 x + 1
6a

x2 − 1
3x3)ydH + [( 4

189a2 + 2
9a

x + 4
3x2)H

− 2
567a3 x + ( 4

567a3 − 8
189a2 )x2 + ( 2

27a2 − 5
18a

)x3 + ( 4
9a

− 1
3 )x4]ydx. (11)

Replacing the values from (8), (10) and (11) in the above formula of M2(h), we obtain

M2(h) = −[q0I0(h) + q1I1(h) + q2I2(h) + q3I3(h) + q4I4(h)]
where

q0 = λq01 + [ 12
7 λq03 + 1

7a
(λq13 + 2μq03) + 8

189a2 μq13]h,

q1 = λq11 + 2μq01 − 2
7a

λq03 − 1
42a2 (λq13 + 2μq03) − 4

567a3 μq13

+[ 3
2λq13 + 3μq03 + 4

9a
μq13]h,

q2 = λq21 + 2μq11 + ( 4
7a

− 3
7 )λq03 + ( 1

21a2 − 2
7a

)(λq13 + 2μq03)

+ ( 8
567a3 − 16

189a2 )μq13 + 8
3μq13h,

q3 = λq31 + 2μq21 + ( 1
2a

− 3
8 )(λq13 + 2μq03) + ( 4

27a2 − 5
9a

)μq13,

q4 = 2μq31 + ( 8
9a

− 2
3 )μq13.

In order to remove integrals I3, I4, we use the identity∮
δ(h)

(xkU ′ + 2
3kxk−1U)ydx = 0, U = h − 1

2x2 + 2
3x3 − 1

4ax4

which is equivalent to
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k+6
6 aIk+3 = 4k+18

9 Ik+2 − k+3
3 Ik+1 + 2k

3 hIk−1. (12)

Used with k = 0, 1, 2, this relation yields

I3 = 2
a
I2 − 1

a
I1,

I4 = ( 88
21a2 − 8

7a
)I2 − 44

21a2 I1 + 4
7a

hI0,

I5 = ( 572
63a3 − 209

42a2 )I2 − ( 286
63a3 − 5

4a2 − 1
a
h)I1 + 26

21a2 hI0. (13)

Replacing, we finally derive formula (9) with

α2 = −q0 − 4
7a

q4h,

β2 = −q1 + 1
a
q3 + 44

21a2 q4,

γ2 = −q2 − 2
a
q3 + ( 8

7a
− 88

21a2 )q4.

Then M2(h) ≡ 0 is equivalent to α2 = β2 = γ2 = 0 (see Corollary 2 below). Taking the coeffi-
cients at h zero, we obtain that either μ = q03 = q13 = 0 or μ �= 0 and q31 = q03 = q13 = 0. In 
the first case, λ �= 0 and taking the coefficients at 1 zero, we easily obtain q01 = 0, q21 = −2q11, 
q31 = aq11 which is case (a). In the second case above, if λ = 0, then one easily obtains 
q01 = − 1

2q11, q21 = − a
2 q11 which is case (b). If λ �= 0, then taking the coefficients at 1 zero 

yields q01 = 0 and equations −λq11 + 2
a
μq21 = 0, −2μq11 − (λ + 4

a
μ)q21 = 0. Provided that 

aλ2 + 4λμ + 4μ2 = 0 (it is possible for a ≤ 1 only), one has q21 = aλ
2μ

q11 which is case (c). 
Otherwise, one obtains q11 = q21 = 0 which is case (d). Proposition 2 is proved. �
2.3. The coefficient M3(h)

It turns out that if Q1 = 0 then the perturbation is integrable. This is because the perturbed 
system (2) becomes time-reversible in this case. Below we are going to consider the three cases 
(a), (b), (c) when q11 �= 0. For them, the next coefficient M3(h) in (3) should be calculated. 
For this purpose, we need to express the one-form ω2 = (λx + μx2)ω as dS2 + s2dH and then 
integrate the one-form ω3 = s2ω.

Proposition 3. Assume that q11 �= 0.

(i) If M1(h) = M2(h) ≡ 0, then the function M3(h) has the form

M3(h) = α3I0(h) + β3I1(h) + γ3I2(h), (14)

where α3, β3 are first-degree polynomials in h with coefficients depending on the perturba-
tion and γ3 is a constant.

(ii) If M1(h) = M2(h) = M3(h) ≡ 0, then the even part of Q(x, y) becomes

Q2 = q20x
2 − ( 4

3q20 + 1
3λ)x3 + ( a

2 q20 + 1
2λ − 1

4μ)x4 + (q02 − 1
3λx − 1

3μx2)y2 + q04y
4

where μ = 0 in case (a), λ = 0 in case (b) and aλ2 + 4λμ + 4μ2 = 0 in case (c).
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Proof. To find s2, is suffices to perform the calculations modulo exact forms. Let us handle first 
case (a). By (5) one obtains (neglecting the exact forms)

ω2 = λxd[(q02 + q12x + q22x
2)y2 + q04y

4 + q11(x − 2x2 + ax3)y] + λ2x2dH.

Then xdq11(x − 2x2 + ax3)y = −q11(x − 2x2 + ax3)ydx = −q11yd(H − 1
2y2) = −q11ydH . 

Similarly,

xd(q02 + q12x + q22x
2)y2 = 2xd(q02 + q12x + q22x

2)H

= −2(q02 + q12x + q22x
2)Hdx = 2(q02x + 1

2q12x
2 + 1

3q22x
3)dH.

Finally,

xdq04y
4 = q04xd[4H 2 − 4H(x2 − 4

3x3 + a
2 x4)] = 8q04xHdH

+4q04H(x2 − 4
3x3 + a

2 x4)dx = 4q04(2xH − 1
3x3 + 1

3x4 − a
10x5)dH.

Summing up all terms together, we obtain for case (a)

s2 = λ2x2 − λq11y + 2λ(q02x + 1
2q12x

2 + 1
3q22x

3) + 4λq04(2xH − 1
3x3 + 1

3x4 − a
10x5).

In a similar way, we consider (b). In this case,

ω2 = μx2d[(q02 + q12x + q22x
2)y2 + q04y

4 − 1
2q11(1 − 2x + ax2)y] + μ2x4dH.

