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Abstract. We prove that the number of limit cycles which bifurcate from a two-saddle loop of
an analytic planar vector field X0 under an arbitrary finite-parameter analytic deformation Xλ ,
λ ∈ (RN , 0), is uniformly bounded with respect to λ.
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1. Introduction

Consider a finite-parameter analytic family of analytic planar vector fields

Xλ = P (x, y, λ)
∂

∂x
+Q(x, y, λ)

∂

∂y
, λ ∈ R

N , (1)

such that X0 has a limit periodic set Γ. The cyclicity of Γ is, roughly speaking, the maximal number
of limit cycles of Xλ which tend to Γ as λ → 0. Roussarie’s finite cyclicity conjecture claims that
every limit periodic set occurring in an analytic finite-parameter family of planar analytic vector
fields has finite cyclicity [23]. If true, this conjecture would imply the finiteness of the maximal
number H(n) of limit cycles which a planar polynomial vector field of degree n can have. Therefore,
it plays a fundamental role in all questions related to the second part of Hilbert’s 16th problem
and its ramifications.

Recall that a polycycle of the vector field X0 is a topological polygon composed of separatri-
ces and singular points. A k-saddle cycle of X0 (or a hyperbolic k-graph), denoted by Γk , is a
polycycle composed of k distinct saddle-type singular points p1, . . . , pk , pk+1 = p1 and separatrices
(heteroclinic orbits) connecting pi to pi+1 as in Fig. 1. The simplest limit periodic sets are k-saddle
cycles, periodic orbits, and weak foci or centers. The finite cyclicity of periodic orbits and weak foci
is well known and follows from Gabrielov’s theorem [23, p. 68]. The finite cyclicity of one-saddle
loops was proved by Roussarie in [21] and [22].

Fig. 1. One-, two-, and three-saddle cycles.

The purpose of the present paper is to prove the finite cyclicity of a two-saddle cycle under a
finite-parameter analytic deformation (see Theorem 4).

Several special cases of this result were earlier proved, under various genericity assumptions on
X0 or on the family Xλ , by Cherkas, Mourtada, El Morsalani, Dumortier, Roussarie, Rousseau,
Jebrane, Żo�ladek, Li, Caubergh, Luca, and other authors in [6]–[8], [13], and [16] (see also [23,
Sec. 5.4.1] for a survey of the results and references up to 1996). The finite cyclicity of a k-sad-
dle cycle (for any k) under a finite-parameter analytic deformation was recently announced by
Mourtada [18].
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For generic families of vector fields, analyticity can be relaxed. As shown by Ilyashenko and
Yakovenko [11] and Kaloshin [12], any nontrivial elementary polycycle occurring in a generic k-pa-
rameter family of C∞ vector fields has finite cyclicity.

In contrast to the aforementioned authors, we shall not use asymptotic expansions of the corre-
sponding Dulac maps. Instead of this, we evaluate the number of limit cycles near Γ2 in a complex
domain by making use of a suitable version of the argument principle. This approach was initiated
by the author in [10], where we studied the cyclicity of Hamiltonian two-loops. As is well known, the
limit cycles of planar systems close to Hamiltonian are closely related to the zeros of the associated
Abelian integrals depending on a parameter (see the so-called weakened 16th Hilbert problem in
Arnold’s book [1, p. 313]). Zeros of complete elliptic integrals in a complex domain have been suc-
cessfully studied by topological methods (the argument principle) after Petrov’s pioneering works

[19] and [20]; see also Żo�ladek’s book [25, Sec. 6] for a description of the method. This method was
used in a more general context by several authors (see, e.g. [3] and [2]); in [10] the idea was used
to replace Abelian integrals by the true Poincaré return map.

In the present paper we shall find a relation between the fixed points of the Poincaré first return
map and the fixed points of holonomies of the separatrices of the saddle points, which correspond
to complex limit cycles. Counting such fixed points reduces to counting the zeros of families of
analytic functions, which is easy. The main technical tool is Lemma 2, in which we show that
the connected components of the zero locus of the imaginary part of the Dulac map are smooth
semianalytic curves. This allows us to estimate the variation of the argument of the displacement
map along the boundary of an appropriate complex domain and apply the argument principle to
evaluate the zeros of this map in the domain.

Note that previously the relation between the monodromy and the Dulac map was used by
Roussarie to compute the Bautin ideal associated to the Dulac map [24]. This result, combined
with [21] and [22], also implies the finite cyclicity of one-saddle cycles.

