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Abstract
The cyclicity of the exterior period annulus of the asymmetrically perturbed Duffing oscillator

is a well known problem extensively studied in the literature. In the present paper we provide a
complete bifurcation diagram for the number of the zeros of the associated Melnikov function in a
suitable complex domain.
Keywords: Limit cycles, 16th Hilbert problem, zeros of elliptic integrals depending on parameters.

1 Introduction

Consider the asymmetrically perturbed Duffing oscillator

Xλ,ν :

{
ẋ = y
ẏ = x− x3 + νx2 + λ0y + λ1xy + λ2x

2y
(1)

in which ν, λi are small real parameters. For ν = λ0 = λ1 = λ2 = 0 the system is integrable, with a
first integral

H =
y2

2
− x2

2
+

x4

4
and its phase portrait is shown on fig.1. Alternatively, the system (1) defines a real plane foliation by
the formula

d(H − ν
x3

3
) + (λ0 + λ1x+ λ2x

2)ydx = 0 (2)

The maximal number of limit cycles, which bifurcate from the exterior period annulus of X0 with
respect to the perturbation Xλ,ν is equal to two, as it has been shown by Iliev and Perko [7] and Li,
Mardesic and Roussarie [9] :
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Figure 1: Phase portrait of X0 on the (x, y)-plane and the graph of h = −x2
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Theorem 1. [7, 9] The cyclicity of the exterior period annulus {(x, y) ∈ R
2 : H(x, y) > 0} of dH = 0

with respect to the perturbation (1) equals two.

Remark 1. The above Theorem claims that from any compact, contained in the open exterior period
annulus {(x, y) ∈ R

2 : H(x, y) > 0}, bifurcate at most two limit cycles. It says nothing about the
limit cycles bifurcating from the separatrix eight-loop or from infinity (i.e. the equator of the Poincaré
sphere).

Let {γ(h)}h be the continuous family of exterior ovals of the non-perturbed system, where

γ(h) ⊂ {H = h}
and consider the complete elliptic integrals

Ii =

∮
γ(h)

xiydx. (3)

It has been shown in [7], that if we restrict our attention to a one parameter deformation

λi = λi(ε), ν = ν(ε)

then the first non-vanishing Poincaré-Pontryagin-Melnikov function Mk (governing the bifurcation of
limit cycles) is given by a linear combination of the complete elliptic integrals of first and second kind
I0, I2, I

′
4

Mk(h) = λ0kI0(h) + λ2kI2(h) + λ4kI
′
4(h). (4)

We recall that if Pε is the first return map of the perturbed vector field Xλ(ε),ν(ε), parametrized by the
restriction h of the first integral H(x, y) on a suitable cross-section, then for the displacement map
Pε − id holds

Pε(h)− h = εkMk(h) +O(εk+1)

The above identity holds true uniformly in h on every given compact subset of the interval of definition
(0,∞), and hence the zeros of the function Mk on (0,∞) approximate the limit cycles (fixed points
of the displacement map) bifurcating from the exterior period annulus of X0.

2



It is shown, by making use of Picard-Fuchs equations combined with Rolle’s theorem in a real
domain, that the space of elliptic integrals of first and second kind I0, I1, I

′
4 satisfy the Chebyshev

property. This means that each non-trivial linear combination of these three functions has at most
two zeros counted with multiplicity, on the interval (0,∞). The method is described in details in
[6, Iliev]. This result is further generalized for multi-parameter deformations. It turns out that the
Bautin ideal associated to the deformation can be always principalized (this is a general fact), and
that the leading term of the displacement map is given again by a function of the form (4), which
completes the proof of Theorem 1, see [9].

The purpose of the present paper is to study the number of the zeros of the family {I0, I1, I ′4} in
the complex domain D = C \ (−∞, 0]. We use the well known Petrov method which is based on the
argument principle. To find the exact number of zeros we construct the bifurcation diagram of zeros
of Mk in D in the spirit of [4, fig.4]. The result is summarized in Theorem 2 and Figure 5, which is
the main result of the paper. This gives an information on the complex limit cycles of the system,
and imples in particular that the number of corresponding limit cycles can not exceed three. It can
be also seen as a complex counterpart of Theorem 1.

Our primary motivation was that the complex methods we use, are necessary to understand the
bifurcations from the separatrix eight-loop, see Remark 1 above. Another reason is, that the complexity
of the bifurcation set of Mk in a complex domain is directly related to the number of the zeros of Mk.
This observation can be possibly generalized to higher genus curves.