Then − 1
2x2d(1 − 2x + ax2)y = (x − 2x2 + ax3)ydx = ydH ,

x2d(q02 + q12x + q22x
2)y2 = 2x2d(q02 + q12x + q22x

2)H

= −4(q02x + q12x
2 + q22x

3)Hdx = 4( 1
2q02x

2 + 1
3q12x

3 + 1
4q22x

4)dH,

x2dy4 = x2d[4H 2 − 4H(x2 − 4
3x3 + a

2 x4)] = 8x2HdH

+8H(x3 − 4
3x4 + a

2 x5)dx = 8(x2H − 1
4x4 + 4

15x5 − a
12x6)dH.

Summing up all needed terms, we obtain in case (b) the formula

s2 = μ2x4 + μq11y + 4μ( 1
2q02x

2 + 1
3q12x

3 + 1
4q22x

4) + 8μq04(x
2H − 1

4x4 + 4
15x5 − a

12x6).

Finally, in case (c) we have aλ2 + 4λμ + 4μ2 = 0 and

ω2 = (λx + μx2)d[(q02 + q12x + q22x
2)y2 + q04y

4 + q11(x + aλ
2μ

x2)y] + (λx + μx2)2dH.

As above,

(λx + μx2)dq11(x + aλ
2μ

x2)y = −q11(x + aλ
2μ

x2)(λ + 2μx)ydx

= −q11yd(λ
2 x2 + aλ2+4μ2

6μ
x3 + aλ

4 x4) = −λq11yd(H − 1
2y2) = −λq11ydH,
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(λx + μx2)d(q02 + q12x + q22x
2)y2 = −2H(q02 + q12x + q22x

2)(λ + 2μx)dx

= [2λq02x + (λq12 + 2μq02)x
2 + 2

3 (λq22 + 2μq12)x
3 + μq22x

4]dH,

(λx + μx2)dq04y
4 = q04(λx + μx2)d[4H 2 − 4H(x2 − 4

3x3 + a
2 x4)]

= 8q04(λx + μx2)HdH + 4q04H(x2 − 4
3x3 + a

2 x4)(λ + 2μx)dx

= 4q04[2(λx + μx2)H − 1
3λx3 + ( 1

3λ − 1
2μ)x4 − ( a

10λ − 8
15μ)x5 − a

6 μx6]dH.

Summing up all terms, we obtain in case (c) the respective formula

s2 = (λx + μx2)2 − λq11y + 2λq02x + (λq12 + 2μq02)x
2 + 2

3 (λq22 + 2μq12)x
3

+μq22x
4 + 4q04[2(λx + μx2)H − 1

3λx3 + ( 1
3λ − 1

2μ)x4 − ( a
10λ − 8

15μ)x5 − a
6 μx6].

In order to calculate M3 at once for all three cases (a), (b), (c), we shall use the formula of 
s2 for case (c) from which the other two cases are obtained by taking μ or λ zero. Indeed, let us 
denote by s0

2 the even part of s2 with respect to y. Then s2 = κy + s0
2 where κ = −λq11 in cases 

(a), (c) and κ = μq11 in case (b). Then

M3(h) =
∮

δ(h)

s2ω =
∮

δ(h)

κyd[Q2 + ( 2
5μ − a

5 λ)x5 − a
6 μx6] +

∮
δ(h)

s0
2dQ1 = I + J.

We further have

I = κ

∮
δ(h)

[(q10 + 2q20x + 3q30x
2 + 4q40x

3 + (2μ − aλ)x4 − aμx5)y + ( 1
3q12 + 2

3q22x)y3]dx

= κ(q0I0 + q1I1 + q2I2 + q3I3 + q4I4 + q5I5)

with

q0 = q10 + ( 4
7q12 + 2

21a
q22)h,

q1 = 2q20 − 2
21a

q12 − 1
63a2 q22 + q22h,

q2 = 3q30 + ( 4
21a

− 1
7 )q12 + ( 2

63a2 − 4
21a

)q22,

q3 = 4q40 + ( 1
3a

− 1
4 )q22,

q4 = 2μ − aλ,

q5 = −aμ

(we used (8) and (10) as well). On the other side, integrating by parts one can rewrite J as 
J = − 

∮
δ(h)

(s0
2)′Q1dx = J1 + J2 where J2 is the part corresponding to the expression in s0

2
which contains q04. Let us first verify that J2 = 0. Indeed, one can establish by easy calculations 
that
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4q04[(2λ + 4μx)H − λx2 + ( 4
3λ − 2μ)x3 − ( a

2 λ − 8
3μ)x4 − aμx5]

= 8q04(λ + 2μx)(H − 1
2x2 + 2

3x3 − a
4 x4) = 4q04(λ + 2μx)y2,

−Q1(λ + 2μx) = κy(x − 2x2 + ax3).

Hence,

J2 = 4κq04

∮
δ(h)

(x − 2x2 + ax3)y3dx = 4κq04

∮
δ(h)

y3d(H − 1
2y2) = 0.

What J1 concerns, another easy calculation shows that

−2[(λx + μx2)(λ + 2μx) + λq02 + (λq12 + 2μq02)x + (λq22 + 2μq12)x
2 + 2μq22x

3]Q1

= 2κ(x − 2x2 + ax3)[q02 + (q12 + λ)x + (q22 + μ)x2]y

for all three cases. Therefore, by integrating, one obtains

J = J1 = κ(r1I1 + r2I2 + r3I3 + r4I4 + r5I5)

where

r1 = 2q02,

r2 = 2λ − 4q02 + 2q12,

r3 = 2μ − 4λ + 2aq02 − 4q12 + 2q22,

r4 = 2aλ − 4μ + 2aq12 − 4q22,

r5 = 2aμ + 2aq22.

Combining with the formula of I and using (13), one obtains expression (14) with coefficients

α3 = κ[q0 + 4
7a

h(q4 + r4) + 26
21a2 h(q5 + r5)],

β3 = κ[q1 + r1 − 1
a
(q3 + r3) − 44

21a2 (q4 + r4) − ( 286
63a3 − 5

4a2 − 1
a
h)(q5 + r5)],

γ3 = κ[q2 + r2 + 2
a
(q3 + r3) + ( 88

21a2 − 8
7a

)(q4 + r4) + ( 572
63a3 − 209

42a2 )(q5 + r5)].