The paper is organized as follows. In Section 2 we provide the necessary technical background
and prove the main technical Lemma 2. In Section 3 we give a new self-contained proof of Roussarie’s
theorem about the finite cyclicity of one-saddle cycles. The origin of our method is explained in
Section 4, where we give a brief account of a local version of the so-called “Petrov trick.” The same
method is easily adapted in Section 5 to show that the cyclicity of Γ2 is finite.

2. The Dulac Map

Consider an analytic family of plane real analytic foliations Fλ , λ ∈ R
N , having a non-

degenerate isolated saddle point. An appropriate translation analytically depending on λ will place
the saddle point at the origin. The foliation Fλ has two analytic separatrices, intersecting transver-
sally at the saddle point and depending analytically on λ (see [5] and [17]). Therefore, a further
real bi-analytic change of the variables x and y analytically depending on λ will identify these
separatrices with the axes {x = 0} and {y = 0} as in Fig. 2; thus,

Fλ : x(1 + · · · ) dy + α(λ)y(1 + · · · ) dx, α(0) > 0, (2)

where the dots replace higher-order terms in x and y with coefficients depending on λ. The number
α(λ) is the hyperbolic ratio of the saddle point. From now on we shall suppose that the foliation
(2) is analytic and depends analytically on λ in a neighborhood of the origin in R

2 × R
N .

For c1, c2 ∈ R sufficiently small, let σ ⊂ {y = c1} and τ ⊂ {x = c2} be open complex discs
centered at (0, c1) and (c2, 0) and parameterized by x and y, respectively. The (real) Dulac map

Dλ : σ ∩ R
+ → τ ∩R

+, Dλ(0) = 0,

is the germ of an analytic map at x = 0 defined as follows: if x ∈ σ ∩ R
+∗ , then Dλ(x) ∈ τ ∩ R

+∗
is the intersection with τ ∩ R

+∗ of the orbit γλ(x) of (2) passing through x; see Fig. 2 (ii). This
geometric definition of Dλ allows us to control, to a certain extent, its analytic continuation to a
complex domain.
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Fig. 2. The Dulac map.

2.1. Analytic continuation. The Dulac map admits an analytic continuation to some open
subset, depending on λ, of the universal covering space σ• of σ \ {0}. Let us parameterize σ• by
polar coordinates ρ > 0, ϕ ∈ R, and z = ρ exp iϕ. The following result is well known (see, e.g., [10,
Appendix A]).

Theorem 1. There exists an ε0 > 0 and a continuous function

ρ : R → R
+
∗ , ϕ �→ ρ(ϕ),

such that the Dulac map admits an analytic continuation to the domain

{(λ, ρ, ϕ) ∈ C
N × σ• : |λ| < ε0, 0 < ρ < ρ(ϕ)}. (3)

The geometric content of Theorem 1 is as follows. Let {γλ(z)}z,λ be a continuous family of
paths contained in the leaves of Fλ and connecting z ∈ σ to τ .

Given z ∈ σ∩R
+∗ , we suppose that γλ(z) is the real orbit of Fλ contained in the first quadrant

x � 0, y � 0 and connecting z to τ ; see Fig. 2 (ii). The above theorem claims that this family of
orbits admits an extension to a continuous family of paths {γλ(z)}z,λ contained in the leaves of
Fλ and connecting z ∈ σ• to τ• . The family is defined for all (λ, ρ, ϕ) which belong to the domain
(3). Each path starts at z and terminates at a unique point on σ, denoted by Dλ(z). Although the
paths {γλ(z)}z,λ are not unique, their relative homotopy classes are determined uniquely.

2.2. The monodromy of the Dulac map and the holonomy of separatrices. With the
axes {x = 0} and {y = 0} parameterized by y and x we associate the holonomy maps

hλσ : σ → σ and hλτ : τ → τ

defined by two closed paths contained in the axes {x = 0} and {y = 0} and based at (0, c1) and
(c2, 0), respectively. We shall use the convention that each closed path makes one turn around
the origin of the axis in which it is contained in the positive direction (recall that the axes are
parameterized by y and x). It is easily seen that, in the case of a linear foliation of the form

x dy + αy dx = 0, α ∈ R
+, (4)

we have

Dα : x �→ y = c1c
−α
2 xα, hσ : x �→ xe−2πi/α, and hτ : y �→ ye−2πiα. (5)

In the general case of a nonlinear foliation of the form (2), the Dulac map Dλ is only asymptotic
to c1c

−α
2 xα , while the holonomy maps are analytic in x, y, and λ and, moreover,

hλσ : x �→ xe−2πi/α + . . . and hλτ : y �→ ye−2πiα + . . . , α = α(λ). (6)

The Dulac map Dλ is a transcendental multivalued map. For x > 0, let Dλ(e2πix) be the result
of the analytic continuation of Dλ along an arc of radius x subtending an angle 2πi. Similarly,
for y > 0, let Dλ(e2πiy) be the result of the analytic continuation of Dλ along an arc of radius y
subtending an angle 2πi.