The paper is organized as follows. In section 2 we recall some known Picard-Fuchs equations, which
will be used later. The monodromy of the Abelian integrals, based on the classical Picard-Lefschetz
theory is described in section 3. The Petrov method is then applied in section 4. The main result is
that the principal part of the displacement map can have at most four zeros in a complex domain, a
result which is not optimal - see Lemma 4. The exact upper bound for the number of the zeros in a
complex domain turns out to be three. This result, together with the bifurcation diagram of zeros in
a complex domain is given in section 5.

2 Picard-Fuchs equations

The results of this section are known, or can be easily deduced, see [7, 8, 15].
First we note that the affine algebraic curve

Γh = {(x, y) ∈ C : H(x, y) = h}

is smooth for h �= 0,−1/4 and has the topological type of a torus with two removed points ±∞ (at
"infinity"). Its homology group is therefore of rang three, the corresponding De Rham group has for
generators the (restrictions of) polynomial differential one-forms

ydx, xydx, x2ydx

which are also generators of the related Brieskorn-Petrov C[h]-module [3].
Because of the symmetry (x, y)→ (±x, y) the Abelian integrals I2k+1(h) vanish identically, while

I2k, as well their derivatives can be expressed as linear combinations of I0, I2, with coefficients in the
field C(h).

Lemma 1.
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Figure 2: The vanishing cycles δ0(h), δ1(h), δ−1(h) for −1
4 < h < 0

The integrals Ii, i = 0, 2, satisfy the following Picard-Fuchs system :

I0(h) =
4

3
hI ′0(h) +

1

3
I ′2(h) (5)

I2(h) =
4

15
hI ′0(h) +

(
4

5
h+

4

15

)
I ′2(h) (6)

(4h+ 1)I ′4(h) = 4hI0(h) + 5I2(h) (7)
4h(4h+ 1)I ′′0 (h) = −3I0(h). (8)

The above equations imply the following asymptotic expansions near h = 0 (they agree with the
Picard-Lefshetz formula)

Lemma 2. The integrals Ii, i = 0, 2, and I ′4 have the following asymptotic expansions in the neigh-
borhood of h = 0:

I0(h) = (−h+
3

8
h2 − 35

64
h3 + ...) lnh+

4

3
+ a1h+ a2h

2 + ...

I2(h) = (
1

2
h2 − 5

8
h3 − 315

256
h4...) lnh+

16

15
+ 4h+ b2h

2 + ...

I ′4(h) = (−3

2
h2 +

35

8
h3 − 471

256
h4 + ...) lnh+

16

3
+ 4h+ (4a1 + 5b2 − 304

3
)h2 + ...

3 The monodromy of Abelian integrals

The Abelian integrals I(h) of the form (3) are multivalued functions in h ∈ C which become single-
valued analytic functions in the complex domain

D = C \ (−∞, 0].

Along the segment (−∞, 0] the integrals have a continuous limit when h ∈ D tends to a point
h0 ∈ [0,−∞), depending on the sign of the imaginary part of h. When Im(h) > 0 we denote
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the corresponding limit by I+(h), and when Im(h) < 0 by I−(h0). We use a similar notation for the
continuous limits of loops γ(h) when h tends to the segment [0,−∞). We have therefore

I±(h) =
∫
γ±(h)

ω

where ω is a polynomial one-form, and the monodromy I+(h) − I−(h), h ∈ [0,−∞) depends on the
homology class of γ+(h) − γ−(h) which is expressed by the Picard-Lefschetz formula. Namely, for
h ∈ D, define the continuous families of closed loops

δ0(h), δ1(h), δ−1(h) ⊂ {(x, y) ∈ C
2 : H(x, y) = h}, H(x, y) =

y2

2
− x2

2
+

x4

4

as follows. First, for h ∈ (−1/4, 0) let δ+1 (h), δ
+
−1(h) be the real ovals of {(x, y) ∈ R

2 : H(x, y) = h},
defined by

{(x, y) ∈ R
2 : y = ±

√
h+

x2

2
− x4

4
, x1 ≤ x ≤ x2,−x2 ≤ x ≤ −x1}

where, −x2,−x1, x1, x2 are the four real roots of h+ x2

2 − x4

4 , as it is shown on fig.2. To visualize the
loop δ+0 (h) we consider the substitution y → iy, after which the loop δ+0 (h) is transformed to the oval
of the curve

{(x, y) ∈ R
2 : −y2

2
− x2

2
+

x4

4
= h}.