It is seen that α3 and β3 are first-degree polynomials while γ3 is a constant polynomial. This 
proves part (i) of the statement. To prove part (ii), assume that M3(h) vanishes, which is equiv-
alent to α3 = β3 = γ3 = 0 (see Corollary 2 below). Then by straightforward calculations one 
obtains that this is equivalent to

q10 = 0, q30 = − 4
3q20 − 1

3λ, q40 = a
2 q20 + 1

2λ − 1
4μ, q12 = − 1

3λ, q22 = − 1
3μ

which yields the needed formula of Q2. Proposition 3 is proved. �
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2.4. The coefficient M4(h)

Replacing the values of the coefficients we just calculated, we obtain

ω = (2q20 − λx − μx2)(x − 2x2 + ax3)dx

+d[Q1 + (q02 − 1
3λx − 1

3μx2)y2 + q04y
4] + (λx + μx2)dH,

s2 = 2
3 (λx + μx2)2 + κy + 2q02(λx + μx2)

+4q04[2(λx + μx2)H − λ( 1
3x3 − 1

3x4 + a
10x5) − μ( 1

2x4 − 8
15x5 + a

6 x6)].

Proposition 4. Assume that q11 �= 0 and M1(h) = M2(h) = M3(h) ≡ 0. Then the function M4(h)

has the form

M4(h) = λq3
11[2hI0(h) − (3ah + 3

4 − 2
3a

)I1(h) + ( 3
2 − 4

3a
)I2(h)], μ = 0,

M4(h) = − 1
2μq3

11[I0(h) − 2I1(h) + aI2(h)], λ = 0,

M4(h) = −( λ2

μ2 + 3λ
2μ

)q3
11[2μI1(h) + aλI2(h)], λμ �= 0, aλ2 + 4λμ + 4μ2 = 0.

Moreover, M4(h) �≡ 0.

Proof. In what follows, it is useful to introduce notations

A = λ( 1
3x3 − 1

3x4 + a
10x5) + μ( 1

2x4 − 8
15x5 + a

6 x6),

B = 1
2x2 − 2

3x3 + a
4 x4, L = λx + μx2.

Then dA = 2BdL, (2q20 − L)dB = d[(2q20 − L)B + 1
2A] and one can rewrite the expressions 

of ω and s2 as follows:

ω = (2q20 − L)B ′dx + d[Q1 + (q02 − 1
3L)y2 + q04y

4] + LdH,

= d[Q1 + (2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4] + LdH,

s2 = 2
3L2 + κy + 2q02L + 4q04(2LH − A).

Below, we are going to express the one-form ω3 = s2ω in the form ω3 = dS3 + s3dH in order to 
calculate M4(h) = ∮

δ(h)
ω4 where ω4 = s3ω. As above, we can perform our calculations modulo 

exact forms. Thus,

ω3 = s2ω = s2LdH + (odd part) + (even part),
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(odd part) = κy[(2q20 − L)dB + d((q02 − 1
3L)y2 + q04y

4)]
+ [ 2

3L2 + 2q02L + 4q04(2LH − A)]dQ1

= κy[(2q20 − L)dB − 1
3d(Ly2)]

−Q1(
4
3LL′ + 2q02L

′ + 8q04HL′ − 8q04BL′)dx − 8q04LQ1dH

= κy(2q20 + 1
3L + 2q02 + 4q04y

2)dB − 1
3κyd(Ly2) − 8q04LQ1dH

= [κy(2q20 + 1
3L + 2q02 + 4q04y

2) − 8q04LQ1]dH

− 1
3κyd(Ly2) − 1

3κy2Ldy

= [κy(2q20 + 1
3L + 2q02 + 4q04y

2) − 8q04LQ1]dH.

We used that −Q1L
′ = κyB ′ and 1

2y2 = H −B . Similarly, by using the identity (2q20 −L)dB =
d[(2q20 − L)B + 1

2A] one obtains

(even part) = κydQ1 + [ 2
3L2 + 2q02L + 4q04(2LH − A)]×

×[(2q20 − L)dB + d((q02 − 1
3L)y2 + q04y

4)]
= −κQ1dy − [(2q20 − L)B + 1

2A + (q02 − 1
3L)y2 + q04y

4]×
×d[ 2

3L2 + 2q02L + 4q04(2LH − A)]
= −[(2q20 − L)B + 1

2A + (q02 − 1
3L)y2 + q04y

4][ 4
3L + 2q02 + 4q04y

2]dL

−8q04L[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4]dH − κy−1Q1dH

= −[2q2
02 + 2

3q02L − 4
9L2 + 4q04((2q20 − L)B + 1

2A)]y2dL

− (6q02q04y
4 + 4q2

04y
6)dL

−8q04L[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4]dH − κy−1Q1dH

= [4q2
02L + 2

3q02L
2 − 8

27L3 + 8q04X]dH

+[24q02q04(2LH − A) + 96q2
04(LH 2 − AH + Y)]dH

−8q04L[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4]dH − κy−1Q1dH

where dX = [(2q20 − L)B + 1
2A]dL and dY = B2dL. Finally, summing up all terms with dH , 

we obtain the expression

s3 = κy(2q20 + 4
3L + 2q02 + 4q04y

2) − 8q04LQ1

+4q2
02L + 8

3q02L
2 + 10

27L3 + 4q04(L + 6q02)(2LH − A)

+8q04X + 96q2
04(LH 2 − AH + Y)

−8q04L[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4] − κy−1Q1.

It should be mentioned that some terms in s3 were included in s2 and s1 = L, too. Since M2(h) =∮
s1ω ≡ 0, the terms HkL have no impact in the values of M3(h) = ∮

s2ω and M4(h) =

δ(h) δ(h)
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∮
δ(h)

s3ω. In the proof of Proposition 3, we have established that J2 = ∮
δ(h)

(2LH − A)ω ≡ 0. 

By M3(h) ≡ 0, one obtains that the terms HkA and 2
3L2 + κy will have no impact on the value 

of M4(h), too. Using these facts, one can rewrite M4(h) in the form

M4(h) =
∮

δ(h)

(σ1ω + σ2ω + σ3ω) = K1 + K2 + K3

where

σ1 = κy(2q20 − 2q02 + 4
3L + 4q04y

2) − 8q04LQ1

−8q04L[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4],

σ2 = 10
27L3 + 4q04L(2LH − A) + 8q04X + 96q2

04Y,

σ3 = −κy−1Q1.

Below, we are going to verify that K1 + K2 = 0. Therefore

M4(h) =
∮

δ(h)

σ3ω =
∮

δ(h)

σ3dQ1 = κ

∮
δ(h)

y−1Q1xQ1dx.