Lemma 1. For every sufficiently small x > 0, y > 0, and |λ|,
hλτ ◦ Dλ(e2πix) = Dλ(x) and hλσ ◦ D−1

λ (e2πiy) = D−1
λ (y).
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Proof. Consider the underlying path γλ instead of Dλ . The loop γλ(e2πix) has the same origin
as γλ(x), so these loops can be composed, and the resulting loop γ̃λ(y) starts at y = Dλ(e2πix) ∈ τ
and terminates at Dλ(x) ∈ τ . In the special linear case (4) with α = 1, the foliation is a fibration,
the paths γλ( · ) represent relative cycles in the fibers of xy, and the path γ̃λ(y) is closed and
represents a vanishing cycle. The claim of Lemma 1 is then the classical Picard–Lefschetz formula.
In the general case, the result follows “by deformation.” Indeed, in the linear case (4) with α = 1,
the family of closed paths {γ̃λ(y)}y is defined for all sufficiently small y, and γ̃λ(0) ⊂ {y = 0} is a
closed path which makes one turn around the origin of the axis {y = 0} in the positive direction.
Note that the paths γ̃λ(0) are bounded away from the origin in C

2 . It follows that γ̃λ defines the
holonomy hλτ of the separatrix {y = 0}, and this property holds true also for every sufficiently small
deformation of (4). The homothety (x, y) → (εx, εy) transforms (2) into a small deformation of
(4), which completes the proof of the first identity (see also [15]). The second identity in Lemma 1
is proved in a similar way.

2.3. The zero locus of the imaginary part of the Dulac map. Consider the universal
covering

C•
π→ C \ {0} (7)

and the zero locus Hλ ⊂ C• of the imaginary part of the Dulac map Dλ corresponding to the
domain (3). We have

Hλ = {z = (ρ, ϕ) ∈ C• : Im Dλ(z) = 0, 0 < ρ < ρ(ϕ), ϕ ∈ R}. (8)

In the case of a linear foliation of the form (4), the zero locus is a union of half-lines:

Hα = {z ∈ C• : Im zα = 0} =
⋃

k∈Z
Hα,k, Hα,k = {(ρ, ϕ) ∈ C• : ϕ = kπ/α}.

To describe Hλ in the case of a general foliation of the form (2) with hyperbolic ratio α(λ) > 0,
consider the following germs of real analytic sets at the origin in R

2 = C:

Cλ,k = {z ∈ C = R
2 : (hλσ)k(z) = z̄}, (9)

where hλσ is the holonomy map associated to the separatrix {x = 0}.

Lemma 2. The zero locus Hλ ⊂ C• of the imaginary part of the Dulac map in the domain (3)
is a union of connected components Hλ,k indexed by k ∈ Z.

• Each set Cλ,k in (9) is the germ of a real analytic curve in R
2 which is smooth at the origin

and tangent to the line

{z = seikπ/α(λ) : s ∈ (R, 0)} (10)

at the origin.
• The projection of each connected component Hλ,k on the plane C = R

2 under the map π (7)
is the connected component of Cλ,k \ {0} tangent to the half-line (10) with s > 0 at the origin.

Remark. For a general bi-holomorphic map hλσ vanishing at the origin, the set (9) coincides
with the origin itself. The above lemma shows, however, that, for the monodromy map hλσ of a
saddle point of a real analytic planar vector field, the set Cλ,k defined by (9) is the germ of a real
analytic curve in R

2 smooth at the origin. The position of the connected components of Cλ,k \ {0}
tangent to the half-lines (10) with s > 0 is shown in Fig. 3.

The above lemma is the main technical result of the present paper. The analyticity of the zero
locus Hλ is responsible for the algebraic-like behavior of the Dulac map.

Proof of Lemma 2. Let x ∈ σ ∩R
+ and suppose that, for some ϕ > 0, Dλ(eiϕx) ∈ R. As the

Dulac map is real along σ ∩ R
+ , it follows that Dλ(e−iϕx) is complex conjugate to Dλ(eiϕx), and

hence

Dλ(e−iϕx) = Dλ(eiϕx).
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Fig. 3. The zero locus Hλ of the imaginary part of the Dulac map projected on the complex plane C.

