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We prove that the holonomy group at infinity of the Painlevé VI equation is virtually
commutative. C© 2012 American Institute of Physics. [doi:10.1063/1.3681897]

I. INTRODUCTION

The sixth Painlevé equation (PVI)
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is a family of differential equations parameterized by (α, β, γ, δ) ∈ C4.8 The purpose of the present
paper is to show that the holonomy group of (PVI) at infinity is virtually commutative. The precise
meaning is as follows. It is straightforward to check that (1) is equivalent to a non-autonomous
Hamiltonian system (the so called sixth Painlevé system)






dλ

dt
= ∂ H

∂µ
,

dµ

dt
= −∂ H

∂λ
,

, (2)

where

H := 1
t(t − 1)

[
λ(λ − 1)(λ − t)µ2 + {κ0(λ − 1)(λ − t)

+κ1λ(λ − t) + (κt + 1)λ(λ − 1)} µ + κ(λ − t)] (3)

and

α = 1
2
κ2

∞, β = 1
2
κ2

0 , γ = 1
2
κ2

1 , δ = 1
2
κ2

t , κ = 1
2

[
(κ0 + κ1 + κt + 1)2 − κ2

∞
]
. (4)

The phase space of the above system is

{(λ,µ, t) ∈ C3 : t $= 0, 1},

which we partially compactify to M = P 1 × P 1 × {C \ {0, 1}}. It is immediately seen that the
projective lines

(c = {µ = ∞, t = c} ⊂ M, c $= 0, 1
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FIG. 1. The divisor Ēt \ Et .

are leaves of the one-dimensional foliation induced by (2) on M. On each leaf (c the foliation has
four singular points defined by λ = 0, 1, c, ∞. Let P $= 0, 1, c, ∞ be a point on (c and consider a
germ of a cross-section (C2, 0) to (c at P. The holonomy group G at infinity is then the image of
the holonomy representation

π1((c \ {0, 1, t,∞}, P) → Di f f (C2, 0). (5)

It is defined up to a conjugation by a diffeomorphism, depending on the germ of cross-section and
the initial point P. Our main result is

Theorem 1: The holonomy group at infinity of the sixth Painlevé equation is virtually
commutative.

Recall that a group G is said to be virtually commutative, provided that there is a normal
commutative subgroup G0 ⊂ G, such that G/G0 is finite. The isomorphism class of the holonomy
group G along the leaf (c has in fact a canonical meaning. As we shall see in Sec. II, the leaf
(c coincides with the divisor D0(c) in the Okamoto compactification15 of the phase space of PVI,
see Fig. 1. In particular, the holonomy group along (c is isomorphic to the holonomy group along
the Okamoto divisor D0(c). The remaining divisors shown on Fig. 1 are topological cylinders, the
associated holonomy has therefore one generator and is commutative.

The proof of Theorem 1 is based on Lemma 2 which claims that the local holonomies near
the singular points of the leaf (c are involutions, as well on the algebraic Lemma 1. Lemma 2 and
Lemma 1 suggest that Theorem 1 is related to the fact that the vertical divisor shown on Fig. 1
belongs to the Kodaira list of degenerate elliptic curves.

Let Ek be the kth order variational equation along (c and Gk the associated differential Galois
group. Ek defines a connection on the Riemann sphere (c = P \ {0, 1, c,∞} with four regular
singular points at the punctures {0, 1, c, ∞}. The monodromy group of Ek represents the kth order
jet of the holonomy group along D0(c). We describe these monodromy groups in the simplest cases
k = 1, 2 in Sec. III. It follows, for instance, that the monodromy group of E1 is isomorphic to
a semi direct product Z2 ! Z2, while G1 = C2 ! Z2. In particular, G1 as well G2 are virtually
commutative. This is a particular case of a general fact. According to Theorem 1, the monodromy
group of Ek is virtually commutative for all k. As its Zarisky closure is Gk, then we also have the
following

Theorem 2: For every k the differential Galois group Gk is virtually commutative.

The present paper was motivated by the study of the Liouville non-integrability of the PVI system
through the Ziglin-Morales-Ramis-Simo theory of non-integrability.10, 11, 13, 14 This theory asserts
that integrability in a Liouville sense along a particular solution (c implies that the variational
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equation E1, as well all higher order variational equations Ek along this solution, has virtually
commutative differential Galois groups. Indeed, in such a way the “semi-local” non-integrability in
a neighborhood of some particular solutions and parameter values of the PVI system has been recently
proved by Horozov and Stoyanova,7, 16 see also Morales-Ruiz.12 To prove the non-integrability for all
parameters we need, however, an explicitly known particular solution which exists for all parameter
values. The only such appropriate solution is the vertical divisor (c = D0(c), defined in Theorem 1.
The result of Theorem 2 shows that, contrary to what we expected, one can not prove the absence
of a first integral of the PVI equation, by making use of the Ziglin-Morales-Ramis-Simo theory. It
is an open question, whether the PVI equation has a first integral, meromorphic along the divisor (c