Then the three formulas in Proposition 4 follow by simple calculations making use of (13). Since 
it is assumed that (|λ| + |μ|)q11 �= 0, M4(h) is not identically zero. Note that the coefficient 
at the third formula in Proposition 4 vanishes for 2λ + 3μ = 0, however this is equivalent to 
a = 8

9 , a value corresponding to the symmetric eight loop, which was excluded from considera-
tion here.

To finish the proof, it remains to calculate K2 and K1. We obtain (modulo one-forms 
dR + rdH which yield zero integrals)

σ2ω = σ2dQ1 = −Q1d[ 10
27L3 + 4q04(2L2H − LA) + 8q04X + 96q2

04Y ]
= −Q1[ 10

9 L2L′ + 8q04(2LH − 1
2A − BL)L′

+8q04((2q20 − L)B + 1
2A)L′ + 96q2

04B
2L′]dx

= −Q1L
′[ 10

9 L2 + 8q04(2q20B + Ly2) + 96q2
04B

2]dx

= κy[ 10
9 L2 + 8q04(2q20B + Ly2) + 96q2

04B
2]dB

= κy( 10
9 L2 + 8q04Ly2)d(H − 1

2y2) = −κ( 10
9 L2y2 + 8q04Ly4)dy

= κ( 20
27Ly3 + 8

5q04y
5)L′dx.

Finally (again modulo one-forms dR + rdH ),
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σ1ω = [κy(2q20 − 2q02 + 4
3L + 4q04y

2) − 8q04LQ1]ω
−8q04L[(2q20 − L)B + 1

2A + (q02 − 1
3L)y2 + q04y

4]dQ1

= [κy(2q20 − 2q02 + 4
3L + 4q04y

2) − 8q04LQ1]ω
+8q04Q1L

′[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4]dx + 8q04LQ1ω

= κy(2q20 − 2q02 + 4
3L + 4q04y

2)ω

−8q04κy[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4]dB

= κy(2q20 − 2q02 + 4
3L + 4q04y

2)ω

+8q04κy2[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4]dy

= κy(2q20 − 2q02 + 4
3L + 4

3q04y
2)ω.

Since

ω = d[(2q20 − L)B + 1
2A + (q02 − 1

3L)y2 + q04y
4]

= [(2q02 − 2q20 + 1
3L)y + 4q04y

3]dy − 1
3y2dL,

we last obtain by easy calculations that σ1ω = −κ( 20
27Ly3 + 8

5q04y
5)dL. Proposition 4 is 

proved. �
3. The Petrov module

In this section we recall the algebraic structure of the set of Abelian integrals and differentials, 
related to the bivariate polynomial H , defined by (1). The polynomial H is semiweighted homo-
geneous, with weighted degrees degx = 1, degy = 2, and highest weighted homogeneous part 
1
2y2 + a

4 x4 (a �= 0). For such polynomials the theory developed in [3] applies. Namely, define as 
in the preceding sections the differential one-forms and Abelian integrals

ωk = xky dx, Ik = Ik(h) =
∫

δ(h)

ωk, k = 0,1,2

and consider the function space

AH =

⎧⎪⎨
⎪⎩

∫
δ(h)

ω : ω = Pdx + Qdy,P,Q ∈ R[x, y]

⎫⎪⎬
⎪⎭

where R[x, y] is the ring of polynomials in x, y. It is an infinite dimensional real vector space, 
having an additional structure of a R[h]-module, defined by the multiplication

h ·
∫

ω =
∫

H(x,y)ω.
δ(h) δ(h)
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Clearly, if ω = dA + BdH for suitable functions A, B , then the corresponding Abelian inte-
gral 

∫
δ(h)

ω vanishes identically. This motivates the introduction of the quotient vector space of 
differential one-forms

PH = �1

d�0 + �0dH

where �1 is the vector space of polynomial one-forms on R2 and �0 =R[x, y]. Similarly to AH , 
the infinite dimensional vector space PH has an additional structure of R[h]-module with multi-
plication defined by

h · ω = H(x,y)ω.

Recall that a free module is a module having a basis (a generating set, linearly independent over 
the ring of coefficients R[h]). The next Proposition has been known to Petrov [11], but its proof 
in a more general setting goes back to Ilyashenko [9]. For more details we refer to [3].

Proposition 5. 

• The R[h]-module PH is freely generated by ω0, ω1, ω2.
• The R[h]-module AH is freely generated by I0, I1, I2.
• The natural map

PH →AH (15)

ω 	→
∫

δ(h)

ω (16)

is an isomorphism of R[h] modules.

The precise meaning that AH is freely generated by I0, I1, I2 is as follows.

Corollary 2. Let α(h), β(h), γ (h) be (real or complex) polynomials in h. The Abelian integral

I (h) = α(h)I0(h) + β(h)I1(h) + γ (h)I2(h) (17)

is identically zero, if and only if α(h), β(h), γ (h) are identically zero.

From now on we denote by An the vector space of Abelian integrals of the form (17), with

degα ≤ n,degβ ≤ n,degγ ≤ n.

Clearly the dimension of the vector space An is at most 3(n + 1). The vector space of Abelian 
integrals An coincides, however, with the space of Abelian integrals

∫
P(x, y)dx + Q(x,y)dy (18)
δ(h)
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where P, Q are real polynomials of weighted degree 4n + 5, where the weight of x is 1 and the 
weight of y is 2. Therefore, according to [3, p. 582] we obtain

Corollary 3. 

dimAH = 3 + [n + 2

4
] + [n + 1

4
] + [n] = 3(n + 1).

Let h be a non-critical value of H . The complex algebraic curve


h = {x, y) ∈C
2 : H(x,y) = h} (19)

has the topological type of a torus with two punctures. It follows that its first homology (co-
homology) group H1(
h, Z) of the Riemann surface 
h is of dimension three. The algebraic 
form of De Rham theorem says that the first cohomology group H 1(
h, C) of 
h is generated 
by polynomial one-forms restricted to 
h. Proposition 5 then implies

Corollary 4. The cohomology classes of the restrictions of the one-forms ω0, ω1, ω2 on 
h gen-
erate the vector space H 1(
h, C).

Proof of Proposition 5. As

dω0 = −dx ∧ dy, dω1 = −xdx ∧ dy, dω0 = −x2dx ∧ dy,

and the monomials 1, x, x2 generate the quotient ring C[x, y]/ < Hx, Hy >, then PH is a free 
R[h]-module generated by ω0, ω1, ω2, see [3, Theorem 1.1]. It is straightforward to check that 
the natural map (15) PH → AH is a surjective morphism of R[h]-modules. To complete the 
proof, it remains to show that the kernel of this morphism is trivial.