If the point e−iϕx is seen as the inverse image of Dλ(e−iϕx) under the Dulac map D−1
λ , then the

point eiϕx is the result of the analytic continuation of the map D−1
λ along a suitable closed path

of τ , starting and terminating at Dλ(e−iϕx). If we put

y = Dλ(e−iϕx), i.e., e−iϕx = D−1
λ (y),

then e±iϕx are two values of the multivalued map D−1
λ (y); hence, by Lemma 1, they differ by a

power of the monodromy hλσ , that is,

(hλσ)k(eiϕx) = e−iϕx,

or, equivalently,

(hλσ)k(z) = z̄, z = eiϕx, for some k ∈ Z.

Clearly, every such relation corresponds to a connected component Hλ,k of Hλ . As Hλ,k is an
analytic set of real dimension 1, it follows that Cλ,k is an analytic set of dimension 1 too. It can
be defined, therefore, by each of the equivalent relations

Cλ,k ⊂ {z ∈ C = R
2 : Re[(hλσ)k(z)] = Re(z̄)}

and

Cλ,k ⊂ {z ∈ C = R
2 : Im[(hλσ)k(z)] = Im(z̄)}.

As ∂
∂z̄ [(hλσ)k(z) − z̄] = −1, the linear part of the complex analytic function

R
2 → C, (z, z̄) �→ (hλσ)k(z) − z̄,

can not be identically zero, and therefore Cλ,k ⊂ R
2 is a real analytic curve smooth at the origin.

It follows from (6) that the projection of Hλ,k under π on the plane C = R
2 is tangent to the

half-line (10) with s > 0 at the origin.

2.4. The argument principle. Let D ⊂ C be a relatively compact domain with piecewise
smooth boundary, and let ψ : D → C be an analytic function which admits a continuation to the
closure D. We denote the number of zeros of ψ in D counted with multiplicities by ZD(ψ). If we
assume that ψ does not vanish on the boundary ∂D, then the increment Var∂D(arg(ψ)) of the
argument of ψ along ∂D oriented counterclockwise is well defined and equals the winding number
of the curve ψ(∂D) ⊂ C around the origin; the classical argument principle states that

2πZD(ψ) = Var∂D(arg(ψ)). (11)

In the general case, where ψ has zeros on ∂D, isolated or not, the variation of the argument
Var∂D(arg(ψ)) is not necessarily well defined.

Definition. We say that z ∈ ∂D is a regular zero of ψ if ψ(z) = 0 and ψ admits an analytic
continuation to a neighborhood of z in C.

If we assume that ψ has only regular zeros in D, then Var∂D(arg(ψ)) is well defined as the sum of
the increments of the argument of ψ|∂D between consecutive zeros of ψ. Indeed, the increments are
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finite, because the boundary ∂D is piecewise smooth. The argument principle can be reformulated
as follows.

Proposition 1. Let D ⊂ C be a relatively compact domain with piecewise smooth boundary.
If ψ : D → C is a continuous function analytic in D and having only regular zeros in D, then

2πZD(ψ) � Var∂D(arg(ψ)) � 2πZD(ψ) + 2πZ∂D(ψ). (12)

Proof. There always exists a polynomial P such that ψ/P has no zeros in D, so we need to
verify (12) only for polynomials. The set D is open, connected, and oriented, and it has piecewise
smooth boundary, which is, therefore, self-avoiding and has the induced orientation. The inequality

0 � Var∂D(arg(z)) � 2π

allows us to “remove” the zeros from ∂D, and hence formula (11) implies (12).

In the present paper the first inequality in (12) will be used to bound the number of the zeros
ZD( · ). For this purpose, we shall need estimates on the variation Varl(arg( · )) of the argument
along any compact segment l of a curve. More precisely, let l ⊂ R

2 = C be a compact segment of
a smooth real analytic curve. Let U ⊂ C be an open set containing l, and let ψλ(z), λ ∈ (CN , 0),
be the germ of a family of complex analytic functions in U at λ = 0. For every fixed λ such that
the function ψλ is not identically zero, the variation

|Varl(arg(ψλ)|
of its argument is well defined.

Theorem 2. Let l be a compact segment of a real analytic curve, and let {ψλ}λ be a family
of functions analytic in a neighborhood of l and depending analytically on λ. Then there exists an
ε0 > 0 such that

sup
|λ|<ε0, ψλ �=0

|Varl(arg(ψλ)| <∞.

The above result is implied by the following theorem due to Gabrielov (see [14] and [9]).