“at infinity.” This question, but in a more general setting, has been raised in Ref. 11, Sec. 7.
Non-integrability or transcendency of solutions is one of the central subjects in the study

of the PVI equation. The fact that its general solution can not be reduced to a solution of a
first order differential equation has been claimed already by Painlevé, and proved more recently
by Watanabe18 and others. A different approach to the transcendency, going back to Drach and
Vessiot, is to interpret it as an irreducibility of the Galois groupoid defined by Malgrange, see
Refs. 2–4, and 9. The irreducibility of the PVI equation in the sense of Drach-Vessiot-Malgrange has
been shown by Cantat and Loray (Ref. 1, Theorem 7.1). It follows from these results that the PVI
equation does not allow an additional rational first integral. The relation between the irreducibility
of the Galois groupoid of a Hamiltonian system and the differential Galois group along a given
algebraic solution is studied recently by Casale.5 In this context, our Theorem 1 comes at a first sight
as a surprise. The solution (c which we use is however rather special: it is an irreducible component
of the anti-canonical divisor of the space of initial conditions, and hence it is invariant under the
action of the Galois groupoid. This leads to special properties of the Galois groupoid along (c too.

The paper is organized as follows. In Sec. II, we resume briefly the Okamoto compactification
of the phase space of PVI equation.15 In Sec. III, we describe the monodromy group of the first and
the second variational equation along (c, in terms of complete elliptic integrals of first and second
kind. These groups provide an approximation of the holonomy group along (c. Our main result,
Theorem 1, is proved in Sec. IV.

II. THE OKAMOTO COMPACTIFICATION

Let (E, π , B) be a complex-analytic fibration with base B, total space E, and projection
π : E → B. Consider a foliation F on E of dimension equal to the dimension of B. Following
Ref. 15, we say that F is P-uniform if for every leaf ( ⊂ E the induced map

π : ( → B

is an analytic covering. Thus, for every initial point e ∈ E, and every continuous path γ ⊂ B starting
at b = π (e), there is a unique continuous path γ̃ ⊂ E starting at e, which is a lift of γ with respect
to π (the “Painlevé property” of the foliation). The analyticity of π implies moreover that at each
point e ∈ E the leaf of the foliation is transversal to the corresponding fiber of the fibration.

From now on, we put

E = {(λ,µ, t) ∈ C3 : t $= 0, 1}, B = C \ {0, 1}

π : E → B : (λ,µ, t) (→ t

being the natural projection. The system (2) defines a one-dimensional foliation F on the total space
E which is not P-uniform, but can be completed to a P-uniform foliation after an appropriate partial
compactification Ē of E.

The main result of Ref. 15 may be formulated as follows.

Theorem 3: There exists a canonical compact complex-analytic fibration (Ē, π̄ , B), such that

• E ⊂ Ē , π̄ |E = π .
• Each fiber Ēt = π̄−1(t) is compact.
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• Ēt \ Et is a union of nine transversal projective lines, as it is shown on Fig. 1. The intersection
points of the lines depend analytically on t.

• Let Dt be the union of five solid lines shown on Fig. 1. The foliation induced by (2) on
Ẽ = Ē \ ∪t∈B Dt is P-uniform with respect to the induced projection.

A similar result holds true for the remaining Painlevé equations.15

Remark: Ēt \ Dt is the so called “space of initial conditions” of the Painlevé VI equation which
we describe next.

Sketch of the proof of Theorem 3: Following Ref. 15, define first the Hirzebruch surface *
(2)
(ε) ,

ε ∈ C, using four charts Wi = C2, with local coordinates (λi, µi), i = 1, . . . , 4, where





λ2 = λ1, µ2 = 1
µ1

in W1 ∩ W2,

λ3 = 1
λ1

, µ3 = ελ1 − λ2
1µ1 in W1 ∩ W3,

λ4 = λ3, µ4 = 1
µ3

in W3 ∩ W4.

(6)

If ε $= 0, then the Hirzebruch surface *
(2)
(ε) is isomorphic to P 1 × P 1; otherwise, it is isomorphic to

the tangent projective bundle of P 1 with projection

*
(2)
(ε) → P 1,

(λi , µi ) (→ λi .