Recall that if Ac = {h1, h2, h3} is the set of critical values of H , and if hreg is some regu-
lar critical value, then any closed loop l ⊂ C \ Ac starting and terminating at hreg induces an 
automorphism (monodromy)

l∗ : H1(
hreg ,Z) → H1(
hreg ,Z).

This automorphism depends only on the homotopy class of l so it defines a group morphism 
(monodromy representation)

π1(Ac,hreg) → Aut(H1(
hreg ,Z)).

The key observation is that the orbit of the cycle δ(h), under the action of the fundamental 
group π1(Ac, h), spans the first homology group H1(
h, Z). Indeed, if this were true, it would 
imply that if an Abelian integral I (h) = ∫

{δ(h)
ω vanishes identically, then 

∫
γ (h)

ω = 0 for any 
γ (h) ∈ H1(
h, Z). Thus the cohomology class of the differential ω on 
h is trivial, which on its 
turn implies that ω = 0 in PH , see [3, Theorem 1.2]. Therefore the kernel of the morphism (15)
is trivial.

To this end, we check that the orbit of δ(h) generates H1(
h, Z). Suppose first that the oval 
corresponding to δ(h) surrounds a single elliptic critical point (a center) of H . If H has three 
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Fig. 1. The path l along which the cycle δ(h) vanishes, and deformation of the roots of the polynomial 1
2 x2 − 2

3 x3 +
a
4 x4 − h.

distinct critical values, the claim that the orbit of δ(h) spans the first homology group H1(
h, Z)

follows from the proof of [3, Proposition 3.2]. In the degenerate cuspidal case (a = 1), the local 
analysis of the branching of δ(h) near h = 0 leads to the same conclusion.

Consider finally the case when δ(h) is represented by an oval, which belongs to the exterior 
period annulus of {dH = 0} (the so-called exterior eight-loop case, in which 0 < a < 1). Clearly, 
δ(h) does not surround a single elliptic critical point, but this condition can be relaxed. The 
arguments from the proof of [3, Proposition 3.2] hold true also for cycles δ(h), which vanish at 
any Morse critical point, along suitable path in C. The cycle δ(h) turns out to be vanishing at the 
saddle point (0, 0) of {dH = 0} along a suitable path in the complex h-plane. Indeed, with the 
self-explaining notations of Fig. 5, let hreg ∈ (hs, ∞) be a real regular value of H and consider 
the path l on the complex h-plane, shown in Fig. 1. Let δ(h), be represented by a closed loop 
on the algebraic curve 
h. The projection of this closed loop on the complex x-plane, and its 
deformation as h follows the path l is shown in Fig. 1. The conclusion is that the cycle δ(h)

vanishes at the saddle point when h tends to the corresponding critical value hs along the path l. 
This completes the proof of the proposition. �
4. Zeroes of Abelian integrals

In this section we find upper bounds for the number of the zeroes of the Abelian integrals 
An defined in (17) on the interval of existence of the ovals δ(h). The dimension of An equals 
3(n + 1), see Corollary 3. Similar results were earlier obtained for the space of non-weighted 
Abelian integrals (18) (degP, degQ ≤ n) by Petrov [11] and Liu [10], see the survey of Christo-
pher and Li [1]. Our upper bounds however do not follow from the aforementioned papers. They 
will be proved along the lines, given in [4, section 7].

All families of cycles will depend continuously on a parameter h and will be defined without 
ambiguity in the complex half-plane {h : Im(h) > 0}. This will allow a continuation on C along 
any curve avoiding the real critical values of H . In particular, it will be supposed that all three 
critical values of H are real.
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Fig. 2. The graph of the polynomial 1
2 x2 − 2

3 x3 + a
4 x4, 8

9 < a < 1, and the level sets {H = h}.

4.1. The interior eight-loop case

Using the normal form (1) we can suppose that 8
9 < a < 1. The Hamiltonian system dH = 0

has an eight-loop containing in its interior two continuous families of ovals, vanishing at a sin-
gular point, which is a center, as it is shown on Fig. 2. We denote by δ(h) ⊂ {H = h} either of 
these two families.

Theorem 6. The space of Abelian integrals An corresponding to Fig. 2 is Chebyshev on the 
interval of existence of δ(h).

Proof. H has three critical values hc = 0 < h0 < hs , where hs corresponds to a saddle, and 
hc , h0 to centers of the Hamiltonian system dH = 0. Let δ(h) ⊂ {H = h} be the continuous 
family of ovals defined on a maximal open interval � = (hc, hs), where for h = hc = 0 the oval 
degenerates to a point δ(hc) which is a center and for h = hs > 0 the oval becomes a homoclinic 
loop of the Hamiltonian system dH = 0. The family {δ(h)} represents a continuous family of 
cycles vanishing at the center δ(hc).

We note first that I0(h), I1(h), I2(h) can be expressed as linear combinations of I ′
0(h), I ′

1(h), 
I ′

2(h), whose coefficients are polynomials in h of degree one. Therefore the vector space

A′
n = {I ′(h) : I (h) ∈ An}

coincides with the vector space of Abelian integrals

{α(h)I ′
0(h) + β(h)I ′

1(h) + γ (h)I ′
2(h) : degα ≤ n,degβ ≤ n,degγ ≤ n}.

We shall prove the Chebyshev property of A′
n in the complex domain

D =C \ [hs,∞),

in which I ′(h) has an analytic extension, see Fig. 3. For this purpose we apply the argument 
principle to the function

F(h) = I ′(h)

I ′(h)
.

0
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Fig. 3. The branch cuts and the domains of the Abelian integral I (h) and Wδ,δs (ω
′,ω′

0) respectively.