Theorem 3. Let M and N be real analytic varieties and consider the canonical projection
π : M × N → N . For every relatively compact semianalytic set E ⊂ M × N , the number of the
connected components of the preimages π−1(n) is bounded from above uniformly over n ∈ N .

Proof of Theorem 2. The number of the isolated zeros of ψλ along l counted with multi-
plicities is uniformly bounded in λ at λ = 0 (see the Françoise–Yomdin theorem in [14]). On any
interval between two zeros of ψλ( · ) the variation of the argument divided by 2π is bounded by
the number of zeros of the imaginary part of ψλ divided by 2 plus the sum of the multiplicities
of the zeros of ψλ at the endpoints of the interval. The imaginary part of ψλ is a real analytic
function in U ⊂ R

2 , and the Gabrielov theorem implies that the number of connected components
of {Im(ψλ) = 0} ∩ l is uniformly bounded in λ at λ = 0.

3. Cyclicity of One-Saddle Cycles

Let Xλ , λ ∈ (RN , 0), be the germ of an analytic family of analytic planar vector fields such
that X0 has a one-saddle cycle (homoclinic saddle loop) Γ1 . The first return map associated with
Γ1 is the composition of the Dulac map Dλ(z) : σ → τ and the transport map Tλ(z) (see Fig. 4).
We assume that the Dulac map is in the normal form, as in Section 2.1. The limit cycles of Xλ

near Γ1 correspond to the zeros of the displacement map

ψλ(z) = Dλ(z) − Tλ(z)

near z = 0. An appropriate choice of the local coordinates on the cross-sections σ and τ brings
the transport map to the form Tλ(z) ≡ z . Alternatively, we could choose simply σ = τ (without
supposing that the Dulac map is in the normal form of Section 2.1). We shall bound the number of
zeros of ψλ in the domain DR ⊂ C• enclosed by the circle {ρ = R} and the connected components
Hλ,1 and Hλ,−1 of the zero locus of the imaginary part of the Dulac map, as shown in Fig. 5. We
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shall suppose that R > 0 is so small that ψλ( · ) is analytic in DR for all λ ∈ R
N such that |λ| � ε0

(see Theorem 1) and that it is analytic even on the closure of DR except, of course, at z = 0, where
ψλ( · ) is only continuous. Indeed,

lim
z→0, z∈DR

Dλ(z) = 0,

while Tλ(z) is holomorphic at z = 0, so that

lim
z→0, z∈DR

ψλ(z) = c(λ),

where c(λ) is analytic and c(0) = 0. If the family of functions ψλ is sufficiently generic, then
c(λ) 
≡ 0, and in the case when c(λ) ≡ 0, we can replace ψλ by the new family ψλ + λN+1 ,
λN+1 ∈ R, for which the limit at z = 0 is the parameter λN+1 . After this preparation, we can
prove the finite cyclicity of the homoclinic loop Γ1 . For this purpose, we apply Proposition 1 (the
argument principle) to the family of functions ψλ in the domain DR . In the course of computation,
it will be assumed that R > 0 is sufficiently small, ε0 is sufficiently small with respect to R, and
λ is such that |λ| < ε0 . For this choice of parameters we use the “physical” notation

0 < |λ| < ε0 � R� 1. (13)

Fig. 4. The Dulac map Dλ(z) and the transport map Tλ(z).

Fig. 5. Examples of domains DR ⊂ C• projected on the complex plane C under π (see (7)).

The hyperbolic ratio of the saddle point does not exceed 1 only in a suitable semianalytic set
in the parameter space, and it is larger than 1 in another (complementary) semianalytic set. After
the eventual interchange of σ and τ , it will also be assumed that the hyperbolic ratio of the saddle
point is not larger than 1 for all parameter values.

The variation of the argument of ψλ along the circle {z : |z| = R} through an angle close to or
strictly less than 2π is uniformly bounded in λ (see Theorem 2).

On the curve Cλ,1 the imaginary part of ψλ equals the imaginary part of the transport map
−Tλ(z) = −z . Therefore, the zeros of Im(ψλ) on Cλ,1 are exactly the intersection points of Cλ,1
and the interval (−R, 0). According to Lemma 2, we have

Cλ,1 ∩ R = {x ∈ R : hλσ(x) = x} = Cλ,−1 ∩ R. (14)

As hλσ(x) is an analytic family of analytic functions, it follows by Gabrielov’s theorem that the
number of such fixed points is uniformly bounded in λ on [−R, 0]. To conclude, we have only to
check that the family {ψλ}λ has regular zeros on the boundary of the domain DR . This is indeed
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the case when c(λ) 
= 0, because ψλ(0) = c(λ). We conclude that the number of isolated zeros of
the family of functions

{ψλ : c(λ) 
= 0, |λ| � ε0}
in the domain DR is uniformly bounded by some integer, say C . Finally, note that the condition
c(λ) 
= 0 can be removed. Indeed, if, for some λ0 such that |λ0| � ε0 and c(λ0) = 0, the function
ψλ0 has at least C + 1 zeros in DR , then it has at least C + 1 zeros in DR in a sufficiently small
neighborhood of λ0 , in contradiction with the preceding estimate.