The vector field (2) extends on the total space of the trivial bundle

*
(2)
(ε) × B

π→ B, B = P 1 \ {0, 1,∞}, (7)

where ε = − (κ0 + κ1 + κ t + κ∞ + 1). For instance, in the chart W2 it takes the form





µ2λ
′
2 = 1

t(t − 1)
[2E(t, λ2) + F(t, λ2)µ2] ,

µ′
2 = 1

t(t − 1)

[
Eλ(t, λ2) + Fλ(t, λ2)µ2 + Gµ2

2

]
,

(8)

where





E(t, λ) = λ(λ − 1)(λ − t),

F(t, λ) = κ0(λ − 1)(λ − t) + κ1λ(λ − t) + (κt + 1)λ(λ − 1),

Eλ = ∂ E
∂λ

, Fλ = ∂ F
∂λ

,

G = −1
2
ε (κ0 + κ1 + κt − κ∞ + 1) = κ.

(9)

The above meromorphic vector field induces a singular foliation on *
(2)
(ε) having four one-parameter

families of singular points Sθ , θ = 0, 1, ∞, t defined by

Sθ ∩ π−1(t) = aθ (t),

a0(t) = {(λ2, µ2) = (0, 0)} ,

a1(t) = {(λ2, µ2) = (1, 0) or (λ4, µ4) = (1, 0)} ,

at (t) =
{

(λ2, µ2) = (t, 0) or (λ4, µ4) = (
1
t
, 0)

}
,

a∞(t) = {(λ4, µ4) = (0, 0)} .
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Replace the Hirzebruch surface *
(2)
(ε) by *

(2)
(ε) blown up at aθ (t) for every t ∈ B. This replaces each

aθ (t) by a projective line denoted Dθ
1 (t). The induced foliation has still four one-parameter families

of singular points which belong to Dθ
1 (t). We blow up once again the surfaces at these singular points

to obtain the fibers Ēt of the fibration described in Theorem 3, see Fig. 1. The remaining claims of
the Theorem follow by computation. !

III. HIGHER ORDER VARIATIONAL EQUATIONS AND THEIR MONODROMY GROUPS

In this section, we consider the foliation F defined by the vector field (2) on the total space of
the fibration (Ē, π̄ , B), see Theorem 3. This foliation has in each fiber π − 1(t) a vertical leaf D0(t),
which in the chart W2 takes the form

D0(t) : µ2 = 0.

According to (8) the foliation F in the local chart W2 is defined by





dµ =
[
Eλ(t, λ) + Fλ(t, λ)µ + Gµ2

]
µ

2E(t, λ) + F(t, λ)µ
dλ,

dt = t(t − 1)µ
2E(t, λ) + F(t, λ)µ

dλ,

(10)

where E, F, and G are given by (9). Here, as well until the end of the paper, we replace for simplicity
µ2, λ2 by µ, λ.

In this section, we compute the first and the second variational equations of (10) along
D0(c) and study the corresponding monodromy groups. For this purpose, we put, following
Refs. 7 and 11,

t = c + εη1 + ε2

2
η2 + · · · , µ = εξ1 + ε2

2
ξ2 + · · · , ε ∼ 0,

where ηk = ηk(λ), ξ k = ξ k(λ) are unknown functions and substitute these expressions in (10).
Equating the coefficients of εk, we get a recursive system of linear non-homogeneus equations on
(ηk, ξ k) – the higher order variational equations. We note that these equations, except in the case
k = 1, are non-linear. In order to obtain a linear system, we add suitable monomials in ηi, ξ j, e.g.,
Refs. 11 and 14. The fundamental matrices of solutions of these equations are then explicitly
computed by the Picard method in terms of iterated integrals. This implies also a description of the
corresponding monodromy matrices. In Secs. III A and III B, we carry out this procedure in the
particular case of the first and the second variational equation.

A. The first variational equation

The first variational equation E1 along D0 is the linear system
(

η̇1

ξ̇1

)

=
(

0 b(λ)

0 a(λ)

)(
η1

ξ1

)

, (11)

where

a(λ) = Eλ(c, λ)
2E(c, λ)

,

b(λ) = c(c − 1)
2E(c, λ)

.

The general solution of the system (11) is given by

η1(λ) = c1

∫ λ

p

c(c − 1)dλ

2
√

λ(λ − 1)(λ − c)
+ c2,

ξ1(λ) = c1

√
λ(λ − 1)(λ − c).
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where (c1, c2) ∈ C2 and p ∈ C is a fixed initial point. The fundamental matrix of solutions

X (λ) =





∫ λ

p

c(c − 1)dλ

2
√

λ(λ − 1)(λ − c)
1

√
λ(λ − 1)(λ − c) 0





is multivalued, and the result of the analytic continuation of X(.) along small loops making one turn
around λ = 0, 1, c respectively is

X → XT0, X → XT1, X → XTc.