We note that I ′
0(h) is a complete elliptic integral of first kind and hence cannot vanish in D. For 

sufficiently big |h| the function F(h) behaves as hn+ 1
2 and hence the increment of the argument 

of F along a circle with a sufficiently big radius is close to (2n +1)π . Along the interval [hs, ∞)

the imaginary part of F(h) can be computed by making use of the Picard–Lefschetz formula. 
Namely, let {δs(h)}h be a continuous family of cycles, vanishing at the saddle point as h tends 
to hs . Then along [hs, ∞) the family δ(h) has two analytic complex-conjugate continuations 
δ±(h), δ+ = ¯δ− and moreover, by the Picard–Lefschetz formula the cycle

δ+(h) − δ−(h) = δs(h)

where the identity should be understood up to homology equivalence. This implies the following 
identity along [hs, ∞)

2Im(F (h)) =
∫
δ+(h)

ω′∫
δ+

0 (h)
ω′

0
−

∫
δ−(h)

ω′∫
δ−

0 (h)
ω′

0
= Wδ,δs (ω

′,ω′
0)

|I ′
0(h)|2

where

Wδ,δs (ω
′,ω′

0) = det

( ∫
δ(h)

ω′ ∫
δs (h)

ω′∫
δ(h)

ω′
0

∫
δs (h)

ω′
0

)
.

Following [4, section 7] we may use the reciprocity law on the elliptic curve {H = h} to compute

Wδ,δs (ω
′,ω′

0) = p(h) + q(h)

+∞∫
−∞

dx

y

where p(h), q(h) are suitable degree n polynomials, ±∞ are the two “infinite” points on the 
compactified Riemann surface 
h, and the integration is along some path connecting ±∞ on 
h.

It is easy to check now that the function p(h) + q(h) 
∫ +∞
−∞

dx
y

can have at most 2n + 1 zeroes 
on [hs, ∞). For this, consider an analytic continuation of this function to the complex domain 
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C \ (−∞, h0] where h0 is a critical value of H , h0 < hs , see Fig. 3. By the Picard–Lefschetz
formula, the imaginary part of p(h) + q(h) 

∫ +∞
−∞

dx
y

along the branch cut (−∞, h0) equals

q̃(h)

∫
δ(h)

dx

y

where q̃ differs from q by an addition of a constant. We conclude that the imaginary part of this 
function vanishes at most n times. This combined to the asymptotic behavior

p(h) + q(h)

+∞∫
−∞

dx

y
∼ hn × const.

gives that the increase of the argument along a big circle is close to 2πn and finally, that our 
function can have at most 2n + 1 zeroes on C \ (−∞, h0]. Now we come back to the function 
F(h) and conclude that it can have at most 3n + 2 zeroes in the complex domain D, counted 
with the multiplicity. As I (0) = 0 the same conclusion holds true for I (h) on the real interval 
(−∞, hs).

Finally, note that the second continuous family of ovals {δ(h)}h∈� , � = (h0, hs), h0 > 0, 
is easier to study. This is so, because the corresponding Wronskian Wδ,δs (ω

′, ω′
0) has only one 

singular point (instead of two). Therefore we do not consider this case in details. �
Remark 1. Through the proof we did not inspect the behavior of F(h) near the branch point hs . 
In the original papers of Petrov a small circle centered at hs is removed and the behavior of F
along it is taken into account. It is important to note that, we do not remove a small circle here, 
because we use a slightly improved version of the argument principle, as explained in section 2.4 
of [5]. It allows one to apply the argument principle, even if F is not analytic at F(hs), provided 
that F has a continuous limit at hs , which is not zero. The case when F(hs) = 0 is studied then by 
a small perturbation (by adding a real constant for instance) – this does not decrease the number 
of zeroes of F in the complement of the branch cut. Of course, the same considerations hold true 
for the function 

∫ +∞
−∞

dx
y

in its respective domain of analyticity.

4.2. The saddle-loop case

In the normal form (1) we suppose that a < 0. As before, we let δ(h) ⊂ {H = h} be a con-
tinuous family of ovals defined on a maximal open interval � = (hc, hs), where for h = hc = 0
the oval degenerates to a point δ(hc) which is a center and for h = hs > 0 the oval becomes a 
homoclinic loop of the Hamiltonian system dH = 0. The family {δ(h)} represents a continuous 
family of cycles vanishing at the center δ(hc).

Theorem 7. The space of Abelian integrals An corresponding to the shadowed area in Fig. 4 is 
of dimension 3n + 3, and each Abelian integral from An can have at most 4n + 3 zeroes. 

Proof. We shall prove the Chebyshev property of A′
n in the complex domain

D =C \ [hs,∞),
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Fig. 4. The graph of the polynomial 1
2 x2 − 2

3 x3 + a
4 x4, a < 0, and the level sets {H = h}.

in which I ′(h) has an analytic extension. For this purpose we apply the argument principle to the 
function

F(h) = I ′(h)

I ′
0(h)

.

Indeed, a local analysis shows that at hs, h0 the function F |D has continuous limits, which we 
assume to be non-zero. I ′

0(h) is a complete elliptic integral of first kind and hence cannot vanish 

in D. For sufficiently big |h| the function F(h) behaves as hn+ 1
2 and hence the increment of 

the argument of F along a circle with a sufficiently big radius is close to (2n + 1)π . Along the 
intervals (hs, h0) and (h0, ∞) the imaginary part of F(h) can be computed by making use of 
the Picard–Lefschetz formula. Namely, let {δs(h)}h, {δ0(h)}h be the continuous family of cycles, 
vanishing at the saddle points hs and h0 respectively, as h tends to hs and h0. As in the preceding 
section we deduce that along [hs, h0),

2Im(F (h)) = Wδ,δs (ω
′,ω′

0)

|I ′
0(h)|2 , h ∈ (hs, h0)

while along (h0, ∞)

2Im(F (h)) = Wδ,δs (ω
′,ω′

0)

|I ′
0(h)|2 + Wδ,δ0(ω

′,ω′
0)

|I ′
0(h)|2 , h ∈ (h0,∞).

The function

Wδ,δs (ω
′,ω′

0), h ∈ (hs, h0)

allows an analytic continuation in C \ [h0, ∞) and exactly as in the preceding section we com-
pute that it can have at most 2n + 1 zeroes there. More precisely, Wδ,δs (ω

′, ω′
0) has an analytic 

continuation in C \ [h0, ∞). The number of its zeroes in this domain is bounded by n (coming 
from the behavior at infinity) plus one plus the number of the zeroes of



L. Gavrilov, I.D. Iliev / J. Differential Equations 260 (2016) 3963–3990 3985
Fig. 5. The graph of the polynomial 1
2 x2 − 2

3 x3 + a
4 x4, 8

9 < a < 1, and the level sets {H = h}.