Summarizing, we have proved the following classical result.

Theorem (Roussarie [21], [22], and [24]). Every homoclinic saddle loop (a one-saddle cycle)
occurring in an analytic finite-parameter family of planar analytic vector fields can generate no
more than a finite number of limit cycles within the family.

Let us note that our method, exactly as Roussarie’s theorem, allows us to compute the cyclicity
of Γ1 more accurately. We shall not go into details here. We only mention by way of illustration that
if the hyperbolic ratio α(0) is strictly larger than 1, then the total increment of the argument of the
displacement map along the boundary of DR is strictly less than 2π (we omit the computation),
and the cyclicity of Γ1 is zero.

4. The Petrov Trick

The content of this section is not necessary for the proof of our main result (Theorem 4), but
it aims at shedding some light on the origin of the method used to bound the limit cycles near the
saddle loop in the preceding section.

With the same notation as in Section 3, consider the analytic family of analytic vector fields

Xλ, λ = (λ1, . . . , λN ) ∈ (RN , 0),

defining a holomorphic foliation Fλ of the form

Fλ = {dH + λ1ωλ = 0}, ω0 
= 0,

where H is a function and ωλ is an analytic family of differential 1-forms, both analytic in a
neighborhood of the saddle loop Γ1 . For definiteness, we put the saddle point at the origin in
R
2 , so that dH(0) = 0. We shall further suppose that the saddle loop Γ1 is contained in the

level set {H(x, y) = 0} and the interior of Γ1 is filled with a continuous family of periodic orbits
γ0(h) ⊂ {H(x, y) = h} parameterized by h > 0, where h = H(x, y)|σ is the restriction of H to the
cross-section σ. The displacement map is approximated by the usual Poincaré–Pontryagin formula
as

ψλ(h) = λ1

∫

γ0(h)
ωλ + o(λ1), (15)

where, as λ tends to zero, o(λ1)/λ1 tends to zero uniformly in h in every compact interval in which
the displacement map is defined. The zeros of ψλ( · ) correspond to limit cycles, and, at least far
from Γ1 ⊂ {H(x, y) = 0}, they are approximated by the zeros of the complete Abelian integral

h �→ Iλ(h) =

∫

γ0(h)
ωλ, h � 0.

We make the assumption (which is in fact justified by Roussarie’s theorem [21]) that this is also so
in a neighborhood of h = 0 (corresponding to limit cycles close to the saddle loop Γ1). Thus, it
makes sense to prove the finiteness of the maximal number of those zeros of the Abelian integral
Iλ(h) which tend to h = 0 as λ tends to the origin in the parameter space. This readily follows
from a well known general result of Varchenko and Khovansky. We shall use, however, a different
idea due to Petrov [20], who showed that a similar global problem for complete elliptic integrals of
the second kind is of algebraic nature. This observation has been used in several papers by Petrov
to evaluate the precise number of zeros of complete elliptic integrals and, thereby, of limit cycles of
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perturbed Hamiltonian vector fields; see, e.g., Żo�ladek’s book [25, Sec. 6]. We are ready to describe
the local version of the Petrov method.

Consider the sector

SR = {z = ρeiϕ ∈ C : 0 < ρ < R, 0 < ϕ < 2π}.
For a fixed sufficiently small R > 0 and all sufficiently small ‖λ‖, the Abelian integral Iλ(z) admits
an analytic continuation to SR . To bound the number of its zeros on SR (and hence on (0, R)),
we apply the argument principle to the domain SR . Along the circle {ρ = R} the increment of the
argument of Iλ is bounded uniformly in λ (due to Gabrielov’s theorem). Along the interval [−R, 0]
the Abelian integral has two analytic continuations I±λ (h). As Iλ( · ) is real analytic on (0, R), it
follows that

I+λ (h) = I−λ (h), h ∈ (−R, 0),

and by the Picard–Lefschetz formula we have

2
√−1 Im I+λ (h) = I+λ (h) − I−λ (h) =

∫

δ(h)
ωλ, h ∈ (−R, 0), (16)

where δ(h) ⊂ {H(x, y) = h} is a continuous family of cycles vanishing at the origin as h tends to
zero.