The matrices T0, T1, Tc generate the monodromy group of (11) and can be computed as follows. Let
Sc be the compact elliptic Riemann surface of the algebraic function

√
λ(λ − 1)(λ − c). It has an

affine equation

{(λ, y) : y2 = λ(λ − 1)(λ − c)}. (12)

The one-form

dλ√
λ(λ − 1)(λ − c)

is holomorphic on Sc and hence X(.) can be seen as a globally multivalued, but locally meromorphic
matrix function on Sc. This implies that

T 2
0 = T 2

1 = T 2
c =

(
1 0

0 1

)

,

and hence

T0 =
(−1 0

α0 1

)

, T1 =
(−1 0

α1 1

)

, Tc =
(

−1 0

αc 1

)

. (13)

The constants α0, α1, αc depend on the initial point p and can be determined as follows. The matrix

T0T1 =
(

1 0

α1 − α0 1

)

represents the monodromy of X(.) along a closed loop on the λ-plane, which lifts, on on the Riemann
surface of

√
λ(λ − 1)(λ − c) to a closed loop too, which we denote γ . The monodromy of the

fundamental matrix X along this loop is T0T1, and we have

X → XT0T1 = X +
(

0 0

0 0

)

,

where

0 =
∫

γ

c(c − 1)dλ

2
√

λ(λ − 1)(λ − c)
=

∫ 1

0

c(c − 1)dλ√
λ(λ − 1)(λ − c)

is a period of the holomorphic one-form on Sc. Therefore,

α1 − α0 =
∫ 1

0

c(c − 1)dλ√
λ(λ − 1)(λ − c)

and in a similar way

αc − α0 =
∫ c

0

c(c − 1)dλ√
λ(λ − 1)(λ − c)

.
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Finally, taking the limit p → 0 we obtain α0 = 0. The monodromy group of (11) is therefore

< T0, T1, Tc >= {
(

±1 0

p01 + q02 1

)

: p, q ∈ Z}, (14)

where

01 =
∫ 1

0

c(c − 1)dλ√
λ(λ − 1)(λ − c)

, 02 =
∫ c

0

c(c − 1)dλ√
λ(λ − 1)(λ − c)

are the fundamental periods of the elliptic surface Sc. As 01, 02 are linearly independent over R,
then we obtain

Proposition 1: For every c $= 0, 1, t, the monodromy group (14) of the first variational
equation (11) is isomorphic to the semidirect product Z2 ! Z2, where Z2 = Z/2Z.

It is well known that for a Fuchs type equation the Zariski closure of the monodromy group is
the differential Galois group (e.g., Ref. 17). Therefore, the Galois group G1 of (11) is

G1 = C ! Z2 = {
(

±1 0

z 1

)

: z ∈ C}.

In particular, G1 is virtually commutative.

B. The second variational equation

The second variational equation E2 along the divisor D0(c) reads

ξ̇2 = d(λ) (ξ1)2 + e(λ)ξ1η1 + a(λ)ξ2,

η̇2 = f (λ) (ξ1)2 + g(λ)ξ1η1 + b(λ)ξ2, (15)

where

a(λ) = Eλ(c, λ)
2E(c, λ)

,

b(λ) = c(c − 1)
2E(c, λ)

,

d(λ) = 2E(c, λ)Fλ(c, λ) − Eλ(c, λ)F(c, λ)
4(E(c, λ))2

,

e(λ) = −(2λ − 1)E(c, λ) + λ(λ − 1)Eλ(c, λ)
2(E(c, λ))2

,

f (λ) = −c(c − 1)F(c, λ)
4(E(c, λ))2

,

g(λ) = (2c − 1)E(c, λ) + c(c − 1)λ(λ − 1)
2(E(c, λ))2

.

Having computed µ1, ξ 1, this is a linear non-homogeneous equation in µ2, ξ 2, but it is also equivalent
to the linear system





η̇2

ξ̇2

u̇1

v̇1




=





0 b(λ) g(λ) f (λ)

0 a(λ) e(λ) d(λ)

0 0 a(λ) b(λ)

0 0 0 2a(λ)









η2

ξ2

u1

v1




, (16)

where u1 = ξ 1η1 et v1 = (ξ 1)2.