2Im(Wδ,δs (ω
′,ω′

0)) = Wδ0,δs (ω
′,ω′

0) = q(h)

+∞∫
−∞

dx

y
, h ∈ (h0,∞)

where q is a degree n polynomial. Similarly, the function

Wδ,δs (ω
′,ω′

0) + Wδ,δ0(ω
′,ω′

0), (h0,∞)

allows an analytic continuation in C \ [hs, h0] and its zeroes there are bounded by n plus plus 
one plus the number of the zeroes of

2Im(Wδ,δs (ω
′,ω′

0) + Wδ,δ0(ω
′,ω′

0)) = Wδs,δ0(ω
′,ω′

0) = q(h)

+∞∫
−∞

dx

y
, h ∈ (hs, h0).

Summing up the above information, we get that the function F(h) can have at most 4n +3 zeroes 
in the complex domain D, counted with the multiplicity. As I (0) = 0 the same conclusion holds 
true for I (h) on the real interval (−∞, hs). �
4.3. The exterior eight-loop case

In this section we consider the exterior eight-loop case, with period annulus as shown in Fig. 5
and 8

9 < a < 1. Let δ(h) ⊂ {H = h} be the continuous family of ovals defined on the maximal 
open interval � = (hs, ∞)

Theorem 8. The space of Abelian integrals An corresponding to the shadowed area in Fig. 5 is 
of dimension 3n + 3, and each Abelian integral from An can have at most 4n + 4 zeroes. 

Proof. We shall evaluate the number of the zeroes of a function from A′
n in the complex domain

D =C \ (−∞, hs],

in which I ′(h) has an analytic extension. For this purpose we apply the argument principle to the 
function
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F(h) = I ′(h)

I ′
0(h)

.

As before, a local analysis shows that at hs, h1
c, h

2
c the function F |D has continuous limits, which 

we assume to be non-zero. I ′
0(h) is a complete elliptic integral of first kind and hence cannot 

vanish in D. For sufficiently big |h| the function F(h) behaves as hn+ 1
2 and hence the increment 

of the argument of F along a circle with a sufficiently big radius is close to (2n + 1)π . It remains 
to study the number of the zeroes of the imaginary part of F(h) along the intervals

(−∞, h1
c), (h1

c, h
2
c), (h2

c, hs).

Namely, let {δs(h)}h, {δ1
c (h)}h, {δ2

c (h)}h, where Imh ≥ 0, be the continuous family of cycles, 
vanishing at the saddle points as h tends to hs , and h1

c or h2
c , respectively. These cycles are 

defined up to an orientation, and we consider their continuation to D = C \ (−∞, hs], as well the 
limits along the branch cut (−∞, hs]. The family of exterior loops {δ(h)} is expressed in terms 
of these vanishing cycles as follows

δ(h) = δ1
c (h) + δ2

c (h) + δs(h), h ∈D

(the orientations of the vanishing cycles are fixed from this identity). Let δ+(h) = δ(h) be the 
continuation of δ(h) on (−∞, hs], along paths contained in the upper complex half-plane, and 
δ−(h) be the continuation on (−∞, hs] along paths contained in the lower complex half-plane. 
The Picard–Lefschetz formula easily implies

δ−(h) = δ1
c (h) + δ2

c (h) − δs(h),h ∈ (h2
c, hs)

δ−(h) = δ1
c (h) − δs(h),h ∈ (h1

c, h
2
c)

δ−(h) = −δs(h),h ∈ (−∞, h1
c)

As in the preceding section we deduce that along the branch cut (−∞, hs) we have

2Im(F (h)) = Wδ,2δs (ω
′,ω′

0)

|I ′
0(h)|2 , h ∈ (h2

c, hs) (20)

and

2Im(F (h)) = Wδ,2δs (ω
′,ω′

0)

|I ′
0(h)|2 + Wδ,δ2

c
(ω′,ω′

0)

|I ′
0(h)|2 , h ∈ (h1

c, h
2
c) (21)

and

2Im(F (h)) = Wδ,2δs (ω
′,ω′

0)

|I ′
0(h)|2 + Wδ,δ1

c+δ2
c
(ω′,ω′

0)

|I ′
0(h)|2 = Wδ,δs (ω

′,ω′
0)

|I ′
0(h)|2 , h ∈ (−∞, h1

c). (22)

Clearly, the function Wδ,δs (ω
′, ω′

0) has an analytic continuation in C \ [h1
c, h

2
c]. Its number of 

zeroes in this domain depends on the zeroes of
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2Im(Wδ,δs (ω
′,ω′

0)) = Wδ1
c ,δ2

c
(ω′,ω′

0) = q(h)

+∞∫
−∞

dx

y
, h ∈ (h1

c, h
2
c).

Thus, the total number of the zeroes of the functions (20), (22) is bounded by n + 1 plus the 
number of the zeroes of q(h) on the interval (h1

c, h
2
c). Finally, similar considerations show that 

the function (21) has an analytic continuation in

C \ {(−∞, h1
c) ∪ (h2

c,∞)}
and its zeroes in this domain are bounded by n + 1 plus the number of the zeroes of the polyno-
mial q(h) on the interval (−∞, h1

c) ∪ (h2
c, ∞).

Summing up the above information, we get that the function F(h) can have at most 4n + 3
zeroes in the complex domain D, counted with the multiplicity. Therefore the Abelian integral 
I (h) has at most 4n + 4 zeroes on the real interval (−∞, hs). �
5. Lower bounds for the number of zeroes of Mk(h)

In this section we provide examples which show that Chebyshev’s property would not hold 
in the saddle-loop case. For this purpose, we study the number of small-amplitude limit cycles 
bifurcating around the center at the origin.

We begin with the system satisfied by the basic integrals Ik(h). It is derived in a standard way 
by using (1), (13) and the formula I ′

k(h) = ∮
δ(h)

(xk/y)dx.

Lemma 1. The integrals I0(h), I1(h) and I2(h) satisfy the system

4
3hI ′

0 − 2
9a

I ′
1 − ( 1

3 − 4
9a

)I ′
2 = I0,

2
9a

hI ′
0 + (h + 1

4a
− 10

27a2 )I ′
1 − ( 13

18a
− 20

27a2 )I ′
2 = I1,

−( 4
15a

− 56
135a2 )hI ′

0 + ( 4
15a

h + 29
45a2 − 56

81a3 )I ′
1 + ( 4

5h + 4
15a

− 46
27a2 + 112

81a3 )I ′
2 = I2.