The three families of loops δ0(h), δ1(h), δ−1(h) are obtained by continuous deformations of δ+0 (h), δ
+
1 (h)

and δ+−1(h) to the half plane {h ∈ C : Imh ≥ 0}, and finally to the domain h ∈ D. The reader familiar
with the Picard-Lefschetz theory will note that δ0(h), δ1(h), δ−1(h) represent continuous families of
one-cycles, vanishing at the singular points of H, when h tends to the singular values h = 0 and
h = −1/4, along paths contained in the upper half-plane {h ∈ C : Imh ≥ 0}. Therefore they form a
distinguished family of vanishing cycles, to which we are going to apply the Picard-Lefschetz formula,
see [1] for details.

The above construction defines uniquely the homology classes of the vanishing loops, up to an
orientation. From now on we suppose that the loop γ(h) ⊂ {(x, y) ∈ R

2 : H(x, y) = h} for h > 0 is
oriented by the vector field X0, and that the orientation of δ0(h), δ1(h), δ−1(h) are chosen in such a
way that

γ(h) = δ0(h) + δ1(h) + δ−1(h), h ∈ D.
According to the definition of the vanishing cycles

γ+(h) = δ+0 (h) + δ+1 (h) + δ+−1(h), h ∈ (−∞, 0]. (9)

and the Picard-Lefschetz formula [1] implies

γ−(h) = −δ+0 (h) + δ+1 (h) + δ+−1(h), h ∈ [−1/4, 0] (10)

and
γ−(h) = −δ+0 (h), h ∈ (−∞,−1/4] (11)

For a further use we note that

δ−0 (h) = δ+0 (h), h ∈ (−1/4,+∞) (12)

δ−1 (h) = δ+1 (h), δ
−
−1(h) = δ+−1(h), h ∈ (−∞, 0) (13)
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Figure 3: The analytic continuation of a cycle γ (h0) in the domain D

4 The zeros of the principal part of the displacement map in a com-
plex domain

If the first Poincaré-Pontryagin-Melnikov function M1(h) is not identically zero, then

M1(h) = λ0I0(h) + λ2I2(h), λi ∈ R (14)

If M1 = 0 the first non-vanishing Melnikov function Mk has the form [6], [7]

Mk(h) = λ0kI0(h) + λ2kI2(h) + λ4kI
′
4(h), k ≥ 2. (15)

where the coefficients λ0k, λ2k, λ4k depend on the initial parameters λ0, λ1, λ2. Following [9], we call
the Abelian integral Mk(h) the principal part of the displacement map of the system (1), associated
to the exterior period annulus of X0.

Lemma 3. If the first Poincaré-Pontryagin-Melnikov function M1 given in (14) is not identically zero,
then it has at most two zeros in the complex domain D.

Lemma 4. The principal part (15) of the displacement map has at most four zeros in the complex
domain D.

Lemma 5. The Abelian integrals I0(h) and I ′0(h) do not vanish in D.

Proof of Lemma 5. I ′0(h) is a period of the holomorphic one-form dx
y on the elliptic curve Γh, and

therefore does not vanish. For real values of h I ′0(h) represents the period of the orbit γ(h) of dH = 0,
while I0(h) equals the area of the interior of γ(h). It is remarkable, that I0(h) does not vanish in a
complex domain too. Indeed, consider the analytic function

F (h) =
I0(h)

I ′0(h)
, h ∈ D.

We shall count its zeros in D by making use of the argument principle.

Let D ⊂ C be a relatively compact domain, with a piece-wise smooth boundary. We suppose,
that f : D → C is a continuous function, which is complex-analytic in D, except at a finite
number of points on the border ∂D. We suppose also that f does not vanish on ∂D. Denote
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by ZD(f) the number of zeros of f in D, counted with multiplicity. The increment of the
argument V ar∂D(argf) of f along ∂D oriented counter-clockwise is well defined and equals
the winding number of the curve f(∂D) ⊂ C about the origin, divided by 2π. The argument
principle states then that

2πZD(f) = V ar∂D(argf) (16)

Apply now the argument principle to the function F in the intersection of a big disc with a radius R
and the complex domain D. Along the circle of radius R, for R sufficiently big, the decrease of the
argument of F is close to 2π, while along the branch cut (−∞, 0) we have

2
√−1Im(F (h) = F+(h)− F−(h) =

I0(h)

I ′0(h)
− I0(h)

I ′0(h)

=

∮
γ+ ydx∮
γ+

dx
y

−
∮
γ− ydx∮
γ−

dx
y

=
W (h)

| ∮γ+
dx
y |2

.

where

W (h) = det

⎛
⎜⎝

∮
γ+ ydx

∮
γ+

dx
y

∮
γ− ydx

∮
γ−

dx
y

⎞
⎟⎠ .