Downloaded 10 Feb 2012 to 130.120.80.225. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



022701-8 Ben Hamed, Gavrilov, and Klughertz J. Math. Phys. 53, 022701 (2012)

The substitution

σ2 = ξ2√
λ(λ − 1)(λ − c)

, u2 = u1√
λ(λ − 1)(λ − c)

, v2 = v1

λ(λ − 1)(λ − c)
,

transforms (16) to a strictly upper triangular form





η̇2

σ̇2

u̇2

v̇2




=





0 a12(λ) a13(λ) a14(λ)

0 0 a23(λ) a24(λ)

0 0 0 a34(λ)

0 0 0 0









η2

σ2

u2

v2




, (17)

where

a12(λ) =
√

λ(λ − 1)(λ − c) b(λ),

a13(λ) =
√

λ(λ − 1)(λ − c) g(λ),

a14(λ) = λ(λ − 1)(λ − c) f (λ),

a23(λ) = e(λ),

a24(λ) =
√

λ(λ − 1)(λ − c) d(λ)

a34(λ) = a12(λ).

The linear system (17) is solved recursively in terms of iterated integrals. Namely, for differential
forms ωi(x) = fi(x)dx on the interval [0, 1] define the linear iterated integrals

∫ 1

0
ω1ω2 =

∫ 1

0
f1(y)(

∫ y

0
f2(x)dx)dy,

∫ 1

0
ω1ω2ω3 =

∫ 1

0
f1(z)[

∫ z

0
f2(y)(

∫ y

0
f3(x)dx)dy]dz.

Integrals of higher order and along a path on a Riemann surface are defined in a similar way, e.g.,
Ref. 6. The fundamental matrix of solutions of the linear system (17) takes the form

Y (λ) = I +
∫ λ

P
J +

∫ λ

P
J 2 +

∫ λ

P
J 3 =





1 Y12(λ) Y13(λ) Y14(λ)

0 1 Y23(λ) Y24(λ)

0 0 1 Y34(λ)

0 0 0 1




,

where

J =





0 ω12(λ) ω13(λ) ω14(λ)

0 0 ω23(λ) ω24(λ)

0 0 0 ω34(λ)

0 0 0 0




, ωi j = ai j (λ)dλ.
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and hence

Y12(λ) =
∫ λ

P
ω12,

Y13(λ) =
∫ λ

P
ω12ω23 +

∫ λ

P
ω13,

Y14(λ) =
∫ λ

P
ω12ω23ω34 +

∫ λ

P
ω12ω24 +

∫ λ

P
ω13ω34 +

∫ λ

P
ω14,

Y23(λ) =
∫ λ

P
ω23,

Y24(λ) =
∫ λ

P
ω23ω34 +

∫ λ

P
ω24,

Y34(λ) =
∫ λ

P
ω34.

As for the first variational equation, the fundamental matrix Y(λ) is a globally multivalued, but
locally meromorphic matrix function on the elliptic curve Sc, (12) (after removing eventually the
points λ = 0, 1, c, ∞). The monodromy matrix Tα of Y along a closed path α is given therefore by
the same matrix Y, in which the integrals

∫ λ

P are replaced by
∫

α . A more careful analysis will show,
however, that when α can be lifted to a closed loop on Sc, then the double and triple iterated integrals
in Tα are reduced to usual complete elliptic integrals of first and second kind. This would imply
the involutivity of the monodromy operators T0, T1, Tc (defined in Sec. III A) as well the virtual
commutativity of the monodromy group of E2.

Let α be a closed path on D0(c) which lifts to a closed path on the elliptic curve Sc, where

Sc → D0(c),

(λ,µ) (→ λ,

are double ramified covering over λ = 0, 1, c, ∞. Denote the monodromy matrix of the second
variational equation (16) along α by Tα .

Proposition 2: The entries of the monodromy matrix Tα along a closed loop α on the elliptic
surface Sc are quadratic polynomials in the complete elliptic integrals of first and second kind
along α.

Until the end of this subsection, we sketch the proof the Proposition 2. Note that ω23 = d h is
an exact form, where

h(λ) = −λ(λ − 1)
2E(c, λ)

= − 1
2(λ − c)

.

This combined with the identity
∫ λ

P
ω1ω2 +

∫ λ

P
ω2ω1 =

∫ λ

P
ω1

∫ λ

P
ω2

allows to express the iterated integrals of length two and three via usual Riemann integrals of
meromorphic one-forms. Indeed, for every differential 1-form ω, we have

∫ λ

P
ω23ω = h(λ)

∫ λ

P
ω −

∫ λ

P
h(λ)ω. (18)

It follows that Y13(λ) and Y24(λ) are in fact Riemann integrals along meromorphic differential forms.
The reader may check that these one-forms have no residues on Sc. It remains to analyze Y14(λ) .
Using (18), we obtain

∫ λ

P
ω12ω23ω12 =

∫ λ

P
(ω12h(λ)) ω12 −

∫ λ

P
ω12 (h(λ)ω12) , (19)
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which implies
∫ λ

P
ω12ω23ω12 +

∫ λ

P
ω12ω24 +

∫ λ

P
ω13ω12 =

∫ λ

P
ω12ω

+ (
∫ λ

P
ω12)(

∫ λ

P
h ω12 +

∫ λ

P
ω13),

where ω := (−2h(λ)b(λ) + d(λ) − g(λ))
√

E(c, λ) dλ. The two forms ω12 and ω have dependent
cohomology classes in H 1

DR ((), where Sc is the elliptic curve(12). In fact,

ω12 = c(c − 1)dλ

2
√

E(c, λ)
and ω =

(
1 − 2c

2

)
dλ√

E(c, λ)
+ 1

2
d

(
F(c, λ)√
E(c, λ)

)
.