We use this system to find the expansions of integrals Ik , k = 0, 1, 2 near h = 0. Denoting 
c = I ′

0(0) �= 0, one obtains

Lemma 2. The following expansions hold near h = 0:

I0(h) = c[h + ( 5
3 − 3

8a)h2 + ( 385
27 − 35

4 a + 35
64a2)h3

+ ( 85085
486 − 25025

144 a + 5005
128 a2 − 1155

1024a3)h4

+1001( 7429
2916 − 2261

648 a + 1615
1152a2 − 85

512a3 + 45
16384a4)h5 + . . .],

I1(h) = c[h2 + ( 70
9 − 35

12a)h3 + ( 5005
54 − 5005

72 a + 1155
128 a2)h4

+1001( 323
243 − 323

216a + 85
192a2 − 15

512a3)h5

+1001( 185725
8748 − 185725

5832 a + 52003
3456 a2 − 11305

4608 a3 + 1615
16384a4)h6 + . . .],

I2(h) = c[ 1
2h2 + ( 35

9 − 5
8a)h3 + ( 5005

108 − 385
16 a + 315

256a2)h4

+1001( 323
486 − 85

144a + 15
128a2 − 3

1024a3)h5

+1001( 185725
17496 − 52003

3888 a + 11305
2304 a2 − 1615

3072a3 + 255
32768a4)h6 + . . .].
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Proof. We rewrite the system from Lemma 1 in the form (Ah + B)I′ = EI where I =
(I0, I1, I2)

�. As I(h) is a solution which is analytical near zero and I(0) = 0, one can replace

I(h) =
∞∑

k=1

Vkh
k, Vk = (V0,k,V1,k,V2,k)

�

in the system. Then the coefficient at hk should be zero, which yields the equation

(k + 1)BVk+1 = (E − kA)Vk.

Since I′(0) = (c, 0, 0)� = V1, one can solve the system above with respect to (V0,k, V1,k+1,

V2,k+1) and thus to obtain via recursive procedure formulas for all Vk, k = 2, 3, . . . . Explicitly,

(8 − 9a)V1,k+1 = [8 − 9a + (88 − 87a)k−1
k+1 ]V0,k − (48a − 36a2) k−1

k+1V1,k,

(8 − 9a)V2,k+1 = [4 − 9
2a + (44 − 63

2 a) k−1
k+1 ]V0,k − 24a k−1

k+1V1,k,

V0,k+1 = 6k−1
3k

V1,k+1 − a 4k−1
4k

V2,k+1, k = 1,2,3, . . .

Applying these formulas, we obtain the expansions in Lemma 2. �
Proof of Theorem 5. Consider the following linear combinations

J0 = I0, J3 = α1hI0 + β1I1 + γ1I2,

J1 = I1, J4 = α2hI0 + (β2 + δ2h)I1 + γ2I2,

J2 = I1 − 2I2, J5 = α3hI0 + (β3 + δ3h)I1 + (γ3 + η3h)I2,

where

α1 = a, δ2 = 8
3a2 + a3,

β1 = − 11
3 + 21

40a, α3 = 17
81a − 775

5148a2 + 63
9152a3,

γ1 = 22
3 − 61

20a, β3 = − 187
243 + 55

72a − 1085
9152a2 − 189

73216a3,

α2 = 208
63 a − 2

3a2, γ3 = 374
243 − 631

324a + 155
288a2 − 315

36608a3,

β2 = − 2288
189 + 52

9 a + 1
4a2, δ3 = 119

702a2 − 147
1144a3 − 189

18304a4,

γ2 = 4576
189 − 1144

63 a + 5
6a2, η3 = 49

234a3.

The coefficients above are chosen so that Jk(h) = O(hk+1) near zero for 0 ≤ k ≤ 5. Their explicit 
values are determined from the respective linear systems. By calculation, then one obtains

J0 = c[h + . . .], J3 = c[ 49
32a2(a + 8

3 )h4 + ( 68992
405 + O(a + 8

3 ))h5 + . . .],
J1 = c[h2 + . . .], J4 = c[ 154

9 a4h5 + . . .],
J = c[− 5ah3 + . . .], J = c[ 49 a5(a + 8 )h6 + (−119( 2 )14 + O(a + 8 ))h7 + . . .].
2 3 5 128 9 3 9
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Let us fix the Hamiltonian parameter a be a little bit smaller that − 8
3 , so that we would have J3 =

c[δ4h
4 +δ5h

5 +O(h6)] with |δ4| � |δ5| and δ4 < 0 < δ5. Then, one can choose a linear combina-
tion J (h) of Jk , 0 ≤ k ≤ 3, such that J (h) = c

∑5
k=1 δkh

k[1 + O(h)] will satisfy δkδk+1 < 0 and 
|δk| � |δk+1|. Therefore, J (h) would have 4 small positive zeroes. As the four coefficients in (7)
are independently free, one can take a small perturbation such that M1(h) = J (h) will produce 4 
small-amplitude limit cycles around the center at the origin. The proof of the claim concerning 
M2(h) is the same, as long as we fix the parameter a a little bit smaller than − 8

9 and construct in 
the same way a linear combination J (h) = c

∑7
k=1 δkh

k[1 + O(h)] with coefficients having the 
same properties, thus M2(h) producing 6 small positive zeroes in the saddle-loop case.

For all other a ∈ R different from 0, − 8
3 and ± 8

9 , any linear combination of Jk , 0 ≤ k ≤ m

where m = 3, 4, 5, will have at most m small positive zeroes. Moreover, Mk(h), k = 1, 2, 3 can be 
expressed as linear combination of the respective Jk , thus having as much zeroes at its dimension 
minus one. It is easy to see that M4(h) has no small positive zeroes at all. �
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Appendix A

For readers’ convenience, below we present the explicit expressions of the parameters λ, μ
and the coefficients qij of Q in (5) in terms of the original coefficients of perturbation in (2). 
First of all, note that condition M1(h) ≡ 0 is equivalent to

a10 + b01 = 0, 2a20 + b11 = 0, 3a30 + b21 = 0, a12 + 3b03 = 0.

Then, a simple calculation yields

λ = −a11 − 2b02 q21 = −a20

μ = −a21 − b12 q12 = b02

q10 = b00 q03 = − 1
3a02

q01 = −a00 q40 = 1
4 (−2a11 + a21 − 4b02 + b30 + b12)

q20 = 1
2b10 q31 = −a30

q11 = −a10 q22 = 1
2b12

q02 = − 1
2a01 q13 = − 1

3a12

q30 = 1
3 (a11 + b20 + 2b02) q04 = − 1

4a03
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