The imaginary part of Iλ(h) on (−R, 0) is therefore an analytic function, and, again by
Gabrielov’s theorem, its zeros are uniformly bounded in λ on the closed interval [−R, 0]. This
implies that the increment of the argument of Iλ(h) on (−R, 0) is also uniformly bounded in λ,
which, combined with the argument principle, shows the finiteness of the maximal number of zeros.

The proof of the finite cyclicity of the one-saddle loop from the preceding section may be seen
as a generalization of the Petrov method. Indeed, the Picard–Lefschetz formula corresponds to the
claim of Lemma 1, and by Lemma 2 the zeros of the analytic Abelian integral (16) correspond
to the fixed points (complex limit cycles) of the holonomy map hλσ of the separatrix. As is well
known, the holonomy map of a separatrix is analytic, which implies the finite cyclicity of the saddle
loop Γ1 .

5. Cyclicity of Two-Saddle Cycles

The main result of the paper is the following theorem.

Theorem 4. Every heteroclinic saddle loop (a two-saddle cycle) occurring in an analytic finite-
parameter family of planar analytic vector fields can generate no more than a finite number of limit
cycles within the family.

Fig. 6. The Dulac maps D1
λ and D2

λ .

Using the notation of the preceding sections, suppose that the vector field X0 has a two-saddle
loop Γ2 . Consider the Dulac maps

D i
λ : σ → τ, i = 1, 2,

associated with the corresponding foliation, as in Fig. 5. Each map D i
λ is a composition of a “local”

Dulac map (as in Section 2) and two real analytic transport maps. It follows that Lemma 2 applies
to D i

λ , i = 1, 2, too. From now on we choose a real analytic local variable z on the cross-section
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σ, thus identifying σ with an open disc centered at 0 ∈ C. We shall also suppose that 0 = σ ∩ Γ2 .
The functions D i

λ(z), i = 1, 2, are multivalued on the cross-section σ and have critical points at
si(λ) ∈ R (si(0) = 0). The functions si are real analytic. The limit cycles of Xλ near Γ2 correspond
to the zeros of the displacement map

ψλ(z) = D1
λ(z) − D2

λ(z)

near z = 0. Let αi(λ) > 0, i = 1, 2, be the hyperbolic ratios of the saddles. Interchanging σ and τ
if necessary, we can assume that α1(0)α2(0) � 1. Let us denote the zero loci of the imaginary parts
of the Dulac maps D1

λ(z) and D2
λ(z) by H 1

λ and H 2
λ , respectively. We shall bound the number of

zeros of ψλ in the complex domain DR of the universal covering of C \ {s1(λ), s2(λ)} defined as
follows (without loss of generality, we assume that s1(λ) � s2(λ)).

• If α2(0) > 1, then the domain DR is bounded by the circle

SR = {z : |z| = R} (17)

and by
H 1
λ,1, H 1

λ,−1, H 2
λ,1, and H 2

λ,−1,

as shown in Fig. 7.

Fig. 7. The domain DR ⊂ C• projected on the complex plane C in the case α2(0) > 1.

• If α2(0) � 1, then necessarily α1(0) � 1. The domain DR is bounded by the circle SR , by
the interval [s1(λ), s2(λ)], and by H 1

λ,1 , H 1
λ,−1 , as shown in Fig. 8.

Fig. 8. The domain DR ⊂ C• projected on the complex plane C in the case α2(0) � 1, α1(0) � 1.

In the course of the proof the parameters R and λ will be chosen as in the one-saddle case:
the constant R will be sufficiently small, ε0 > 0 will be sufficiently small with respect to R, and
λ ∈ R

N will be such that |λ| < ε0 (see (13)). Like in Section 3, we shall suppose, without loss of
generality, that the analytic functions c1(λ) and c2(λ), where

lim
z→s1(λ),z∈DR

ψλ(z) = c1(λ) and lim
z→s2(λ),z∈DR

ψλ(z) = c2(λ),

are not identically zero. This will guarantee that, for generic values of λ, the displacement map
will have only regular zeros in the closure of DR , so that the argument principle (Proposition 1)
can be applied.
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Proof of Theorem 4. It follows from the definition of the domain DR ⊂ C• that the displace-
ment map ψλ(z) is analytic there. To count the zeros (corresponding to real and complex limit
cycles) of the displacement map in DR , we apply Proposition 1 (the argument principle) to the
family of functions ψλ . To evaluate the variation of the argument of the displacement map along
the boundary of DR , we repeat the argument of Section 3.