Thus, everything is reduced to quadratic expressions in suitable Riemann integrals along meromor-
phic differential form without residues on Sc. (the latter claim is straightforward to check). From
this the Proposition follows. !

Corollary 1: Let α, β be closed loops on Sc starting at the same point, so they can be composed.
Then TαTβ = TβTα and the monodromy group of E2 is virtually commutative.

Indeed, as the homology class of the loop αβα − 1β − 1 is zero, then

TαTβ T −1
α T −1

β = Tαβα−1β−1

is the unit matrix. Note that the monodromy operators along closed loops on Sc generate a subgroup
of the monodromy group of the second variational equation (16) of finite index. Therefore, as
expected, the monodromy group is virtually commutative.

IV. THE HOLONOMY AT INFINITY

Let ( be a leaf of the Painlevé VI foliation and (C2, 0) be a germ of a cross-section to ( at
some regular point P. Each homotopy class of closed loops γ ⊂ (, starting at P, defines a germ of
a diffeomorphism

hγ : C2, 0 → C2, 0

and a homomorphism (the holonomy representation of the fundamental group of ()

π1((, P) → Di ff (C2, 0) : γ (→ hγ .

The holonomy group of the foliation along ( is the image of this map (which will be confounded
with the representation itself ). Different points in the leaf and different cross-sections give rise to
representations conjugated by germs of holomorphic diffeomorphisms.

The holonomy group of the Painlevé VI foliation at infinity is, by definition, the holonomy group
along the vertical leaf D0 = D0(c), c $= 0, 1, ∞, shown on Fig. 1. The leaf D0(c) is a four-punctured
Riemann sphere, the punctures corresponding to a0, a1, ac, a∞. The holonomy group of the Painlevé
VI foliation along D0(c) is generated by three germs of analytic diffeomorphisms

h0, h1, hc (20)

corresponding to loops on D0(c) making one turn around a0, a1, ac respectively.
The main result of the paper, Theorem 1, follows from Lemma 1 and Lemma 2 formulated

bellow.
Let G be a group with three generators a, b, c and the following defining relations

a2 = b2 = c2 = (abc)2 = 1.

An element g ∈ G can be therefore represented by a word formed by the letters a, b, c. The length l(g)
of a word g ∈ G is the number of letters in g, and only the equivalence class of l(g) in Z2 = Z/2Z
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is well defined. We get a homomorphism

G → Z2 : g (→ l(g)

and let G0 be its kernel.

Lemma 1: The group G0 is commutative.

Proof: The above lemma has a transparent geometric meaning : G0 is identified to the funda-
mental group of an elliptic curve which, as well known, is commutative. To see this, consider the
compact Riemann surface S with affine model

S = {(x, y) : y2 = x(x − 1)(x − t)}, t $= 0, 1

as well the natural projection

π : S → P : (x, y) → x .

Let S̃ = S \ {(x, 0) : x = 0, 1, t,∞} and P̃ = P \ {0, 1, t,∞}. Let P ∈ S̃ and, by abuse of notation,
p = π (P). The fundamental group π1(P̃ , p) is the free group generated by a, b, c, where a, b, c are
represented by closed loops making one turn around 0, 1, t. With orientations appropriately chosen,
abc is represented by a loop around ∞. The fundamental group π1(S̃, p) is free with five generators.
The projection

π : S̃ → P : (x, y) → x

is a two sheeted covering which induces a monomorphism

π∗ : π1(S̃, P) → π1(P̃ , p),

such that π1(P̃ , p)/π∗(π1(S̃, P)) = Z2. This can be resumed in the following exact sequence of
homomorphisms

1 → π1(S̃, P) → π1(P̃ , p) → Z2 → 1.

An element of the fundamental group π1(S̃, P) represented by a closed loop which makes one turn
around one of the ramification points on S is mapped by π to a2,b2, c2 or (abc)2. It follows that the
induced homomorphism

π1(S, P) → G

is well defined, where G is the group defined above. The image of π1(S, P) in G consistes of words of
even length and each word of even length has a unique pre-image (lift of a closed loop with respect
to the projection). Therefore, the following sequence of homomorphisms is exact

1 → π1(S, P) → G → Z2 → 1

and Im(π1(S, P)) = G0 is commutative. The lemma is proved. !