According to section 3, the function has two different determinations along (−∞,−1/4) and (−1/4, 0),
both of which have no monodromy, and hence are rational in h. In fact, (5) implies that in both of
the cases W (h) is a non-zero constant. If W (h) = c in (−∞,−1/4), then it equals 2c in (−1/4, 0).
Therefore along the branch cut the argument of F+ or F− increases by at most π. Summing up the
above information, we conclude that F has no zeros in D.

Proof of Lemma 3. We denote

F (h) =
M1(h)

I0(h)
= λ2

I2(h)

I0(h)
+ λ0, h ∈ D

and apply, as in the proof of Lemma 5, the argument principle to F . Along a big circle the increase
of the argument of F is close to π. Along the branch cut (−∞, 0] we have

2
√−1Im(F (h)) = F+(h)− F−(h) = λ2

W (h)

|I0(h)|2

where

W (h) = det

⎛
⎝

∮
γ+ yx2dx

∮
γ+ ydx

∮
γ− yx2dx

∮
γ− ydx

⎞
⎠ = ch(4h+ 1), c = const. �= 0.

Therefore the imaginary part of F (h) along the branch cut (−∞, 0) vanishes at most once, at −1/4.
Summing up the above information, we get that F has at most two zeros in the complex domain
D.

Proof of Lemma 4. We denote

F (h) = (4h+ 1)
Mk(h)

I0(h)
, h ∈ D
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and apply, as in the proof of Lemma 5, the argument principle to F . By making use of (15) we have

F (h) = α(h)
I2(h)

I0(h)
+ β(h) (17)

where
α(h) = (4h+ 1)λ2 + 5λ4, β(h) = (4h+ 1)λ0 + 4hλ4. (18)

Along a big circle the increase of the argument of F is close to 3π. Along the branch cut (−∞, 0] we
have as before

2
√−1Im(F (h)) = F+(h)− F−(h) = α(h)

W (h)

|I0(h)|2
where

W (h) = det

⎛
⎝

∮
γ+ yx2dx

∮
γ+ ydx

∮
γ− yx2dx

∮
γ− ydx

⎞
⎠ = ch(4h+ 1), c = const. �= 0.

Therefore the imaginary part of F (h) along the branch cut (−∞, 0) vanishes at most twice, at −1/4
and at the root of α(h). Summing up the above information, we get that F has at most four zeros in
the complex domain D.

5 The bifurcation diagram of the zeros of the Abelian integrals in a
complex domain

5.1 The first Melnikov function M1

Let Z(M1) be the number of the zeros of M1(h) in the domain D, counted with multiplicity. It is a
function of [λ0 : λ2] seen as a point on the projective circle S1 = RP

1. The bifurcation set B of Z(M1)
is the set of points [λ0 : λ2] ∈ RP

1 at which Z(M1) is not a locally constant function. It follows that
if λ = [λ0 : λ2] is a bifurcation point, then near λ a zero of M1(h) bifurcates from the border of the
domain D ⊂ CP

1, see [4, Definition 2]. Therefore

B = P0 ∪ P−1/4 ∪ P∞ ∪Δ

where P0, P−1/4, P∞ ∈ S1 are the sets of parameter values λ, corresponding to bifurcations of zeros
from h = 0, h = −1/4 and h = ∞ respectively. Finally, Δ is the set corresponding to bifurcations
from the branch cut (−∞, 0). The results of the preceding section imply Δ = ∅ while

P0 = {[λ0 : λ2] : λ0I0(0) + λ2I2(0) = 0}, P−1/4 = {[λ0 : λ2] : λ0I0(−1

4
) + λ2I2(−1

4
) = 0}

and
P∞ = {[λ0 : λ2] : λ2 = 0}.

A local analysis shows that when the parameter [λ0 : λ2] crosses P0 or P∞, then a simple zero bifurcates
from 0 or ∞. Similarly, two complex conjugate zeros bifurcate from h = −1/4 when [λ0 : λ2] crosses
P−1/4. This combined with Lemma 3 implies

Corollary 1. The bifurcation diagram of Z(M1) together with the corresponding number of zeros of
M1 are shown on fig.4
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Figure 4: Bifurcation diagram of the zeros of the first Melnikov function M1 in the complex domain
D.
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Δ
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1
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2

Figure 5: Bifurcation diagram of the zeros of Mk, k ≥ 2, in the complex domain D.