Consider first the case α2(0) > 1 (see Fig. 7). The connected component of the zero locus of the
imaginary part of D2

λ which is tangent to the line ϕ = π/α2(λ) and passes through s2(λ) intersects
the circle SR transversally, and along this circle the variation of the argument of ψλ is uniformly
bounded in λ (by Theorem 2). The imaginary part of ψλ(z) restricted to H 1

λ equals the imaginary
part of −D2

λ , and hence Imψλ vanishes along H 1
λ,1 , H 1

λ,−1 exactly at the intersection points

H 1
λ,1 ∩ H 2

λ,1 and H 1
λ,−1 ∩ H 2

λ,−1.

According to Lemma 2, these intersection points are the solutions of the equation

hλ2 (z) = hλ1 (z), (18)

where hλ1 and hλ2 are the holonomies of the separatrices intersecting σ and related to the saddle
points s1(λ) and s2(λ). By Gabrielov’s theorem, the number of such fixed points is uniformly
bounded in the disc {z : |z| < R}.

Consider now the second case α2(0) � 1, α1(0) � 1 (see Fig. 8). Along this circle SR the
variation of the argument of ψλ is uniformly bounded in λ (by Theorem 2). Along the interval
[s1(λ), s2(λ)] the imaginary part of D1

λ vanishes identically, and the imaginary part of ψλ(z) re-
stricted to this interval equals the imaginary part of −D2

λ . Therefore, the zeros of Im(ψλ) along
[s1(λ), s2(λ)] are exactly the intersection points of H 2

λ,1 and [s1(λ), s2(λ)]. By Lemma 2, like in

(14), these intersection points are the solutions of the equation

hλ2(z) = z,

where hλ2 is the holonomy of the separatrix intersecting σ and related to the saddle point s2(λ).
By Gabrielov’s theorem, the number of such fixed points is uniformly bounded. Finally, the zeros
of Im(ψλ) along H 1

λ,1 and H 1
λ,−1 are evaluated as in the case α2(0) > 1. This completes the proof

of Theorem 4.

6. Concluding Remarks

Identity (18), which determines complex limit cycles “responsible” for the cyclicity of the double
loop Γ2 , is the main new ingredient of the proof in the one-saddle case. Indeed, the solutions of
(18) are fixed points of the holonomy hλ2 ◦ (hλ1 )−1 , which, for λ = 0, is generated by a closed loop γ
contained in the complexified separatrix of Γ2 intersecting the cross-section σ. The topological type
of this separatrix near Γ2 is a disc with two punctures corresponding to two saddle points S1(λ)
and S2(λ). Clearly, γ makes one turn around each of them, but depending on the orientation, we
have the two possibilities shown in Fig. 9, (i) and (ii). A simple computation of a model example
shows that the loop γ associated with the holonomy hλ2 ◦(hλ1 )−1 is the figure-eight loop in Fig. 9 (i).
In the loop γ the reader will recognize a key ingredient in the proof of the local boundedness of
the number of zeros of pseudo-Abelian integrals given in [3] and [4].

Fig. 9. The figure-eight loop γ .
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Although Theorem 4 is existential, our proof of this theorem leads to effective upper bounds
for the number of bifurcating limit cycles. This possibility is explored in [10], where we show that
the cyclicity of a Hamiltonian two-loop is bounded by the number of zeros of a pair of associated
Abelian integrals; this phenomenon also explains the appearance of alien limit cycles in [8].

It is worth noting that our finiteness result holds true, with the same proof, for other hyperbolic
polycycles (in the plane or on an analytic surface), such as those shown in Fig. 10.

Fig. 10. Hyperbolic planar polycycles with finite cyclicity.
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(4), 13:4 (1980), 469–523.

[18] A. Mourtada, “Action de derivations irreductibles sur les algebres quasi-regulieres d’Hilbert,”
http://arxiv.org/abs/0912.1560v1.

[19] G. S. Petrov, “Elliptic integrals and their nonoscillation,” Funkts. Anal. Prilozhen., 20:1 (1986),
46–49; English transl.: Functional Anal. Appl., 20:1 (1986), 37–40.

[20] G. S. Petrov, “The problem of the number of zeros of an elliptic integral is semi-algebraic,”
Mat. Zametki, 44:3 (1988), 393–401; English transl.: Math. Notes, 44:3 (1988), 699–703.

[21] R. Roussarie, “On the number of limit cycles which appear by perturbation of separatrix loop
of planar vector fields,” Bol. Soc. Brasil. Mat., 17:2 (1986), 67–101.
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