Next, we apply the above Lemma to the holonomy group along D0(c). This group has three
generators h0, h1, hc, see (20), and let h∞ be the holonomy map associated to a closed loop making
one turn around λ = ∞. If the orientations of the underlying closed loops are appropriately chosen,
then h∞ = h0h1hc.

Lemma 2:

h2
0 = h2

1 = h2
c = (h0h1hc)2 = id.

Proof: Recall that, according to Sec. II the Okamoto surface Ē is obtained from the Hirzebruch
surface *

(2)
(ε) after 8 = 4 × 2 blow up’s at the four singular points a0, a1, at, a∞. It follows that the

holonomy group along the leaf D0 = D0(t) ⊂ Ē coincides with the holonomy group of the divisor
leaf D0 = D0(t) ⊂ *

(2)
(ε) , see Figs. 1 and 2. Further, because of the symmetry of Painlevé VI (Ref.

15, Proposition 2.2) it suffices to show that h2
0 = id.
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FIG. 2. The divisor D0(t) in the chart W2.

The idea of the proof of Lemma 2 is as follows. By Theorem 3 consider the family of solutions
λ = λ(t), µ = µ(t), with initial conditions

(λ(t0), µ(t0)) ∈ D0
2(t0).

Here λ, µ are coordinates in appropriate chart on the variety Ēc. Clearly, these solutions are analytic
for t ∼ t0. Upon a successive contraction of the divisors D0

2 and D0
1 we get an infinite family of

analytic solutions λ = λ(t), µ = µ(t) which tend to the point a0. The corresponding leaves are in
fact holomorphic curves at a0 (Ref. 15, Lemme 2VI) which are therefore parameterized by suitable
convergent Puiseux series

λ → (t(λ), µ(λ)).

The monodromy of these series when λ makes one turn around the origin is readily computed to be
an involution. We claim that all leaves “sufficiently close” to D0(c) are obtained in such a way, with
some t0 ∼ c. If true, this would imply that h2

0 = id as this holds true for the monodromy map of the
holomorphic curves through a0.

To make these considerations rigorous, consider the chart W2 on the Hirzebruch surface, with
coordinates (λ2, µ2), see Sec. II. The Painlevé foliation along the leaf D0(c) = {t = c, µ2 = 0} on
Ē , after 8 = 4 × 2 blow downs, is defined by (10). Until the end of this section we replace, as in
Sec. III (λ2, µ2) by (λ, µ).

Consider an open neighborhood Ũc of the divisor D0
2 = D0

2(c) = P 1 shown on Fig. 1. in the
three-dimensional space Ē . As the Painlevé foliation is transversal to D0

2(c), then we shall suppose
that Ũc intersects any leaf of the foliation into an open disc, and that Ũc is a union of such discs.
After a contraction of D0

2(t) and D0
1(t), ∀t, the neighborhood Ũc is transformed to a cone-like domain

Uc ⊂ *
(2)
(ε) × B. The processus of blowing down the divisors D0

2(t) and D0
1(t), and the effect on the

domain Uc ∩ {t = const.} is shown on Fig. 3. As the neighborhood Ũc is a union of regular leaves,
then the contracted domain Uc is an union of leaves of (10) intersecting at a0(t). Each leaf of (10) is
therefore a holomorphic curve at a0(t), tangent to the plane {λ + κ0µ = 0} there. Another important
feature of the contracted neighborhood Uc is that it contains the domain

{| λ
µ

+ κ0| < ε, |t − c| < δ, |λ| < ε, |µ| < ε}, (21)

for all sufficiently small ε, δ > 0. The domain (21) is a direct product of the cone

{(λ,µ) ∈ C2 : | λ
µ

+ κ0| < ε, |λ| < ε, |µ| < ε}
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FIG. 3. Blowing down the divisors D0
2(c) and D0

1(c), and the domain Uc.

with vertex (0, 0, c) and axis λ + κ0µ = 0, and the disc {t ∈ C : |t − c| < δ}. Consider the following
projection map

π : (λ,µ, t) (→ (λ + κ0µ, 0, c) (22)

from a neighborhood of the point a0(c) = (0, 0, c) to the line D0(c). The pre-image of π − 1(a0(c)) is
the complex two-plane {λ + κ0µ = 0}.

Consider a cross-section σ = (C2, 0) to D0(c), contained in the plane λ = ε > 0. It is a (germ
of a) complex two-dimensional disc centered at the origin on which the holonomy map is defined

h0 : σ → σ.