9



5.2 The principal part Mk of the displacement map

Let Mk, k ≥ 2, be the first non-vanishing Melnikov function, see (4). Denote by Z(Mk) the number
of the zeros of Mk(h) in the domain D = C \ (−∞, 0] , counted with multiplicity. It is a function of
[λ0k : λ2k : λ4k] seen as a point on the projective plane RP

2. The bifurcation set B of Z(Mk) is the
set of points

[λ0k : λ2k : λ4k] ∈ RP
2

at which Z(Mk) is not a locally constant function. It follows that if λ = [λ0k : λ2k : λ4k] is a bifurcation
point, then near such a λ a zero of Mk(h) bifurcates from the border of the domain D ⊂ CP

1, see [4,
Definition 2]. Therefore

B = l0 ∪ l−1/4 ∪ l∞ ∪Δ

where l0, l−1/4, l∞ are the sets of parameter values λ, corresponding to bifurcations of zeros from h = 0,
h = −1/4 and h =∞ respectively. Finally, Δ is the set of parameter values λ, at which a bifurcation
of zero of Mk from (−∞,−1/4)∪ (−1/4, 0) takes place. We are going to describe these sets explicitly.
For convenience, we represent the projective plane RP

2 by a closed disc as on fig. 5. The border of
the disc is a circle with identified opposite points. The resulting quotient space is the projective plane
RP

2.
As I ′4(0) �= 0, then

l0 = {λ ∈ RP
2 : λ0kI0(0) + λ2kI2(0) + λ4kI

′
4(0) = 0}. (19)

Similarly,
l∞ = {λ ∈ RP

2 : λ2k = 0}. (20)

A local analysis shows that I ′4(h) ∼ const.× log(4h+ 1) near −1/4 which implies

l−1/4 = {λ ∈ RP
2 : λ4k = 0}. (21)

Finally, to compute Δ we suppose that for some h ∈ (−∞,−1/4) ∪ (−1/4, 0), Mk(h) = Mk(h) = 0.
The latter implies Im(I(h)) = 0, and hence α(h) = 0 and β(h) = 0, see (17). The condition, that the
polynomials α(h), β(h) have a common real root imply that either λ4k = 0 in which case the root is
h = −1/4, or

5(λ0k + λ4k) + λ2k = 0 (22)

in which case

(4h+ 1)(λ0kI2(h) + λ2kI2(h) + λ4kI
′
4(h)) = (4h(λ0k + λ4k) + λ0k)(I0(h)− 5I2(h))

see (18). The Abelian integral I0(h) − 5I2(h) vanishes at h = −1/4 and corresponds therefore to
the point P−1/4 on fig.4. In particular it has no zeros in the domain D. Thus, in the case when
the root of 4h(λ0k + λ4k) + λ0k belongs to D, the Abelian integral Mk has exactly one zero in D,
otherwise it has complex conjugate zeros on (−∞, 0). This implies from one hand that Δ is the
segment of the line (22), connecting l∞ and l0 as on fig.5. On the other hand this implies that in one
of the connected components of RP2 \B the function Mk has exactly one zero, as shown on fig.5. To
determine the number od the zeros of Mk in the remaining connected components of the complement
to the bifurcation set in RP

2 we note that

• when crossing Δ or l−1/4 (in bold on the figure) two zeros are added or subtracted

• when crossing l0 or l∞ one simple zero is added or subtracted

• the total number of zeros of Mk is not bigger than three
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The above considerations, combined with Lemma 4, determine uniquely the number of the zeros of
Mk in each connected component. This is summarized in the following

Theorem 2. The bifurcation set B ⊂ RP
2 of the zeros Z(Mk) of the principal part of the displacement

map, in the complex domain D ⊂ C is the union of the projective lines l0, l−1/4, l∞ and the segment
Δ connecting l0 to l∞. Their mutual position, together with the corresponding number of zeros of Mk

are shown on fig.5.

The bound for the number of the zeros in the above Theorem in the complex domain D is three,
which, according to Theorem 1, is not optimal on the real interval (0,∞). It seems impossible to
deduce Theorem 1 from Theorem 2 by making use of complex methods only.
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