To define geometrically h0, consider the path γ = [0, ε] ⊂ D0(c) (a real interval) connecting
λ = ε to the origin on the λ-plane D0(c). We claim that for any initial condition on σ sufficiently
close to (ε, 0, c) there is a lift ( of γ along π , to a path contained in a leaf of the Painlevé foliation,
starting at the above initial point. Moreover, we claim that when λ tends to zero along γ , then the
corresponding point of ( tends to (0, 0, t) for some t, |t − c| ≤ ε. For this purpose, we prove first
that γ can be lifted at least until it intersects the cone-like domain Uc. As the leaves in Uc are curves
holomorphic at a0(c), then the result will follow.

To lift γ until it intersects Uc we construct a suitable compact set, in which γ can be lifted.
Namely, let K be the closure of the following set:

{(λ,µ, t) : | λ
µ

+ κ0| ≥ δ, |t − c| ≤ δ, |λ + κ0µ| ≤ δ}.

It is easily seen that K is compact. The foliation (10) is transverse to the fibers of the map π at a
point (λ, µ, t) if

2E(t, λ) + F(t, λ)µ + κ0
[
Eλ(t, λ) + Fλ(t, λ)µ + Gµ2]µ $= 0.

In a suitable neighborhood of the point (0, 0, c) we have

2E(t, λ) + F(t, λ)µ + κ0
[
Eλ(t, λ) + Fλ(t, λ)µ + Gµ2] µ = 2t(λ + κ0µ) + · · · ,

where the dots stand for O(|λ|2 + |µ|2) uniformly in t ∼ c. We conclude that when (λ, µ, t) ∈ K and
belongs to a suitable neighborhood of the point (0, 0, c), then the foliation (10) is transverse to the
fibers of the map π , and hence the path γ can be lifted until its lift reaches the border of K. In the
case when |t − c| < δ, this means that the path can be lifted until the cone-like domain Uc which
is filled up by holomorphic curves (leaves of the foliation). Therefore, the path can be further lifted
until the origin and the claim is proved.

It remains to show that in the course of the lifting |t − c| < δ holds true. This follows after
integrating the differential

dt
t(t − 1)

= 1
2E(t, λ)/µ + F(t, λ)

dλ,
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along the path γ . Indeed, when (λ, µ, t) ∈ K and belongs to a suitable neighborhood of the point (0,
0, c), then

2E(t, λ)
µ

∼ −2κ0c, F(t, λ) ∼ κ0c,

and hence

2E(t, λ)
µ

+ F(t, λ) ∼ −κ0c

is bounded from zero, provided that κ0 $= 0.
We conclude that every path can be lifted until it crosses the domain Uc in which the leaves of

the foliation are holomorphic curves. The monodromy of the Puiseux series t = t(λ′), µ = µ(λ′),
when λ′ = λ + κ0µ makes one turn around the origin is easily described : it is an involution. This
follows geometrically from the fact, that the divisor D0

2(t) is obtained after two blow up’s from a0(t).
Analytically, this means that if z is a local coordinate on the projective line D0

2(t), then Uc is an
union of holomorphic curves (leaves) parameterized by z and t, such that for fixed z, t we have

λ′ = λ + κ0µ = zµ2 + O(µ3),

where − κ0 is the coordinate of D0
1(t) ∩ D0

2(t) and z ∈ D0
2(t) is the intersection point of the leaf and

D0
2(t). Therefore, µ is an analytic function in

√
λ′ and the result follows. Finally, we note that the

holonomy map h0 depends analytically on the parameters of the Painlevé foliation. As h2
0 = id for

κ0 $= 0 then this holds true for all κ0. To resume, we proved

Proposition 3: There exists a neighborhood of the point a0(c) = (0, 0, c), such that every leaf
of the Painlevé foliation is a holomorphic curve, which is a ramified two-sheeted covering of the
divisor D0(c) = {µ = 0} along the projection map π (22), with ramification point (λ = µ = 0).

The above Proposition generalizes (Ref. 15, Lemma 2VI) and implies Lemma 1. !

Proof of Theorem 1: According to Lemma 2, each element of the holonomy group is a word
made with the letters h0, h1, hc. By Lemma 1, the subgroup of the holonomy group formed by words
of even length is commutative.
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5 Casale, G., “Liouvillian first integrals of differential equations,” Banach Center Publ. 94, 153–161 (2011).
6 Hain, R. M., “The geometry of the mixed Hodge structure on the fundamental group,” Proc. Symp. Pure Math. 46, 247–281

(1987).
7 Horozov, E. and Stoyanova, T., “Non-Integrability of some Painlevé VI equations and dilogarithms,” Regular Chaotic
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